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Abstract

This thesis is concerned with gaze analysis methods to study visual attention in interactive 3D
computer-graphics applications, such as virtual environments or computer games. Under this
scope, research has been carried out in two directions: On the one hand, it was investigated how
gaze analysis in three-dimensional virtual environments can be advanced. On the other hand,
approaches were explored which improve three-dimensional graphics by taking into account
visual attention of a user.

To advance gaze analysis in 3D computer graphics applications, two challenges have been
addressed: First, inferring the object of attention at a certain point in time from the current out-
put of an eye tracker — a technique which we denote as gaze-to-object mapping —, and second,
deriving a statistical model for visual attention - a data structure we denote as importance map -
from sequences of gaze samples recorded from many users. While addressing these challenges
is a crucial step towards advancing gaze analysis and research on visual attention which employs
modern computer graphics, the results may also be used in applications which attempt to per-
ceptually optimize rendering. Thus, the third challenge addressed in this thesis was to explore
an example application for attention-aware rendering techniques, where gaze-to-object mapping
or importance maps can be employed to determine or predict the object of attention at run time.
Thus, this thesis concludes with a pilot study on an application that dynamically adjusts the con-
figuration of a stereo 3D display such that the object being attended by the user can be seen most
comfortably.






Kurzfassung

Diese Arbeit beschiftigt sich mit Eyetracking-basierten Methoden zur Messung, Analyse und
Vorhersage visueller Aufmerksamkeit in Echtzeitgrafikanwendungen, wie Computerspiele oder
Virtual Environments. An dieser Schnittstelle zwischen Computergrafik und Psychologie wurde
in zwei Richtungen geforscht: zum einen wurde untersucht, wie man Computergrafik zusammen
mit Eyetracking als methodisches Werzeug zur experimentellen Analyse der Aufmerksamkeit
einsetzen kann. Zum anderen wurde versucht, 3D Graphik mithilfe von aufmerksamkeitsgesteu-
erten Methoden perzeptuell zu verbessern.

Um die Blickpunktanalyse in Grafikanwendungen weiterzuentwickeln, stellten sich in dieser
Arbeit folgende zwei Herausforderungen: erstens, die direkte Bestimmung der Objekte auf die
ein Benutzer seine Aufmerksamkeit richtet — eine Technik die wir “Gaze-to-Object Mapping”
nennen —, und zweitens, die Herleitung eines statistischen Models fiir die visuelle Aufmerksam-
keit - eine Datenstruktur die wir “Importance Map” nennen - aus den Blickpunktdatensequenzen
mehrer Benutzer. Wihrend die Bewéltigung dieser Herausforderungen ein fundamentaler Schritt
zur Weiterentwicklung von Methoden zur Blickpunktanalyse in 3D-Computergrafikanwendungen
ist, sollen die Ergebnisse dieser Arbeit auch zur perzeptuellen Optimierung in Computergrafi-
kanwendungen zum Einsatz kommen. Daher war die dritte Herausforderung fiir diese Arbeit die
Erkundung einer Beispielanwendung fiir ein aufmerksamkeitsgesteuertes Bildsyntheseverfah-
ren. Im dritten Forschungskapitel dieser Arbeit findet sich eine Pilotstudie zu einer Applikation
in Stereo 3D Displays. Diese Anwendung steuert die Konfiguration des Displays dynamisch,
sodass das Objekt auf welches ein Benutzer seine Aufmerksamkeit richtet mit hohem visuellem
Komfort wahrgenommen werden kann.
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CHAPTER

Introduction

In case of doubt, make it sound
convincing

Murphy’s Laws

Computer graphics has developed quickly in the recent decades. Besides the great advances
in graphics hardware, the application of basic and new knowledge about perception could be one
important factor of the continuation of this progress, particularly towards the ambitious goal of
providing a close-to-natural experience with virtual reality simulators.

By taking the functionality and limitations of the human visual system into account, al-
gorithms and hardware can be effectively optimized to render and display computer-generated
images of high realism in real time. For instance, when rendering complex virtual environments,
there is often a trade-off between computation speed, or electric energy consumption, and dis-
play quality. Perceptual metrics that estimate visual sensitivity or attention can be utilized to
allocate computational resources more appropriately in computationally expensive calculations.

While there are several kinds of perceptual models that can be used to improve realism and
computational efficiency of computer graphics, the focus of this thesis is on visual attention,
which is an important aspect of visual perception as it determines what we are seeing in the
scene we are looking at. With computational attention predictors or eye tracking, an applica-
tion can be informed about the focus of a user’s attention in order to choose, for instance, an
appropriate level of detail for scene geometry, or adjust image resolution to the visual accuracy
of the human retina. Apart from rendering, attention-aware approaches can be also used, for
example, to specify the minimum required accuracy in physical simulations, or to enable the
animation of huge crowds of characters. Besides saving computational workload and electric
energy, attention-aware techniques could be one of the keys to make simulations of effects that
are inherent results of the physiology of the visual system, such as lens accomodation or binoc-
ular vision, applicable without disturbing a user’s experience due to a perceptually misaligned
configuration of the simulation of these effects. This applies, for instance, to depth-of-field sim-
ulations, where it should be avoided that a user focuses into the blurred image regions. Another




important application are stereo 3D displays. An ideal stereo display should be responsive to a
user’s attention in order to minimize visual discomfort, which results from perceptual conflicts
introduced by the simulation of stereoscopic viewing on graphics displays. Other applications
where visual attention tracking is useful include attention-aware design techniques to visually
facilitate (or deliberately impede) interaction in virtual reality simulators and serious gaming
environments.

Visual attention is one of the most important properties of visual perception. Attention is the
basic control mechanism determining which features of a (virtual) environment we are actually
aware of. Visual attention and all other sorts of attention arise from the nature of every perceptual
system. Perception can process only a fraction of the enormously rich multimodal stimulation
of a vivid socially, intellectually and perceptually interactive environment a sensing person lives
in. Attention is the functionality which selects what in the information-overloaded perceptual
stream is worth to be perceived and cognized. There is no doubt that attention is an obvious
phenomenon and we are all aware of it. We experience attention anytime we need to concentrate
on a task, to search for a lost item, to follow the story of a movie or when we focus on safely
driving a car.

One of the most important behaviors which are related to visual attention are eye movements.
Due to the physiology of the retina, there is a tight coupling between gaze behavior and visual
attention. The eyes sense visual information in high acuity only in a small region, the fovea,
spanning an angle of only 1-2°. This corresponds to the size of a thumbnail held in the distance
of an outstretched arm. Outside the fovea, visual acuity drops tremendously with eccentricity.
With this perceptual “limitation”, the retina embodies a visual filter. Since only a small fraction
of the stimulus, e.g., a single object, can be perceived in full detail at a time, the visual system
has to collect visual information in a serial fashion, i.e., to move gaze from one interesting
location in the stimulus to the next. To optimize this process, visual attention guides gaze to the
most meaningful locations, features or objects. Thereby, the field of view, which comprises a
tremendous amount of information, is decomposed into a sequence of perceptual samples. These
samples help the visual system to update, i.e., to falsify or verify, the predictions of a speculative
mental model of the structure, content and meaning in the external scene. Attention-guided
control of eye movements is a crucial functionality of this sampling process which constitutes
vision. Hence, gaze can be considered as the external manifestation of visual attention. With
eye tracking we have a technology to sense where gaze is directed to and thus a powerful tool to
observe visual attention.

However, an eye-tracker outputs where a user is looking at, while visual attention is mainly
directed to the content, like an object in the scene. Hence, it would be useful to have a method
which allows us to infer what a user is attending from the spatial information provided by eye
tracking. This imposes the challenge of processing and analyzing gaze data in a way that we can
correlate attention to properties of a visual stimulus, like for instance the semantics of objects.
In this work, we propose to study visual attention with virtual-environment applications, which
are tools gaining increasing acceptance for experimental psychology. We propose that by means
of using interactive three-dimensional virtual environments in combination with new methods
to gather and analyze gaze data, we can better infer what a user is attending. Using virtual
environments as stimulus in attention research has two great advantages: (a) it allows logging
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the states of the application in order to fully reconstruct the stimulus at the time we analyze the
experimental data, and (b), virtual scenes are usually encoded in data structures which cluster
scene geometry data in object-based representations. Having access to the internal representation
of virtual environments allows us to segment objects in the stimulus. Having a representation of
the stimulus which tells us which pixel belongs to which object, we can map gaze to objects. The
objects can then be further abstracted by their semantics in order to correlate gaze with meaning.

One of the goals of this thesis is to establish a pipeline for studying visual attention in three-
dimensional virtual environments in order to derive empirical models for visual attention from
gaze recordings which also can account for semantics. The desired result of this process is an
importance map which quantifies the likelihood that a user pays attention to a certain semantic
category. While the importance map can be used for analysis purposes, it also provides us a
function we may use to predict visual attention.

Besides advancing tools to study visual attention with virtual environments, this thesis also
explores attention-aware algorithms for rendering computer graphics images. The idea behind
this concept is to improve a display by interactively adapting the rendering configuration to the
attention of a user. Knowing a user’s focus of attention allows, for instance, to control 3D stereo
rendering such that a user experiences less visual discomfort.

These goals impose several challenges, which are described in following section.

1.1 Overview and the Bigger Picture

The research presented in this thesis is structured according to three major challenges, which are
illustrated in the overview shown in Figure|l.1

The first challenge, which is addressed in Chapter 111, is to infer visual attention from gaze
data. The output of an eye-tracker provides us only the spatial coordinates of the center of both
eyes’ receptive field. But since attention is mostly directed to visual information rather than
spatial coordinates, the challenge is to determine what a user is attending to, given the output of
an eye-tracker, which provides only information about where gaze is directed to. We propose to
perform attention inference in object-space and denote this approach as gaze-to-object mapping.
The desired result is a probability density function P(O|g), which predicts for each object an
“attention probability” as a posterior of the gaze position g, which is observed with the eye-
tracker. The box in the top-left corner of Figure[I.1|shows an example where this probability is
visualized as an intensity.

Attention inference from gaze can be useful in real-time applications. For instance, an
attention-aware display, as proposed in Chapter [5 can utilize this information to optimize ren-
dering selectively for attended objects.

Besides the use in real-time applications, gaze-to-object mapping is an important component
which is required for processing gaze data recorded with virtual environment applications. In
the research presented in Chapter IV (see bottom-left box in Figure[I.T)), we addressed the chal-
lenge of analyzing gaze data recorded from many users navigating a large virtual environment.
So we take one step further from the inference of attention in a single frame to the derivation of
attention models using data of many frames and users. We propose that attention models should
be defined by abstracting objects by their properties, such as semantics. Hence, the goal is to
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Figure 1.1: Overview

derive an importance map which is defined for object properties rather than individual objects.
Ideally, such an importance map can be used to predict attention by estimating the probability
P(OJx) that object O is attended, given the set of properties x we use to abstract O. To ap-
proach these goals, we devised a technical pipeline that allows to generate empirical importance
maps. With the importance maps generated with this pipeline we then attempted to predict visual
attention (without eye-tracking).

While Chapters III and IV address the challenges of measuring, analyzing and predicting
visual attention with gaze data, we explore in Chapter V an example application for attention-
aware rendering. In particular, we investigate whether an application which is aware of the
objects attended by the user (i.e., we have either P(O|g) or P(O|x)) can use this knowledge
to improve rendering of 3D stereo images. As illustrated in the right box in Figure [I.1] the
basic idea is to use an eye tracker (or gaze predictor) to determine a user’s focus and use this
information to select an optimal configuration of the stereo display. Users of 3D displays often
report discomfort caused by perceptual conflicts arising under artificial stereoscopic viewing
conditions. In our work, we investigated how discomfort can be reduced by selecting a stereo
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rendering configuration which minimizes conflicts in the depth range of the object currently
attended.

1.2 Challenges and Research Questions

Challenge I: Inferring Attention from Gaze (Chapter I1I)

In this work we contribute an important step to facilitate eye-tracking with highly dynamic three
dimensional virtual environments. A straight-forward way to analyze gaze recordings obtained
from dynamic stimuli is to superimpose visualizations of gaze information (e.g., heatmaps) on
synchronized video captures. With this approach, conclusions can be drawn from rather anec-
dotic evidence. By means of subjective inspection an experimenter can identify behavior pat-
terns that occur under particular circumstances. To establish more objective methodology, it is
necessary to perform gaze analysis in a more systemic way by means of building statistics. For
instance, counting how often a particular category of objects was attended. To this end, com-
mercial analysis tools offer facilities which allow to specify regions of interest (ROI). However,
the ROI have to be specified manually. While this strategy is sufficient for static stimuli, like
web pages, dynamic stimuli require tedious editing efforts to place ROI on objects which may
change their position in every frame.

With the work presented in Chapters[3|and [4] this thesis proposes a pipeline which accesses
the internal structure of virtual scene content rendered to the display and helps to automate this
process. An important question which arises when we want to infer attention from gaze, is
what the units of attention are. Attention can be directed to locations, features and objects (see
Chapter [2] Section [2.3)). This thesis makes the reasonable assumption that attention is usually
object based. While the existence of object-based attention is well-supported by a huge body of
experimental evidence, an object-based approach is also practically well suited when attention
is studied in interactive virtual environments or computer games. These applications usually
represent the visual content with a data structure commonly referred to as scene graph. A scene
graph provides an object-based ontology that allows segmenting objects in the stimulus straight-
forwardly without object recognition algorithms.

Assuming the availability of an object-based representation of the stimulus, the first impor-
tant research question which is addressed by this work is:

* Which are the best methods to infer the object of attention from a gaze location ?

A straight-forward way to infer the object of attention is to determine the object underneath
the current gaze location. However, the concrete challenge is that an eye tracker does not give
an exact 2D position of the user gaze. Instead, because of eye-tracker inaccuracies and small
eye movements, the result is only a set of 2D points within a “region of uncertainty”. Moreover,
interactive 3D environments are highly dynamic, and scene objects which are arranged in three
dimensions are projected onto a 2D screen where they vary considerably in size. For instance,
large objects have a higher likelihood to spatially coincide with gaze compared to small objects,
though a user does not necessarily attend more often to large objects. Another problem is object
density, which is usually avoided in eye-tracking experiments or gaze-controlled games.



To find the most accurate technique to infer object-based attention from spatial gaze data,
we need a methodology to evaluate the performance of a gaze-to-object mapping method. Thus,
we first require an evaluation data set where the ground truth object of attention is known. So
the second research question we had to address was:

* How can we obtain a ground truth data set to evaluate gaze-to-object mapping methods ?

Obtaining the ground truth attention target is not trivial, as eye tracking is usually used to
determines this. Therefore, the challenge was to design an experiment which yields a sequence
of gaze samples, which is the input of the gaze-to-object mapping technique, together with a
ground truth attention target, which is the desired output of an optimal method.

Challenge II: Attention Analysis and Prediction (Chapter 1V)

Having solved the problem of finding a good method to infer attended objects from gaze in a
single frame, the next step is to develop strategies to study attention by using gaze data of many
frames and users. The challenge is to infer models for visual attention empirically through sta-
tistical analysis of gaze data. Data collected while eye-tracking a user of a virtual environment
is a temporal sequence of gaze points from which we can infer the object of attention in each
frame. In every frame, the object of attention is the response, i.e., the dependent variable, on a
complex stimulus, which is the independent variable of the eye-tracking experiment. A repre-
sentation of the data in terms of independent and dependent variables provides us the formalism
which allows to infer a model, i.e., a function which predicts the dependent variable from the
independent variables. However, one problem is to derive such a representation of the stimulus.
Potentially, a user’s attention is affected by all visual properties of the stimulus, as well as the
task carried out by the user. We address this problem by defining abstractions of object and user
properties. This challenge refers to the research question:

* How can we abstract the visual content in a virtual environment application for gaze anal-
ysis ?

Thanks to using synthetic stimuli rendered from content which is represented as a scene graph,
where geometries are clustered into scene entities, we can encode the visual information in object
space. This is a representation which fits well with the way a user forms a mental model of an
external environment. Despite the fact that this representation provides a discrete encoding of
the visual information as a set of unique objects, we are faced with the curse of dimensionality. A
large environment contains many objects and gaze is distributed rather sparsely over individual
object instances. Thus, we propose to group individual objects by their semantics. However,
grouping objects by their semantics requires knowledge. We address this problem by a system
design which allows a user of the analysis tool (i.e., the experimenter) to specify how scene
objects are abstracted to infer gaze statistics. To this end, it was necessary to design a suitable
interface to support this interaction.

Assuming we have represented the stimulus with a set of carefully chosen semantic prop-
erties, we can use this representation to build gaze statistics by counting how often a certain
property was attended by the user. However, when a user freely navigates a three-dimensional

6



environment, the field of view may change in every frame and not object is equally often visible.
Thus, another challenge addressed in this work was:

* How to deal with changing visibility while collecting gaze statistics ?

To address this challenge, we needed to specify a normalization strategy which is suitable to
compensate for varying visibility of different objects.

Challenge I1I : Attention-Aware Rendering (Chapter V)

Another challenge of this thesis was to explore the utility of attention-aware approaches in com-
puter graphics. To this end, we selected 3D stereo rendering as example application. In par-
ticular, we investigated whether an eye-tracker can be used to improve viewing comfort for
stereoscopic display. Nowadays, stereoscopy gains rapid foothold in interactive applications
like computer games, virtual reality installations, customer presentations, simulation, planning
etc. With the wide availability of 3D-capable TVs and Autostereo Displays, stereoscopy is be-
coming a commodity. However, current stereoscopic technology is tiring for users, and often
reported as uncomfortable after even short times of use. The reason for this is the so-called ver-
gence/accomodation conflict, i.e., a mismatch between the actual focusing point of the eyes (the
display) and the virtual focusing point in the scene. The goal was to investigate attention-aware
approaches to reduce this conflict. Equipping a stereo display with an eye-tracking device, we
can infer the object of attention in real time and use this information to dynamically adjust the
configuration of the stereo display in a way that discomfort is minimized. We performed a pilot
study to answer the question:

* Can a gaze-responsive dynamic stereo configuration increase viewing comfort signifi-
cantly compared to static settings ?

To answer this question required us to devise an evaluation methodology. The challenge was to
design an experiment to measure the stereo viewing comfort experienced by a user in order to
evaluate the benefit of gaze-controlled stereoscopic applications in comparison to a conventional
solution without attention control. User experience with stereo displays is usually studied by
asking users in a questionnaire to rate the subjectively perceived quality of experience on a
Likert scale (e.g., by asking: Was the experience very comfortable, comfortable, ..., or painful
7). However, subjective rating scores are rather vague, biased towards the desired result of the
experimenter and provide less insights about when, where and why stereo-viewing discomfort
occurs during application time. Thus, we attempted in this work to address the challenge:

* How can visual discomfort in stereoscopic applications be evaluated objectively ?

With the joint use of psychophysics and eye tracking, this work performs initial steps towards
a methodology to objectively measure discomfort during the use of an stereoscopic application.
While psychophysics is used as measurement tool, we propose to use eye-tracking in order to
control where in a three-dimensional scene and when comfort measurements are taken.

Addressing these three major challenges, this thesis made several contributions to scientific
literature with important research steps that advance the state-of-the-art in attention analysis and
potential applications for attention-aware approaches.



1.3 Scientific Contributions

The following contributions to scientific literature were made with the publications presented in
Chapters III — V of this thesis:

Attention Inference — Gaze-to-Object Mapping (Chapter I1I)

In this work, we devised an experimental methodology to assess methods inferring object-based
attention from gaze data recorded in highly dynamic 3D virtual environments.

This work was accepted to the ACM Symposium on Applied Perception (SAP 2014), where
it has been selected to appear in the SAP special issue of ACM Transactions on Applied Percep-
tion and to be presented as a poster at SIGGRAPH 2014:

» Matthias Bernhard, Efstathios Stavrakis, Michael Hecher and Michael Wimmer. Gaze-to-
Object Mapping During Visual Search in 3D Virtual Environments. In ACM Trans-
actions on Applied Perception, Symposium on Applied Perception Special Issue, August
2014

Collaboration Statement: In this work, I designed, prepared and conducted the eye-tracking
study. Moreover, I implemented major components of the software infrastructure we had to
establish to analyze and visualize the results. This work was supervised by Michael Wimmer.
Efstathios Stavrakis was an important contributor to this work. Besides his assistance in software
development, he created the accompanying video and was intensively involved in paper writing.
Michael Hecher assisted with feedback on formal issues and helped with the illustrations in the
paper. Further acknowledgments we owe to my former intern Kartik Asooja, who helped during
an early stage of the experimental design with content selection for the virtual environment
scenes.

Attention Analysis and Prediction — Empirical Modeling (Chapter IV)

This work proposes a novel pipeline for gaze analysis which we developed with the vision to
derive empirical attention models from gaze data which can be used to predict visual attention.

This chapter is a revised and merged version of the following two publications:

* Matthias Bernhard, Efstathios Stavrakis and Michael Wimmer. An Empirical Pipeline
to Derive Gaze Prediction Heuristics for 3D Action Games. In ACM Transactions on
Applied Perception, 8(1), October 2010

* Veronica Sundstedt, Matthias Bernhard, Efstathios Stavrakis, Erik Reinhard and Michael
Wimmer. Visual Attention and Gaze Behaviour in Games: An Object-Based Ap-
proach. In Game Analytics: Maximizing the Value of Player Data, pages 543 — 583,
April 2013



Collaboration Statement: In the work published in the TAP article, I was responsible for
the design, preparation and execution of the eye-tracking study. Moreover, I designed and im-
plemented crucial parts of the pipeline, the algorithms and gaze visualizations. This work was
supervised by Michael Wimmer, who provided a strong contribution in paper writing. Efstathios
Stavrakis implemented the GUI of our analysis software (Lyzer) and assisted with paper writing
and scientific feedback.

Some passages and illustrations were taken from this book chapter. In particular, I merged
sections which I have originally written for the book chapter into the introductory parts of the
thesis chapter. Partially, the reused text was proof-read and polished by the other authors of the
book chapter.

Attention-Aware Rendering — A Pilot-Study on Gaze-Controlled Stereoscopic
Applications (Chapter V)

This chapter presents an experiment to perceptually evaluate gaze-controlled stereoscopic appli-
cations. This work was published in:

e Matthias Bernhard, Camillo Dell’mour, Michael Hecher, Efstathios Stavrakis and Michael
Wimmer. The Effects of Fast Disparity Adjustments in Gaze-Controlled Stereoscopic
Applications.. In Proceedings of the Symposium on Eye Tracking Research and Applica-
tions , March 2014.

Collaboration Statement: The work is also part of Camillo Dell’mour’s Master Thesis which
I have supervised. I initiated this research, designed the experiment and took most respon-
sibilities in the analysis of the data, the interpretation of the results and paper writing. The
experimental test application was programmed and configured by Camillo Dell’mour, who also
conducted the study and provided us the data in the form we requested for analysis. Michael
Wimmer supervised this work. Michael Hecher assisted in the experiment design, data analysis
and editing of the result plots. Efstathios Stavrakis was a strong contributor in paper writing.

1.4 Potential Applications

The research presented in this thesis has a variety of potential applications in different fields. So
this chapter is concluded with some speculative examples how this work could be used:

Gaze-Controlled User Interaction

While eye-tracking devices have been expensive lab equipment in the past, this technology is
on the verge of becoming an affordable consumer hardware, and future desktop computers,
game consoles and mobile devices may use this technique as standard accessory. This work
investigates how attention to scene objects can be inferred from gaze data. While this is an
important component for gaze analysis and attention-aware real-time rendering, it may also find
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utility for applications, like gaze-controlled computer games, which allow users selecting and
manipulating objects in a three-dimensional virtual environment via gaze.

Game Analytics

For an optimal game design, the designers need a maximum understanding of the player’s at-
tention. This knowledge can be applied at the design stage of computer-game development, or
at run time when the application is used. During game design, knowledge about what a user is
most often attending to can be, for instance, utilized to identify scenarios where a user’s atten-
tion should be better guided. For instance, appropriate game design (e.g., salient colors) could
be used to guide attention in order to facilitate gaming tasks and make the game more enjoyable.
Furthermore, knowing how user attention is distributed over different scene objects would allow
to selectively allocate more efforts (e.g., working time of content artists) into the creation of fre-
quently attended objects or animations. At application run-time, attention models or predictors
can be potentially employed to inform the game’s artificial intelligence to behave responsively
to the attention of a user.

Psychophysical Instruments

Apart from using attention analysis for game analytics, the methods proposed in this thesis may
assist psychologists in behavioral studies carried out with interactive virtual environments or
virtual-reality setups. The great benefits of virtual-environment applications for perceptual and
cognitive experiments can be summarized with four basic advantages [[56[]: First, stimuli gen-
erated with virtual environments are flexible because they are programmable. Second, thanks
to modern 3D rendering technology, they can convey the realism and complexity to approach a
high degree of ecological validity. Third, physically correct simulation and interactive behavior
give a rich and plausible sensorial feedback to the user. And fourth, due to their virtual nature,
they allow an accurate performance recording by tracking exactly all states (including user re-
sponses) of an interactive application. This allows tracking all variables in complex scenarios,
which is not possible with pen-pencil based observational methods.

Attention-Aware Rendering

With attention-aware approaches, one can optimize computationally intensive simulations re-
quired to achieve high realism in high-end virtual-reality applications. We can selectively maxi-
mize fidelity of computationally expensive simulations, such as physically based lighting, com-
plex and detailed animations (e.g., huge crowds of characters), or physically correct interaction
of materials (e.g., behavior of fluids or clothes), only where a user is attending to, while com-
putational resources can be saved elsewhere by using low-quality solutions. Besides making
computationally expensive effects more applicable in real-time graphics, this approach could
also be used to reduce energy consumption of graphics hardware in mobile devices.

Apart from using high-fidelity graphics, realism can be also increased by taking into account
the physiology of the human eye. While traditional computer-graphics applications are based on
the pinhole camera model, there are several properties of natural vision which are not captured
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by this model: stereoscopic vision, lens accommodation and luminance adaptation. The first
arises from the fact that humans have two eyes and leads to depth perception. The second stems
from the finite aperture of the lens and leads to blurring of out-of-focus regions, an effect de-
noted as depth-of-field. The third property permits visual perception under very dark and bright
light conditions and changes the way how we perceive a certain range of colors. We hypothe-
size that with attention-aware approaches, we can increase plausibility and viewing comfort in
the perception of these effects by dynamically adjusting the configuration (e.g., focus distance)
taking into account the actual focus of a user.

Thesis Overview

In the following Chapter, this thesis will be continued with an introduction to the interdis-
ciplinary background of this work. This includes a summary on basic knowledge about vi-
sual attention, a selective review on eye-tracking technology and applications related to com-
puter graphics, and a state-of-the-art report on computer-graphics applications that make use of
attention-aware techniques.

As mentioned above, Chapters III to V present the original research carried out for this thesis.
The scientific contributions made with these chapters will be also discussed in the conclusion
(Chapter VI) with respect to the main findings and new questions arising from this research.
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CHAPTER

Background: Visual Attention, Eye
Tracking and Computer Graphics

Never trust a citation from the
internet

Leonardo da Vinci

This chapter covers the related work and interdisciplinary background of this thesis in a
broader context, while previous work that is specifically related to one of the three research
topics presented in Chapters III to IV will be reviewed there.

With Sections[2.1]to[2.4]this chapter gives a brief overview about what is known about visual
attention. Section continues with a brief introduction to eye-tracking technology, including
a brief history of this technology and a review on related work on eye-tracking applications
concerned with computer graphics. Section will review the state-of-the-art on attention-
aware computer graphic applications and Section[2.7|will conclude this chapter with a discussion
of the potential value of computer graphics for research on visual attention.

2.1 Introduction: What is Attention?

Without doubt, attention has been one of the most intensively studied subjects in science in
the past centuries. Starting from philosophic considerations, being later one of the main topics
in psychology, and becoming recently investigated with novel methods from neuro-physiology
that attempt to “take a look” inside the brain, attention has been a subject considered from quite
different scientific perspectives and ways of thinking.

While attention is a well-known term that is often used in daily language, there is no clear
answer what attention actually is. It has been related to eye movements, to the ability to focus
on one’s voice in a mixture of distracting voices, the capability to stay concentrated in cognitive
tasks, or seen as the gate to consciousness. Attention appears in all sensory modalities, as well
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as in cognitive processes, such as memorization, remembering, or reasoning. To understand
attention, several metaphors have been used [52]]. Prominent metaphors for attention are: The
information filter metaphor, which explains attention as a bottleneck to the input of a limited
capacity processor (e.g., [21]]); the spotlight metaphor, which considers attention as an enhancer
that mentally highlights an attended spatial region (e.g., [151]]); the pre-motor control theory,
which views attention as mechanism that directs motor actions, such as grasping or eye move-
ments (e.g., [144]]); and the boolean map metaphor, which proposes to represent the content of
attention as a binary mask data structure encoding a set of attended locations in the visual array
(Huang and Pashler [73]]).

While metaphors are illustrative, they also guide researchers in building models that give rise
to predictions which can be falsified by experimental investigation. This is often done by draw-
ing analogies between the metaphors source domain (e.g., spotlight in a theater) and the target
domain where the metaphor is applied as explanatory instrument (e.g., spatial region mentally
highlighted by attention). But, attention did neither evolve analogously to the metaphors that we
use to understand it, nor is it an anatomically separate module which operates independent of
data processing, as once suggested by Posner and Petersen [[137]]. Attention is rather a category
representing a set of important functions which are crucial to coordinate perception, cognition,
eye movements and motor actions.

The following three sections give a selective overview on the most prominent ideas, metaphors,
rules, theories and models which evolved with research on visual attention. The descriptions
given in this manuscript are intended to sketch an intuitive way of understanding, which may
not provide a rigorous explanation of all relevant details. This summary will be structured ac-
cording to the three questions:

» Why do we need attention ? (Section[2.2])
* To what is attention directed ? (Section[2.3])

* How attention is directed ? (Section[2.4])

2.2 The Purpose: Why Do We Need Attention?

2.2.1 Information Filtering

Filtering of irrelevant or less important information is one of the major purposes which have
been attributed to attention. Attention can be seen as a prioritization strategy that balances
computational workload in a cognitive system according to the presumed relevance of the infor-
mation to be processed. The basic assumption behind this view is that perception and cognition
are information processing problems which are solved in a nervous system that implements an
information processor. From using the information processing metaphor, Broadbent [21]] con-
cluded that perception and cognition must be subject to computational capacity limitations and
proposed that attention controls which information passes the bottleneck between sensory de-
vices and a limited-capacity processor.

