
Integration of Web-Based
Information Visualizations into a

Scientific Visualization
Environment

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Johannes Bauer
Matrikelnummer 0427512

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Math. Dr.techn. Katja Bühler, VRVis

Wien, 3.12.2014
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Integration of Web-Based
Information Visualizations into a

Scientific Visualization
Environment

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Medical Informatics

by

Johannes Bauer
Registration Number 0427512

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Math. Dr.techn. Katja Bühler, VRVis

Vienna, 3.12.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Johannes Bauer
Zeleborgasse 14-16/6, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

Today’s neuro-biological research is often based on brains of the Drosophila Melanogaster, the
commonly known fruit fly. To study the function of neuronal circuits scientists often have to
compare the neuronal structures of a set of different brains. Their aim is to find out how complex
behavior is generated. Therefore the scientists at the Institute of Molecular Pathology (IMP) in
Vienna are using a confocal microscope to produce volumetric images of Drosophila brains.
Today they have acquired more than 40.000 images and a large amount of additional data.

In many cases 3D renderings of these volumetric images are not sufficient to solve certain
scientific problems especially when multiple brains have to be considered. Therefore the re-
searchers rely on additional data which is stored in databases. The problem here is that the
scientists have two different data sources without a connection between them. On the one hand
there are the volumetric images and on the other hand there is the additional data which has
certain relations to the brains.

This thesis proposes a software design concept to establish a connection between 3D render-
ings of volumetric images and additional data by using information visualizations. Highlighting
techniques can be introduced to link volume visualizations of the brains to related data visu-
alized by 2D information visualizations. Therefore the implementation of this design concept
gets integrated into an existing scientific visualization environment. To evaluate this concept
common neuro-biological use cases are introduced and it is described how the implementation
of this design concept supports the work flow of the researchers.

iii

Kurzfassung

Die heutige neurobiologische Forschung basiert oft auf Gehirnen der Drosophila Melanogaster
Fruchtfliege. Um die Funktion von neuralen Netzwerken der Gehirne zu erforschen müssen die
Wissenschaftler oftmals neurale Strukturen von mehreren Gehirnen miteinander vergleichen. Ihr
Ziel ist es heraus zu finden wie komplexes Verhalten entsteht. Zu diesem Zweck verwenden die
Wissenschaftler des Forschungsinstituts für molekulare Pathologie (IMP) in Wien ein konfoka-
les Mikroskop um volumetrische Bilder der Gehirne zu erzeugen. Heute haben sie bereits mehr
als 40.000 dieser Bilder gemeinsam mit einer großen Menge an zusätzlichen Daten erzeugt.

In vielen Fällen sind drei dimensionale Darstellungen nicht ausreichend um gewisse wissen-
schaftliche Probleme zu lösen. Gerade dann, wenn mehrere Gehirne in Betracht gezogen werden
müssen. Deswegen benötigen die Forscher zusätzliche Daten welche in Datenbanken abgespei-
chert sind. Hier ergibt sich das Problem dass die Forscher zwei unterschiedliche Datenquellen
ohne direkte Verbindung dazwischen in Betracht ziehen müssen. Auf der einen Seite gibt es die
drei dimensionalen Bilder und auf der anderen Seite zusätzliche Daten die aber gewisse Bezie-
hungen zu den Bildern haben.

Diese Arbeit stellt ein Software Design Konzept vor um eine Verbindung zwischen den drei
dimensionalen Darstellungen der volumetrischen Bilder her zu stellen. Highlighting Techniken
können verwendet werden um Verbindungen zwischen Volumen Visualisierungen der Gehirne
und den dazu in Beziehung stehenden Daten in den zwei dimensionalen Informationsvisuali-
sierungen her zu stellen. Dafür wird die Implementierung dieses Software Design Konzepts in
eine existierende wissenschaftliche Visualisierungsumgebung integriert. Um dieses Konzept zu
evaluieren werden häufige neurobiologische Anwendungsfälle herangezogen und beschrieben,
wie die Implementierung dieses Design Konzepts den Arbeitsverlauf der Forscher unterstützen
kann.