Taking also the physiology of the eyes into account, the two moving eyes can be seen as
information filter in action. Prior to processing at an internal stage of the perceptual pathway,
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where sensory information is filtered after being sensed, visual information is already filtered in
the eyes. This type of filter mechanism is actually embodied in the physiology of the retina, the
eyes’ optical properties, gaze behavior and the peculiarities of binocular vision. One factor is
the strong fall-off of visual acuity from the center of the fovea to the periphery. Hence, our eyes
selectively sense most information at the point we are currently looking at. Besides this, the
vergence and accommodation systems, which can bring only a limited depth range simultane-
ously into focus, can also be considered as a filtering mechanism, but in depth direction. When
we look at an object with both eyes, we can only fuse a certain range of disparities between
corresponding features in the images projected onto left and right eye retina. This range is de-
noted as Panum’s fusional area and separates fusible objects from other objects seen with retinal
disparities outside this range, which are perceived with double vision. Though less pronounced
than in stereoscopic vision, a focus and out-of-focus separation may also arise from the natural
depth-of-field of the eye lenses. Hence, physiological limits of the eyes require to perform a
selection in a three-dimensional volume defined by the cone of foveal vision and the limits of
stereoscopic fusion and the eye lenses’ depth-of-field. With every binocular shift of gaze and
lens focus, the visual system performs a spatial selection. Another example where gaze behavior
determines filtering of visual information are smooth pursuits, which occur when a user’s eyes
track a moving object by compensatory eye movements. During smooth pursuits, objects that
move in a similar trajectory as gaze are seen in more detail, while other objects (also stationary
ones) are sensed with motion blur, because of their motion relative to the retina.

2.2.2 Motor Preparation and Control of Eye Movements

Besides perception, attention has been also related to action. For instance, the Premotor Theory
of Attention (PTA) of Rizolatti et al. [[144] considers attention as the mechanism which prepares
motor actions, such as grasping a target with our arms. Most obvious is, however, the relation
of attention and eye movements. According to the PTA, there is a strong link between shifts
of attention and shifts of gaze. However, gaze does not necessarily correspond to attention
[181]]. Since we are able to focus mentally on objects without looking at them, one commonly
distinguishes two types of attention: one that moves the focus internally, which is denoted as
covert attention, and an external manifestation through a shift of gaze, which is referred to as
overt attention. The pre-motor theory of attention states that covert and overt attention are tightly
coupled, and a shift of covert attention is most likely followed by a corresponding shift of overt
attention. In other words, an covert shift of attention programs subsequent eye movements.

2.3 The Units: To What is Attention Directed ?

Attention can be directed to locations, to features and to objects. Figure 2.1 shows gaze patterns
that are probably resulting from these three types of attention.

In Figure we see an example for gaze behavior when attention is directed to a spatial
location. In this scene, participants were searching for a particular car. Since new cars appeared
usually from behind the wall at the corner of the street (left), the heatmap shows that participants
deployed gaze often to this location while anticipating the next car to show up there.
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(a) Gaze Directed to Space (b) Gaze Directed to Features (c) Gaze Directed to an Object

Figure 2.1: Different types of attention observed in gaze movement patterns.

Figure [2.1(b)| shows a gaze path sampling particular features, such as the top edges of the
green vase, the spout of the tea pot and the corner of the table lamp.

The heatmap shown in Figure was recorded while a user focused on an object (blue
Stanford bunny). In this condition, gaze is mostly directed to the center of the object, while gaze
is located less often on details such as the bunny’s ears.

The theoretic foundations and experimental evidence which lead to the differentiation of
these types of attentional selection will be reviewed briefly in following:

2.3.1 Space-Based Attention

When an attentional selection encodes a region of space, we speak of space-based attention.
Evidence for spatial attention was given by experiments with the cueing paradigm [138]. In
such an experiment, the task is, for instance, to detect an object which appears suddenly. If the
appearance location is cued with a previously shown marker, response times are faster than in
trials with no or misleading cues. From these results it was concluded that a space-based type of
attention must exist which facilitates the response to events which happen in attended regions,
like for instance the sudden appearance of a target object. The most prominent has become the
spotlight metaphor [[138]], which compares space-based visual attention to a mental highlight
that selectively facilitates perception in a circle-shaped region.

2.3.2 Feature-Based Attention

When we attend a feature, such as a color or an edge, we speak of feature-based attention [39].
For instance, during a search task, attention can be oriented to features that help to identify
the target. Feature-based is also the most established model for visual attention — the Feature
Integration Theory (FIT) of Treisman [[178].

According to this theory, the visual stream is encoded along a small number of feature di-
mensions, most notably color, orientation, and luminance. These features are extracted in paral-
lel to generate a set of feature maps. Since feature maps are built independently from each other,
features of different dimensions that share a common location (e.g., a red horizontal bar) cannot
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(a) Color Popout (b) Orientation Popout (c) Conjunction Target

Figure 2.2: Stimuli which are used to study visual attention with visual search experiments.
These images were taken from [[76].

be efficiently identified to correspond to one and the same object (e.g., a red vertically oriented
bar). Hence, recognition of conjunctions of two or more features of different dimensions re-
quires a procedure which is denoted as feature binding or feature integration. The FIT proposes
that attention determines which features are going to be bound and that the binding occurs seri-
ally, that is to say, only one feature conjunction can be identified at a time. As a consequence,
vision is considered as a process with two stages: a pre-attentive stage, where feature maps are
generated by efficient parallel processes, and a much less efficient attentive stage, which inte-
grates for a few selected locations spatially correlated features of different dimensions. The FIT
is mainly based on experiments which used the visual search paradigm to study visual attention.
In visual search experiments, a participant looks at a display which may, or may not, contain a
previously specified target and has to respond whether the feature is present. Task performance
is usually measured with reaction time. The main finding which led to the FIT was that the
presence of a target (e.g, a red vertical bar) can be detected instantly if targets and distractors
can be distinguished within a single feature dimension. In this case, feature singletons become
visually salient and pop out due to a one-dimensional contrast to all other features. An example
for the pop-out in color is shown in Figure and another for orientation in Figure
On the other hand, Figure gives an example where the pop-out does not occur, as two
features have to be considered in combination to identify the singleton (the red vertical bar) in
this image. FIT explains the tremendously increased difficulty to find the target with the fact that
search for conjunctive features requires feature binding, which can only be carried out serially
by deploying attention to one object after another. Since in this case, attention has to scan on
average half of the items until arriving at the target, reaction time increases linearly with the
number of elements in the display.

2.3.3 Feature-Location-Based Attention

A question that arises with feature-based attention models is how features are outlined in space.
A feature can occur in a region, with a certain scale or size, and in one or many locations. While
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(a) Feature-Location Maps (Huang et al.)

Figure 2.3: This figure (taken from ) illustrates three alternative feature-location maps for
an object. Each data structure maps a unique feature value (e.g., low illuminance) to a set of
occurrence locations.

the FIT stays rather vague about how feature values and their occurrence locations are related, the
Boolean Map Theory (BMT) of Huang and Pashler [73], a more recent and promising theory for
visual attention, makes the clear claim that features and locations are inseparable. To represent
an attentional selection, the BTM proposes a hybrid approach with a data structure denoted
as Boolean map. This data structure maps one feature value (e.g., green) to a set of locations
l1,...,l; which bear this value.

Figure shows a stimulus which gives rise to three alternative feature-location maps:
one map for the color “green” , a second for the color “red”, and a third that separates the square
from the white background in feature dimension illuminance (i.e., “dark™) .

2.3.4 Object-Based Attention

Object-based attention gives rise to the coherent perception of an ensemble of features that con-
stitute an object. This is achieved by a mechanism which groups multiple features within the
outline of an object through a comparison with internal representations that have been learned by
experience [4]]. First evidence for object-based attention was given with a phenomenon called
same-object advantage (SOA). SOA is observed when two features that belong to the same
object have to be discriminated simultaneously and was discovered by Duncan [48] in an exper-
iment using the objects shown in Figure [2.4] Participants were exposed to one of these objects
and had to discriminate features of several dimensions: the tilts of the line (clockwise vs counter-
clockwise), the texture of the line (dashed vs dotted), the side of the gap in the box (left vs right)
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Figure 2.4: The stimuli used in Duncan’s experiment where it was observed that discrimination
of feature values (e.g., dotted versus dashed texture of the line) is more efficient when the feature
discrimination is performed only on a single object (e.g., in every trial on features of the line).
This illustration was adapted from [48].

or the size of the box (small vs big).

Participants were divided into a test and a control group. Members of the test group had to
discriminate a pair of features of two different dimensions which belonged to the same object.
For example, the texture and size of the line or the size or side of the opening of the box.
The feature pair was fixed throughout the experiment for one participant. In the control group,
participants had to discriminate two features each belonging to a different object. For instance, a
participant had to discriminate the tilt of a line and the size of a box. The result was that the test
group, which was judging features associated with the same object, had a higher rate of correct
responses compared to the control group. The SOA gave rise to the hypothesis that attention is
primarily object-based, and further evidence supporting this hypothesis was found in numerous
similar experiments which followed [29].

In a later extension of the BMT, Huang [72] also proposed an object-based account. While
the original version of the BMT assumed a feature-based data structure which maps one selected
feature value to a set of locations, the object-based variant proposes that a scene is structured
into a set of indivisible units corresponding to objects, and one object is selected at a time. An
object is defined as a continuous region which may contain heterogeneous parts, but those have
to be consistently separable from a background which builds a sufficient contrast to constitute
the object’s contours. While Huang [[72]] proposes that attentional selection can be object-based,
access to properties of an object is strictly feature-based and limited to one feature label per
dimension. This means that once a spatial region corresponding to the outline of an object is
selected, the features of that object can be accessed simultaneously if, and only if, they belong
to different dimensions. Thus, the SOA occurs under this condition, while perception of more
than one feature value of one dimension (e.g., green and red) belonging to the same object is
not subject to this advantage. It has to be noted, however, that the number of different feature
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values which can be accessed at a particular moment in time does not prevent the integrated
perception of multiple feature values of an object. Using memory and experience, the visual
system can collect and combine visual information which has been accessed serially over time.
The limitation of access to one feature becomes thus only apparent when a stimulus is exposed
only for a very short time (e.g. 100ms).

Recent theories state that these different forms of selection are not mutually exclusive and
appear depending on task and stimuli [[177,|180]. Probably, all types of attention can also occur
simultaneously, and different types of attention selections interact and compete [95]].

In this thesis, it is consistently assumed that attention is object-based. While such an ap-
proach fits well to the object-based representations of scene graphs in computer graphics ap-
plications, we also believe that it is one of the most suited approaches in computer games and
virtual environments, since objects are usually the basic units being sought for manipulation and
interaction. In the spirit of the BMT [73]], we assume that an object is a holistic feature that
is related to a spatial region where the object occurs in the visual array. Thus, we use “object-
location maps”, which we represent in a data structure denoted as item buffer. The item buffer is
a map which assigns to each pixel a key color corresponding to the object which is rendered to
this fragment. This data structure is formally equivalent to a set of boolean maps corresponding
to each visible object o; in a scene (i.e., object-location maps of the form olm(i, {1, ...,y })).

2.4 The Control: How Attention is Directed ?

Beginning with first attempts on understanding attention [81]], the intuition that there are at least
two different mechanisms influencing what is attended holds up to nowadays theories [23]. On
the one hand, attention can be volitional and what is, and will be, attended is controlled by
intentions of the observer. On the other hand, attention can be driven by salient visual features.
In the latter case, external factors determine what we are attending to.

In the left illustration in Figure [2.5]an example is shown where attention arises from the
intention of a person (“I want to sit”’) and determines what attention selects to be perceived (“a
chair”). Some theories suggest [190] that during visual search this selection is guided by a mental
visual representation of the target object that predicts features which can be used to search for
a previously unseen target. The example shown here should give an intuitive illustration of a
causal chain which descends from higher-level cognitive functions to early loci in the perceptual
pipeline where incoming sensory information is selected to be attended. Due to the causal
direction from high-level to low-level processing stages, we call this type of attention top-down
or goal directed attention.

On the other hand, the causal chain illustrated on the right-hand example goes in the oppo-
site direction. In this case, an object (“red apple”) in the stimulus becomes salient due to a high
feature contrast (red on green background) and attracts attention. After the salient object is rec-
ognized, it will be associated with meaning and may influence thoughts and generate intentions
(“I want to eat an apple”). Thus, this type of attention is denoted as botfom-up attention.

20



I mtired !
I want to sit

(3

Os

semantic
target:

sitting —,,chair*

mental target
representation:

INTENTION ,Hmm looks sweet !
I want to eat an apple !*)
O
semantic sweet apple®
properties: " PP
recognition

of salient object:

attentional
selection

STIMULUS

TOP-DOWN

BOTTOM-UP

Figure 2.5: Intention driven versus stimulus driven attention.

2.4.1 Bottom-Up/Stimulus-Driven Attention

Bottom-up driven attention is not under volitional control, reactive to the properties of the stim-
ulus, and memory-free. Bottom-up selection occurs at early stages of visual perception and thus
is often attributed to pre-attentive stages of vision. Bottom-up attention acts all the time on all
features in the stimulus and it is transient, i.e., bottom-up attention attraction persists only in a
short time window. When the stimulus drives attention, we are attracted to certain features in
the field-of-view which appear to visually pop out, that is to say, those features become salient.
Salient are those image features which appear rarely, have undergone sudden changes, are sur-
prising or novel. For instance, a right-tilted bar which is surrounded by a context with many
left tilted bars becomes salient due to being unique (as shown previously in Figure 2.2(a)). An
efficient way to score the rareness of a visual feature is to compute its contrast to the surrounding
context.

This strategy applied in alignment with the model provided by Treisman’s FIT gave rise to
computational models that generate saliency maps as predictors for bottom-up attention.

Computational Models for Bottom-Up Attention

Koch and Ullman [91]] provided the foundation for this computational model by providing a
detailed neurally inspired mathematical framework, which specifies how features are extracted
and processed to derive a salience map that topographically encodes the likelihood that attention
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tracting the viewer’s visual attention. This illustration, which was taken from [133]], shows one
of the most recent implementations that has been used to predict/model attention in a computer
game.
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is attracted to a certain location. This model was later advanced by Itti and Koch [79] to an
algorithm which has been used in many fields of computer science, including computer graphics,
computer vision and human-computer interaction.

A more recent variant of this algorithm [[133|] applied to rendered images of a video game is
illustrated in Figure[2.6] This algorithm computes salience maps in four steps: first, topographic
features maps are computed for each channel (e.g., color, orientation, flicker or motion); second,
a center-surround contrast map is computed. Due to the fact that the visual system perceives
at different levels of detail, both the feature maps and the center-surround contrast maps are
generated on multiple scales. This means that the size of the kernels used for feature extraction
and the size of context which is considered in the contrast computation varies with the respective
scale. To this end, the input images are hierarchically decomposed into a pyramid containing
in each level an image which is a down-sampled low-pass filtered version of the image from
the preceding lower level. In the third step, center-surround maps from different scales are then
combined by a weighted linear summation into one conspicuity map for each feature dimension.
Finally, the fourth step integrates conspicuity maps of multiple feature channels into one master
map by linear summation, which is the salience map output.

Overall, computing feature contrast at several scales is the main mechanism which deter-
mines saliency.

Saliency of Temporal Features and Change Blindness

Besides static features with a high contrast, it turned out that temporal changes are strong atten-
tion attracting features. Since temporal features, such as flicker or motion, are also processed
by computing center-surround contrasts, salience maps predict the phenomenon change blind-
ness [153]]. Change blindness is the inability to notice changes when the stream of visual infor-
mation is temporally disrupted, either due to a fast shift of gaze or due to a change in the entire
stimulus (e.g., cut in a movie).

Temporal features become salient if and only if they occur in only few positions and thus
produce a high center-surround contrast. A disruption of the visual stream means that there is a
sudden change in every pixel of the input image. This raises the intensity of change features in
all locations and thus avoids peaks in the center-surround map, which results in a flat distribution
of salience magnitudes in the entire image. The flicker paradigm used in experiments to observe
change blindness, exploits this behavior. With this paradigm, change blindness is provoked
by interupting a video stream through briefly flashing a flicker image (e.g., a blank image).
This produces a global change of all image features and effectively avoids that other temporal
changes that occur at the interuption time in the original image stream become salient. Thus,
after a flicker, an observer is barely able to notice changes in the visual field, even if those
seem to be obvious, like a change of a person’s clothes or skin color. This underlines the high
importance of stimulus-driven saliency in a dynamic environment, which enables our visual
system to efficiently process temporal changes. A fast perception of changes is crucial to react
quickly to potentially important, or even dangerous, events.
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Salient Features of Higher Complexity

In addition to conspicuous low-level features, attention can also be driven by faces or face-
similar objects [[99]], which requires processing more complex features, or feature compositions,
already at early stages of perception. Moreover, Walther and Koch [[184]] suggested that bottom-
up saliency often correlates with feature ensembles which potentially constitute objects. They
speculated that saliency provides an early object hypothesis — a “proto-object” — for items seen
with peripheral vision. This hypothesis is then validated after an overt shift of attention when
visual details can be perceived through foveal vision and sustained attention.

Multi-Modal Saliency

Recently, there is also a trend towards applying the concept of saliency to predict stimulus-driven
attention in other sensory modalities. Algorithms have been proposed for saliency computation
in the auditory domain, for example. To this end, features such as spectral properties, intensity
and temporal changes (e.g., silent space of time) are detected to estimate the salient events and
features in sound signals [[85]]. As perception interacts across multiple senses, this idea has been
further advanced with multimodal models for bottom-up attention (e.g., [145]). Attention can
also emerge “crossmodally” [40] when a feature in one perceptual modality (e.g., sound of
ringing telephone) raises saliency of a congruent feature perceived in another modality (e.g.,
visually recognized telephone).

In summary, stimulus-driven attention is mainly feature-based, as it is a result of low-level
processing taking place at early stages of vision. Stimulus-driven attention makes certain loca-
tions appear salient as a result of which they attract attention. Features become salient when they
are rare (e.g., high contrast to surrounding) or presumably important (e.g., faces). This type of
attention is particularly important to cope with novel and dynamic stimuli. In order to respond
fast to relevant events in a dynamic environment, attention is most attracted by temporal features.
Through a strong sensitivity to temporal features, such as motion and flicker, stimulus-driven at-
tention provides an efficient strategy which minimizes both, the amount of information which
has to be processed and the number of gaze movements that are required, in order to quickly
update an observer’s mental model of the external environment.

Stimulus-driven attention follows the same principles also in other modalities, such as au-
ditory perception. Moreover, attention is even driven stronger by perceptual events or objects
which are sensed congruently in several sensory modalities.

2.4.2 Top-down/Goal-Directed Attention

The first and most prominent example demonstrating that attention is also driven by intentions
was given by Yarbu’s famous eye tracking experiment [[195]], where participants were visually
inspecting Repin’s painting “The Unexpected Visitor” were given the instruction to answer a
certain question about the depicted scene. Since each question elicited a different task, this
resulted in distinct gaze movement paths (Figure [2.7). Under this condition, eye movements are
less driven by the stimulus, which was constant in all conditions, than by the task of the observer
(e.g., answering a question about scene properties).
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Figure 2.7: Yarbus [195] (1967) showed Repin’s painting “The Unexpected Visitor” and
recorded eye movements. The observer was asked different questions to investigate how visual
scan paths differ according to the observer’s task. This image was adapted from [[195]].

Sustained Attention

As opposed to bottom-up attention, top-down attention is persistent over an intentionally con-
trolled period of time. Therefore, goal-directed attention enables a sustained perception of a
particular object or feature. Moreover, it has been suggested that voluntary attention preserves
continuity over rapid changes in the stimuli (e.g., change of camera perspective in a movie)
and eye movements [[68]], though this appears somewhat controversial with the change-blindness
phenomenon. However, top-down attention also involves memory. Thus, it may preserve a sta-
ble internal representation of one or a few attended objects or features in the external scene.
Since continuity is only preserved for one or a few task-relevant elements, changes of other de-
tails are not noticeable, and thus an observer is still blind to changes on the majority of objects
which remain unattended.
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Figure 2.8: Wolfe’s Guided Search model [190]]. This illustration was taken from [76].

Inattentional Blindness

Top-down attention is actually highly selective and neglects most visual information that is not
relevant for an observer’s goals or task. The high selectivity of visual attention was underlined
with the metaphor inattentional blindness [[107]]. A famous example was given with the “invis-
ible gorilla”- experiment [[152]]. Participants saw a video clip of a team playing basketball and
were instructed to count the number of passes between members of one of two teams. Due to
being focused on the counting task, the majority of participants did not notice a person dressed
as gorilla running through the scene, even though the gorilla crossed several times the foveal
field of view of the observers.

Attempts to Model Top-down Attention

While it is difficult to model top-down attention as it evolves cognitively, there are some at-
tempts to cover certain aspects of top-down attention. One of the most profound attempts to
integrate top-down factors into (existing) models for visual attention was provided by Wolfe
with Guided Search (GS) [190]. GS extends the FIT with a top-down component which bias
the salience of features which are sought, as illustrated schematically in Figure 2.8 According
to this model, attention spatially guides search with a master activation map that is derived by a
linear summation of each feature dimension’s conspicuity map. Top-down influence is modeled
as a feature-specific weighting coefficient in the linear summation. For instance, during search
for a blue object, the weighting coefficient for the blue color is raised in order to make blue
objects appear to be salient. Such a case is shown in Figure 2.9 with gaze data we recorded from
a user performing a visual search for a blue-colored bunny. We see that gaze directed to several
locations which contain blue color until finding the target object. More complex than the search
for a specified feature, such as a certain color, becomes search when only the object category is
known. This requires recalling an internal representation of the target category in order to guide
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(a) Target (b) Visual Search Path

Figure 2.9: Gaze path in a visual search task. Image (a) shows the target (a blue bunny) a
participant was instructed to search. In image (b), we see the gaze path which shows that several
distractors (other blue objects) were visited before the target could be found.

the search for features which are most characteristic for this category of objects.

GS provided the first theoretical foundation for computational models that attempt to include
top-down control. GS is limited to modeling attention during visual search, which is, however,
the most fundamental task of vision. Thus, computational models based on GS need to encode
each higher-level task into a sequence of visual search tasks, as proposed by Navalpakkam et
al. [123]]. Their approach first determines the task relevance of each entity in the visual field
with an ontological model of the scene and task. From an internal visual representation of these
objects, visual features are then predicted and passed as input to an algorithm which implements
GS. The biological plausibility of this computational model was validated using simple tasks
and a rather small set of natural images and video clips.

Despite the complex nature of top-down attention, recently there have been some promising
advances towards computational models that predict top-down attention [I6-18]]. Predicting
top-down attention becomes possible in very constrained situations, such as when a user plays
a computer game and has some clear goals and tasks. This thesis further extends on methods to
predict top-down attention in the related work section of Chapter 4]

2.4.3 Interaction Between Top-Down and Bottom-Up Attention

There is an ongoing discussion about whether top-down and bottom-up attention interact or are
independent. Recent work tends to deny that there is interaction between top-down and bottom-
up attention and states that both processes are independent of each other [136].

Chapter [] of this thesis ventures a novel approach on the study of top-down attention. To
this end, we proposed a framework allowing to shape an ontology which is required to determine
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task relevance dynamically according to the behavior of a user. With this approach, we attempted
include those variables which allow us to infer high-level behavior. Using, for instance, semantic
descriptors and user inputs should provide us the information to infer the current task and the
respective target objects during a user’s interaction with the virtual environment application.

2.5 Eye Tracking

Eye tracking is the technology of choice to study visual attention. This section begins with a brief
introduction to how eye tracking evolved as a technology. Then previous work on applications
making joint use of eye tracking and computer graphics, particularly in virtual environment
applications and computer games, will be reviewed.

2.5.1 Brief History of Technology
Mechanical Recording

As many other methods of investigation in psychology, the first steps of understanding gaze
behavior and visual attention were done by the method of introspection. The first objective
attempts to observe eye movements are reported from the 19th century, when techniques us-
ing pinholes, telescopes or mirrors were developed. Thereby it was early understood that eye
movements are jerky and alternate between saccades and fixations. Studying eye movements
with a mirror during reading tasks, Javal et al. [82] were able to provide a first objective ev-
idences for this behavior. While motion properties could be observed already well with early
eye tracking techniques, it was more difficult to accurately measure where gaze is directed to.
Early techniques for measuring fixation locations more accurately were using intrusive mechan-
ical devices. For instance, Huey [74] attached a contact lens to the cornea which transmitted
eye-movement forces over an aluminum pointer to a kymograph, which recorded the movement
trace on a rotating drum cylinder (Figure [2.10). Since this could be painful, inconvenience was
reduced by putting small doses of anesthetics on the cornea. However, since invasive techniques
which attached lenses to the cornea were the most accurate option, they had been used in many
experiments until the mid 1960s. For instance, by Yarbus [[195]] to obtain the recordings shown
in Figure But with the emergence of better alternatives, these techniques have become less
popular and nowadays they are only used for experiments with animal subjects [[143]].

Electro-Occulography

A less inconvenient alternative to lens-based eye tracking is Electro Oculography [49] (EOG).
This technique measures electric potentials with electrodes attached to the skin near the eyes.
From this signal, the magnitude of muscle contractions involved in vertical and horizontal eye
movements can be estimated. Since EOG measures eye movements only relative to the head, ad-
ditional head tracking or maintaining a fixed head position (e.g., with a chin-rest) is necessary to
determine the point of regard [42]]. An advantage of EOG is that eye movements can be robustly
measured, even if eyes are closed, which allows, for instance, to sense eye movements during
sleep (e.g., to identify REM sleep intervals). Moreover, since saccadic movements generate
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(a) Huey’s Eye Tracker (b) Gaze Recordings

Figure 2.10: (a) Setup used by Huey [[74] (1898) to observe eye movements. In this apparatus
forces resulting from eye movements are transmitted by via an aluminum pointer attached to the
cornea to a rotating cylinder. The recorded gaze path of a subject performing a reading task are
shown in (b). This illustration was taken from [[74]]

spikes in the EOG which are well-detectable, EOG is suited for a temporally accurate saccade
identification, even for ultra-short saccades [87]] (e.g., micro saccades). However, EOG is prone
to errors caused by muscle artifacts and other sorts of electromagnetic interference resulting
from neural activities near and in the eyes eyelid [[198]]. EOG has found wide application during
the mid 1970s [198]], but in the long run, optical eye-movement tracking, which is described
next, has become the most accepted technology.

Optical Eyetracking

The great advantage of optical gaze sensing is that it can be done non-intrusively and hence
avoids distractions caused by uncomfortable sensations in or near the eyes. First attempts at op-
tical tracking of eye movements can be found in the work of Dodge and Cline [37]], who recorded
corneal reflections on an optical plate to determine the horizontal angle of the eyes. The corneal
reflection is the white specular highlight which occurs close to the pupil on the cornea. Tracking
the corneal reflection can be used to infer gaze direction, since its location is more or less in-
variant to small head movements while it moves together with the eyes’ line of sight. A famous
example can be found in Mackworth and Mackworth’s work [[108]], where the corneal reflection
was used for directly visualizing an approximate gaze position by superimposing images of the
corneal reflection spot on the video captures seen by the eye-tracked participant. The superim-
position was calibrated by maximizing the alignment of the reflection spot with the actual gaze
position. Further accuracy can be gained by extracting the position of the pupil. Determining
the spatial relation of the pupil relative to the corneal reflection spot (Figure[2.T1) has proven to
be one of the most accurate and robust techniques, and found wide application in commercial
high-quality eye trackers [42]]. A problem was that the contrast between the cornea and the pupil
spot is low under natural lighting conditions. Thus, modern eye trackers project an infrared or
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Figure 2.11: Corneal reflection on the eye occurs as a white dot close to the pupil (A). While the
rotation of the eye in vertical (B), horizontal (C) changes the relation between pupil center and
the reflection spot, this offset is invariant to head translations given the gaze direction is stable.
This image and the description were taken from [143)].

near-infrared light on the eyes which is captured by a high-resolution infrared camera. With this
technique, images with a high contrast between the pupil and iris can be obtained. There are two
variants of infrared-based eye tracking techniques: bright-pupil tracking and dark-pupil track-
ing. Bright-pupil tracking techniques project the infrared light from a position which is close
to the optical axis such that light entering the interior of the eyes is reflected directly back into
the camera. This technique produces a red-eye effect intentionally and the pupil position can
be detected by segmenting bright image regions. For dark-eye pupil tracking, the infrared light
source is placed off the optical axis. In this case, infrared light is not reflected from the interiors
of the eye balls and the pupil appears as a dark spot.

The advantage of bright-pupil tracking is that it creates a higher contrast, allowing a more
robust detection of the pupil. However, since bright-pupil tracking requires to discriminate illu-
minated regions in the infrared spectrum, it is less suited for outdoor use where sunlight which
contains a high amount of infrared light may interfere. Bright-pupil technique is the best method
for indoor use with people having a light brown, red and blue iris color (e.g., Hispanics and Cau-
casians), while the dark-eye pupil tracking has proven to work better for subjects with very dark
or black eyes (e.g., Asians). To benefit from the advantages of both techniques, more recent eye
tracker releases (e.g., Tobii Eye Trackers of the T/X Series) use bright and dark pupil tracking
in conjunction and switch dynamically to the technique which is more accurate [1]].

2.5.2 Processing of Raw Gaze Data

When an eye tracker is used to sense gaze while a user is looking at a display where the stimulus
is presented, the output is an array of raw gaze points, which are defined by a timestamp and a
2D position on the screen. From this data, the actual foci of user attention are determined. This
requires to pre-process gaze data to identify when a user is perceiving, because the visual system
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(a) Saccades and Fixations (b) Smooth Pursuits and Saccades

Figure 2.12: A visualization of processed gaze data. We used a fixation filter which separates
saccades (blue) and fixations (red). Between saccades, two types of gaze movements can oc-
cur: either stationary fixations (circles in left image) or smooth pursuits (red gaze trace in right
image), which occur when a moving object (e.g., flying space ship) is tracked.

can only process visual information when the image projected onto the retina is (relatively)
stable.

Most Important Gaze Patterns

A stable retinal image is maintained during fixations or smooth pursuits. If gaze is stationary
for a sufficiently long time (e.g., 100ms), we speak of a fixation. Fixations usually occur on
objects which are not moving. To enable the perception of objects in motion, the oculomotoric
system usually attempts to move gaze in the same direction and velocity as the attended object in
motion. This tracking behavior is denoted as smooth pursuit and preserves a stable retinal image
of the moving object. Between fixations or smooth pursuits, gaze moves rapidly in saccades.
Saccades are fast movements of gaze which allow the eyes to quickly jump from one interesting
point to another. Fixations, smooth pursuits and saccades are the three most prominent patterns
we can use to abstract gaze behaviors, which can be seen in the gaze paths visualized in Figure
R.12]

For simplicity reasons, we will not continue to literally distinguish smooth pursuits and
fixations. Instead, we consider a smooth pursuit as a fixation in motion. In contrast to these
two types of fixations, saccades disrupt the stream of visual processing [[128]]. This means that
a user’s overt attention correlates with fixation times only [42]]. Thus, prior to further analysis
of gaze data, it is useful to process the raw gaze signal to separate fixation times from temporal
intervals where saccades are performs.
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Fixation Identification Methods

Several fixation-identification techniques have been proposed (see [146] and [42] for a review).
According to the taxonomy proposed by Salvucci and Goldberg [146]], fixation identification al-
gorithms can be categorized based on their spatial and temporal characteristics. Spatial fixation
filters may take into account the velocity of gaze samples (velocity-based), the spread distance
of fixation points (dispersion-based) or they may use an area of interest (AOI) to identify gaze
samples belonging to a fixation (area-based). Temporal filters may be locally adaptive by ex-
ploiting the temporal coherence of gaze, or use a time duration threshold to account for the fact
that fixations occur after 100 ms.

Salvucci et al. [146] analyzed the performance of various fixation-detection methods and
concluded that dispersion-threshold filters are most accurate. However, Salvucci et al.’s study
was performed using static stimuli. In interactive 3D graphic applications, such as paced video
games, one has to assume a high optical flow due to rapid object or viewpoint motion. Un-
der these conditions, the eyes attempt stabilizing the retinal image by tracking moving features.
In these applications, dispersion filters are less appropriate. As dispersion increases propor-
tional to drift velocity, dispersion filter may artificially separate a smooth-pursuit into a series of
short fixations. Therefore, for highly dynamic stimuli, velocity-based fixation-detection methods
are more appropriate, as they cluster together all gaze points which belong to an uninterrupted
smooth pursuit. Since unprocessed gaze data has a considerable amount of noise, it is further
also useful to low-pass filter the gaze signal before using velocity-based fixation-detection meth-
ods.

2.5.3 Eye-Tracking Applications Related to Computer Graphics

Eye-tracking technology is currently evolving from a costly scientific laboratory equipment to an
affordable consumer-hardware accessory. Thus, it is possible that future commercial products,
such as game consoles or tablets, will be equipped with eye trackers. There are many applica-
tions fields where eye tracking has been used, ranging from industrial engineering, psychology,
neuroscience, human factors and marketing/advertising to computer science (a broad survey can
be found in [41]]). However, the focus of this section will be on the use of eye trackers in real-
time computer-graphics applications (e.g., games and virtual environments). To this end, this
section will review several previous-work examples where eye tracking was used with stimuli
generated by real-time computer graphics. The section will conclude with previous work on
gaze processing with 3D stereoscopic displays, which has recently become an interesting field
in eye-tracking research.

Attention-Guided Narrative Speech Synthesis

A famous experimental application of eye tracking in computer-graphics displays has been pro-
posed in 1990 by Starker et al. [156]]. They used gaze information recorded in realtime to guide
synthesis of speech in a way that narration refers to the current object a user is attending to. The
scene they used in their example application was a planet with several objects, such as volcanoes
or flowers, which were placed on the planet’s surface. Gaze was mapped to the object located
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Figure 2.13: Starker and Bolt [[156] used an eye tracker to narrate information according to an
observer’s gaze behavior. While the user was looking at the objects located on the planet shown
in (a), gaze data was collected to compute a gaze statistic in object space. These statistics were
then used to derive interest levels, which are depicted in (b). The system performs a selection
of those objects with the currently highest interest levels in order to determine the subject being
narrated. These illustrations were adapted from [156].

on the planet to compute an interest level (Figure [2.13). The objects with the currently highest
interest levels were then chosen to select a related topic to be narrated with synthesized speech.
As a user might switch attention between several objects, the narrated information was chosen
according to a common semantic category shared by objects currently attended.

Gaze-Controlled Collaborative Virtual Environments

Gaze behavior also plays an important role in face-to-face communication as it enhances our
awareness of the attention of others. Moreover, seeing another persons gaze helps us to deter-
mine to where, or which objects, another person is pointing to, which may considerably improve
communication and collaboration in a task [[119]. To mimic this behavior, one can animate the
eyes of virtual agents in collaborative virtual environments. Using an eye tracker to determine
the current orientation of a user’s gaze, Steptoe et al [[162] animated the gaze of an avatar such
that it appears to react responsively to the gaze behavior of the user (e.g., by mimicking some of
the user’s gaze patterns).

Studying Attention with Virtual Environments

Eye tracking has been often used in real environments to analyze gaze behavior in natural tasks.
Famous studies were conducted with easy tasks ranging from hand washing to sandwich making
[221/60,/130]. However, carrying out an eye tracking study in a real-world setup is challenging,
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as it requires a mobile eye tracker and a registered camera to record what a participant has seen
throughout an experiment. Since virtual environments and computer games provide a test bed
to study eye movements that is more convenient to control, these applications are on the verge
of becoming important as tools to generate (interactive) stimuli for eye tracking experiments.

Virtual environments found their application also in the field of vision science. For instance,
Hayoe et al. [60] used a virtual-environment setup to carry out a series of experiments to study
the gaze behavior in a navigation task. A comparison between gaze data and predictions of a
saliency map revealed a rather weak correlation. Nevertheless, they found significant similari-
ties in the distributions of gaze points recorded for different subjects. This result supports our
hypothesis (Chapter [)) that gaze recorded for one person predicts gaze of another subject. In
addition to that, they found that a user’s current task can be inferred from the observed gaze
(which should then also work in the reverse direction).

Studying Attention in Video Games

An early attempt at using eye tracking for a commercial computer game was carried out in Kenny
et al.’s work [[86]]. They recorded gaze in a first-person shooter game and analyzed the 2D spatial
pattern in the gaze distribution. The main finding was that in this type of game, the majority of
gaze points is located close to the center of the screen.

The spatial extent of a video game player’s visual attention was also investigated by Yokoi
et al [197]]. They used a circular gaze-contingent window that was dynamically moved with
a user’s gaze. The gaze-contingent window allowed a user to see the game only in a fraction
of the display in normal colors, while the rest of the screen was considerably darkened. They
studied how the radius of the gaze-contingent window affects gaming performance and found
that a window size below 20° significantly reduces gaming performance in a ski-racing game or
in a rhythm action game, while no effect of window size was found for a puzzle game.

Another early study making use of video games was done by El-Nasr et al. [51]], who con-
cluded that both, top-down task relevance and bottom-up salience, influence gaze behavior in
computer games. Since they used a commercial game, they had to capture the sequence of ren-
dered images as video recording. At the analysis stage, this required them to perform a tedious
manual preparation by tagging regions of interest manually (frame by frame!). However, having
access to the internals of a computer game permits to automate this process. A first step into
this direction was proposed by Sundstedt et al. [[170] and furthered by the work presented in
Chapter 4| (Gaze Analysis). Since then, several alternative approaches to support gaze analysis
in studies carried out with virtual environments and games emerged [121},/122}147-149], which
will be reviewed in the related work section of Chapter {]

Gaze-Controlled Video Games

Besides studying gaze behavior, eye trackers can be also used to control the difficulty of a com-
puter game. For instance, Jie et al. [83]] developed a shooter game connected to an eye tracker
informing the application about the current gaze location and movement of a user. This informa-
tion was processed by the game engine to decide where game elements (e.g., enemies) should be
placed in the environment. With this design, they constructed two difficulty levels: a hard level,
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where enemies spawn at positions raising a high attentional cost (e.g., in the opposite direction
of a smooth pursuit gaze movement), and an easy level, which makes enemies appear where a
user can attend to more easily (e.g., in the direction of a smooth pursuit).

An application which is increasingly attracting interest is user interaction via gaze control in
games. Since good eye trackers are still expensive, these types of gaze-controlled video games
are in their infancy. Yet it is an open question whether gaze-controlled user interaction will find
broad application in commercial applications of the near future. Isokoski et al. [75]] reviewed
the early state-of-the-art of gaze-controlled games and discussed the potentials and limitations
of this application field. One of the main problems is the low accuracy of gaze pointing com-
pared to mouse control. Another problem can be that gaze is not under full volitional control
and shifts of gaze are crucial to orient visual attention in scene viewing. One issue which is diffi-
cult to avoid is the Midas Touch problem, which means that commands are inadvertently issued
every time a user looks at a task-relevant object [80]]. Thus, the application of gaze-control for
games which require continuous position control, or a dissociation between focus of attention
and control, is very challenging, or even inappropriate. Less suited are also games where a large
number of commands are used for interaction. Isokoski et al. [75] found that gaze control is
perceived positive by most users, but stated that this could be primarily due to the fascination for
the technology and the novelty of experience. Longitudinal studies to investigate the potentials
and user acceptance in long-term use are, however, pending. At least in games which were not
designed for the use of eye tracking, a player using gaze control is most likely outperformed by
users of traditional input devices. This may cause frustration in multi-player games with com-
petitors who do not use gaze-control. Undoubtedly, gaze control is of great utility for physically
handicapped people. There are also some particular game genres which could benefit from this
new type of user input, but whether equipping game consoles or gaming PCs with eye trackers
is in general worth while for gaze controlled gaming cannot be predicted yet.

A more detailed review on this topic can found in Sundstedt’s book “Gazing at Games” [[165]],
which provides a broader introduction to recent work on using eye trackers to study gaze behav-
ior and improve user interaction in computer-game applications.

Eye Tracking in Stereo 3D Applications

Another interesting field is the use of eye trackers with stimuli shown in 3D stereo. A very
interesting problem which emerges with stereoscopic stimuli is how to determine a gaze point in
three dimensions from a 2D gaze signal. This requires to obtain an additional depth coordinate,
which is denotes as gaze depth [47]]. Methods to obtain a 3D gaze point can be divided into two
categories: geometry-based and binocular techniques.

Geometry-Based Gaze-Depth Estimation: Geometry-based approaches map a (monocular)
2D gaze position back to the 3D geometry or objects of a scene. This approach relies on the
assumption that the gaze depth, which is the depth where both eyes’ lines of sight intersect,
corresponds to the depth of the geometry’s visible surface underneath the gaze position. This
can be, for instance, implemented on graphics hardware by rendering a depth-buffer image from
the scene geometry and selecting the depth of the pixel(s) near the current gaze position. A
problem arising with this approach is that a user’s gaze may not point accurately on the actually
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Mono Display Stereo Display

Figure 2.14: Measuring gaze depth with an eye tracker: the left image shows how gaze and
stimulus depth are relatively independent if the display showed a scene in mono, while a coarse
correlation between gaze and stimulus depth can be observed with stereoscopic displays. The
images were adapted from [47]].

focused pixels or scene geometry. Instead gaze is more distributed in a region of uncertainty
which may contain many different depths. Thus, instead of using plain geometry information,
such as triangles or pixels in a depth buffer, to infer gaze depth, one can also assume that attention
is directed to entire objects. This requires to first map gaze to objects before determining the
depth which is closest to the gaze position. This is an approach which is favored in this thesis
(Chapter [3] and [5)), where we propose an probabilistic approach on object-based attention. This
has the advantage that gaze depth can be better disambiguated as there are far less objects than
pixels or triangles in a scene. With an “attention probability” for each object, we may also obtain
a probability which quantifies the uncertainty of a certain gaze depth. So rather than assuming
a single 3D gaze point, we can define a volume of uncertainty. Moreover, for gaze controlled
applications, the object-based approach further relates gaze to the stimulus a user is actually
seeing.

Binocular Gaze-Depth Estimation: No geometry information is required for binocular meth-
ods, which estimate the 3D position from an observer’s binocular gaze information only. When
recording binocular gaze, a 3D gaze point can be obtained by triangulation (e.g., [46,[173]).
This method is particularly useful for real world stimuli where no geometric model is avail-
able (e.g., [134]]). Since the gaze direction measured by an eye tracker for both eyes does not
necessarily converge in the plane of zero parallax, Duchovski et al. [47]] proposed to perform
a depth calibration. They used for this procedure a scene of cubes arranged in different depth
layers. During the eye tracking experiment, participants focused subsequently on one after an-
other cube while gaze data was recorded together with the depth of the focused cube, which
they denoted as stimulus depth. Calibration was done by minimizing the error between gaze and
stimulus depth using a model with two parameters: a shift and a scale factor. With the shift,
the zero point of gaze depth is calibrated to correspond to the plane of zero parallax. The scale
factor is used to align the range of measured gaze depths with the scene’s depth range. The
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temporal graph of gaze depth recorded with this procedure is shown in Figure The results
obtained in a monocular control condition, which is shown in the left graph, are almost unaf-
fected by the virtual depth of the attended object. But when the scene is shown in stereo 3D, a
considerable variation which correlates well with the stimulus depth (Figure [2.14] right graph)
can be observed. Since there is a high amount of noise in binocular gaze data, the results shown
in this figure have been pre-processed with strong low-pass filtering.

A holistic approach to determine gaze depth from binocular data was proposed by Pfeiffer
et al. [[135]. They used a 3D gaze-calibration procedure based on a self organizing map that
learns to correctly map an input of two gaze points to a gaze depth. Using the 3D gaze point
computed from binocular data, they determined the closest scene objects in the vicinity of the 3D
gaze point from the scene geometry. However, their investigation revealed that for a gaze-based
object selection task, the use of a 3D gaze point computed from binocular gaze data increases
performance only in some critical cases where objects which are located in different depth layers
occlude each other. But in other cases, the accuracy was lower compared to methods inferring
depth with a geometry-based approach from the 2D gaze point.

Gaze-depth estimation can be useful for applications such as gaze-controlled interaction
with 3D environments, and gaze-driven depth-of-field or 3D stereo displays (see Section [2.6).
Depending on the application, both approaches described above have their pros and cons. The
big advantage of binocular techniques is that they are independent of the stimulus. This means
that they can be used in any eye-tracking application without the necessity of having access
to a digital representation of the scene geometry. However, binocular methods suffer from the
strong noise in binocular gaze signal, which produces a very inaccurate and unstable gaze-depth
signal (with current eye tracking hardware). Moreover, binocular methods can determine the
gaze depth only after a sufficient number of gaze samples (depending on the low-pass filter size)
were output from the eye tracker, while geometry-based approaches may allow to predict future
gaze depth at saccade landing positions or future gaze locations in smooth pursuits. Future
gaze locations could be, for instance, predicted during smooth pursuits from the current gaze
movement with a kalman filter, or during saccades with a ballistic model which takes the gaze
samples at the onset of an saccade as predictor, as proposed by Kolmogortsev et al. [93]].

Probably, at least for applications which render virtual scenes, the combination of both ap-
proaches may provide the best results.

Besides the applications proposed above, gaze-depth estimation can be also useful to inves-
tigate temporal aspects of stereoscopic vision, as done in the example reviewed below:

Extracting Vergence-Response Times from Gaze Depth Signals: Recently, Templin et al.
[174] utilized gaze-depth recordings to estimate the vergence response time after an abrupt
change of disparities, such as elicited by video cuts in 3D stereo movies. To this end, they
fitted a sigmoid to the gaze depth signal recorded during a discontinuous change from an ini-
tial disparity to a target disparity. Since a gaze depth signal obtained from one person was too
noisy, they proposed to use an average gaze depth signal from many persons for the fitting (a
strategy we also used in our work presented in Chapter [5)). From the mathematical abstraction
obtained by fitting the sigmoid function, they were able to analytically deduce the time a user
needs to converge/diverge to the target disparity, which they denote as vergence-response time.
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They determined vergence-response times for a systematically sampled bivariate grid of initial-
disparity/target-disparity combinations and fitted a linear model to these results. This model can
be used to predict vergence response times from the type of disparity change and could be used
to avoid inappropriate response times in cuts with 3D-stereo film footage.

2.6 Attention-Aware Computer-Graphics Applications

This section reviews the state-of-the-art of applications in the field of computer graphics which
make use of gaze information or attention models.

On the one hand, attention-aware techniques could be used to accelerate image generation.
This means to save computational cycles by rendering unattended image regions less accurately,
which we denote as computational acceleration (Section 2.6.1).

On the other hand, recent work also utilizes attention to control various effects resulting from
the physiology of the eyes. This applies in particular for stereoscopic displays and depth-of-field
simulations. Using attention predictors or eye trackers could be a key to make these effects more
realistic and pleasant for the users. Since those effects are primarily useful to improve a user’s
perception, they will be categorized with the term perceptual optimization (Section 2.6.2).

Another interesting application is to guide a users attention to important parts in a scene.
Therefore, this review will conclude with a paragraph on attention guidance in computer-graphics
applications (Section 2.6.3).

2.6.1 Attention-Aware Computational Acceleration

Given a limited computational budget, attention models have been utilized to selectively allocate
computational resources to parts of a scene a user pays more attention to. This is particularly
useful for real-time rendering of high-fidelity graphics or to avoid that graphics processing con-
sumes too much energy on mobile devices.

Attention-based optimization can be performed, on the one hand, at the development stage.
Geometry information can be reduced by simplifying the mesh in parts which are attended less
often. On the other hand, the optimization can be performed at run-time to make rendering more
computationally efficient.

Mesh Simplification

One way to make computer-graphics applications more efficient is to reduce mesh complex-
ity. Using attention-based techniques, the resulting loss of quality can be made less perceivable
using an importance-driven mesh simplification tool which prioritizes simplifications for less
salient parts in the geometry. To this end, Lee et al. [100] proposed a method which extends
the basic algorithm for bottom-up saliency computation to geometric features of meshes. They
applied center surround contrast metrics on several spatial scales on curvature features (Figure
[2.15). The result is a texture which specifies a saliency score for each texel on the surface of the
geometry. The saliency-map-guided geometry simplification is, e.g., useful for the generation
of level-of-detail representations. As further utility, they proposed to use mesh saliency for an
optimal viewpoint selection. An empirical approach to compute mesh saliency was proposed by
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Figure 2.15: Pipeline for the computation of mesh saliency. This image was taken from ||

Howlett et al. [[71]], who used eye tracking data to infer mesh saliency. Overall, saliency-based
mesh simplification found most utility for the generation level-of-detail simplifications and sev-
eral improvements and several alternative methods for computing saliency of mesh features have
been proposed later (e.g., [113L[150,/1541[192]).

Geometric details can also be reduced in densely cluttered scenes where selective attention
lowers sensitivity to geometric details. Ramanarayanan et al. showed that in complex ag-
gregates containing groups of object instances (e.g., a plant species in a vegetation scenes) the
proportion of these groups can be manipulated considerably without a user noticing a difference.
In a proof-of-concept evaluation, they showed that this perceptual insensitivity can be exploited
to reduce the amount of polygons in the scene. This is done by increasing the number of ob-
jects with a lower polygon count while lowering the proportion of geometrically more complex
instances.

Accelerating Rendering

Using perception models permits to accelerate rendering using an aggressive optimization strat-
egy that trades rendering speed against a loss of quality. Perceptual models are used to make the
reduction of image quality less perceivable.

From Visible Difference Predictors to Attention Models: First attempts in perceptual graph-
ics used metrics which predict the perceivable differences between two images. Since the
perceived difference can decrease significantly due to masking effects of high spatial frequen-
cies [53]], difference predictors are usually a function of image features such as color, luminance,
spatial frequency and contrast. Difference predictors, such as the Daly’s Visible Difference Pre-
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(a) Reference Image (b) Aleph Map

Figure 2.16: Figure (b) shows a visualization of the spatio-temporal error tolerance map (Aleph
Map) corresponding to the image shown in (a). This image was taken from [196].

dictor [34]], can be used in ray tracers to define a stopping criterion when the results converge to
a point where further iterations do not provide a perceivable increase of image quality [[13|[120].
They have been also applied in rasterizers to reduce level of detail of meshes until reaching a
threshold where the simplifications start to become noticeable [38].

In the spirit of perceptual methods using visible difference predictors, attention predicting
models have been explored as well to accelerate rendering techniques. A general algorithmic
framework to employ attention metrics in order to accelerate realtime rendering was proposed
in the seminal work of Funkhouser and Sequin [55]]. The core module solves a cost/benefit opti-
mization problem that trades rendering speed (benefit) against rendering errors (cost). Attention
models can be introduced by weighting cost/benefit estimates with importance scores. Yee et
al. [196] and Haber et al. [59] were the first to apply bottom-up saliency maps to accelerate
global-illumination rendering. In Yee et al.’s work [[196]], the attention model was combined with
a visible difference predictor and a metric which predicts sensitivity to details of objects in mo-
tion. These metrics were combined into one Aleph Map, shown in Figure The Aleph Map
spatially encodes the predicted tolerance for rendering errors. Where the Aleph score is low,
quality should be maximized, while computational resources can be saved by sampling fewer
rays in regions where the error tolerance is high (e.g., the reflections in the mirror).

Using Task-Relevance Maps: Cater et al. showed that quality can be optimized more
selectively with a predictor that accounts for top-down attention as well. They performed an
experiment with a counting task (e.g., look for pencils) in a virtual environment. With this
example scenario, they constructed a case where inattentional blindness may occur due to the
user narrowing the focus on the task. Thus, high-quality rendering could be applied selectively in
the neighborhood of task-relevant items (i.e., targets of visual search) and near important features
which were predicted with a saliency map. They called their method “selective rendering”, and
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(a) task-relevance map (b) task-importance map (c) saliency map (d) importance map

Figure 2.17: Illustration how importance maps for selective rendering can be encoded in image
space. These illustrations were taken from [167].

their user study provides a proof-of-concept which confirms that inattentional blindness can
be successfully exploited to increase the perceived quality in real-time rendering applications.
Inspired by Yee et al.’s work [196], Cater et al. [25] advanced this idea in subsequent work
to a more sophisticated selective-rendering framework that also made use of visible difference
predictors.

Another example for using task relevance as top-down attention predictors for selective
quality rendering can be found in the work of Sundstedt et al. [166,/167]. They proposed a
task-importance map which combines (bottom-up) saliency with a top-down attention prediction
component. Task-relevant objects were manually selected by the application developer, and at
run-time, this information was encoded in image space as a binary mask defining pixels covered
by task-relevant objects (Figure [2.17(a)). To account for the spatial extent of foveal vision, this
binary mask was low-pass filtered with a kernel corresponding to the size of the fovea in order to
obtain a task-importance map (Figure 2.17(b)). Moreover, a salience map (Figure was
created to also predict bottom-up attention, which was then merged with the task-importance
map to derive the master importance map (Figure [2.17(d)) used for selective rendering.

While previous selective rendering methods used high-quality rendering in a circular region
around a task-relevant object and thus conservatively assumed that a user attends to everything
that could be seen with foveal vision, Sundstedt et al. [169] showed that due to inattentional
blindness users may even fail to notice rendering errors within foveal vision when they appear
on task irrelevant objects.

Exploiting Change Blindness: Besides task relevance, also the phenomenon change blind-
ness has been exploited for selective rendering. Cater et al. [26] performed an experiment where
rendering quality was reduced during a disruption of the continuous image stream through a
flicker image. This interruption provoked change blindness, and users were not able to notice
the changes caused by quality reductions. To justify the applicability of the method without
artificially interleaving the visual signal with flicker images, they argued that a visual disruption
by flicker images mimics the effects of eye blinks and saccades. A potential application would
use a low-latency and high frame-rate eye tracker to detect saccades in realtime. This approach
could be particularly useful to mask popping artifacts, which frequently occur when the ren-
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Figure 2.18: Selective rendering of an object (telephone) which attracts attention crossmodally
due to semantically congruent sound events (onset of ringing tone). This image was taken

from @]

dering system has to switch between different level-of-detail representations (LOD) because the
camera is moving towards (requiring switching from high to low LODs), or away from scene
objects (requiring switching from low to high LODs).

Predicting Attention from Schematic Congruency: Another alternative has been proposed
Zotos et al [201]]. They predicted attention based on whether an object is schematically congru-
ent (e.g., pencils on a desk top) or incongruent with the scene context (e.g., scull on an office
desk). Since surprising or unexpected geometries tend to attract more attention, they can be
selectively rendered in higher LOD than objects which are expected to appear within the scene
context.

Using Crossmodal Attention Predictors: Apart from visual saliency, also sound events may
attract visual attention. Using an audio-visual importance map, Mastoropoulou et al.
demonstrated that users tend to focus on objects which are semantically congruent with an
accompanying sound event (e.g., a ringing telephone). In this condition attention is attracted
crossmodally and can be selectively rendered in high quality, while a user will not notice signif-
icant quality reductions in other parts of the scene (Figure [2.18). Later, Brkic et al. showed
that crossmodal selective rendering even works for a combination of visual and olfactory stim-
uli. However, since crossmodal attraction of attention is a stimulus-driven effect, it occurs only
for a short time window. Unfortunately, this makes selective rendering only applicable in a few
cases when crossmodal events occur.
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Miscellaneous Examples: Further interesting example applications where attention-based op-
timization has been applied include the acceleration of physically based rendering of participat-
ing media [58,/118]], efficient graphics on mobile devices [9]] and compression of videos [[103}
111].

Optimizing Animations

Attention predictors or eye trackers can also be employed to reduce other costly computa-
tions, such as physical simulations or animations of huge crowds of characters. For instance,
O’Sullivan et al. [126] showed that collisions can be simulated less accurately where a user is
not attending to.

McDonnel et al. [[114] used an eye tracker to study which parts of virtual human characters
are mostly attended. They found that most attention is paid to body textures and faces and used
this knowledge to disguise cloned characters and animations in huge crowds.

While there are only a few exemplary studies attempting to utilize attention to accelerate an-
imations and physical simulations, this could be a promising avenue for future research. Besides
complex animations of virtual agents (e.g., facial animation), the increasing use of physically
based simulations to render effects such as floating fluids or physical interaction of a large num-
ber of objects (e.g., a stack of cans being crashed by a collision) are costly to simulate in realtime
and should greatly benefit from attention-based optimization.

Gaze-Contingent Rendering

With real-time eye tracking, the focus of attention can be determined much more reliably com-
pared to computational models. This allows rendering only one small region around the current
gaze point that is resolved by foveal vision in full resolution or high quality. This approach is
commonly denoted as gaze-contingent or foveated rendering and dates back to 1987 to the work
of Kocian et al. [92]. Image-space techniques adjust the image resolution or the sampling rate
in a ray tracer according to a model which predicts visual acuity as a function of eccentricity
(e.g., [102]), while object-space approaches (e.g., [[124]]) use an analogous strategy for LOD
management.

As improvement to simple eccentricity-based approaches, Luebke et al. [[106] proposed to
use a more sophisticated model for the space-dependent sensitivity of the retina that also takes
contrast and spatial frequency into account. Overall, a considerable body of work has been pub-
lished on gaze-contingent rendering, reviewed, for instance, by Duchovski et al. [43,44]. Among
those, there have also been attempts to bring forward the gaze-contingent rendering approach to
stereo displays [27]. This can be, for instance, useful to overcome bandwidth limitations in
the transmission of stereoscopic images. More recently, gaze-contingent rendering has been
revisited by Guenter et al. [[57]], who proposed an efficient implementation yielding impressive
speed-ups (they reported a factor of 5-6) without users noticing any changes in rendering quality.
This work demonstrated that foveated displays remain a promising solution to accelerate current
and future computer-graphics. This, taken together with the fact that eye trackers are on the
verge of becoming a commodity, shows that gaze-contingent rendering could provide an impor-
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tant utility for energy-efficient rendering on mobile devices or to realize high-fidelity graphics
on immersive high-definition displays.

2.6.2 Attention-Aware Perceptual Optimization

Nowadays, in the age of high-performance GPUs, frame rates and level-of-detail are not always
the most pressing challenge, and it is also useful to focus more on optimizing a user’s perception
of visual information. Thus, other attention-adaptive graphics applications have been proposed
that focus on a perceptual optimization, such as an appropriate depth-of-field configuration or
an attention-aware optimization of disparities in stereoscopic applications.

Attention-Aware Depth-of-Field Simulation

Simulations of depth-of-field (DoF) effects can increase depth perception since they produce an
effective monocular depth cue [62]. The most prominent application is to use DoF to direct the
viewer’s attention. While artificial DoF is certainly useful to direct a viewer’s attention in passive
viewing conditions, its application as additional depth cue and asset to increase visual fidelity in
interactive applications requires to predict the user’s focus to avoid annoyance. A first attempt
to make DoF applicable for interactive use was proposed with Hillaire et al.’s work where the
DoF plane was aligned with the actual or predicted focus of a user. They proposed to determine
the depth of the currently attended object by real-time eye tracking [65]] or attention-prediction
heuristics [64]]. As simple heuristic to predict attention, they proposed to use the proximity to
the center of the screen and an object’s task relevance. In addition to DoF simulations, Hillaire
et al. [65] proposed a method which controls the movement of the camera according to the
gaze behavior of the viewer. They reported results from a user study where perceived realism,
fun, depth perception and the feeling of immersion were ranked significantly higher when gaze-
driven DoF and camera control were applied [[65]. However, in highly dynamic scenes (e.g.,
spaceship games) the estimation of the current depth can be highly ambiguous and result in a
high temporal error rate, i.e., an unstable frequent switching between unattended and attended
depth planes. Thus, Mantiuk et al. [109] recently improved gaze-controlled DoF simulations
with a fixation detection method which combines gaze and object-space information to increase
temporal coherence and spatial accuracy in the determination of the user’s focus. Using spatial
proximity and motion similarity, they used a probabilistic approach to map gaze to object fea-
tures. To combine probabilities over subsequent frames, they employed a Hidden Markov Chain
(HMC). The HMC was configured such that a shift of attention from one to another feature is
assumed to occur less probable (5%) than continued attention (95%). With this approach, fixa-
tion filtering and gaze-depth determination was done in one step. Thanks to using object-space
information, they could increase spatial accuracy beyond the limitations of the eye tracker, and
due the use of Hidden Markov Chains, they could significantly reduce the number of (erroneous)
switches between different depths.
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Figure 2.19: An illustration of the stereoscopic comfort zone. This image was taken from [98]].

Increasing Comfort in Stereoscopic Displays

Current stereoscopic technology may be tiring for users, and is often reported as uncomfort-
able after even short times of use. One main reason for this is discomfort caused by the ver-
gence/accomodation conflict. Comfort is usually predicted as a function of disparity, which
is visualized as comfort zone in Figure [2.19] or as a bivariate function of vergence and focal
distance [66,(90]. Using a comfort model, disparities can be manipulated by mapping them to
the range of disparities which can be seen comfortably. However, the unwanted side effect of
manipulating disparities can be a significant reduction of depth quality, for example in the form
of cardboard effects. One perceptual strategy proposed by Didyk et al. is to map disparities
in a way that the loss of depth quality is less noticeable. To this end, they developed a stereo
quality model which is a function of disparity frequency [35] and luminance contrast [36]. This
function is then used to predict the just noticeable difference in disparity manipulations in order
to minimize the perceived loss of depth quality while maintaining an acceptable level of stereo
viewing comfort.

Using Attention Predictors: A complementary approach to the use of disparity sensitivity
functions is to apply attention predictors or eye trackers. Lang et al. [98]] proposed an automated
non-linear disparity remapping technique for movies. With this approach, disparity in visually
unimportant regions is compressed, while correct disparity gradients are maintained in visually
important regions (Figure 2.20). By using saliency maps to score the visual importance of scene
features, visual artifacts of disparity range compression, such as flattening, are moved into visu-
ally unimportant regions where they are less likely to be recognized. To compute attention maps,
they used simple low-level features, such as depth and edges, but propose that also top-down fac-
tors could be integrated for further improvements. A similar approach, which employs attention
predicting heuristics, was proposed by Celikcan et al. [28]] for interactive virtual environments.

Using Eye Tracking: With real-time eye tracking, stereo parameters can be adjusted more
selectively. For instance, the plane of zero parallax can be shifted to coincide with the depth
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Figure 2.20: The method proposed by Lang et al. [98]] to obtain a disparity remapping function
¢(d) mapping a disparity d to a new disparity d’: First, a saliency map is computed from the
current video frame, then the total saliency s(d) (y-axis) for each disparity value (x-axis) is
computed, from which the disparity remapping function ¢ is derived by building an integral
over s(d) and normalizing. This strategy has the effect that the disparity gradient is low in
disparity ranges with low saliency. This image was adapted from [98]].

of the currently fixated object. This was proposed by Fisker et al. [54], who determined the
focus depth from binocular gaze. In our work, which will be presented in Chapter [5] we used a
geometry-based approach to determine gaze depth (e.g., using a depth buffer) and performed a
formal evaluation of this strategy, where we evaluated how this affects subjectively experienced
comfort and the time users need to fuse stereo image pairs, which is a good objective predictor
for comfort. Besides disparity adjustment, comfort can also be increased by low-pass filtering of
high-frequency content, as proposed by Perrin et al. [[131]], who introduced a comfort model that
is a function of disparity and spatial frequency in the images. By using an eye tracker in these
applications, it can be avoided that the a visual quality reduction caused by blurring is noticed
by the user and instead is experienced as DoF effect [[11}(12}/45//101},171]].

Determining Optimal Cuts in Stereoscopic Movies: Visual discomfort can also occur during
cuts in stereo-scopic movies, which require a user to adjust eye vergence to a new disparity. To
optimize comfort, the vergence response time after a cut should be minimized. Thus, Templin
et al. [174]] recommended to use a model which predicts vergence response time in an abrupt
transition from one disparity to the other disparity as a function of this disparity pair. To obtain
this model, they proposed an eye tracking-based method, which has been already described in
Section 2.7.3.
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Figure 2.21: Subtle gaze direction in natural images (left). Attention is attracted to the blossoms
of a flower shown in the small patch of the stimulus image (center). This can be achieved by lu-
minance modulations (third column) or warm-cool modulations (right column). This illustration
was taken from [3].

High Dynamic Range Tone Mapping

For large displays or immersive virtual environments, also high dynamic range (HDR) tone
mapping can benefit from gaze-adaptive methods. HDR tone mapping is required when HDR
images are shown on a low-dynamic range display. Tone-mapping techniques should ideally
preserve the perceived contrast, even though the luminance range in the tone-mapped images
shown on the display is considerably compressed. Since the eyes adapt most sensitively to
luminance within foveal vision, an ideal tone-mapping operator should temporally adapt to the
luminance in the image region near a user’s point of regard. Thus, it is useful to use an eye
tracker to determine which parts of an image are seen with foveal vision and adjust tone mapping
accordingly. For instance, when a user is looking into the sun, the tone-mapping function should
maximize contrast in the range of bright colors, as opposed to when a user is gazing at an object
in a shadow, where the mapping should at best preserve contrast within a narrowed range of dark
colors. First examples for gaze-adaptive tone mapping were proposed by Rahardja et al. [[140],
Cheng et al. [30] and Mantiuk et al. [I10].

2.6.3 Attention Guidance in Virtual Environments

Another interesting application is to direct a user’s attention to those parts in an image which are
most important. This can be done, for instance, to facilitate search for task-relevant objects or to
notify a user about important elements in a scene (e.g., maps or signs).

Guidance with Illumination

One way to guide visual attention is to use lighting. In the simplest case, this can be achieved by
selectively illuminating content with a spotlight, while the rest of the displayed scene is shown
in darker colors [88]. A more subtle way to direct attention by lighting design was proposed
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(a) Scene with soap bubbles (b) Heat map without SGD (c) Heat map with SGD

Figure 2.22: Heat maps of gaze data recorded during a visual search task. The task was to count
the number of soap bubbles in the scene (a), which were located on the positions labeled with
white crosses in heat map shown in (¢). The heat map in (b) shows the gaze distribution in the
control condition, i.e., under normal viewing conditions, and the heat map in (c) illustrates the
distribution directed gaze. This illustration was taken from .

by El-Nasr et al. [50]. They took inspiration from techniques which are employed in movies
or on theater stages to guide attention of the audience. They implemented a system guiding a
user’s attention in virtual environments by automatically adjusting lighting conditions, including
angles, positions, intensities, and colors of the light sources.

Guidance with Temporal Features

Attention is strongly attracted by temporal changes in the field of view. Thus, Bailey et al. [3]]
proposed to attract a user’s gaze with short luminance or warm-cool modulations in image re-
gions a user sees peripherally (Figure 2.21). The eyes are particularly sensitive to temporal
changes in the periphery of the fovea, and such modulations strongly attract gaze towards the
location of change. To know what a user is currently seeing with peripheral vision and to avoid
conscious perception of the modulations, an eye tracker notifies the system when a saccade to
the modulated regions is triggered, upon which the modulations are stopped. With this strat-
egy, a user can barely notice the modulations attracting eye movements, and thus the method is
denoted as subtle gaze direction.

In subsequent work, McNamara et al. [115,[116] showed that performance in a counting
task with objects which are difficult to find (e.g., soap bubbles) can be significantly improved
(Figure using subtle gaze direction, even in the presence of distractor modulations. Further
applications of the subtle gaze-direction method were proposed later, including narrative art for
attention guidance during visual story telling [117]], training of novice radiologists [[155]], and
attention guidance in real-world environments [14].

Recently, Waldner et al. (including the author of this thesis) [[183]] proposed to use an inten-
sity modulation (i.e., flicker) to guide attention in narrative visualizations of molecular reaction
chains. In contrast to subtle gaze direction, we avoided that an eye tracker is required which
stops the flicker modulation as soon attention is successfully attracted. Instead, we attempted to
configure the flickering in a way that it minimizes the annoyance factor of this technique. To
this end, we proposed a two-staged design comprising an orientation stage, which attracts atten-
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Figure 2.23: The elements and a screen-shot of the game we used in our preliminary study on
directing attention by visual design to advertisements billboards in the background.

tion to peripheral events with a fast modulation with a high amplitude, and an engagement stage,
which guides attention (after orientation) in foveal vision with a more visually comfortable mod-
ulation. The optimal configuration of the modulation parameters was determined with a series of
experiments investigating the effects of modulation amplitude and frequency on detection times
and subjectively experienced annoyance.

Guidance by Feature Linking

Another way to guide attention is to increase the salience of objects to be attended by visual
design. A preliminary study how this could be realized was carried by the author of this thesis [8]
(in a publication which is not part of this thesis). The general challenge addressed by this work
was to investigate how effectively the theory of guided search can be applied to improve the
perceptual visibility of elements which are not directly relevant to the task of a video game
(e.g., billboards in the background). To this end, we investigated how well users are able to
remember advertising billboards located in the background of a computer game if their features
are “linked” to features of task-relevant game elements (Figure [2.23(a)). We decided to use
advertisements of real brands, since those have logos which are a result of a sophisticated design
process. They are optimized to be aesthetically pleasant, well recognized and, most importantly,
to be remembered easily.
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To evaluate this strategy, we performed a simple study with three conditions, which were
assigned to three groups of participants. In the test condition, we used a health item (health item
1, Figure which shared color and orientation with a target brand advertised in the back-
ground scene of the game (billboard A in Figure[2.23(b)). The results of the test condition were
compared to two control conditions: in the first control condition (CTRL 1), we used the same
health item as in the test condition, but there was no advertisement in the background sharing
features with this game item (i.e., billboard A was replaced by another advertising billboard A’).
In the second control condition (CTRL 2), we used the same background as in the test condition,
but the health item was replaced by another health item with different features (i.e., health item
2 in Figure [2.23(a)).

Attention was measured with a subsequent memory test after a participant played the game
in one of the three conditions depending on the group he or she was randomly assigned to.
Our result was that recall of the target advertisement (A) reached over 90%, whereas other
advertisements in the same condition, or the targeted advertisement in both control conditions
(CTRLI and CTRL2), were remembered drastically less often (0-42%). Another interesting
observation was that participants of the test group also recalled other advertisements (billboards
B,C,... Fin Figure[2.23(b)) more often than participants of the control groups. Though our trick
significantly manipulated a users attention, we did not observe any negative effects on gaming
performance, indicating that game fun is not affected by this little but effective change in game
design. This work could be a starting point for the exploration of new avenues for the “reverse”
application of visual-attention models. For example, the proposed guiding principle should also
work to avoid inattentional blindness to other targets than advertisements. The results may
inspire game designers to direct attention in situations where a user does not know which object
is task relevant.

2.7 Conclusion

Visual attention is a challenging research topic and the key to understanding the principles of
vision. Knowledge and theory about attention can be of tremendous importance for various fields
of visual computing, most notably computer vision and graphics. This chapter reviewed many
interesting examples of computer-graphics applications where visual attention and gaze tracking
may find a great utility. While computer science and IT applications can greatly benefit from
research done on attention in psychology and neuroscience, the knowledge transfer can also go
in the opposite direction. Particularly computer graphics provide a set of valuable tools which
may assist research on visual attention in many other disciplines. The most important benefits of
tools that state-of-the-art computer graphics can contribute to assist experimental work on visual
attention can be summarized as follows:

Control of visually complex stimuli: With state-of-the-art computer-graphics, researchers can
create visually complex virtual environments for their experiments. The main advantage
is that artificial stimuli can be controlled with the configuration of the rendering meth-
ods used for displaying stimuli. For instance, the role of several lighting effects such as
shading, shadows or ambient occlusion, can be studied in isolation.
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Automation: Using synthetic stimuli to study visual attention allows automating the analysis
process. In virtual-environment applications, for instance, we can log object information
and every change of the scene in synchrony with eye movements and user interaction
events. Having this data permits a convenient and detailed analysis of gaze behavior (and
potentially other behaviors) with respect to the properties of the stimuli. For instance, it
avoids tedious efforts which are necessary to annotate objects or define regions of interest
in eye tracking experiments using animated or interactive stimuli.

Validation of Models and Hypotheses: The work described in Section 2.6 provides many in-
teresting examples how knowledge about visual attention can be utilized for computer-
graphics applications. Though this work was oriented towards utility, the experiments
also add further pieces of evidence to the theories the applications relied on.
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CHAPTER

Attention Inference: Gaze-to-Object
Mapping

Whenever you set out to do
something, something else has to be
done first

Murphy’s Laws

In this chapter we tackle the first challenge, which is inferring the object of attention, given
the current gaze position observed with an eye-tracker. We denote this process as gaze-to-object
mapping and devise a methodology to evaluate different gaze-to-object mapping techniques.
Addressing this challenge is the basis required to make gaze analysis (Chapter V) and object-
based attention-aware rendering (Chapter IV) more reliable.

The work described in this chapter has been published under the title “Gaze-To-Object Map-
pipng During Visual Search in 3D Virtual Environments” [6] in the SAP 2014 Special Issue of
ACM Transactions on Applied Perception.

3.1 Introduction

Gaze tracking has become one of the most important tools in the study of human behavior
and interaction with graphical software. Applications with 2D graphical user interfaces (GUIs)
lend themselves to well-established gaze-analysis techniques, such as heat-maps or gaze-path
visualizations, since the stimulus remains mostly static [42]. Recent techniques, for example
based on dynamic areas of interest [[7,[127]], have enabled analyzing gaze behavior and visual
attention in 3D graphical applications. These techniques leverage the rich information contained
in the scene graph of modern video games and virtual environments in order to identify the
object(s) of attention, rather than relying on recorded image sequences.
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(a) high object density

(c) object motion (d) camera motion

Figure 3.1: Scenes exhibiting the main challenges of gaze-to-object mapping. For each scene
the frame buffer (left) and the item buffer (right) are shown. In the frame buffer the red points
indicate fixations, while in the item buffer the attention target is highlighted in white. Figure
(a) is a scene with a high object density, while the target in (b) is occluded. In (c) objects are
animated and in (d) the camera is in motion.

The mechanisms behind the deployment of gaze over visual stimuli is still an open research
topic in visual perception, and a significant body of research suggests that attention arises from
distributed interactions within and among different types of perceptual representations (e.g.,
space-based, feature-based, and object-based) [95]]. In this chapter, we focus on object-based
attention since 3D objects are those scene units that are typically sought for manipu-
lation, interaction and representation in 3D virtual environments. Therefore, identifying objects
that are (potential) attentional targets is important for a multitude of applications.

Using an eye tracker to record gaze while viewing visual stimuli generated by a 3D ap-
plication (e.g., a game) is becoming a widely popular method of studying visual perception,
including attention. The process of identifying the scene object that is the target of attention
is called gaze-to-object mapping (GTOM). The primary challenge these algorithms face is to
accurately provide information on what (i.e., scene object) the user is attending to, which often-
times does not coincide with where the user’s gaze is deployed (i.e., positions of recorded gaze).
Inferring what a user is attending to from where a user is looking at is of high importance and
utility, since it forms the foundation of modeling visual attention, and potentially other cognitive
processes. A small number of GTOM methods geared towards dynamic 3D scenes have already
been devised [[168]], however these methods are still in their infancy and they have not been for-
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mally evaluated. Therefore, their validity and accuracy remain uncharted territory, which has
motivated the more thorough evaluation presented in this chapter.

There are various challenging cases GTOM techniques have to deal with that are common in
3D, some of which are shown in Figure [3.1] For instance, due to eye-tracking inaccuracies and
rapid involuntary eye movements, gaze may be deployed over multiple objects at different depths
when object density is high (see Figure 3.1(a)). Furthermore, attentional targets can become
highly occluded due to dynamic scene changes (see Figure [3.1(b)), and it is very frequent that
scene objects or the camera are in motion, as shown in Figures [3.1(c)| and [3.1(d)] respectively.
These cases render commonly used GTOM techniques, such as areas of interest, difficult or
impractical to use in dynamic 3D scenarios.

In this work, we adopt and further assess an established methodology for gaze analysis
which has been initially devised by Sundstedt et al. [170] and later proposed as a gaze-analysis
methodology for computer games [[168]. This methodology assumes that the input of any
GTOM method is gaze data and an item buffer [187]], which is an object segmentation image
in which the color of each pixel encodes the unique identity of the respective object rendered
to the pixel fragment. For stimuli that are computer generated, such an image can be obtained
from an object-based scene graph which is commonly used by content designers to semantically
structure scene geometry. Assuming a well-structured content, the item buffer provides a use-
ful hypothesis about the perceptual organization of the scene, i.e., it specifies a set of boolean
data structures which map an object identification number to a set of coherent locations which
a user might perceptually group and perceive as an object. We further the understanding of the
GTOM problem by proposing, formalizing and comparing several approaches. Since it turned
out that GTOM is a hard problem, we decided to start with simple, intuitive and reasonable
techniques that fit to our framework, which assumes that all stimulus information is represented
in a sequence of item-buffer images that is passed to a tool box for gaze analysis. We have then
evaluated their accuracy on a set of 30 test scenes covering a broad range of difficulty levels.
We consider the desired output of a GTOM method as a predictive probability P(O|g) for each
discrete object O to be attended by the user, given the gaze observation g. To derive such a
probability, we propose to implement GTOM methods using Bayesian inference. As to be pro-
posed in Chapter ] results of the GTOM output can then be used to derive object space-fixation
statistics, which can be further analyzed according to the semantics of the respective objects.
The goal is to evaluate different variants of GTOM approaches against a large set of challenging
cases. For this, we introduce an experimental methodology to obtain a ground-truth data set
suitable for the evaluation of GTOM methods. This is not trivial, since eye-tracking results are
often considered ground truth themselves when a user’s attention target has to be determined.

We believe that understanding and modeling accurate GTOM in dynamic 3D virtual en-
vironments is important because GTOM can be utilized as an implicit means of forming and
verifying novel hypotheses of human visual attentional mechanisms. We provide in this work
the foundation toward tackling the GTOM problem by making the following contributions:

* an introduction and assessment of several GTOM approaches for dynamic 3D stimuli, for-
malized via a Bayesian approach.

* an experimental methodology, which uses a set of 30 different 3D scenes, to perform an
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objective evaluation of GTOM methods in visually challenging cases.

3.2 Related Work

GTOM is fundamental to eye-tracking software applications. In such applications, recorded eye
gaze is first processed to identify fixations, which provide on-screen locations where gaze has
been deployed by the user. Fixations are subsequently collected for elements in the scene within
one frame, but may also be accumulated over time, and correlated to elements in the stimuli.
When studying user behavior in interactive applications, especially video games, the visual sig-
nal each user perceives emerges from the pattern of his interactions and therefore differs among
users. Until recently, the primary means of studying gaze behavior in VEs involved capturing all
images displayed to the user while simultaneously recording his gaze [133]]. Mapping eye gaze
to stimuli requires gaze and stimuli to be captured simultaneously and subsequently processed
to obtain representations suitable for GTOM algorithms. A comparison of nine GTOM methods
designed primarily for gaze-controlled applications is presented in [182]]. Two different methods
implementing dynamic areas of interest are presented in [127] and the publications Chapter [4]
is based on, while 3D attentional maps [[158]] and 3D attention volumes [134] perform GTOM
directly in 3D.

The most straightforward way is to cast a ray into the scene and determine the closest
scene object intersected by this ray, a general-purpose computer graphics technique known as
Ray Casting. An early example using this approach to determine attended objects in a three-
dimensional scene can be found in Starker and Bolt’s work [156], where a ray shot into the
scene was intersected with the scene objects’ bounding spheres. Coupled with an item buffer,
this strategy can be implemented by sampling the object id from the pixel fragment correspond-
ing to the current gaze position. This is computationally inexpensive, particularly in 3D ap-
plications where geometry information resides on the GPU, but its major drawback is that it
determines an object as the attention target with a binary test (i.e., is intersected or not). The
problem stems from the fact that gaze locations sensed by eye trackers have limited accuracy
and, more importantly, users do not necessarily center gaze directly on pixels belonging to the
attended object. Therefore, ray casting is not necessarily a reliable method to infer the attended
object. To mitigate the problem of determining objects at a single position, Sundstedt et al. [[170]
proposed to sample the neighborhood of the gaze position in an item buffer using a Gaussian
splat corresponding to the size of the fovea as a weighting function. This strategy yields an
importance value which can be used as a probability prediction. An alternative to rendering an
item buffer, proposed recently by Mantiuk et al. [[109], is to sparsely attach target points to object
surfaces and use those to compute the distance between gaze and these target points. They fur-
ther proposed to utilize motion information to increase accuracy, since there is a certain amount
of correlation between gaze movement trajectories and the motion of an attended target point,
which can be transformed to a probability estimate. Mapping gaze to target points placed on
scene geometry enabled them to determine the depth of the features currently attended in order
to control the depth-of-field according to the attention of the user. Moreover, they processed
this probability over time with a Hidden Markov Chain, which served as a fixation filter and
guaranteed temporal coherence in the selection of the current depth-of-field distance.
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Figure 3.2: Basic steps required to infer object attention from gaze data for each fixation.

3.3 Pipeline

Mapping gaze to objects in 3D scenes can be considered as the process of computing the spatio-
temporal correlation of gaze information to objects in a 3D scene. The process can be broken
down into the following three steps which are illustrated in Figure 3.2}

* Gaze and Stimulus Processing: Raw gaze data are processed to obtain a smooth gaze
signal, which is filtered to detect fixations.

» Spatial GTOM: Fixations are used to compute an object-space probability density distri-
bution for each frame in the stimuli.

* Temporal GTOM: A probability over many frames (e.g., a time window or an entire
fixation) is computed using an accumulation strategy of spatial GTOM probabilities.

3.3.1 Gaze and Stimulus Processing

GTOM methods take the following temporal signals as input: a smooth gaze position g(t), a
fixation signal f(¢), which is a sequence of bits denoting whether a user fixates at time ¢, and a
stimulus signal s(¢), which contains information about the objects in the scene. To obtain these
signals, we perform the following three processing steps:

Gaze Filtering (provides g(t))

Our binocular eye tracker observes a discrete two-dimensional gaze signal for the left eye gz,[n]
and right eye gr[n] (with n = [¢/At]). Both are sampled in time intervals of length At from a
continuous signal that is the sum of the smooth trajectory of natural gaze G(t), a high-frequency
oculumotoric noise signal 7'(¢) caused by tremor and micro-saccadic movements, and the ran-
dom error €(t) of the eye-tracker:

gr/rln] = Gr/r(nAt) + T(nAt) + e(nAt) 3.1
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Instead of treating the two eyes independently, we calculate the target’s position as the average
of the two eyes, which provides a single gaze signal g[n]. In case of monocular eye-blinks, we
consider only the signal of the non-blinking eye.

To suppress the noise (7'(t) + €(t)) in the gaze signal, we use a bilateral low-pass filter [[176]
on the discretized gaze signal. This filter computes a weighted average of the spatially and
temporally k-nearest gaze samples:

n+k
glnl = Y Ki((n—0)A8)K,(llgli] - gln][l)gli] (3.2)
i=n—k
We use a Gaussian filter kernel K; as temporal weighting function and a kernel K as spa-
tial weighting function. We use a standard deviation of o, = 0.5sec for the temporal kernel
and o, = 0.7° for the spatial kernel, respectively. The advantage of bilateral filtering is that it
reduces over-smoothing over the abrupt transitions between fixations and saccadic gaze move-
ments. The noise-suppressed signal is used for two purposes: first, to increase the robustness
of subsequent saccade and fixation identification, and second to estimate the fixation position,
which we assume to be a function of time.
To obtain the position of gaze at a time ¢, we perform a linear interpolation on the discrete
filtered gaze signal g:

(t — nAt)(g[lt/At] + 1] — g[It/At]])
At

g(t) = gllt/At]] + (3.3)

Identifying Fixation Times (provides f(t))

Based on the assumption that attention correlates with fixation locations only [42], we identify
the fixation state (i.e., fixating or not) to partition gaze data into different fixations. We found
that dispersion filters often used for fixation identification are less appropriate, as dispersion
increases proportionally to drift velocity, and therefore, single moving fixations, such as those
occurring when tracking a moving object, are identified as a series of shorter fixations. Instead
we utilized a velocity-based fixation detection method that avoids this problem. We found an
acceleration threshold-based saccade detector, as proposed by Tole and Young [[175]], to be most
appropriate since it performs best in identifying smooth pursuits, which frequently occur in
dynamic stimuli. This detector identifies saccades by their ballistic properties, which have a
strong acceleration (> 40000° /sec?) at the onset and a deceleration of similar magnitude at the
end of a saccade. Fixations are then determined as groups of non-saccadic consecutive gaze
points with a minimum duration (e.g., 3 gaze samples).

Stimulus Processing (provides s(t))

We represent the stimulus of each frame ¢ with a segmentation image that can be stored on
a GPU texture. To this end, we render a so-called item buffer as proposed by Sundstedt et
al. [170]. The item buffer is rendered in an additional GPU pass to an image where object colors
are replaced by unique object ids. For transparent objects, we propose to use an opacity threshold
to render them as opaque single objects into the item buffer. Some example item-buffer images
and corresponding renderings from the frame buffer can be seen in Figure [3.1).
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3.3.2 Gaze-to-Object Mapping (GTOM)

After preprocessing gaze and stimulus data, we map gaze to objects for each frame during a
fixation. The desired output of a GTOM strategy is an object-space probability density function
(PDF) for a discrete moment in time (¢). This can be expressed as the posterior probability
P®)(0|g) for object O being attended by the user at time #, given gaze information g. The
required information, which we use to infer the object of attention, is extracted from the stimulus
signal s(t).

Note that this work focuses on a thorough evaluation of per frame GTOM results. That is,
our evaluation was aimed at the problem of spatial gaze-to-object mapping in each frame without
utilizing information from results of previous frames. Hence, we followed a simple strategy to
process GTOM results over time by accumulating the probabilities obtained in each frame over
the time window of an entire fixation.

3.4 GTOM Approaches

In this section, we describe several methods for mapping gaze to objects in individual frames,
which are all encapsulated in a formal Bayesian inference framework. We define two categories
of gaze-to-object mapping techniques: Passive Attention GTOM (Section [3.4)) and Active Atten-
tion GTOM (Section [3.4), illustrated in Figure[3.3]as simple graphical models. In both cases, the
observed variable is the gaze position g, while a probability is inferred for the hidden variable
0.

In Passive GTOM, we consider mapping gaze to features (e.g., pixels or target points). The
hypothesis is that object attention follows gaze, i.e., where a user looks determines which fea-
tures are seen and hence attended. A problem of this strategy is that attention is evaluated only
locally near gaze positions without taking into account that other (more distant) parts of the
objects, or even other cognitive processes such as memory [67]], may have influenced gaze pro-
gramming. Therefore, in Passive GTOM a bias toward selecting objects as the attentional targets
that occupy larger portions of the stimuli is likely. If gaze positions are distributed randomly in
space, variations in size cause a stochastic advantage for larger objects to be inferred as attention
targets.

An alternative hypothesis is that object attention determines gaze (O — g), which we refer
to as Active GTOM. Active GTOM techniques specify an estimate for the posterior probabil-
ity P(g|O) that gaze g follows given that object O is attended. This approach assumes that
attention is equally distributed in object space, i.e., there is no stochastic advantage for large
objects. Only high-level factors, such as task relevance, can be used as priors to increase the
probability of particular objects being attended before gaze has been observed. Moreover, this
approach accounts for situations where a user pays attention to a particular object as a whole
and not to specific features. In this case, all features of the object could contribute holistically to
the selection of an optimal viewing position.
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0 object of attention O

gaze position

Passive Attention Active Attention

Figure 3.3: Simple graphical model to illustrate the two different approaches one can use for
inferring attended objects from gaze. A square is used to illustrate that the object of attention
is a discrete variable (e.g., an ID), while a circle is used to indicate that gaze is a continuous
variable.

3.4.1 Passive GTOM - Gaze Determines Attention

In Passive GTOM, we assume that the gaze g determines what is seen with foveal vision and
thus attended. To estimate a probability for an object to be attended, we assume that atten-
tion activates object features near the current gaze position more than distant features. We use
the amount of activation estimated for features o € O being located on object O to derive a
probability P(O|g) that object O is attended given that gaze g was observed. To avoid normal-
ization issues, we estimate a proportional function P(O, g), from which we derive a posterior
probability by normalization:

P(Olg) x P(O,g) (3.4)

Ray Casting (RC) The simplest approach to estimate P(g, O) is to perform a binary evalua-
tion whether a gaze position g is located on object O or not:

1 ifgeO
PEC(O,g) = 3.5
(0.8) {0 otherwise (35)

This is the most efficient GTOM strategy which requires only a single look-up in the item
buffer.

Closest Feature Mapping (CFM) Another option is to assume that a user attends to the clos-
est feature o of an object O and weight the euclidean distance with a Gaussian with a standard
deviation of 0,:

mig{llo—gIIQ}

~202

PCFM(Q, g) o exp (3.6)
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In theory, this strategy requires looking-up every pixel in the item buffer, i.e., complexity is
O(N), with N denoting the number of pixels in the item buffer. However, since the energy of
pixels exponentially drops to zero as the distance increased from the gaze location, a clipping
radius (e.g., 7 = 46,) can be used to obtain an approximate solution without a significant loss
of accuracy. Furthermore, in realtime applications a portion of the item buffer, which is the
bounding window around the clipping circle, may be used to increase processing speed.

Fovea Splatting (FS) A second alternative is to assume that a user attends to multiple features
at the same time and to infer the attention probability by accumulating all features/pixels o € O
weighted by a Gaussian splat of the size of the fovea [170] (with standard deviation 6):

o2
PFS(O,g) x Z exp <|0_20g2||> (3.7

The computational complexity of this method is equivalent to Closest Feature Mapping.
However, instead of comparing distances while searching the closest pixel of each object we
accumulate the energies.

3.4.2 Active GTOM - Attention Determines Gaze

In Active GTOM approaches, we assume that once an attention target is selected, gaze is directed
towards it. This model estimates P(g|O), which is the posterior probability that g is observed
given that O is attended. To infer the probability that O is attended from g, we apply the Bayes
Theorem, and thus we also call Active GTOM methods “Bayesian Inference GTOM” (BIGTOM)

approaches:
P(g|O)P(O
P(Ofg) = B0 6.8
> P(g|0:)P(0;)
The prior P(O) can be used to increase the probability of task-relevant objects or to propagate
previous GTOM results over time. However, our research focuses on one frame without any a
priori knowledge, and thus we use a constant, which is theoretically P(O) = % (where N is
the number of objects), in our evaluation.
Concerning the influence of attention on gaze position, we will investigate different ways of

estimating the posterior P(g|O):

Center of Gravity Mapping (CM) A straightforward, but effective strategy, is to exploit the
strong tendency of users to focus at the center of an object [63]]. Similar to [193|] (for mapping
to words in a text documents) and [[109]](for mapping to small objects), we place a monovariate,
but two-dimensional, Gaussian at the center of gravity of the object with a kernel size 0,:

. 2
PM(g]0) x exp <”g QGCOH ) (3.9)

To compute the center of gravity, we extract the set of (x, y)-coordinates of the pixels belonging
to the respective object O and compute the average position of these samples.
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In theory, this strategy requires computing the center of gravity for each object in the scene,
i.e., complexity is in O(NN')). However, objects which are distant from the gaze position can be
disregarded by assuming that their attention probability is zero. To this end, we can determine
which objects have at least one pixel in the vicinity of the gaze position in a circular region
around g (e.g., r = 40,). The center of gravity is then determined for those objects only, while
the rest have a zero probability. Another acceptable optimization is to use sparse sampling (e.g.,
stepsize = 3pizels), since the center of gravity is relatively stable against this simplification.
Nevertheless, in contrast to passive GTOM approaches, it is recommended to generate and copy
a full-screen item buffer, where resolution can be eventually down-sampled according to the step
size used for sparse sampling. A coarse simplification which could be considered in applications
where an item buffer is difficult to obtain, is to use the center of the object’s bounding box
projected to device-space coordinates. However, accurate visibility information is not available
and thus should also be estimated, e.g., by using the depth of the world space bounding box.
This is necessary to exclude objects which are barely visible, or to trim bounding boxes such
that they exclude occluded object parts.

Normalized Closest Feature Mapping/Fovea Splatting (nCFM / nFS) Since the strategy
described above assumes that a user targets gaze near the center of an object, we will also inves-
tigate strategies which better account for the object’s projected shape (i.e., the pixel coverage in
the item buffer). We follow the CFM proposed for Passive-GTOM approaches, but normalize as
follows:

pCFM ( g, O)

PnCFM —
(8l0) [ PCFM(x, O)dx

(3.10)

Here, we modified the closet feature-mapping method by specifying a function which sums up
to 1.0 for all possible gaze positions x. Analogously, we normalize the fovea splatting method:

P"(g, 0)
nFS _ ’
P> (glO) = TP (x, 0)dx (3.11)

Both methods have in theory a computational complexity of O(N?) since they correspond
to a convolution. Simplifications that could be performed are: (a) evaluating only objects which
are close to the gaze position, as described for CM, (b) sparse sampling of the item buffer, and
(c) truncation of the splat kernel with a clipping circle.

3.4.3 Utilizing Motion Information

During smooth pursuits, we assume that the visual system attempts to minimize the velocity of
an object relative to the gaze movement in order to maintain a stable retinal image. We utilize
this behavior to improve the accuracy of the inference. To this end, we compute a retinal stability
probability P'*% by using the gaze movement vector g and object movement vector mq:

. 2
PR5(g,0) o exp (Hg _2119120“ > (3.12)
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Figure 3.4: Procedure of one trial (in this case target-present). In step 1, the participant previews
a target; in step 2 fixates on a cross (for validating later the eye-tracking accuracy); in step 3,
he searches for the target. In step 4, the participant recalls the position of the target on a blank
screen to ensure that he did not guess.

To model the standard deviation between feature and gaze motion, a retinal drift tolerance pa-
rameter 0, is introduced. To obtain gaze movement information, we differentiate the filtered gaze
position along consecutive gaze samples. To further smooth the gaze motion samples in fixa-
tions, we use a Gaussian filter kernel with a standard deviation corresponding to 2 gaze samples
(sampled with 50 z). Object motion vectors are estimated by differentiating the temporal signal
of gaze and object center positions (co(t)) with a difference of Gaussian filter (o = 50ms).
We combine this probability with the position PDF’s specified above by a multiplication:

P(Olg,g) x P(O|g)P*%(0,g) (3.13)

3.4.4 Relation to Previous Work

Three of the methods presented in this Section are related or equivalent to solutions proposed
in previous work. These are Ray Casting (e.g., [156]]), Fovea Splatting( [170]) and Center of
gravity Mapping (e.g., [193]]). Note also that Ray Casting and Center Of Gravity Mapping could
not immediately be used in our framework and had to be adjusted for the use with an item buffer.
Mantiuk et al. has introduced the idea of using motion information together with Gaussian
distance metrics.

The other three methods (i.e., Closest Feature Mapping, normalized Closest Feature Map-
ping/Fovea Splatting) are, to the best of our knowledge, first proposed in this work.

3.5 Evaluation Methodology
In this section, we describe the eye-tracking experiment and the scenes used to obtain ground-

truth data samples necessary for the evaluation of GTOM methods. Moreover, we will explain
how the obtained data set is used to evaluate the accuracy of GTOM methods (Section [3.3).
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Figure 3.5: 6 examples from the (6) static and (18) dynamic scenes used in target-present trials
of the experiment overlaid with a part of the gaze path, recorded before the target was found.
The red color parts of the gaze path indicate fixations. To visualize the object segmentation we
overlaid the frame buffer images with the item buffer images (white color = target object). In the
dynamic scenes we show the motion path (white line) of the search target or the camera, respec-
tively. Most other “mobile” objects (i.e., space-ships, asteroids and cars) were also animated. (4
other scenes were already shown in Figure@
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Figure 3.6: Scenes where a background object (an abstract painting) had to be found. Scene (a)
is static, in scene (b) an object moves in the foreground (the car) and in scene (c) the camera
moves relative to the scene.

3.5.1 Background

To evaluate and compare the accuracy of GTOM methods, we need ground-truth data comprising
pairs of known fixations (F;) and known attentional targets (T;). However, it is not trivial to
find the actual attentional target T';, since the common way to do so is to use eye tracking and
apply GTOM, the method we want to improve in the first place.

To solve this problem, we designed an eye-tracking experiment where we direct the user to
attend a particular object (i.e., we prescribe T';) and use eye tracking to gather the corresponding
fixation F;. The task we use for that purpose is a visual search task, because this does not hinder
the user’s ability to naturally deploy his attention in a scene, and requires active deployment
of attention to locate a target. Thus, a visual search task can be used to implicitly instruct par-
ticipants to fixate on a particular object in a scene, without visually altering or annotating the
objects. According to [67]], visual memory facilitates guiding attention and gaze during visual
search, therefore we provide participants with a visual preview and an on-screen description of
each target before each search task. To obtain an objective evaluation as possible, our experi-
mental test bed includes an extensive set of 30 different scenarios that arise frequently in visual
scenes (e.g., video games).

3.5.2 Eye-Tracking Experiment

Setup and Participants We used a Tobii x50 eye tracker (50 Hz), which was placed in front of
the display of an Intel Core 2 Duo workstation with a 2.4 GHz CPU, 2GB RAM and an NVIDIA
GeForce 8800 GTX graphics card. This setup was sufficiently powerful to simultaneously run
the application at a frame rate greater than 50 fps, and also operate the eye tracker. The display
was a commodity LCD display (IBM Think Vision L200p with a resolution of 1600x 1200 pixels
at 100 dpi). 28 subjects, with ages between 20 and 55, participated in the study (12 females). All
subjects had normal or corrected-to-normal vision. Participants were seated comfortably in front
of the screen’s center at a distance of 60 cm. No chin rest was used so as to allow for natural
viewing behavior. By manually inspecting the recorded gaze data using our visualization tool,
we found that only 22 gaze data sets were of reliable accuracy to be included in the evaluation
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data set. The other 6 data sets were all from participants wearing contact lenses and exhibited
serious systematic errors in the gaze recordings, which became most apparent during smooth-
pursuit object tracking and when the fixation cross was shown.

Task and Procedure Each trial consisted of 4 steps: (i) preview a target object (6000 ms),
(i1) fixate on a cross (2000 ms), (iii) search a scene for the target (< 3000 ms), and (iv) recall
the position of the target. This procedure is shown in Figure [3.4] and resembles experiments
commonly used to verify attention models by measuring reaction times in visual search tasks
(e.g., [189]). Experiment participants performed a block of 50 trials. The participants responded
by pressing a key in case they located the target while in step (iii), otherwise they were instructed
not to act. To motivate quick responses in all search trials, participants were told that their re-
action time is measured. Among the 50 trials, 30 were target-present and 20 target-absent trials.
In target-absent trials, participants had to withhold the response and wait until the application
automatically started the next trial after reaching a timeout of 2000 ms in static scenes or after
seeing one animation cycle in dynamic scenes. Prior to the main trials, each participant practiced
the procedure on a block of another 10 trials (with different scenes). The eye tracker was cali-
brated between the practice and main block. Using the software provided by the manufacturer,
a calibration was calculated based on 5 control points.

Obtaining the Ground Truth In order to make sure fixations really correspond to specific
attended objects, we need to exclude detection methods other than eye fixation, eliminate guess-
ing, and perform verification.

In each scene, we placed distractor objects sharing a feature (e.g., color, orientation or shape)
with the target in at least one dimension. This causes targets and distractors to be indistinguish-
able by pre-attentive selection [[178]], and thus compels a user to identify targets by performing
a serial search using eye fixations. From each target-present search trial, we obtain the ground-
truth attention target and a respective fixation.

Through offline manual inspection, we selected these fixations using the following rules: (a)
the fixation started briefly before a participant’s response, (b) the fixation is reasonably close
(< 2°) to the target, and (c) a participant could correctly recall the target position. To check (c),
participants had to place after each target-present search trial a circle on the target’s last position
within a void black screen (Figure [3.4).

From these strategically selected fixations, we generated an evaluation data set in which each
entry consists of the target object’s identification color code and the time-stamped gaze data, as
well as the series of time-stamped item buffer images of the time window corresponding to this
fixation.

3.5.3 Scenes

To highlight particular strengths and weaknesses of the evaluated algorithms, we designed a total
of 30 different scenes featuring a variety of levels of difficulty for GTOM. We categorized 27
of these scenes into 2 groups: (1) 9 scenes without camera or object animation (group Static),
shown at the top of Figure [3.5 and (2) 18 scenes where the target or the camera, or both, are
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Method 05 0r max LLH
Ray Casting - - —833
Closest Feature Mapping | 0.7° | 12°/s —691
Fovea Splatting 0.7° | 12°/s —726
Center of Grav.Mapping 1.0° | 12°/s —481
normalized CFM 0.7° | 12°/s —565
normalized FS 0.7° | 12°/s —419

Table 3.1: Optimal parameters and the maximum log-likelihood of each method.

animated (group Dynamic), shown at the bottom of Figure[3.5] In each group, we used different
target sizes and object densities, as well as varying degrees of target occlusion. To reveal a
potential bias of the method towards foreground scene objects, we constructed cases where a user
has to search for a background object. Thus, the 3" scene group, which we denote Background,
includes 3 scenes where the target is an abstract painting and located in the background of many
occluding foreground objects. One scene was static, the second was shown from a moving
viewpoint and in the third, occluding foreground objects were animated.

All scenes were created and animated in Maya and exported with OgreMax to an XML file
(including animation keyframes) and a set of mesh files to be loaded with the Ogre3D rendering
engine that we used to build the experiment’s application.

3.5.4 Performance Measurement and Parameterization

The data sets collected through the experiment presented in Section 3.5 will be used to evaluate
and measure the accuracy of the GTOM methods proposed in Section [3.4] As a quantitative
performance metric, we compute the log-likelihood (LLH) by summing the logarithm of the
predicted probability for each evaluation data set:

LLH(0,M) =" Inmax {P(O = T;[F;,0, M), e}, (3.14)

where P(O = T;|F;, 0, M) specifies the probability predicted by a GTOM method M, con-
figured with the parameter set 6, for the ground truth attention target T;. A small threshold
e = 0.01 was used to remove outliers (i.e., zero-probability predictions, which may cause an
infinite LLH, e.g. when M = RC). We searched for the maximum L L H to specify the optimal
parameters for each method which are listed in Table [3.1]

In addition, we use the success rate, which is a simple ordinal measure. We compute it
for each fixation by the proportion of frames where a GTOM method has predicted the highest
probability for the ground truth target.

3.6 Results and Discussion

An example visualization of the GTOM results for different methods is shown in Figure[3.7]and
in the accompanying video. The visualizations demonstrate that depending on the method and
visual scenario, the predicted PDFs can vary considerably.
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(a) Item Buffer (b) Ray Cast. (c¢) C.Feat.M. (d) Fov. Spl. (e) Cent.Map. (f) norm.CFM (g) normal. FS

Figure 3.7: Visualization of the item buffer and the predicted PDFs for each method. In the
chess scene the camera was moving in the right direction and the attention target was the knight
figure. In the scene shown in the bottom row, the search target was the painting located in the
background of many occluding foreground objects.

Two measures are used to estimate each algorithm’s performance in predicting the object
attention probabilities, as described in Section [3.5} (a) the average likelihood (normalized by
the number of fixations), and (b) the success rate. In Figure [3.8| we depicted the results for
the success rate and likelihoods. To illustrate the variation among subjects, we computed both
measures by grouping fixations of all scenes of a category (Static, Dynamic or Background) and
then ranked the results for each participant (Figure[3.8(a)). To show the variation of performance
among different scenes, we grouped fixations of each participant for all scenes of a category
and ranked the scores for each scene (Figure [3.8(b)). To provide a more intuitive illustration
of the likelihood scores, we used in these graphs the exponential of the log-likelihood scores
which were normalized by the number of fixations being grouped. We call this measure average
likelihood and it corresponds to the expected likelihood that a certain target object and fixation
pair ({T;, F;}) is observed, assuming that a particular GTOM model is correct.

In Figure[3.8(b))it can be also seen that the test scenes cover a broad range of difficulty levels,
since the success rate and average likelihood drop smoothly from high to low scores for most
methods. Also there is a considerable variation across different participants. An ANOVA on both
measures (Model: score ~ method+scenexpartipant) proved that there is a highly significant
effect of the factors method (F52696 > 78.34,p < 10719), scene (F29,2606 > 41.08,p <
10719) and participant (Fo1,2606 > 3.48,p < 107%), as well as in the interaction between
participant and scene (Figg 2696 > 2.40,p < 10~15). Thus, we evaluated the significance of
differences in a post-hoc analysis of the LLLH-scores and success rates by using a generalized
mixed-effect model (R-function Imer from package Ime4), which is suited to fit to our repeated
measurements data with the two interacting random effects scene and participant (Model:
score ~ method+ (1|scene/partipant)). On this model, we applied a Tukey-HSD test (using
the R-function glht from package multcomp). A visualization of the HSD-test results can be
found in Figure[3.9]

Comparing the different GTOM methods, the overall results suggest that active GTOM
methods outperform passive GTOM approaches in the scenes where the target is a compact
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object.

Passive GTOM approaches are more conservative as they predict attention to those features
which are actually close to the center of the fovea. Moreover, they infer attention locally from
object features near the current gaze position and thus are also less computationally expensive.
Passive GTOM methods provide reliable probability predictions in cases where a user focuses
on object details or on objects where features dominate (i.e., background objects). Other cases
where passive methods provide good results are scenes with objects of similar size and few oc-
clusions. However, since the spatial stochastic advantage of large objects is not compensated
for passive approaches, those tend to increase importance of objects covering many pixels on
the screen. This overestimation may become particularly severe with the FS approach. When
compared to CFM or RC, FS performs poorly since the predicted probability increases for sur-
rounding large objects due to integrating the energy of many pixels around the current gaze
position.

Thus, when objects vary considerably in size or occlude each other, active methods provide
better results. In contrast to passive methods active approaches treat a priori each object equally
important, independent of the number of pixels covered on the screen. Besides compensating for
the spatial stochastic advantage, active GTOM approaches better account for situations where a
user does not focus on object details, but rather perceives the attended object as a coherent entity.
The optimal position to obtain a coherent percept of an object is the center of gravity, which
turned out to be one of the most effective and robust predictors of a gaze position, assuming
the object of attention is known. Similar observations have also been obtained in experimental
psychology research (e.g., [63]]).

Overall, center-of-gravity-based methods appear to provide good results in our evaluation,
particularly in cases where a target is occluded. The simplicity of CM is a great advantage for
many applications and can be easily implemented by just using screen-space bounding boxes.
Surprisingly, CM also performs well in scenes where a background object had to be searched.
However, one reason for this could lie in our choice of objects to be compact, to some extent,
in order to enable a meaningful visual search task. This is a limitation of our evaluation data set
and for future work it is important to further extend our evaluation data sets with more scenarios
where a user attends to background objects, such as a region in the sky or a wall. Since a user
does not necessarily focus on the center of gravity of an object in this case, using the center of
gravity as the only feature being evaluated introduces a strong assumption about gaze behavior
which is in conflict with situations where a user focuses on object details or significant features
(e.g., the handle of a teapot). nFS is a more general approach that is amongst the methods with
the best scores in our evaluation and provides a significantly better probability estimate than
CM in dynamic scenes. It works more consistently for a larger variety of object shapes. By
integrating features around the gaze center, the circular nature of the monovariate 2D-Gaussian
also yields a maximum in P(g|O) at locations near the object’s center of gravity. Since this
property of enhancing the probability in the center of gravity is not shared by nCFM, that method
performs particularly worse.
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Figure 3.8: Success rate and average Likelihood ranked by participant (top), or scene (bottom),
respectively. We compare the methods Ray Casting (RC), Closest Feature Mapping (CFM),
Fovea Splatting (FS), Center-of-gravity Mapping (CM), and normalized Closest Feature Map-
ping/Fovea Splatting (nCFM/nFS). The results were grouped into static scenes (no motion),
dynamic scenes (object or camera motion) and background scenes (large object occluded by
foreground objects).
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Static  (mFS_CM]) nCFM [CFM RC] FS (CM nFS nCFMJ[CFM FS RC)

Dynamic (nFS_CM)nCFM nFS (CM_nCFM) CFM FS RC
Backg. (FS]CFM) RC nFS CM]nCFM (ES[RC) CFM nFS CMJ nCFM
(a) Success Rate (b) LLH

Figure 3.9: Post-hoc analysis for success rate and LLH scores. Algorithms are sorted by their
intercept. Those which are encompassed by a rectangle are not significantly different, i.e., they
are within in a 95% statistical similarity group (Tukey contrasts).

3.7 Conclusion and Future Work

In this work, we systematically investigated several alternatives to infer object-space attention
from gaze in dynamic 3D environments. These methods are particularly important because
the screen-space location where the gaze of a user is deployed does not always correspond
spatially to attended objects in the stimuli. The Bayesian formulation proposed in this work aims
at providing a framework within which gaze-to-object mapping techniques can be described,
evaluated and compared. The resulting probabilities provide a confidence measure for gaze-
based object selections or could be used for a probabilistic optimization of rendering methods
(e.g., minimization of the expected attention error).

We performed a formal evaluation of methods based on a visual search task in a wide range
of different 3D scenes, from which stimuli, gaze data and the corresponding ground-truth at-
tention target were obtained. It turned out that it is favorable to use Active GTOM approaches
that assume gaze follows attention. The main advantage of these methods is that they make the
assumption that the basic units of attention are objects, and thus their likelihood to be attended is
independent of the amount of features they bear or the number of pixels they cover on the screen
at any time. Of course, in many cases, passive GTOM approaches also yield accurate results,
when Active GTOM methods performed worse. Our intuition is that the two approaches are not
mutually exclusive — instead, we believe they account for different attentional mechanisms (i.e.,
feature-oriented and object-oriented attention), which are both present under natural conditions.
Thus, one direction to further GTOM methods could be to combine or unify Passive and Active
approaches.

Another important challenge is to evaluate different approaches to combine probabilities
over time. In this work we have only averaged over fixations, but accuracy could potentially
be increased by propagating probabilities over subsequent frames, or fixations. This could be
done, for instance, with Hidden Markov Chains (cf. [109]). However, the choice of the temporal
processing method is also a matter of the application where GTOM is used. For instance, for
gaze pointing tasks, non-probabilistic approaches to accumulate GTOM results over time, such
as force physics [200]], could be more adequate.

Moreover, it might also be interesting to find GTOMsolutions which are tailored for the use
with stereo-scopic applications. For eye-tracking with stereo displays, binocular gaze informa-
tion together with an item-buffer rendered in stereo should be used to maximize accuracy. The
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additional use of gaze depth information (cf. [46}|173]) could help to disambiguate attention
inference for objects which occlude each other.

Another important step which future work should address is the way segmentation images
(i.e., the item buffer) are obtained. In this work, we rely on the assumption that the way scene
geometries are grouped together (by the content artist who created the virtual environment) cor-
responds well to the combination of features a user’s visual perception groups into objects. How-
ever, even if the scene geometry is structured well into objects, there are problematic geometries,
such as the terrain of a scene, or vegetation, which are difficult to cluster into perceptual objects.
Thus, it would be useful to investigate alternative item buffer generation methods which further
subdivide geometry by geometric or texture feature analysis. We also believe that an optimal
GTOM method should be based on a hierarchical representation, which would allow inferring
object attention at different levels of this hierarchy. A user may pay attention to a group of ob-
jects, a single object, to parts of an object or to particular features. The ultimate goal is, however,
to utilize GTOM approaches to non-artificial stimuli or stimuli where an object segmentation is
simply not available. For these applications, gaze processing has to be combined with vision al-
gorithms (e.g., proto-object maps [[194]]) that can automatically segment parts in an image which
a user perceives as objects.

We assessed in this work the quantitative information value in the predicted probabilities.
These attention probabilities distributed over multiple objects may find utility in algorithms that
require a distribution of importances in order to optimally adjust their parameters to achieve their
goals (e.g., minimization of the expected perceived error).

Improved GTOM can have a crucial impact within HCI and Computer Graphics, including
attention visualization, gaze analysis, gaze-based semantic pointing, level-of-detail rendering,
depth-of-field simulations, attention-aware stereo rendering, and many others.
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CHAPTER

Attention Analysis and Prediction:
Empirical Modeling

A shortcut is the longest distance
between two points

Issawi’s Law of the Path of Progress

With gaze-to-object mapping, the previous chapter evaluated how well object-based atten-
tion can be inferred from the gaze of one user at a particular time. This chapter goes one step
further as it describes how gaze-to-object mapping results of several users and a sequence of
frames can be combined in order to obtain an empirical model for object-based visual attention.
The model is encoded in an importance map which is derived from a accumulated attention infer-
ence results. It is also important to note, however, that the results presented here were obtained a
few years before the work on evaluating gaze-to-object mapping methods, which was presented
in the previous chapter, has been done. Thus, at the time when the research was carried we did
not know which is the best method to perform gaze-to-object mapping and used a method which
was similar to Fovea Splatting. Rather, it was during the course of this work when we identified
gaze-to-object mapping as an interesting problem which deserves further investigation.

This chapter is based on an article published in ACM Transactions on Applied Perception
as “An Empirical Pipeline to Derive Gaze Predictors in 3D Action Games” [/] in 2010. How-
ever, the text which presented in this chapter has undergone a major revision. In the revision,
some passages were shortened, while the introductory parts of this chapter were extended with
new material written for our book chapter “Visual Attention and Gaze Behavior in Computer
Games” [[168]. This book chapter was published in “Game Telemetry and Metrics: Maximiz-
ing the Value of User Data” (Springer 2013), where this work was described in the context of
methodologies to study user behavior in computer games.
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4.1 Introduction

Since a user’s visual attention is an important factor for the design of games and other virtual
environment applications and video games, tools to measure which objects in a game scene a
user is attending would be very useful to improve the design of these applications. Studying
gaze behavior provides insights about visual attention of users and may assist game developers
in identifying problems with the gameplay due to a misguided perception of the game environ-
ment. Moreover, knowing what a player does, or does not notice, can be used to control the
difficulty of a game. For example, the designer may choose to make important task-relevant
objects less apparent in the user’s attentional field to increase the difficulty of the game, or ac-
centuate them to decrease the difficulty. Other potentially useful computer graphics applications
proposed so far include focus prediction for tone-mapping of high-dynamic range images [[140],
the selection of the optimal focal plane for depth-of-field effects [65] and the minimization of
vergence/accommodation conflicts in stereo 3D to reduce visual fatigue as proposed in Chapter

When an eye tracker is used to study gaze behavior in a virtual environment application or
a video game, the output data is essentially a sequence of gaze points defined by a 2D position
on the display screen and a timestamp. With this information, one can establish where gaze
was deployed in screen-space over time. Analyzing gaze data for static stimuli can be time
consuming, but it is even more difficult for dynamic stimuli (e.g. virtual environments such as
games) [142,|159]]. A useful representation of gaze data are gaze point density distributions,
which can quantify the amount of attention deployed to each region in the display. When a
stimulus rendered to the display is static or its changes are very limited (e.g. in web pages), it
is sufficient to compute gaze point density distributions in screen space. A prominent tool to
illustrate screen-space gaze density distributions is a fixation map [[191] or heatmap. A heatmap
visualizes gaze point densities with colors such that warm colors encode high densities and cold
colors low densities. An example of a heatmap and a visualization of the corresponding gaze
path can be seen in Figure

For 3D computer games and interactive virtual environment applications, we have to assume
a dynamic stimulus where temporal changes have a significant impact on the spatial distribution
of gaze points on the screen. In this case one cannot accumulate gaze densities in screen space
over long time periods because the viewpoint and the objects in the scene may considerably
change their positions from one frame to the next. When spatial properties, such as the viewpoint
or the object position, are changing frequently, it may not necessarily be appropriate to analyze
where a user is looking. Instead, if we consider that semantic properties of scene objects are
changing far less often, a more useful approach is to study what a user is looking at, especially
since the meaning of game objects is supposed to have a major impact on the attention of a user.

4.1.1 Measuring “Where” but Analyzing “What” Users are Looking At

To analyze in a dynamic scene what a user is looking at, we need to record the changes in the
display during the eye-tracking study. In the subsequent analysis, the recorded data is then used
to reconstruct the frames depicted on the display in temporal alignment with the correspond-
ing gaze data. Thus, gaze-analysis tools provide screen recording functions which capture the
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(a) heatmap (b) gaze path

Figure 4.1: Example heatmap (a) and scanpath (b) from one participant viewing game stimulus
for 15 seconds. In the heatmap, red areas indicate locations of a higher number of fixations. It
has to be noted, however, that to obtain enough gaze points for this type of visualization, the
gaze data visualized here had to be recorded by showing a static screen shot of the game. Thus
this example is less representative for gaze behavior as it would occur during a real interaction
with the game.

images rendered to the display during the experiment, which are then played back as a motion
picture during the analysis stage. A synchronous visualization of the recorded gaze data su-
perimposed on the playback of the corresponding stimulus provides an intuitive clue about the
behavior of a particular participant. But with this functionality alone, one can just study the
behavior of a particular subject in particular situations.

In dynamically changing games, different subjects are unlikely to be presented the same
stimulus while playing a game. To complicate things further, even if the participant partakes in
a number of gaming sessions, it is unlikely that the same sequence of in-game events will be
triggered to generate the same stimulus. Moreover, encoding what a participant might actually
be looking at mainly depends on the person who performs the analysis. For many purposes, an
objective statistical evaluation, such as computing the gaze density distribution over different
objects, might be preferable. Commercial gaze-analysis tools can accumulate gaze-points for
manually defined regions of interest. To outline objects of interest in motion pictures, the ex-
perimenter has to define regions of interest (e.g. bounding rectangles or polygons) around the
objects on a frame-by-frame basis. This can be a tedious and time consuming procedure. To
some extend, tools from computer vision, such as segmentation algorithms, could assist in this
process. However, translating pixel regions to semantically encoded scenes remains a difficult
problem in computer vision.

4.1.2 Advantages of Rendered Stimuli

Fortunately, obtaining a semantic representation of the stimulus is significantly easier for stim-
uli which are rendered, such as in computer games or virtual environment applications. In these
applications, information about any scene entity can be extracted from the internal represen-
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tation of the rendered scene directly. 3D graphics engines usually render each image from an
object-based representation of a scene, from which semantic information can be obtained to
a considerable extent. Recording the graphics engine’s internal representations of application
states allows the conservation of object-space information of the stimulus, which is otherwise
very difficult to extract when only rendered images are available. Therefore, we could use these
facilities to map gaze points back to the 3D objects that were observed during a gaming session.

An important step of the proposed methodology is to map gaze data to objects. This is
done by a gaze-to-object mapping algorithm (Chapter [3) determining the potential target(s) of
each frame with respect to the gaze recorded at the time the frame was displayed. Gaze targets
are individual objects which are represented by an identification number (ID). In some cases
it might be interesting to quantify how often a particular object was attended, but for realistic
game-levels we have to assume that each player navigates uniquely a spatially large environment
containing many objects. Under these circumstances gaze is distributed very sparsely and is not
suited for a statistical analysis. Therefore, rather than focusing on a particular instance (e.g.
“AlienMonster_57") instead it would be interesting to compute gaze statistics on abstractions
which represent object categories or semantics. Thus, gaze analysis tools should be implemented
in a frame-work consisting of several layers of abstractions, as described next.

4.1.3 Layers of Abstraction

Overall, gaze analysis can be performed at different levels of abstraction. We distinguish four
layers in which the stimulus can be represented in the analysis:

Screen space: Gaze points in 2D (e.g. position = [0.1,0.5])
Object space: Object instances (e.g. ID = 2933)

Property space: An object’s category, state and behavior (e.g. category =“Alien Monster”, dis-
tance = 5m, behavior =“approaching”, avatar health state = 10%, etc.)

99

Semantics: An object’s meaning to the user according to game task (e.g. “attacker”,“close”,
“dangerous”, “high risk”).

In Figure 4.2 we illustrated the levels of abstraction with an example of a game where a
user has to move a pedestrian across the street: In the first abstraction layer (top), we see pixels
as seen by the player of the game. The next abstraction is the object space, where we have
particular instances, such as cars and trees, with unique IDs. In the third layer, individual objects
are abstracted in terms of their properties, including the object category (e.g. “car”) and spatial
properties (e.g. velocity or position). In the semantic layer (bottom), the scene is abstracted
according to the meaning of the objects to the user and the task at hand. In this example, the user
has to move the avatar across the street, which becomes hence a pedestrian. For a pedestrian,
most task relevant objects are the oncoming car and the car currently passing, whereas the car
which has already passed by is not important. On the other hand, details of objects behind the
street (e.g. houses, trees and sky) are of low relevance and can be abstracted as background.

To perform these abstraction in a computationally and user friendly way, we propose a
pipeline of three stages, which is summarized in the following paragraph.
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Figure 4.2: Example for layers of abstraction in a pedestrian road crossing task.
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Data Preparation

- Stimulus Processing:

* reconstruct appl. states

* render item buffer sequence
- record application states —_— * extract object properties ) |- map objects to semantics
- record gaze data replay data | - Gaze Processing: xml file |- build importance maps

£ Trrrcc filfar
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* detect fixation times

Eye Tracking Session Gaze Analysis

- Gaze-to-Object Mapping

Figure 4.3: Overview of our pipeline. The eye-tracking and data preparation steps may be
performed once, then the user can design and generate different gaze predictors.

4.1.4 Analysis Pipeline Overview

Figure shows an overview of the pipeline we propose for gaze analysis. Moreover, the
steps of the pipeline were added to Figure [4.2] to relate them with the corresponding layers of
abstractions we use to represent the stimulus.

The pipeline starts with an eye-tracking session (Section [4.3), which is done to record
stimulus data in the form of a replay-file which allows reconstructing the complete application
state every frame, and gaze data in the form of a gaze data file recorded by the eye-tracking
software.

In the next step of the pipeline, we prepare the input for the analysis. Data preparation
(Section [4.4) requires gaze data processing by low-pass filtering and fixation identification, as
described in Chapter [3] Moreover, we reconstruct the sequence of states of the application and
render the item buffer images. Gaze-to-object mapping is then performed with the processed
gaze signal and the item buffer sequence we reconstructed from the replay of the application
states. The result of the data preparation is a sequence of frames, each consisting of a gaze-to-
object mapping result (i.e., an attention probability) and the current properties of scene objects,
which can be stored in an xml-file loaded by the analysis tool.

Since our goal is to build gaze statistics for object properties and not individual objects,
we capture changes to the scene graph (an object might turn from a friend into an enemy) and
analyze similarities between objects on a semantic level. However, in practice we can only
observe combinations of properties through eye tracking, and therefore the number of properties
used for deriving importance values needs to be controlled in order to obtain statistically relevant
estimates.

Thus, we perform the gaze analysis in an additional step (Section4.5]-[.7)), where the user
of the system defines simple Boolean high-level properties. Using a scripting language, the
experimenter specifies rules how certain properties shall be “interpreted” and selects the high-
level properties to be used as the basis of the importance map, which is the result of the gaze
analysis. In this stage (Section 4.6), the user of the system intervenes to control the analysis
process, allowing him to experiment with various kinds of properties to find a mapping that
best encodes the peculiarities of the application (e.g. different tasks and interaction interfaces).
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The values in the importance map are derived by accumulating fixations from many frames, as
described in Section .71

4.1.5 Full Overview

The following section we first discuss related work on gaze analysis and attention prediction in
virtual environments. Then, the theoretical concepts and details of our analysis pipeline will be
presented in Sections - Section will describe how importance maps, which are the
result of this pipeline, can be used to predict visual attention. With Sections [4.10] to d.12] the
chapter will conclude with an experimental investigation of the complete pipeline by means of
an exemplary study carried out with a first person shooter 3D game.

4.2 Related Work

4.2.1 Gaze Analysis

Analyzing eye-tracking recorded in games or virtual environments allows to study which objects
and events a user attends to in games [157,/164]. Gaze analysis is often performed with visu-
alizations of gaze point density distributions, such as fixation maps [[191]]. This approach can
be also extended to three dimensions by accumulating fixation points on the 3D surface as heat
map textures [[158]] or by accumulating heat of 3D gaze points as particles in a volume [134].
Trends and requirements for visual gaze analysis have been reviewed by Stellmach et al. [[161]],
who categorizes three types of visualization techniques: (1) projected, (2) object-based, and (3)
surface-based attentional maps and carried out a survey with experts in the field of eye-tracking
to investigate the usefulness of different gaze visualization features. A problem with projected
and surface based attention maps is that in VE applications where a user can navigate through
a large environment and the scene’s surface shown on the display throughout interaction can
be enormously large. To obtain useful insights from visualizations of gaze point densities, this
poses the problem of sample size as gaze points tend to be distributed rather sparsely over the
large surface. Analyzing gaze in object-space could be a promising approach to reduce the
problem of sample size.

A first attempt of analyzing attention with respect to the semantics of attended objects was
proposed by the work of Sunstedt et al. [[170]]. They studied fixation behavior in a maze game
shown from a fixed birds eye viewpoint (Figure @.4(a)). This work proposed to map gaze
data to object space using an item buffer (Figure {.4(b)). The elements of the maze were
clustered according to their meaning in the maze navigation task (Figure {.4(b)). Structuring
the maze according to high-level properties such as “correct path” or “closed path” then allowed
them to build fixation frequency tables with respect to meaning (Figure F.4(d)). Since fixation
frequencies counted per semantic category did correlate among participants, but not with the
a category’s pixel coverage (Figure .4(e)), their result supports the hypothesis that semantics
are suited to build fixation statistics or predict attention. In this work, we consequently follow
this path pioneered by Sundstedt et al. and attempt to do an important step further, which is
to generalize the basic concept to games with three-dimensional navigation and more complex
semantics.
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Figure 4.4: Results of Sunstedts et. al work which was the first attempt to collect fixations
according to semantics. The meaning of a particular item in this game was defined by whether
it is a user controlled ball, a distractor ball, or a tile located on the correct path, an adjacent to
correct path or an incorrect path.

In parallel to the work described in this thesis, similar approaches have emerged been ex-
plored in other research groups. Sennersten and Lindley proposed to analyze gaze in
terms of Volumes of Interest (VOIs) or Objects of Interest (OOIs) in order to provide insights
that are difficult to obtain with screen-space techniques only. Similar to our work, they propose
to map gaze coordinates to objects and to keep track of changes in a game application with an
object logging tool. Object-space gaze statistics can be also used for a visualization by assigning
each object with a color value encoding its “visual attractiveness” [160]. Logging game states,
as done in our gaze-analysis pipeline, has been also proposed by Nacke et al. [121]] to allow a
psychophysical analysis of player and gaze behavior in computer games. This approach was
extended to a logging and interaction framework (LAIF) in [[122]], which enables those inexpe-
rienced with game design and programming to develop games and analyze them in a research
environment. An overview on logging techniques for games can be found in [147], where the
LAIF is also described in further detail.
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(a) stimulus with gaze (b) semantic prediction (c) salience map

Figure 4.5: Salience maps compared to object-space predictors: Image (a) shows the image
seen by the user. Visualization (b) illustrates importance values predicted for objects from gaze
statistics, while image (c) shows the corresponding salience map. Since our method is sensitive
to semantic properties, it can predict better the high importance of doors, while salience maps
are less selective and predict the importance of pixels rather than objects.

4.2.2 Attention Prediction

The most prominent way to predict visual attention is to use computational models that have
been established by neuro-science or cognitive psychology. In these fields, the main purpose of
computational models is to run simulations that allow studying the behaviors predicted by the
model and confirming, or falsifying, these predictions by comparison with experimental obser-
vations. Nevertheless, the models also found a direct application as tools to predict attention of
users in computer-graphics applications or to optimize computer-vision algorithms (e.g., object
tracking).

Most original computational models to predict visual attention are derivatives of the algo-
rithmic framework to compute saliency maps, which has been originally proposed by Itti et
al. [[78,[79]). For non-static stimuli such as videos or computer games, a significant performance
increase could be gained by introducing temporal features [77,[133]], notably motion, flicker or
Bayesian surprise. Evaluations on various commercial games showed that even color has
a non-negligible contribution, which can be explained by the fact that game designers prefer
to texture task-relevant objects with salient colors. The advantage of saliency map algorithms
is that they work on any sequence of digital 2D images, giving per-pixel scores of bottom-up
attention. Since they are computed from low-level features only, they perform with greatest reli-
ability in free-viewing conditions. However, due to the limitation of the model to bottom-up at-
tention, they alone fail to predict a user’s attention during the execution of a task [221/60,97,/130].
Task-oriented attention, which we have to assume in interactive applications, is focused and a
top-down dominated process. Thus, there are also top-down extensions of salience map algo-
rithms. One prominent example can be found in Navalpakkam et al.’s work [123]], which was
inspired by Wolfe’s Guided Search model [190]. Since Guided Search hypothesizes that search
is guided by low-level features characterizing a search target, the application of this model for
gaze prediction is based on the assumption that every task can be decomposed in to a series of
visual search tasks. However, the stumbling block is how to determine the search target of a user
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at any time. As a solution for this problem, Navalpakkam et al. [[123|] proposed an ontological
model that uses a task graph to capture semantic relations between symbolic classes of objects,
their super classes and the task. Using this model, a task-relevant object can be determined at
each time. To predict attended locations, the weights of feature channels in the computation of
the salience map are biased top-down such that the signal-to-noise ratio between the target and
the distractors is maximized.

Our work is mostly related to Navalpakkams approach, since we propose a system which
allows to specify an ontology in form of a script of rules which map “raw properties” to seman-
tics. However, instead of using a computational model, we assign importance values, which we
derive from gaze data, directly to semantics in object space. Thus, attention prediction requires
only to perform an importance map look-up for each object in the scene, which is very efficient
compared to conventional salience map algorithms, which require a lot image processing. An
example for the output of our approach compared to the result of conventional salience maps is
shown in Figure {.5]

Similar to the ideas presented in this chapter, there recently emerged some other attempts in
literature which attempted to derive attention predictors empirically, i.e., by learning from gaze
data. Most examples in this direction are inspired by the seminal work of Peters et al. [132]],
where task-dependent influences were captured with a neural network. Trained with gaze data,
the neural network learns to predict top-down salience from low-level features. With the recent
work of Borji et al. [16H18]], a great step forward in attention prediction frame-work has been
made. Two years after the publication of the work presented in this chapter, they proposed also
an empirical approach for attention prediction which accounts for goal-driven attention. They
derived a probabilistic model with Bayesian inference preformed on a huge data set of eye fixa-
tions, which was recorded from users playing several types of video games. They used models
that combined object-based and feature-based approaches. To correlate gaze with scene objects,
they either used manual annotations or employed state-of-the-art object-detection algorithms.
Moreover, feature-based classifiers, such as gist features, were used in their attention-prediction
algorithm as well. In [18]] and [17]], they extended the probabilistic learning approach predicting
visual attention by using further sources of information, including the global context, locations
which were attended before and previously executed user actions. Using information about pre-
vious motor actions captured from user input devices (e.g., remote steering wheels) together with
previous gaze recordings may allow predicting future gaze locations in setups using real-time
eye tracking [18]. Though being solely evaluated for computer games, which have predictable
tasks, stereotypical behaviors and few objects compared to real-world scenarios, the results of
Borji et al. are a significant step forward compared to previous work on saliency maps, which
was stuck in bottom-up attention prediction for over one decade.

Overall, there are many publications on computational models used to compute salience
maps for attention prediction. A huge number of derivatives of the classic salience maps have
emerged, and various alternative approaches have been proposed, reaching from pattern-classification
models, such as neural networks, to probabilistic approaches, such as Bayesian or graphical
models. An exhaustive and recent overview on computational modeling of visual attention can
be found in the state-of-the-art report of Borji and Itti [[15]].
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4.3 Eye Tracking Session

Since in this work we venture into the area of object-based analysis, we require access to the
internals of the application. Hence, we can record the object-oriented scene graph instead of
capturing the rendered frames with a screen-recording tool (as has to be done for e.g. commercial
games [133]]). Apart from the significantly decreased requirements for data storage, this method
provides us the possibility to fully reconstruct the scene graph with all its properties, for every
frame. To this end, the application has to be modified to record changes to the scene graph
and the camera during runtime. To guarantee sufficient frame rates throughout the experiment,
analysis is performed separately using a replay tool to reconstruct the application state at every
frame. To minimize the computational overhead and storage costs, the recording tool should
only track changes in the application. The application states are then reconstructed in the data
preparation stage (Section[4.4)) by loading the application’s initial state and applying the recorded
changes subsequently. Another requirement is a reliable synchronization of the recorded frames
with the eye-tracking data. This can be achieved by operating the eye-tracker via the game
application, by initializing and starting the eye-tracker and the replay simultaneously, so that
both have the same temporal starting point.

4.4 Data Preparation

The goal of the data preparation step is to match stimulus data with gaze data and transform
both into an abstract form that can be used by the analysis tool. This makes the analysis step
(Section [4.5)) independent of the application and the eye-tracking software. Furthermore, this
allows rerunning the analysis with different parameters without having to redo the expensive
application-specific steps.

Data preparation includes reconstruction of the stimulus presented to the player from the
replay file recorded during the eye-tracking session, extraction of the scene graph’s properties,
and gaze-to-object mapping. While gaze-to-object mapping has been described in Chapter [3)),
this section focuses on how object properties can be extracted and stored.

4.4.1 Extracting Scene Properties

During the replay, we need to extract those properties from the scene graph that potentially have
an impact on gaze behavior. For each frame, we extract the properties of all elements visible in
the player’s field-of-view. Exact visibility is determined using the item buffer. Further, we also
store the properties of the player, required to infer the current task the player is performing, and
general environment properties. The selection and interpretation of relevant properties is then
carried out during the analysis stage and it is controlled by the user via a scripting interface,
described in Section Another purpose of this step is to normalize numerical properties
(Section[d.4)) for intuitive use.

The property space describes the properties of a scene or even the entire state of the current
application. Ideally, such a description is generated for the entire scene, or at least for all visible
objects. The reason why it is useful to consider apart from the fixated object also other objects in
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the scene is that we should account for the context under which a fixation did occur. If the scene
and the viewpoint changes, this is important because we need to track how many other objects
could be concurring alternative targets for the fixations being issued.

There are several properties which could be of interest. Overall those can be divided in
properties of objects and properties reflecting the current behavior of the user and the avatar
being controlled.

Object Properties

* Visibility:All objects which were visible in the camera’s field-of-view had a potential
influence a users’s behavior and could be potential fixation targets. Visibility can be de-
termined directly from the item buffer where only visible objects may cover any pixels.

* Object category: The most important property is the category of an object which allows
us to link an object to semantics. As we reasonably assume that the category of an object
is a static property, we just need a table where each object ID is mapped to the respective
category of an object.

 Spatial properties: Spatial properties like size, motion or position in screen space could
be of some interest in the analysis too.

Player Related Properties

* Game/Player State: The current state of the game and the player may also affect user
behavior. For instance, a low health state could cause the player to focus on searching
health items.

* Interaction State: It might be also interesting to analyze gaze behavior with respect to
the way the user is interacting with the application. Hence, it is useful to include the
actions of the avatar (e.g. “running” or “shooting”) or input events from mouse keyboard
or joypad.

4.4.2 Logging Tool

To extract scene properties, a light-weight interface to the game engine is defined, which is
used to notify a logging tool about changes of the game’s internal parameters, such as the view-
transformation matrix of the player camera or variables of scene entities (e.g. objects and other
relevant properties of the game state). Having access to those very basic parameters, the logging
tool then computes properties which might be useful for the analysis or the inference of seman-
tics. For example, the tool infers screen space positions, bounding windows or motion vectors
from camera parameters and object world-space bounding boxes.

Log Format

Though many of the properties are static throughout the game (e.g., category), we have to assume
changes in many other properties (e.g., visibility or user input events), which hence have to be
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<frame>
<timestamp>36433.4343</timestamp>
<object>
<id>12423</id>
<visibility>1.0</visibility>
<attention_score>0.4</attention_score>
<category>Car</category>
<screen_bounding_window>
<min_x> 0.1 </min_x>
<min_y> 0.6 </min_y>

</screen_boundin_window>
</object>

<frame>

Figure 4.6: Example for an xml-file storing a log file used for gaze analysis

logged for each frame. If only fixations are considered in the analysis, it is useful to define a
format where for each fixation the fixated object and a description for all frames between the
begin and end time of that fixation are logged. For each frame description, one should log the
time-stamp, the IDs of the visible objects, their dynamic properties and a description of the
current game state and user input events. In Figure[4.6| we show an example how the log format
for a video game could look like.

4.5 Gaze Analysis (Overview)

The input of the gaze-analysis tool is a sequence of frames containing information about the
stimulus abstracted as object properties, information about the user (e.g., current task being
executed) and the result of the gaze-to-object mapping pass (i.e., a probability for each object to
be attended). In the analysis stage the user of the tool has to specify in which way properties of
the stimulus and the player should be used or “interpreted”. This means that at this stage we go
from the abstraction layer property space to semantics (see Figure[d.2). Finally, the tool outputs
a gaze statistic which quantifies the amount of attention an object with a particular meaning has
been fixated by the user.

We denote this output as importance map I(x). The importance map reflects how often an
object holding the set of (abstract) properties x is attended by the user. This importance map
can be either used to visualize the deployment of attention for analysis purposes, or to predict
attention in an application. Figure [4.7] illustrates how we access the importance map. This is
done in a two-step process: in the first step, we abstract objects by their raw properties rp(O),
i.e., we first map from object space to property space. Since there are so many properties which
could be hold by an object, we perform another abstraction from the layer of raw properties
(rp(0O)) to the layer of higher-level properties (x(O)). We denote the function which performs
this mapping as Semantic Transformation Function (x(O) = STF(rp(O)). This functions
assigns to each (visible) object (O) a set of higher-level properties (x). The output of STF
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Figure 4.7: The desired result of our gaze-analysis pipeline is an importance map which is a
function of high-level properties. High-level properties (x(QO)) are an abstraction of raw prop-
erties (rp(O)). The abstraction is defined by the Semantic Transfer Function ST'F'. This illus-
tration shows an example how the importance map is used to predict attention in one frame. The
set of visible objects is extracted and mapped to a higher-level property x that serves as a key
value to access one entry in the importance map.
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is represented by x, which is a simple data structure: a Boolean vector denoting whether a
qualitative property ¢ is held by an object (x¢ = TRUE), or not (x? = FALSE).

The ST'F is the stage where we need an intelligent mapping, since mapping from properties
to semantics requires knowledge. We thus provide an interface to the pipeline where a human
operator can specify and control how raw object properties are mapped to higher-level proper-
ties. The details how the ST'F' can be algorithmically realized are given in Section which
provides a formal description of this function. Furthermore, Section §.6| sketches an exemplary
solution how this function can be specified by the user of the gaze-analysis pipeline (i.e., the
experimenter) via a scripting interface.

Having a system which abstracts scene objects by their properties, we further need to specify
a function mapping these properties to an importance. With our approach, we propose to infer
importance from gaze data collected from many users while navigating one environment (e.g., a
game level). The importance map is a simple structure which treats each possible x as a category
for which an importance value is defined. The importance value of an x is assumed to be
proportional to the probability that an object with x is attended. Actually, the importance values
are the parameters of the statistical model which we encoded with the ST F' and the importance
map. To obtain importance values, we propose a straight-forward solution: we count how often
objects with x were attended. However, a problem that arises with this approach is that each x
sample occurs with a varying frequency in the stimulus. This is because the visibility of objects
changes when a user navigates an environment. Only those x can be attended at a time ¢ which
are associated with currently visible objects. The details on how we cope with this issue and
how we generate importance maps from gaze data of many users will be given in Section

4.6 The Semantic Transfer Function

Having a representation of the stimulus in property space, it is important to focus on those
aspect of that information which might be relevant for the behavior of the user being studied
and in which the user of the analysis pipeline is interested. Assuming top-down attention is
mainly influenced by high-level processes, the most appropriate way to represent the stimulus is
a description accounting for the meaning of objects according to the current task a user is per-
forming. However, inferring meaning from object properties is a complex problem and requires
to introduce knowledge into the analysis pipeline. To this end, we propose to use a script-based
solution where the user specifies a set of rules defining how “raw” object or user properties
should be translated to meaning. For the sake of clarity, we will further use the term “raw prop-
erties” (rp) to distinguish the output of the data preparation step from the result of the semantic
transformation, for which use the term “high-level properties” (x).

4.6.1 Formal Description

While the rule script is interpreted, the system creates a transformation function S7TF which

maps at each frame the current raw properties of all visible scene objects {O1, ..., Ox} and the
user u to high-level properties:
STF
{rp(O1),...,mp(On),rp(u)} — {x(01),...,x(On)} 4.1)
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Figure 4.8: An exemplary illustration how the transformation from raw object and user proper-
ties to high-level properties could look in a computer game.

While rp represents a set of numerical (e.g., object position) and nominal attributes (e.g.,object
category), x(O) is a vector of booleans which define whether object O belongs to a particular
high-level category (x € {0, 1}"). Thus, the number of high-level categories (n) defines the size
of x.

4.6.2 Scripting the STF

In our system, the user can design and modify the transformation function via a scripting lan-
guage. In Figure [4.8] we illustrated an exemplary script to show how the ST'F' could look in a
computer game. The script consists of a set of rules which define a new (high-level) property as
the fulfillment of a conditional statement:

if CONDITION STATEMENT then PROPERTY DEFINITION

In the conditional statement, raw properties can be combined using standard operators, in
particular logical operators (e.g. A, V), arithmetical operators (e.g. +, —) and relational oper-
ators (e.g. >, <). The condition must evaluate to a Boolean value which is then assigned to a
nominal category specified by the right hand side of the rule.

Since the resulting property can be used in conditional statements of subsequent rules, a
user can define “intermediate” categories which are useful for defining more complex mappings
in the semantic transformation function. However, finally those categories have to be selected
which define the high-level property vector x. Thus, there is a second section in the script, the
“selection pass”, which declares the high-level categories represented by the high-level property
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Figure 4.9: An illustration how importance maps are generated with our pipeline.

vector (x). The high-level property vector is represented as vector of booleans each defining the
membership to the corresponding high-level category.

4.6.3 Keeping Degrees of Freedom Low

In order to be able to build a reasonable gaze statistic, a SET has to be specified with a low
number of parameters. Thus, rule scripts have to be carefully written such that the number of
different high-level categories is low. Due to the possibility that an object can be theoretically
a member of all categories, the number of different values the high-level property vector x can
have is, at least in this worst case assumption, exponential with the size of the vector. However,
in practice one object should belong to only a few (e.g., 2) high-level categories.

4.7 Generating an Importance Map

The overall process of building an importance map I(x) is illustrated in Figure After map-
ping each object O to a high-level property vector x = ST F(rp(O)), the next step is to derive
a score for the amount of attention given to each value of x which occurs in the data. We denote
this statistic as importance map /(x) which ideally specifies an attention probability for each
value of x.

4.7.1 Accumulating Fixations

To derive the importance map, Sundstedt et al. [170]] proposed to accumulate fixation times
for each semantic property. However, in their study the viewpoint was fixed and the set of
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observable objects remained constant. For the general case, we have to assume a viewpoint
which is not fixed and the set of objects in the camera’s field-of-view may vary considerably
from one frame to another. Thus we propose a heuristic normalization strategy accounting for
the different amounts of time certain objects are visible to the user. Moreover, we found that
giving each fixation the same weight, irrespective to duration, provides more robust statistics
with a lower variance.

We calculate /(x) from the number N4 (x) of fixations that fell on objects with that x and
normalize this statistic by the frequency Nvy(x) that objects holding x were visible during a
fixation (i.e., the number of fixations they were potential attention targets):

NA(X)

I(x) = No(x)

(4.2)

The normalization factor Ny(x) corrects for variations in the visibility of different semantic
properties. If an object was visible in many frames but has been fixated in only a few of them,
the importance value should be low. Conversely, if an object was fixated most of the time it has
been visible, the importance value should be high. The maximum importance value is 1 and
occurs if a semantic property is fixated in every frame during a fixation it is visible.

4.7.2 Visibility Normalization

Since the output of the gaze-to-object mapping is an attention probability for each visible object
which is stored in the file passed to the analysis tool (see Figure[.6), the total attention frequency
Na(x) can be estimated as expected value by summing attention probabilities for each fixation
fiz from the set of recorded fixations F'ix:

end(fix) . .
Na(x)= Y / ) (x(04),x)P(04|g")dt (4.3)
fixi€Fiz begin(fiz) 0O;eVvt

For each fixation we integrate the attention probabilities between begin and end time of the
fixation. V' defines the set of currently objects which are visible during fixation fixz. The
selection function ¢ returns 1.0 in case that x!(O;), which is the temporal state of high-level
properties of a particular object instance O;, equals to x and 0.0 otherwise. For the attention
probability P(O;|g!), we apply gaze-to-object mapping method for the gaze location g’ at time
t.

The visibility term is computed in a similar way:

end(fix)
Ny(x)= > /b maz{1.0, Y ¢(x'(0;),x)}dt (4.4)

fiz;EFix egin(fiz) OiEVt

The clamping function is used to avoid that high-level properties values which occur on more
than one object in the current field of view are counted multiple times in the accumulation of the
visibility time.
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Limitations: It is not possible to define a normalization strategy which perfectly corrects for
all latent effects resulting from the variation of the viewpoint and changes in the scene. Hence,
this heuristic involves many simplifications, such as the assumption that each semantic property
is perceived as one unit of attention. Defining the units of attentional selections which make up
the number of alternative targets a user can fixate in a given view of the scene is a hard problem.
For future work, it could be useful to investigate strategies which are inspired by models for pre-
attentive object detection from vision research. Those could potentially allow to better quantify
the amount of visual information a user perceives within the field-of-view.

Another important factor arising from the uniqueness of the game experience of each user,
is the variation of the contexts in which a particular object may be seen, which may also influ-
ence attention. The way we count and normalize gaze statistics is agnostic to such contextual
interactions. Otherwise the dimensionality of the statistic would increase to the size of all pos-
sible combinations of semantic properties, and a sufficient density of gaze samples would be
impossible to acquire. However, a similar simplification has been made by statisticians who
developed ranking models. These models predict a ranking of a large set of elements from a
set of preference votes observed for small subsets (e.g., a pair) of all elements. This is done,
for instance, when a rank order of many subjects is inferred from pairwise comparison results.
To some extent, this resembles our problem, where a user sees a subset of different categories
in each frame and performs a “selection” by directing gaze towards one object. Thus similar
to prominent ranking models (e.g., Bradley-Terry-Luce model [19]), our approach relies on the
Luce Axiom [105]], which assumes that the choice probability ratio of two (or more) elements is
independent of any other category in the set of currently shown elements.

4.8 Attention Prediction

After an importance map has been constructed from an eye-tracking study as described before,
this map can be used at run-time to predict visual attention by generating an importance value for
each visible object in a frame at a given time. In Figure[4.7] we have illustrated how attention is
predicted at run-time by assigning importance values (I (x)) to the set of visible objects (O € V)
in the scene. This works by mapping them to higher-level properties (x(O)), which are then used
as key values to access the entries of the importance map. This process first requires to determine
the visibility of objects and to extract raw properties (rp(O)) from the scene graph (as previously
described in Section #.4). In this case the extraction of properties needs to be run in realtime.
Thus, instead of using an item buffer in an offline stage, the set of visible objects should be
computed using an efficient visibility algorithm [[10]. For each object O that is visible at the
current time, raw properties are converted into the corresponding high-level property vector
(x(0) = STF(rp(0O)) using the transformation function (ST'F). Since high-level properties
are encoded as a vector of bits, they can be readily converted to an integer value serving as
an index into the importance map to retrieve a corresponding importance score. As discussed
previously (in Section 4.6.3), the importance map may have 2" entries, with n denoting the
number of high-level properties being considered. However, there are many semantic properties
which can not occur together. For instance, an object cannot be both an enemy and a friend.
Hence, the ST F' should be designed such that only a small subset of the property combinations
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defining the Boolean vector x can occur on the objects in the environment. So actually there are
many entries in the importance map which are never accessed. Those are undefined as they do
not appear in the environment or due to being nonsensical.

We estimate the final probability P(A = O|x(0O)) that an object O equals to the atten-
tion target A in a particular frame, given the object’s high-level properties, with the entries in
importance map I.

21(x(0)) ifOeV

) 4.5)
0, otherwise

P(A = 0[x(0)) = {

Here, we normalize with factor Z, which is to be the sum of all importance scores of objects

being visible in the current frame. This normalization also accounts for the effects of the context:

in the presence of a very important object (e.g., enemy), the importance score of objects with
low importance is suppressed, while it is amplified in the absence of important objects.

4.9 Analysis Toolbox

We implemented the methods described previously in a graphical gaze-analysis tool box. This
toolbox includes the following elements:

Library: a library widget designed as a front-end to gaze and stimulus data which the user can
load from disk. This is useful so that the operator can select collectively which stimulus
data and eye tracked subjects are relevant to his current analysis. The library holds pointers
to data, but need not load the data.

Timeline: atimeline widget with different stacked tracks allows the operator to instantiate stim-
ulus and gaze data so that they can be played back in parallel. The timeline offers typical
controls of temporal data (e.g. start, stop, etc.) and allows for seeking arbitrary frames
within the datasets, enabling intuitive non-sequential access to them.

Views: To visualize the data viewing widgets use, the Timeline tracks to sequentially overlay
visual representations of the respective data at the time the timeline’s head is positioned
or a temporal window around it. For example, fixations can be easily overlaid and played
back over the stimulus that produced it.

Script Editor: With the scripting editor an operator can define, execute and debug scripts which
transform low level extracted game entity properties into semantic properties.

The combination of these tools into a single graphical user interface enables an operator of
the analysis software to potentially gain insight and assist in scripting rules for transforming
properties to semantics. This graphical user interface, shown in Figure .10] is effectively an
Integrated Development Environment (IDE) for studying gaze behavior that not only offers the
tools to setup and perform an analysis task, but also provides visual feedback and can potentially
leverage the experience and intuition of the operator.
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Figure 4.10: Screenshots of our visual analysis tool box lyzer. Figure (a) shows the tool used
to replay a game for a visual inspection of recorded gaze data. In figure (b) the tool is shown
while using the script editor to configure the generation of importance maps. The screen shot
(c) shows a dialog visualizing the importance map being generated and in (d) the tool is used to
render a visualization of attention predictions.

4.10 Experimental Investigation

In this section we describe a concrete example application of the proposed pipeline. We carried
out a pilot study with a simple first-person-shooter (FPS) game developed in our lab. Shooter
games are one of the most popular computer game genres, and are thus a reasonable choice
for study. The following sections will describe how we designed a level, acquired the data,
generated different kinds of importance maps, and evaluated the prediction performance of the
corresponding gaze predictors.

4.10.1 Game Design

Using the visual editor tool shown in Figure[4.T1] we created a simple level for this eye-tracking
experiment.

The game was set in an indoor environment, composed with a network of rooms that contain
attacking enemies. Example images of the game can be seen in Figure.12] The level had three
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Figure 4.11: The visual editor we used to design the game level.

tasks: first, find a weapon (with no enemies yet), then navigate to the “boss room”, eliminating
any enemies along the way, and finally destroy a crowd of enemies in the boss room to win the
game. After a task has been solved, the player was allowed to enter the next section with the
next task.

We disabled certain attention-attracting effects and features built into the original game
which could potentially bias gaze behavior. For example, our current system does not take
into consideration GUI elements, therefore, we disabled all elements of the heads-up display
except the cross hairs. The level designer was also instructed to avoid strong variations in the
illumination of the environment, as these are not captured by our system.

4.10.2 Setup

We used a Tobii x50 eye-tracker, running at 50 Hz, which was placed in front of the display.
The calibration and configuration was carried out according to the manufacturer’s instructions.
The eye-tracker together with the game’s state recording functionality were started and stopped
simultaneously, at the beginning and end of each gameplay session. For each session, two data
files were stored: a file containing the gaze data provided by the eye-tracker, and another file
exported by the game recording all changes of the game’s scene graph.

All experiments were run on an Intel Core 2 Duo workstation, clocked at 2.4 GHz with 2GB
RAM, and an NVIDIA GeForce 8800 GTX graphics card. This setup was sufficiently powerful
to simultaneously run the game, including the recording functionality, at a framerate greater
than 50 fps, and also operate the eye-tracker. The display was a commodity LCD display (IBM
ThinkVision L200p with a resolution of 1600 x 1200 pixels at 100 dpi), set up at a resolution
of 1024 x 768 pixels, displayed at a scaled down effective viewing window with dimensions
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(b)

(©) (d)

Figure 4.12: Screen-shots of our first person shooter game. In the first phase of the game the
player explores a large environment (a), and searches for the weapon (b). As soon the player re-
trieves the weapon, enemies will spawn and the player has to defend himself and simultaneously
attack the enemies (c). The enemies are spherical robots that are moving in the environment and
shoot at the player, and they explode after termination (d).

of 34 x 27 cm. We used a smaller viewing window than possible with the monitor in order to
minimize inaccuracies in eye-tracking near the outer regions of the wide screen. The setup was
located in a dark room with dim lighting to avoid reflections on the screen. A commodity PC
stereo sound system was used for the audio output and the loudspeakers were placed to the left
and right of the screen.

4.10.3 Eye-tracking Session

Each participant played the level once while the eye-tracker to record her/his gaze. The calibra-
tion of the eye-tracker was carried out shortly before the game started and the participants were
seated comfortably in the best position as recommended by the user manual of the eye-tracker.
To reduce the risk of inaccuracies, the participants were instructed to attempt to hold this po-
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sition as well as they could. Before the eye-tracking session, all participants played another
distinct level of the game as an introduction. To avoid surprise effects, this level contained every
object which appeared later in the eye-tracked level of our study. The players were informed in
detail about the tasks and goals of the level before the session.

The time the participants needed to complete the level was between four and six minutes.
Between one and two minutes were required to find the weapon, about two to navigate to the
boss room and destroy all the ten enemies on this path, and about one and a half minutes were
required to fight the final battle against twelve enemies in the boss room.

At the end of the session, a short questionnaire quantified the gaming skills of the partici-
pants. We recorded more than 20 participants. Unfortunately, long eye-tracking sessions cause
an increasing drift of the eye-tracker’s accuracy. Towards the end of many sessions, the precision
of the gaze recordings was unacceptable. Some experiments (e.g. [[170]) were conducted with a
chin-rest to avoid such complications. However, eye movements of participants on a chin-rest
are vastly different than when they are free to make both head and eye movements [33]]. After a
diligent inspection with our gaze visualization tool, it turned out that only 10 gaze datasets had a
reliable accuracy. The respective participants were all male, had normal or corrected to normal
vision and their FPS gaming skills were good to very good.

4.10.3 Exclusion of Background Objects

In our experiment we obtained high attention scores for the floor and the walls, but almost no
attention was paid to the ceiling of the corridors. However, the background are large planes and
are not really perceived as objects. Hence our gaze-analysis pipeline is not necessarily appro-
priate to infer gaze statistics for background objects. The main problem was that we used in
this experiment a simple gaze-to-object mapping technique (Fovea Splatting) which is biased
towards large objects. (Later we investigated better solutions to this problem, which are pre-
sented in Chapter [3]) With this technique, background objects are hit very often simply because
of their large extent through the whole level. This introduces a bias towards background objects,
which is unwanted since they rarely contain important features. While an object size weighted
normalization could remove this bias, this would not work well for foreground objects.

For the results presented here, we thus excluded background objects from set of visible
objects V' and removed frames where background objects had the highest importance in the
gaze to object mapping result (in equations 4.2] and .4). To this end, we used a simple rule
in the scripting interface. This considerably improved the performance when gaze statistic are
used as attention predictor. More appropriate treatments for background objects that could be
considered in future work are a spatial subdivision of large objects and the extraction of image
space features, such as corners, vanishing lines, shadows or highlights.

4.11 Results

In the following we present some illustrative examples of particular importance maps generated
from the data acquired in our study. To this end, we present importance map derived using
spatial object properties, such as size and eccentricity, before we continue with investigating
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Figure 4.13: Importance maps obtained with a ST'F’ which assigns “spatial semantics”.

how attention could be analyzed making use of semantic properties. Finally, we will evaluate
how the importance maps obtained can be used to predict visual attention.

4.11.1. Importance Map with Spatial Properties

When we inspected the gaze behavior with our gaze visualization tool, the most obvious ob-
servation was that most fixations were close to the center of the screen. Similar results were
reported by Kenny et al [86] from a study on gaze behavior in FPS games. We thus authored a
script to learn an importance map which captures this behavior. Five rules were specified which
intersect the object bounding boxes with 5 squares, which are illustrated at the bottom left-hand
side of Figure[d.13] Each object is assigned to the lowest eccentricity level its” bounding box in-
tersects with. With these rules, we generate five levels of object eccentricity and count fixations
for each level. The resulting importance map is shown in the left plot in Figure d.13]

The blue bars in this and other importance map visualizations illustrate the average fixation
counts (normalized with the visibility term) collected from the gaze data of all participants.
Beside the average importance values we were also interested in the agreement between different
subjects. How well the importance values resemble for different participants can be evaluated
by computing “individual” importance values from gaze data of each participant and analyze
the resulting distribution which we illustrated with boxplots, which show the 5%,25%,50%,75%
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and 95% percentiles of the distribution of the individual importance values.

The eccentricity importance map has a high peak for the inner eccentricity bin “in center”,
and rapidly decreases towards the periphery. The most probable explanations for this are that (a)
the cross hair of the weapon is displayed at the center of the screen, and (b) that a user controls
the camera such that objects are brought towards the center of the field-of-view.

Besides eccentricity we tested whether object size and distance can be used to predict visual
attention. Similar to the script we used for object eccentricity, we defined a set of discrete bins
to derive a gaze statistic for object size and distance. The results, which are shown in Figure
show that fixation counts increase with object proximity. One explanation could be that a
users prefers to attend objects which are near and hence more important or sooner relevant for
navigation and interaction tasks. Another possible explanation could be that objects which are
closer appear with a greater size on the display due to the perspective projection. However, when
considering object size alone, fixation counts do not monotonically increase with this property.
While there is one peak for “very large” objects (>8000 pixels), which could be attended more
often due to the stochastic advantage of objects covering a significant fraction of the screen
and thus having a-priori an increased probability to co-occur at the same location as a fixation,
there is no linear correlation between object size and attention for objects which are not very
large. Instead, we find a second mode in the histogram for “small” objects covering between
1000-10000 pixels on the screen. One explanation for this peak could be that to a certain extent,
the object size encodes the object category and the size range between 1000 and 10000 pixels
corresponds to the size in which task-relevant objects (e.g. enemies) are seen most of the time.

4.11.2. Importance Map with Semantics

In order to demonstrate that our approach can generate importance maps based on more com-
plex properties, we created a script to infer importance values according to semantic object
properties. We combined this with one relevant property of the player, notably whether he is
“armed” or “unarmed”. With this combination, differences in the gaze distributions according
to the current task of the player, which is to search the weapon while being “unarmed” and to
shoot enemies as soon he possesses the weapon, should be captured. In Figure we de-
picted the values according to the high-level properties (i.e., object category + player state) of
the respective importance map.

The importance map we derived shows that only few objects are outstanding attention at-
tractors, notably explosions, the enemy, the weapon (as long the player is searching for it), and
a panel emitting sound. The weapon has high importance before the player retrieves it, but as
soon the player carries the weapon, its importance drops significantly (see scores according to
the states “Armed.Weapon” and “Unarmed.Weapon” in Figure .14). The sound-emitting panel
is a conspicuous object in the scene. It has a screen displaying a rotating wheel and emits a
sound which is congruent to the animation. This kind of crossmodal cue possibly causes a high
attentional attraction. An interesting observation is that the importance of the overview map
changes considerably between both tasks. When the player searches the weapon he seems to
have time to pay more attention to maps and objects suspended on the walls, while as soon as he
is armed and enemies are attacking, he has different priorities.
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Figure 4.15: Cumulative distribution of the rank transformed probabilities predicted for fixated
objects.

4.11.3. Attention Prediction

To investigate to which extent our empirical approach to visual attention allows to predict gaze
of a user, we compare the predictions of an importance map with the fixated objects observed
by the eye tracker. We perform this analysis by dividing the game session of each participant
in three phases according to the three game tasks: Searching for the weapon, navigation and
battle on the way to the boss room, and finally the final game battle in the boss room. The
corresponding three tasks show increasing task intensity, which has an impact on the prediction
performance.

To evaluate how well the importance map described previously can predict visual attention,
we counted how often a fixated object was predicted to have the 1, 2™ ... or 8" highest
importance among the objects visible during the fixation. From these fixation counts we build a
cumulative distribution over the importance ranks, which is illustrated in Figure .15 To have a
baseline for comparison, results derived with a random predictor were also added (black graph).

There is clear evidence for all conditions that all importance maps predict attention better
than chance. Eccentricity, which predicts the fixated object as most important in more than 60%
of all fixations, turns out as the most effective and reliable property to predict visual attention in a
first person shooter game. A reason for this is that in first person games the user actively controls
the camera. If an important object appears on screen, the player tends to orient the camera
quickly towards this object and the eccentricity-based predictor will provide a good prediction.
This reveals that the way a user orients the camera closely resembles to eye-movements. Thus
in first person view games the center of the view frustum can used to observe attention without
an eye-tracker. However, for games that do not use user controlled first-person view cameras,
this trivial way to predict attention would be less accurate.

Besides eccentricity, also size and distance predict the fixated object as most important in
35%-45% of all cases. But in task-intensive situations (e.g. “bossroom”-phase), size and dis-
tance are clearly less suited to predict visual attention than predictors making use of semantic
object information.

Most important and interesting are the results we obtained for predictors based on seman-
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Figure 4.16: Performance of attention prediction over time (semantic). Since there is a different
number of visible objects in each frame, we normalized the rank of the fixated objects by the
number of (currently) visible objects. The line at 0.5 corresponds to the expected value for a
random prediction.

tics. The cumulative importance rank distribution obtained using a semantic importance map as
predictor is clearly better than a random predictor or predictors based on object size or distance.
Even in the first phase of the game which was least task-intensive and players most time explored
the level causing a free-viewing-like gaze behavior, semantics predict the fixated object as be-
ing most important in 43% of all cases. This rate increases to 70% in task intensive situation
as occurring in the bossroom where the player is attacked by many enemies. To provide some
insights how attention prediction performs over time, Figure[d.16]shows a plot of the importance
rank of the fixated object as a function of time.

4.12 Discussion

Our results suggest that we can already predict attention well, but we need to point out that we
did not address bottom-up mechanisms affecting the control of attention. We believe that the
two approaches are complementary and can be combined in future work. For example, while
saliency maps are good at predicting what could be the next gaze target, our approach more
accounts for sustained attention.

Further, while image space approaches work on arbitrary images sequences, this work fo-
cused on object-based importance maps, which requires an application where the internal object
structure is accessible and item buffers can be created. However, the interface to the analysis
tools to be integrated is light weight and it should be easy to adapt host applications to this re-
quirement. Also note that image space approaches require object recognition and identification.

In our experiment, we excluded background objects from the analysis and used objects with
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a clear semantic category and a clear geometrical outline. However, environments in commercial
games frequently comprise more difficult content, e.g. large environment models or vegetations.
In future work, solutions need to be investigated which allow decomposing all elements of a
scene adequately, so that gaze can be analyzed according to the key features of major impact.
Particular extensions we are considering, are hierarchical decomposition of difficult objects, like
for example trees or houses, and screen-space approaches to subdivide large models or back-
ground into regions in such a manner that features with a different response on visual attention
can be spatially separated.

4.13 Future work

There are many ways in which the basic pipeline presented in this paper can be improved. We
propose the following directions:

The first is to test the approach for more complex game settings and environments, imposing
challenging tasks and missions, comparable to commercial games. Most importantly, games or
virtual environments that do not use a mouse-controlled first-person camera should be investi-
gated to better single out the potential of non-trivial attention prediction methods.

Second, investigating certain extensions to improve the performance of the predictors. This
includes, on the one hand, accounting also for bottom-up mechanisms and investigating how we
can effectively combine the image-space-oriented saliency maps and the object-space-oriented
importance maps. On the other hand, it is also important to account for the entire multimodal
stimulus presented to the player of an action game. Notably, including the impact of sound
sources in 3D space and elements in the head-up-display (HUD) of games. Due to the very
general design, our system is capable to be extended with items for sound sources and HUD
elements.

Finally, we think that many of the tools we proposed, in particular computing gaze distribu-
tions according to object semantics in interactive 3D environments, may find great application
in the study of human behavior in virtual reality.
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CHAPTER

Attention-Aware Rendering: A Pilot
Study on Gaze-Controlled Stereoscopic
Applications

Every solution breeds new problems

Arthur Bloch

Most previous work on attention-aware rendering has focused on computational acceleration
to make costly rendering techniques more applicable for realtime graphics. While computational
acceleration is still an important issue, particularly for saving energy on mobile devices or to
display complex scenes on immersive high definition displays, computational efficiency is not
the only problem that can be solved with attention-aware rendering. Attention inference and
prediction can be also of tremendous utility to improve depth perception and realism in computer
graphics. In this chapter we present an example application for attention-aware rendering. We
chose gaze-controlled 3D stereo as example and attempted to explore potential benefits and
issues that may arise in such an application. While the work described in the two previous
chapters may serve as basis for future applications that are designed to work with complex virtual
environments, we studied in this work how gaze-controlled stereo would work in the optimal
case where the attended object can be determined unambiguously in real time. Moreover, we
explored in this pilot study the most straight-forward solution of configuring stereo rendering
parameters via gaze-control.

The work presented in this chapter is based on the paper “The Effects of Fast Disparity
Adjustments in Gaze-Controlled Stereoscopic Applications” [3]], which was published in the
proceedings of the ACM Symposium on Eye Tracking Research and Application 2014.
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5.1 Introduction

With the emergence of affordable 3D displays, stereoscopy is becoming a commodity in the
film and games industries, virtual reality, visualization, etc. However, despite the technological
advancements in 3D display technologies, users often report discomfort and fatigue even after
brief exposures to stereoscopic content. One of the main reasons is known to be the conflict
between vergence and accommodation that is caused by 3D displays [70,/96]], since the eyes
naturally turn (vergence) at the distance the virtual stimuli is presented at, but the eyes’ focus
mechanism (accommodation) remain on the surface of the display.

The most effective way to increase stereo comfort in stereo displays is to control binocular
disparities such that they fall in a disparity range where stereo viewing is comfortable. This can
be achieved by either controlling stereo camera parameters (i.e., focal distance or interaxial sep-
aration) [[61}/125}/179]], or by manipulating binocular disparities in stereo images [98,[139}/185]].
However, manipulating disparities often leads to a significant reduction of depth quality, for ex-
ample in the form of depth flattening, known also as the cardboarding effect. Another way to
decrease discomfort is to use depth-of-field (DOF) blurring [|11}/12,/45,{101}/171f], which simu-
lates the foveal sharpness of the image at the point of focus and blurring observed in peripheral
vision. However, applying DOF blurring to accurately simulate the perceived retinal image is
difficult to achieve in highly dynamic applications and often causes loss of visual detail.

A promising solution is offered by the use of eye-tracking data, which is used to dynamically
adjust the stereo focal plane to coincide with the user’s intended focal depth. This is achieved
by mapping gaze deployed on a display to the underlying geometric objects of a 3D scene [46|
173]]. Fisker et al. [54]] performed an informal experiment to evaluate the level of comfort these
methods offer to the users. Their preliminary results indicate they can have a positive effect, but
a formal experiment and validation is required.

In this work, we performed such a formal experiment in which we investigate the possibility
of mitigating visual discomfort by dynamically adjusting the stereo parameters of a scene using
gaze data. We use an eye tracker to determine the depth at which the user’s eyes converge and
manipulate the stereo parameters to bring it into focus by setting the plane of zero disparities
at that depth. To measure the level of discomfort, we measured binocular fusion times, which
is an objective metric. In particular, we measure fusion times of random dot stereograms in a
scene with a three-dimensional arrangement of objects, which resembles a natural scene with
multiple depth layers where a user can freely direct gaze from one object to another. We utilize
a QUEST [[186] procedure to determine the amount of time the user would require to fuse a
random dot stereogram (RDS) showing one of two possible orientations of a wave pattern, shown
in Figure[5.1] After correct responses the QUEST reduce the display time of the RDS, whereas
wrong responses lead to an increase of the time the RDS is shown. Effectively, the QUEST
is searching for the minimum amount of time a user requires to fuse the stereogram, which
we refer to as fusion time. This process is illustrated in Figure [5.2] where we plotted the display
times proposed by the QUEST until converging to the fusion time threshold. We found that gaze-
controlled manipulation of the plane of zero parallax can lower fusion times for large disparities.
In addition, a small overhead in fusion time was observed after adjusting the plane of zero
parallax to coincide with disparities that initially fell within the stereo viewing comfort zone
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(a) RDS (anaglyph) (b) right tilted (c) left tilted

Figure 5.1: The random dot stereograms shown by the QUESTS for a controlled time: (a) shows
an anaglyph rendering. (b) and (c) show a visualization of the two different sine wave patterns
participants had to distinguish.
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Figure 5.2: An illustration of the QUEST procedure converging towards the fusion time thresh-
old being measured.

of subjects. Since the comfort zone differs among subjects, this means that gaze-controlled
disparity adjustment should be applied in a personalized manner and ideally performed only at
the extremities or outside the comfort zone of subjects.

The contributions of this work are: (a) an objective methodology to evaluate the benefits
of visual comfort-optimizing strategies for 3D stereo displays, and (b) experimental evidence
that gaze-controlled dynamic adjustment of stereo disparities improves stereo fusion of nearby
objects (large disparities), while it is acceptable for objects at other distances.

5.2 Related Work

5.2.1 Stereo Viewing Comfort

The main factors [[70,96} 129, [I72] causing viewing discomfort in stereoscopic displays are
(a) dichoptic errors, due to stereoscopic distortions, mismatch of the stereoscopic windows or
crosstalk, (b) fast object motion, due to difficulties of the human visual system (HVS) to adapt to
changing viewing conditions, and (c¢) uncomfortable disparity ranges due to excessive binocular
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parallax, or due to a mismatch of vergence and accommodation (V/A-conflict). While factors of
category (a) are a matter of hardware, processing or bandwidth limitations, the other sources of
discomfort depend on content and rendering and could possibly be mitigated by adjusting stereo
configuration parameters. To find the best parameters, a function which predicts viewing com-
fort is required, which is obtained by taking measurements in a perceptual study. Discomfort is
usually predicted as a function of disparity, or as a bivariate function of vergence and focal dis-
tance. Measurements can be taken with objective and subjective observation methods. Assuming
correlations between performance in binocular perception and comfort, objective measurements
are taken by determining speed or acuity in the detection of binocular corrugations (e.g. inward
versus outward curvature) in random dot stereo-grams [[66,8990]. For subjective measurements,
users are usually asked to rate the discomfort they experienced on a Likert scale [90]. Due to
methodological limitations and simplicity, comfort-optimizing stereo displays are usually evalu-
ated with subjective methods only. Responses can be collected either by rating methods, where
a user issues a score on a Likert scale [[11}/12,|84},94,/104}/163]], or with the method of pairwise
comparison [94,|101]]. An objective way to observe discomfort was used by [31]], who counted
the eye-blink rate of users.

In this work we will predominantly focus on an objective evaluation. Hence we will measure
performance in the fusion of RDS, similar to [66,90]. However, in contrast to previous work
which measured fusion times for a stimulus showing a single disk with a RDS, we will place the
RDS on objects in a scene arranged in three dimensions. In addition to that, we handed out a
rating scale where participants cast a subjective judgment on stereo comfort and stereo depth.

5.2.2 Eye Tracking in 3D

Hillaire et al. [64], and very recently Mantiuk et al. [[109]], proposed to use an eye-tracker to
control DOF simulations in interactive applications. Eye tracking was also used in applications
attempting to reduce stereo viewing discomfort by DOF-blurring [[12,{101}/171]. In all cases,
gaze data was mapped to scene content (e.g., objects [109]]) in order to determine the focal
distance. Alternatively, for applications which do not have access to a 3D representation of the
stimulus (e.g., movies), [47] and [134] proposed to utilize binocular gaze data to determine a
depth coordinate for each gaze point.

However, a reliable and accurate determination of a user’s gaze depth is still an open prob-
lem. To avoid this problem in our experiment we used a simplified scene which was inspired
by [47]. In this scene we placed 9 squares such that the current gaze depth can be robustly
determined from the depth buffer also in the presence of eye tracker errors and a participant’s
inaccurate gaze orienting behavior.

5.3 Experiment

We performed an experiment to evaluate the effects of dynamic adjustment of disparities in 3D
applications using eye-tracking data. In particular, we consider binocular fusion times as an
objective indicator of visual comfort and asked participants to focus at objects lying at different
depths while stereo viewing a 3D scene. We measured fusion times of stereoscopic stimuli,
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(a) previous trial (b) cue next square

(c) show RDS (d) response

Figure 5.3: One QUEST trial: after responding in the previous trial, the next square is cued
yellow, as soon the eye tracker senses a user’s gaze near the cued square the RDS is shown on
white for a controlled time after which the square turns green with random dots.

where binocular disparities were manipulated dynamically, using gaze data recorded in real-
time. Disparity was automatically adjusted by modifying stereo parameters in order to bring
the currently attended object into focus, which equates to setting zero parallax between the two
stereo views at that point. We denote this condition as dynamic stereo (DS) and compare fusion
times to a control condition in which predefined stereo disparities remain constant, which we
refer to as static stereo (SS).

5.3.1 Participants

We recruited 38 subjects (15 female) with normal or corrected to normal vision, aged between
18 and 40 years (mean=26.3, stdev=>5.4), all of which stated that they were stereoacute and not
color blind. Each participant was pre-screened during a training block of trials to objectively
measure their ability to achieve stereopsis. Through this procedure, we identified 2 stereo-blind
participants, who were excluded.
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5.3.2 Stimulus

To sample a variety of factors that might have an influence on fusion time, such as position or
disparity, the 3D scene we used for the experiment consisted of 9 square planes, placed in three
rows and columns (3 x 3) on a black background, as shown in Figure[5.3] Each row of squares
was positioned at a different distance/depth, with the bottom row being the closest (NEAR), the
middle row being at an intermediate distance (MID), and the top row being the farthest (FAR).
In the static stereo condition (SS), the MID row was at the same distance as that of the focal
plane (i.e. the plane of zero parallax). Consequently, the FAR row had positive disparities
(d = 0.7°) and appeared to be 14cm behind the focal plane, while the NEAR row had negative
disparities of d = —1.2° and appeared 14cm in front of the focal plane.

In their initial state, all squares were colored red and were textured with a pattern reminiscent
of those used in random dot stereograms. However, since the same pattern was rendered for
both stereo views, it provided no depth cues. The color of one of the squares was dynamically
modified to attract attention during the experiment, while as soon a fixation was detected near
the cued target the texture of that square was replaced by another texture containing a circular
random dot stereogram (RDS) as shown in Figure [5.1] This RDS that would elicit binocular
perception of a sine wave with a wavelength of 2° and an amplitude of 0.65° which was either
tilted by +15° or —15° from the horizontal axis (see Figure [5.I). We also ensured that the
rendered stereograms appeared with the same size (radius = 1.9°), the same resolution and the
same disparity amplitude on all squares by avoiding distortions of the stereogram patterns due
to perspective projection.

5.3.3 Task

Participants were instructed to focus their gaze on one dynamically chosen square with a yellow
color cue. As soon as the eye tracker could detect that a participant initiated a fixation (with
two gaze point samples recorded at S0Hz) on the cued square, its color changed to white, and
simultaneously the texture was replaced with a random dot stereogram. In stereo, this stereogram
induced the perception of a 3D sine wave with a left- or right-winded slope on the square. The
participant was exposed to the random dot stereogram (where the random dots changed in each
QUEST) for a short period of time, which was controlled by a QUEST procedure, and then
switched back to a different random dot pattern that induced no depth perception. Using the
left and right cursor keys of a keyboard, participants had to respond whether the sine wave had
left- or right-winded tilt. After the response, the next square cued the participant’s attention by
switching to yellow. The experiment ended when all of the running QUEST procedures were
completed with a minimum of 3 turns.

5.3.4 QUEST Conditions

We defined 12 QUEST procedures to determine the effects of a variety of factors that may play
arole in fusion times, such as position, depth, and eye movements. We illustrated the conditions
of each of the 12 QUESTS in Figure For each of the three rows (N, M and F) of squares, we
make a distinction between squares located in the center (Central) and the squares on the left- and

108



short,
forward

NEAR

Lateral Central Lateral

(a) NEAR to MID

F:‘R m
¥
short,
forward

MID

Lateral Central Lateral

(¢) MID to FAR

FLIf FCIf
]

long,
forward

Lateral Central Lateral

(e) NEAR to FAR

Figure 5.4: Illustration of the QUEST conditions according to the type of the preceding saccade

MID

short,
backward
B 4
NEAR NLsb NCsb NLsb

Lateral Central Lateral

(b) MID to NEAR

FAR
short,
backward - - . -

Lateral Central Lateral

(d) FAR to MID

long,
backward

NCIf NLIf

Lateral Central Lateral

(f) FAR to NEAR



right-hand side of the row (Lateral). We differentiate eye movements between two consecutively
attended squares. In particular, we distinguish short binocular saccades between two consecutive
rows and long binocular saccades between the last and first row. We also distinguish backward
saccades from far to near squares, and forward saccades from near to far squares. For each
possible combination of these categories, we use a different QUEST instance to measure the
respective fusion time. Note that 50% of the 24 theoretically possible combinations are not
possible in our scene, e.g., a backward saccade to the near row is an invalid case. Thus there
are 12 QUESTS in total (NCsb, NClb, NLsb, NL1b, MCsf, MCsb, MLsf, MLsb, FCIf, FCsf,
FLsf and FLIf). All these QUESTSs were run in parallel and scheduled in randomized order. In
each trial, a QUEST was started after sensing two gaze points near the cued square plane. Since
the mechanism to launch the QUEST was equal in both of the SS and DS conditions, the latency
required to detect a fixation should not affect the measurement process itself.

We used the Matlab Psycho Toolbox to control the QUESTSs. The threshold guess was set
to t¢ = 1000ms (which is used as initial test time), the standard deviation guess to tgsq =
1000ms, and the probability threshold to pr = 82%. The gamma parameter was set to v = 50%
and the delta parameter was 6 = 0.01. As beta parameter we used 8 = 5.4, which was optimized
using data obtained by one of the authors performing a beta analysis over 800 trials of the
experiment run in condition SS.

5.3.5 Procedure

Each participant was assigned to perform two blocks of multiple trials for each of the two condi-
tions (SS and DS). The experimental condition of each block was randomly selected to counter
balance potential effects of ordering. The duration of each block was 20 minutes on average
since it depended on the convergence time of all QUESTS, contributing to a total experiment du-
ration of 40 minutes in average for both blocks. Each of the 12 QUESTSs converged, in average,
after 65 trials summing up to approximately 800 trials in total for each block and participant.
To prevent eye-strain and fatigue the procedure was paused automatically every 5 minutes for a
fixed 1-minute break before continuing the block. Prior to the two main blocks, a short block
of 27 trials was used as a training block for the participants to familiarize themselves with the
task. During training, a participant viewed the RDS on each of the 9 squares in the scene for
one second and had to identify the orientation of the sine-wave tilt. This procedure was repeated
three times in the training block.

5.3.6 Subjective Measurements

Besides the fusion times measured with the QUEST procedures, we also took subjective mea-
surements according to the ITU-Recommendation for subjective methods for the assessment of
stereoscopic 3DTV systems [2[]. This recommends a 5-level rating scale where the user scores
his experience with respect to picture quality, depth quality and visual comfort. We told partici-
pants that the levels serve an orientation and the ratings can be done on a continuous scale. After
each block, we asked participants to rate depth quality and visual comfort only, since our scene
had no characteristics that could be assessed for a reliable picture quality rating.
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5.3.7 Setup and Configuration

The hardware setup in use was a See Real Technology Cn 201.05 Autostereoscopic 20" monitor
which uses a vertical interlace technique to display stereo image pairs. The resolution of each
image was 800 x 1200 pixels, but due to the interlace technique they were shown with a 4 : 3
ratio. To avoid reflections in the display, the experiment was carried out in a room without
daylight under dim light conditions. We used a Tobii x50 eye-tracker, which was placed in front
of the display. Due to the display’s refresh rate of 60H z, the eye tracker’s sampling rate of
50H z and the eye tracker’s latency of 35ms, stereo disparity adjustments were performed with
a delayﬂ ranging, depending on the sampling phase of the eye-tracker, between a minimum of
72ms (best case) and a maximum of 92ms (worst case). Configuration and a 5-point calibration
was carried out for each participant before the training block using the software provided by
the manufacturer. In addition, we used a chin-rest placed 67cm away from the display’s center.
Besides allowing faster and more accurate gaze sampling, the chin-rest’s main purpose was to
prevent participants from moving their eyes away from the auto-stereo display’s optimal 3D
view point.

5.4 Results

5.4.1 Distribution of Fusion Times

We use descriptive statistics to analyze the main effect of the two conditions. We computed the
fusion times’ histograms shown in Figure[5.5] Since the effects vary considerably with the dis-
tance of the focused row of squares, we split the data for all rows. Nevertheless, the distribution
of the fusion time in the DS condition is very similar for each row and also consistently of lower
variance. To analyze the overall effect of condition and its significance, we performed a paired
Wilcoxon test, a non-parametric alternative to the Student’s ¢-test, which could not be used for
our data due to violating the assumptions of normality and equality of variance. The test results
are shown in Table

Concerning the effect of condition on fusion time, we found a highly significant positive
effect for DS only in the NEAR row. The overall effect for the MID row was, however, a
significant increase of fusion times due to dynamic switching of the focal plane. Comparing
the results of both conditions in the MID row, where we had in both conditions zero disparity,
reveals that focal plane switching causes an overhead in fusion time which was in average 94ms
(mean difference between DS and SS), what lies close to the average delay (82ms) in disparity
adjustments caused by gaze sensing and the display refresh rate. To some extent, the overhead
explains why the effect of DS was more on the negative side for the NEAR row, where many
users had relatively short fusion times in the SS condition. However, the benefits of DS seem to
vary considerably among participants, as discussed next.
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Figure 5.5: Distribution of fusion times sorted by stereo condition (rows) and depth plane
(columns). For each histogram, the abscissa denotes fusion time in seconds and the ordinate
shows the occurrence frequency. Black lines mark the means.
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SS vs. DS Effect
NEAR | p<.0001’**** | DS < SS
MID | p<.0001’**** | SS§ < DS
FAR | p=.1353 -

Table 5.1: The effect of SS versus DS for NEAR, MID, and FAR row.
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Figure 5.6: Visualization of the percentage of participants who had a benefit from dynamic
stereo. We grouped users according to the number of QUESTSs having a shorter fusion time in
DS compared to SS. In the second group, we added results we expect from an ideal disparity
adjustment without a technical latency. The last chart shows the expected result of a random
process.

5.4.2 User Group Analysis

One important result of this experiment is that fusion times vary considerably with users. This
suggests that stereoscopic fusion which occurs within the stereo viewing comfort zone are id-
iosyncratic characteristics of each participant’s visual system. To investigate on how many users
DS is beneficial, we counted for each row the amount of corresponding QUESTs which had a
better fusion time in DS rather than in SS. Since each participant performed 4 QUESTS in each
row, we visualized the result with pie charts with five sectors, each corresponding to one of the
possible outcomes (1, 2, 3 or 4 better in DS, or all being worse) for each participant. We show
the results in Figure[5.6]for each row of squares. In addition, we include a fourth pie chart which
shows the expected result for a random process.The charts illustrate that a majority of 60% of
users benefit from DS in the NEAR row (3/4 or 4/4 of the fusion times better in DS than SS)
which is more than double the percentage (31%) expected by a random process. For the MID
row, however, there is a significant majority of 77% which has a disadvantage (0/4 or 1/4) from
DS and a significantly smaller group having an advantage of DS than expected by chance. In
the FAR row the results are more ambivalent. The percentage of users (32%) having an ad-
vantage with DS lies within the range of a random process (31%), while the fraction of those
benefiting from SS (63%) is significantly higher than expected by chance. However, looking at
the group of 29% of all participants having a maximum benefit (4/4), we also see a significant
deviation from a random expectation (6%). Overall, these results suggest that the user’s comfort
zone is personalized and is related to the positive or negative impact that dynamic focal plane
manipulation may have on him.

"best case: 35ms(latency)+1 x 20ms(sampling)+17ms(display)
worst case: 35ms(latency)+2 x 20ms(sampling)+17ms(display)
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Figure 5.7: Distribution of subjective comfort and depth quality ratings visualized as Boxplots.

To gain insight on what can be expected from an optimal disparity adjustment performed
with zero latency, we simulated a ideal case by subtracting the average latency of 82ms from
the fusion times observed in the DS condition. However, while the amount of users having a
benefit from DS increases considerably in all three rows, there is still a significant percentage of
users who saw the maximum disadvantage from DS in the MID and FAR rows. Particularly for
the FAR row there appears to still be some overhead probably resulting from other factors other
than delayed disparity adjustments.

5.4.3 Subjective Measurements

The analysis of user ratings is perfromed using descriptive statistics. Results are shown in Fig-
ure where we visualized the distribution of the subjective comfort and quality ratings. For
the comfort ratings, we obtained a positive effect of using DS compared to SS, albeit with a
weak significance (paired two-tailed Wilcoxon T test, V' = 174,p = 0.09). Overall 50% of
all participants rated DS to be “comfortable” at least, while the median for SS is at the “middle
comfortable” level. A slight positive shift from SS to DS was also observed in the quality rat-
ings, but the effect is not significant (Wilcoxon 1 test, V' = 187.5, p = 0.16). Since DS actually
distorts the relation of disparities within a scene of objects, no decrease in perceived quality can
be also interpreted as a result favoring the application of DS if viewing comfort can be increased.

5.4.4 Other Factors Influencing Fusion Times

Besides disparity, we contemplated that fusion times may also be affected by the position of
the square or the type of saccade prior to the fusion process. We performed a factorial analysis
to determine the effects of depth (NEAR vs MID vs FAR), saccade length (long vs short) and
direction (forward vs backward), and azimuth (central vs lateral). We first analyzed the effect of
depth using a Friedman test (the non-parametric equivalent to a 2-way ANOVA) which allows
replicates (i.e,4). However, the Friedman test is not applicable for a multi-factorial analysis.
Assuming that depth is the most dominant factor, we split the data for each depth (N,M,F).
Since there are only two independent variables per row which have only two categories, we
could use a Wilcox test. In particular, we performed a paired Wilcox test on the single factors,

114



SS Effect DS Effect
Depth | p=10"20"%%% M<F<N | p=.069"" (F<N<M)
s.length | p=.0013"** s<1 p=.48 -
FAR azimuth | p = .20 — p=.95 -
s.dir. | p=.04"* f<b p=.65 -
MID azimuth | p=.014"*’ c<l1 p=.37 -
s.length | p=.77 - p=.067"" (s<D)
NEAR azimuth | p=.17 - p=.056"" (c<)

Table 5.2: Factorial analysis of rank-transformed fusion times.

i.e., saccade length, saccade direction and azimuth. To compensate potential effects resulting
from interactions of the two factors present in each row, we sorted in the evaluation of one factor
the data such that the Wilcox test always compared pairs corresponding to the same category of
the other factor.

The results which are listed in Table 5.2l show that the lower variance of fusion times in the
DS condition is due to a clear reduction of effects resulting from object distance, saccade length
and direction. These factors are more pronounced in the SS condition. There we found that
fusion times are significantly lower when a user performs a “short” saccade from the MID to the
FAR row compared to a “long” saccade from the NEAR to the FAR row, though this does not
apply for saccades in the backward direction. Furthermore, we found a significant fusion time
advantage at the object located in the center of the MID row and for forward saccades compared
to backward saccades. Overall, these results suggest that fusion times are also affected by prior
gaze movement. Other effects of preceding saccades become apparent in the gaze analysis which
we discuss next.

5.4.6 Gaze Analysis

By recording binocular gaze data throughout the experiment, we can also analyze the eye ver-
gence behavior. To this end, we extracted the gaze signal of the first fixation each time the fusion
task started and computed the screen distance between left and right gaze point in degrees of vi-
sual angle, which we further denote as gaze disparity. Since this requires an additional so-called
depth calibration [47]], we computed for each participant a correcting shift such that the average
gaze disparity observed when a user fixates the plane of zero parallax in the (disparity manipu-
lation free) SS condition fits to zero.

We analyzed this data by plotting the average gaze disparity of over 2000 fixations recorded
during the experiment for each QUEST condition as a function of time. Averaging many fixa-
tions turned out to be a good remedy against the strong noise in vergence measurements taken
with a conventional eye tracker (cf. [47]). We temporally aligned all gaze samples such that
the fixation begin time corresponds to ¢ = 0 and averaged for each sampling time interval
(At = 20ms) the gaze disparities. The results corresponding to each QUEST condition are
shown in Figure [5.8] For the DS condition, we split the gaze data obtained from fixations on
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Figure 5.8: Temporal behavior of eye vergences. We derived this plots by averaging data of all
fixations corresponding to the same QUEST.

the NEAR or FAR row in two groups: one group contains participants having a fusion time
advantage in the DS condition (green graph), and the other group includes those who had a
disadvantage (red graph). These groups correspond to the green/lime and red/orange fractions
shown in the group analysis before, respectively (Figure [5.6). However, for the MID row we
have consolidated all data of the DS condition into a single graph (blue), since we did not observe
a clear by participant clustering as for the other two rows.

In the case of SS condition (black), these plots make apparent that after a saccade the gaze
disparity has an undershoot relative to the targeted stimulus disparity (dotted line). At fixation
time eye rotations accommodate the stimulus disparity. In particular, saccades in forward di-
rection are followed by a divergent eye rotation, and backward saccades by a convergent eye
rotation, respectively. Moreover, we observe in the NEAR row after 600ms, that gaze dispar-
ity slowly drifts away from the stimulus disparity. A reason for this could be that it is difficult
to maintain the alignment between extensive stimulus disparities and the gaze disparity for a
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longer time due to an acute emergence of visual fatigue. As a side-remark, detecting such
patterns could be a new way to measure discomfort without measuring fusion time.

In the DS condition, the dynamic disparity modifications fundamentally change the behav-
ior pattern observed under consistent disparity conditions. In contrast to SS, we observe an
overshoot of the stimulus disparity after the saccade, which is followed by an accommodating
vergence in the opposite depth-direction as the saccade. Another difference is that the stimulus
disparity it not accommodated so well as observed in the SS condition, what is most obvious in
the FAR row. Thus, stereo fusion in DS seems to often take place with higher retinal dispari-
ties requiring to fuse objects nearer to the limits of Panums fusional area (which is usually in
the range of 0° £ 1° of retinal disparity). A reason for this could be that a user’s expectations
together with monocular depth cues of the scene are in conflict with binocular depth perception.
Moreover, extensive peripheral disparities, which occur in the NEAR row when the plane of zero
parallax is shifted to the FAR row, might impede the accommodating vergence to disparities in
the FAR row.

Looking at the difference between those participants having a fusion advantage in DS (green
graphs), we can observe the most noticeable difference to those with a disadvantage (red graphs)
in fixations following a short saccade to the FAR row, where the green group approaches faster
the stimulus disparity. When focusing the central square this behavior is most pronounced and
green vergence graphs do also have a smaller overshoot. However, the gaze disparity graphs do
not explain why the green group has a fusion advantage after long saccades in the FAR row, or
in all fixation on the NEAR row, respectively.

Overall, the gaze analysis results mainly reveal that users perform preparatory vergence
movement already during a saccade, which is consistent with findings from vision literature [[69,
188]]. While under natural viewing conditions the target disparity is undershot, DS yields an
overshoot through manipulating the stimulus disparity.

5.5 Discussion

We found that gaze-controlled manipulation of the plane of zero parallax can lower fusion times
for large disparities. However, there is a delay in fusion time that is attributed to the way we
detect when to adjust the plane of zero parallax. In this work we did not assume prior knowledge
of the user’s future gaze target intentionally. Instead we used a strategy that would be more
appropriate for replicating the behavior of such a technique in a real-time gaze-contingent appli-
cation. Our strategy after cuing the next square was to collect two gaze samples in proximity to
the target, which constituted the initiation of a fixation. This source of fusion time delay could be
technically reduced, for instance by sampling at a higher rate or by methods which can predict
future gaze points.

This technical latency does not fully explain the overhead in fusion time that was observed
after adjusting the plane of zero parallax. This became particularly apparent in the FAR plane,
where a large group of users had a longer fusion time overhead than predicted by the latency
alone. We believe two reasons may be responsible for this. First, the abrupt change of dispari-
ties may require a readjustment of the visual system that introduces a delay in fusion. Second,
stereo fusion may be facilitated by sensory hysteresis ( [69, p. 322]) or peripheral vision pro-
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cessing [32]. Fast manipulation of the stimuli’s disparities may be interfering or inhibiting the
function of these processes. Moreover, the results of the gaze analysis suggest that the conflict
between anticipated and adjusted disparities after a saccade may have a negative impact on the
post-saccadic vergence accommodation. Under natural viewing conditions, vergence eye move-
ments occur already at saccade time and usually undershoot the disparity of the stimulus at the
sacced landing position. This is followed by a slow and more accurate post-saccadic vergence
accommodation into the same orientation as the vergence movements occuring during a sac-
cade [188[]. Due to that, disparity manipulations cause an overshoot of the stimulus disparity.
Since the vergence accommodation at fixation time has to be performed in the reverse direction
as under natural conditions, we speculate that this could be another source of discomfort.

Overall, our methodology allowed an in depth investigation identifying the main problems
of fast gaze-contingent disparity adjustments. The implications of our results should mainly
affect the design of smart disparity adjustment strategies and the way models for stereo comfort
should be designed and measured:

¢ Ideal comfort models should account for gaze movement from previous to the next object,
as suggested by the results of the gaze analysis showing that fusion times and vergence
behaviors are both affected by the type of the previous saccade.

* Apart from measuring fusion times, the additional use of gaze data to analyze temporal
vergence behavior provides a powerful tool giving deeper insights how discomfort may
arise. We believe that features of temporal vergence signals could be linked to discom-
fort and potentially allow objective comfort measurements with more natural stimuli than
RDS:s.

* And finally, smart disparity adjustments should be performed such that a stimulus dispar-
ity overshoot in saccadic vergence movements is avoided. Such a strategy would be, for
instance, to shift the plane of zero parallax to the fixated stimulus distance biased by the
expected overshoot.

5.6 Conclusion and Future Work

We consider this work as an important step towards the development of gaze-controlled disparity
in stereoscopic applications. To develop such stereo controllers, it is necessary to devise a com-
putational model that predicts the costs (i.e., expected fusion delay) and benefits (i.e., expected
fusion time reduction) of a possible disparity adjustment in order to select the most appropri-
ate configuration by means of maximizing the cost-benefit ratio. Although our results could
be implemented as a preliminary instance of such a model (with 3 discrete distances), a more
fine-grained model should be derived by further experiments.

For instance, our experiment may be carried out with stimuli arranged in more depth layers,
which would allow obtaining samples of fusion times for more than three disparity levels. Fur-
thermore, other disparity-adjustment strategies than fast switching need to be investigated. Such
strategies may include smooth transitions and methods which can mask disparity adjustments
or even avoid latency. For instance, using high frequency (e.g. 200H z) eye-trackers with low
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latency may potentially allow to predict saccade-landing positions at the beginning of a sac-
cade using a ballistic model [93]]. Being able to estimate the future gaze position would then
allow to perform the disparity adjustments within the time window of a saccade during which
the stream of visual processing is disrupted [128]]. However, avoiding latency is a hard problem
and requires that it is being traded off against a much lower accuracy in the determination of
the attended depth plane. An inaccurate identification of a future gaze location would be serious
hindrance for many end-user applications. Furthermore, disparity adjustments performed during
a saccade produce a conflict between the disparity a user anticipates and the disparty finally seen
on the saccade landing target. This results in an unnatural experience which may cause fusion
time delays and is potentially another source of discomfort.

Latency and fusion time delays, as identified in the presented experiment, are not the only
problems that should be solved to advance the state-of-the-art in applications with gaze-controlled
stereo disparities. For more complex scenes, that are commonplace in end-user commercial ap-
plications, it is particularly important to be able to reliably identify the feature or object currently
in the user’s focus, thus obtaining accurately the depth at which the user is directing his gaze. In
dynamic 3D scenes with a high density of objects and motion (e.g. 3D computer games) identi-
fying the attended depth plane can be very challenging, because visual attention does not always
coincide with the exact deployment of gaze (e.g. gaze may be deployed in close proximity to
the target). Robust gaze-to-object mapping methods as investigated in Chapter [3|have to be used
for 3D applications.

Finally, an ideal model should account for the fact that viewing comfort zones differ among
users. Ideally, future end-user applications would use calibration to generate a personalized
model by fitting the model’s parameters to the perceptual characteristics of each user.
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CHAPTER

Conclusion

You will always find something in
the last place you look

Murphy’s Law

6.1 Discussion of Contributions

This theses addresses the challenges that arise when processing eye-tracking data recorded in
interactive virtual environment applications in order to infer attended objects in a single frame
(Challenge I), or to analyze and predict visual attention from gaze data of many frames and
users (Challenge II). Moreover, with a pilot study on gaze-controlled stereoscopic displays we
explored the potential benefits and issues in an example application for attention-aware rendering
techniques (Challenge III):

Challenge I: Inferring Attention from Gaze

With the methodology proposed Chapter |3, we studied how to correlate gaze information with
object-based attention. The primary assumption made in this work was that attention is object-
based and that an attentional selection can be represented with a data structure (i.e., item buffer)
which encodes how objects are mapped to pixels. While this is an intuitive approach, the rep-
resentation of attentional selection as pixel maps closely resembles to the data structures that
were proposed with the Boolean-Map theory of visual attention [[73[]. Further, we assumed that
attention is directed to one object at a time, and thus we proposed a probabilistic approach to
quantify attention in a scene of objects. This work was published in ACM journal Transactions
on Applied Perception 2014 [6].
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Contribution

This work presents an initial solution on this challenge with two major contributions: First,
we devised experimental methodology to obtain a ground truth data set that can be used to
evaluate gaze-to-object mapping techniques. Second, we provided a formal specification of
gaze-to-object mapping as Bayesian inference problem. Based on this seminal work, future work
can advance gaze-to-object mapping by slowly increasing the complexity of the techniques.
We believe that graphical models, such as Bayesian networks, provide an appropriate formal
representation to design models for gaze-to-object mapping. We also believe that this was a
fundamental step towards understanding object-based attention.

Main Findings

We learned from this work is that gaze-to-object mapping in three-dimensional and highly dy-
namic scenes is a challenging problem that can be easily underestimated. In fact, it turned out
that it is hard to improve gaze-to-object mapping methods over trivial solutions, such as using
the distance to the center of gravity. During development time, we intensively worked on find-
ing more sophisticated solutions than the simple approaches we finally formally described and
assessed. For instance, we tried to establish a Bayesian model which includes information of
previous gaze samples in order to exploit the fact that gaze-pointing acuity is a function of move-
ment distance. We also attempted to increase performance by using image features or saliency
maps. Unfortunately, none of these attempts yielded improvements which justified the costs of
increased model-complexity compared to straight-forward approaches we used as baseline for
comparison.

The most important outcome of this work was that we understood that gaze-to-object map-
ping techniques can be grouped in two categories: methods from first category, which we de-
noted as Active Gaze-to-Object Mapping, are based on the assumption that visual attention is
active and determines gaze. In contrast to that, approaches from second category, which we
named Passive Gaze-to-Object Mapping, assume that visual attention is passive and follows
gaze. Both approaches are reasonable, and, depending on the task and object, attention may
behave in both ways, active and passive. In our experimental evaluation it turned out that gaze-
to-object mapping during visual search for compact object shapes works best with active gaze-
to-object mapping techniques, since these methods are independent of the size of the region an
object covers on the screen.

Open Questions and Outlook

The next big challenge is to improve gaze-to-object mapping methods over straight-forward ap-
proaches. Given the limitation of our methodology, it will be necessary to increase the amount
of test scenarios used to assess gaze-to-object mapping techniques. We already attempted con-
structing a wide range of representative test cases, but due to the curse of dimensionality in the
multitude of factors involved in the perception of visually complex and animated stimuli, our
evaluation data set covers only a limited fraction of scenarios where gaze-to-object mapping
becomes a challenge. The evaluation data set needs to be extended with data of many further
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experiments using a broader range of objects and scenes. Challenging examples that we did not
use in our evaluation include scenes with virtual humans or animals, objects which are placed
in vegetation scenes, or high speed animations and jerky camera movements which often occur
in fast-paced computer games. Besides properties of scene content, another factorial dimension
which should be considered is the task a user is performing while a gaze-to-object mapping tech-
nique is applied. Although visual search is fundamental behavior of vision, other tasks, such as
visual exploration of a scene, object manipulation during interaction, or visual comparison of
multiple objects, may result in different gaze behaviors which should be captured by an ideal
attention-observing system as well.

Another interesting avenue for future research is to use gaze-to-object mapping techniques
in the reverse direction. Instead of inferring a posterior probability for the attended object from
gaze observations, we can also infer a posterior probability for gaze positions or movements,
given an object-based attention prior, such as a task relevance map, statistical models derived
from previously recorded gaze or simply a uniform distribution. This may find utility for in-
creasing accuracy of low-quality eye trackers or for eye tracker calibration procedures that can
be run at application time. Moreover, this could be a promising avenue to improve saliency-map
algorithms. We believe that saliency maps should account for both the tendency to orient gaze
towards objects and the way how a user deploys gaze on attended objects.

Challenge II: Attention Analysis and Prediction

Chapter ] proposed a novel pipeline for gaze analysis. Our idea was to map spatial gaze data to
scene objects which can be further abstracted by properties or semantics. This pipeline consid-
erably facilitates gaze analysis since a user does not need to manually specify the spatial layout
of objects of interest as necessary in commercial gaze-analysis tools.

This work was published in ACM Transactions on Applied Perception in 2010 and also
contributed a signficiant part in a chapter on visual attention in computer games [168]] in the
book “Game Telemetry and Metrics: Maximizing the Value of User Data” (Springer 2013).

Contribution

The contributions of this work are mostly on the technical side and we made an important step
to identify the problem scope that arises when eye-tracking is used to generate gaze statistics
for three-dimensional computer games or interactive virtual environments. We contributed a
pipeline which allows an experimenter to introduce high-level knowledge into the gaze-analysis
process using a scripting language that provides a powerful interface to specify models for the
statistical analysis of gaze. We tested our prototype by using the derived statistical models to
predict visual attention.

Main Findings

With our example application, we demonstrated that this pipeline produces results that are con-
sistent with our expectations (e.g., high importance for enemies or sounding objects). However,
we expect that attention is way more difficult to predict intuitively in more complex interactive
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virtual environments or commercial computer games, where a gaze analysis could reveal much
more surprising insights.

Moreover, we attempted predicting attention using statistical models derived with the anal-
ysis pipeline. We were able to show that the gaze statistics collected for semantic categories
can predict attention much better than chance, particularly in task-intensive situations of our test
game, where we found that the object that is attended most likely could be predicted in about
70% of all cases. A disappointing result was, however, the observation that a trivial solution
which predicts attention by the distance to the screen center performs better (up to 80% success
rate) than more sophisticated models. This result is due to the nature of first-person games where
the mouse is used to orient the camera. To have an optimal point of view, the user tries orienting
the camera such that attended objects are brought to the center of the field of view.

However, seen in a more positive way, this results also suggests that we can easily sup-
plement eye trackers in first-person shooter games by determining objects which are located
near crosshairs. For applications such as multiplayer online games, this would be an effective
low-cost solution to coarsely track a user’s attention during game play.

Open Questions and Outlook

Despite our results, which indicate that visual attention is best predicted with trivial solutions, we
believe that in other types of games our approach could outperform trivial solutions or heuris-
tics. The open question is whether our approach may perform better than trivial solutions in
applications where the camera is not under a user’s control.

To further this research, it is also necessary to explore the utility of our tools for attention
analysis in numerous applications, i.e., various game genres, or different kinds of virtual envi-
ronment simulators. An interesting example where the pipeline may have a strong utility are
studies on visual attention in car driving simulators. Given the scripting interface, an experi-
menter can define the meaning of objects in a traffic scene with respect to the current goal of a
car driver. For instance, an approaching car in a street crossing may be attended in a different
way than a parking car or a pedestrian that has already crossed the street.

Challenge III : Attention-Aware Rendering

The work presented in Chapter IV contributes a pilot study to explore the application of eye-
tracking for increasing comfort in stereoscopic displays. At an early stage of this work, we
implemented a gaze-adaptive disparity controller which we used with an interactive computer
game. However, it turned out that it is very difficult to assess the perceptual benefits and draw-
backs of this method. Thus, we decided to take one step back and to first establish a methodology
which allows us to evaluate the application. Our goal was to design a method for an objective
perceptual evaluation in order to better identify when and where a user has problems to fuse
stereo image pairs.

This work was published in the proceedings of the ACM Symposium in Eye Tracking and
Applications 2014 [5]].
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Contribution

The main contribution of this work is a study design which allows measuring fusion times for
single objects which are arranged in a three-dimensional scene. With this experimental setup, we
were able early on to identify issues that should be addressed when developing gaze-controlled
stereoscopic applications.

We proposed to use an eye tracker and psychophysics to evaluate discomfort objectively. In
particular, we evaluated visual discomfort induced by stereoscopic displays by measuring the
time a user needs to fuse a pair of stereo images or by analyzing binocular gaze data. Fusion
times have proven to be a good indicator for discomfort, while eye tracking can be used to (a)
control the position where and the time when fusion time measurements are taken and (b) to an-
alyze vergence behavior by processing binocular gaze data. Previous work experimental designs
use RDS to measure fusion times for single objects (i.e., one RDS) shown in isolation, while un-
der more natural conditions a focused object is located in the context of a scene of objects. We
contributed an experimental design which allows to measure fusion times for particular objects
which are located in the context of a three-dimensional scene. Having such a methodology, we
are able to study the effects of gaze-controlled stereo on viewing comfort more accurately, since
we obtain results for particular scene objects.

Main Findings

In our pilot study, we evaluated discomfort in gaze-controlled stereoscopic displays by com-
paring the result to a conventional stereo condition with a static configuration (i.e., the control
baseline condition). We found that gaze controlled disparity adjustments are most successfully
applied when a user focuses on near objects shown with high disparities, while shifting the focus
to far objects in a scene should be avoided as it does not increase comfort compared to appli-
cations which keep a static focus in the center of a scene. Also, we found that the benefits of
gaze-responsive stereo depend on the user. Among our participants there was a large group of
users which did not have a significant benefit from gaze-controlled stereo. Most of the users do
not benefit from the disparity adjustments since they have no difficulties in fusing images even if
the vergence/accomodation conflict is severe. This also raises the question whether fusion-time
measurement alone is sufficient to objectively measure discomfort.

Another issue which became apparent in this study is the latency in the determination of the
attended object which directly translates to an equivalent increase of the fusion times. However,
this is a technical problem which could be reduced or even solved by using low-latency and
high frame rate eye-tracking hardware and ballistic models which can predict a saccade landing
position at the time of the onset of a saccade. Thanks to change blindness during saccades, such
a strategy may perform fast disparity adjustment without a user noticing the disparity manip-
ulations. However, a really fundamental limitation identified in this work is that a user adapts
vergence to an anticipated target disparity already at saccade time. When disparities are altered
by a gaze-responsive stereo configuration, this behavior results in an overshoot of the manipu-
lated disparities.
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Open Questions and Outlook

An important open issue which has to be clarified is whether anticipatory vergence adaptations
performed during a saccade are a significant problem for the experience of a user. While this
problem could render fast disparity adjustments as not applicable at all, some hope is still left:
on the one hand, a user might not experience the overshoot as discomfort or even change this
behavior by learning in long term use. In personal discussions after the experiments, some users
reported that they were feeling more comfortable with the gaze-controlled stereo with increasing
exposure time and started to adapt to the behavior of the system. On the other hand, strategies
could be developed which trade of overshoot against lower vergence/accomodation conflicts in
a way that it does not affect the experience negatively. At least the results of our subjective
evaluation do not indicate a negative impact on a user’s subjective experience. However, the
questions on experienced discomfort did not particularly address this issue. Thus, further user
studies are required to answer this question.

Another critical issue that should be evaluated is how the instant alignment of the stereo fo-
cus with the depth of an attended object affects global depth perception, i.e., the perceived spa-
tial relation between objects in the whole scene. Since sensitivity to disparity changes is highest
near the plane of zero parallax, our strategy maximizes stereoscopic depth perception locally.
But aligning the plane of zero parallax with the distance of the attended object comes with the
cost that depth information in absolute disparities gets lost completely. Thus, the binocularly
perceived relation of the scene objects’ depths is severely distorted and can only be resolved
from monocular depth cues. Further experiments need to be carried out to answer the question
whether, or to which extent, this “distortion” of absolute disparities affects global depth percep-
tion in a negative way. To this end, it would be necessary to design experiments which assess a
user’s performance in tasks which require correct depth perception.

Finally, we also think that considerable work has to be done to improve methodologies to
measure visual discomfort. This is, on the one hand, important to evaluate applications which
try to reduce discomfort. On the other hand, this is important to build better models for visual
discomfort, which should be ideally personalized and also account for the properties of the stim-
ulus, such as the arrangement of scene objects. Measuring fusion times with the joint use of
pychophysics and an eye tracker is probably not the most elegant and easiest way to do that,
and the results may not necessarily generalize to applications with more complex stimuli than
random-dot stereograms. With the experience of our work, we would now rather advocate to
focus on binocular gaze analysis to detect patterns in the vergence signal which allow to infer
fusion times. For instance, the recent work of Templin et al. [[174] proposed an elegant method-
ology to estimate vergence response times from binocular gaze signals recorded with an eye
tracker. However, still some ground work is required in order to map patterns observed in a
binocular gaze analysis to viewing comfort. One way would be to perform experiments where
a multitude of factors which are related to discomfort are measured simultaneously (e.g., fusion
times, subjective judgments, eye blink rate, EEG etc.). Having this data, we can correlate ver-
gence patterns with other comfort indicators in order to find ways to detect comfort-predicting
features in the extremely noisy vergence signal. The great advantage of binocular comfort mea-
surement would be that we can use stimuli of arbitrary complexity and measure discomfort every
time and everywhere a user is fixating.
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6.2 Ideas for Future Work

Apart from future work that advances the methods proposed in this thesis, which was discussed
in the future work sections of this thesis and the discussion presented above, the following ideas
could be interesting to pursue in future:

Probabilistic Attention-Aware Rendering

The approaches used to model attention in this work are in their nature probabilistic. This has
the advantage that uncertainties are represented in a probability function that provides a confi-
dence measure for each possible attentional selection (e.g., pixel-map of one object). Given a
particular configuration of the rendering method and a perceptual model (e.g., visible difference
predictor or stereo comfort model), the attention probability allows to predict the expected value
of perceived rendering errors or the experienced discomfort. Attention-aware rendering can be
defined as an optimization problem which is solved by searching for a configuration which max-
imizes rendering speed or comfort while the expected error a user may perceive is minimized.

Application with Non-Artificial Stimuli

The concept of using an item buffer to encode a scene as object-location map is a powerful
and generic approach. The boolean representation of coherent image regions that belong to a
unique object can be generalized to a “feature buffer” containing a discrete set of boolean maps
representing image regions sharing a similar color, orientation, depth or motion feature value.
Since such a feature buffer can be extracted with image processing tools from digital images,
the gaze-analysis methodology presented here could be brought forward to find application also
on real world stimuli. This could be for instance useful to generate attention predictors based on
gaze statistics that were build in feature space (e.g., color importance maps).

Combining Eye-Tracking with Other Observational Devices

User experience in interactive virtual environments and games can be studied more accurately
by the accompanying use of biometric devices. For instance, it could be useful to record electro
encephalography (EEG) data, galvanic skin response (GSR), heart rate (EKG), blood volume
pulse (BVP), and breathing [[199]. With the additional use of such observational tools, further
information about a user’s emotional state could be obtained and linked with the visually at-
tended scene content. Much more advanced would be the use of functional magnet resonance
imaging (fMRI), which recently evolved as the most powerful tool to study brain activity in ac-
tion. Linking visual attention as measured with the eye tracker with neural activation patterns
observed in real-time with fMRI, could be an extremely powerful method of investigation.
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