v

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Approach . 2
1.3 Requirements . 3
1.4 Thesis Overview . 3

2 Background 5
2.1 Visualization Pipeline . 5
2.2 Types of Data Visualizations . 9
2.3 Multiple Coordinated Views . 10
2.4 Model View Controller Pattern . 12

3 Related Work 15
3.1 Data Visualization . 15
3.2 Applications of the Visualization Pipeline . 16
3.3 Conclusion . 20

4 Software Design 23
4.1 Overview . 23
4.2 Existing Client-Server Environment . 23
4.3 Existing User Interface . 25
4.4 Architectural Design Overview . 28
4.5 Server features . 29
4.6 Client Features . 32

5 Implementation 37
5.1 Existing Environment . 37
5.2 Server Features . 37
5.3 Client Features . 42

6 Evaluation 55
6.1 Objective Evaluation . 55
6.2 Case studies . 58

vii

7 Conclusion and Future Work 69
7.1 Conclusion . 69
7.2 Future work . 69

Bibliography 75

viii

CHAPTER 1
Introduction

Data generated by scientific experiments can be divided into two categories. In the last decade
two scientific communities originated out of this division each focusing on the visualization of
data of one of these categories [28].

On the one side there is the community about scientific visualization (SciVis). Here data sets
are typically generated from measurements, simulations or scans of a three-dimensional object.
It deals with data that represents objects from the physical world - data, which has a spatial
context.

On the other hand there is the information visualization community (InfoVis). Its different
research area covers visual representations of abstract data that primarily has no spatial dimen-
sions but might have relations to a physical object. Representations aim at illustrating multiple
dimensions to enable humans to identify patterns, clusters, trends or outliers in the data [31].

?

Figure 1.1: How to connect scientific and related numeric data? (image source: own work)

1

Using InfoVis methods to display properties of physical objects might be useful to establish
a link between these two research areas. Thus it might be possible to compare multiple physical
objects by their numerical properties (figure 1.1).

1.1 Problem Statement

The scientists at the Institute for Molecular Pathology (IMP) are using a confocal microscope
to produce volumetric images of brains of the drosophila melanogaster (the commonly known
fruit fly). After taking these images the scientists conduct several processing steps to collect
additional information about the neuronal structures and properties of each sample. They point
out cell bodies, neurons or arborizations by segmenting these structures within the raw data.
These results of the segmentation are essential for further analysis.

Today the scientists have collected more than 40.000 images [3] and a huge amount of related
data. Consequently the scientists often need to compare neuronal structures or query certain
images due to given properties. Such problems cannot be solved by simply rendering these
objects. This requires new methods to connect the three-dimensional representations to the
related data in a clearly structured way.

What is needed is a solution to link three-dimensional images with the related numerical and
categorical data.

1.2 Approach

In the mid 90’s information visualization (InfoVis) became a well known and established re-
search field in computer science [38]. Information visualization uses graphical models to visu-
ally represent abstract data. Such proven concepts can be used to visualize the related data of
three-dimensional images. This should facilitate the process of comparing or finding similarities
within a set of objects. Furthermore it might allow the scientists to gain better insight into their
data.

Due to the long existence of the research field of information visualization many definitions
can be found in the literature. One says, ’information visualization uses graphical models that
may represent abstract concepts and relationships that do not necessarily have a counterpart in
the physical world’ [22]. In the context of the existing environment the real world objects are
3 dimensional images with related numerical data. Hence, in the biomedical context of this
concept the connection between the two sides plays an essential role.

This design concept will be integrated as a new feature into BrainGazer [20], an existing
visualization environment for visualizing three-dimensional image data of drosophila brains in
order to study neuronal circuits. BrainGazer offers a multi-view user interface where the user
can place a set of different views on the screen. So far each view has a predefined functionality,
e.g., 3D rendering or database query features. The proposed concept shall extend the existing
environment by additional views with two-dimensional InfoVis views and establish links to the
3D renderings of images.

2

Therefore a framework has to be realized in order to enable this integration. This framework
can then be used by software developers to add new views after domain experts have defined use
cases.

1.3 Requirements

Due to the implementation in an existing environment the following requirements can be in-
ferred.

• To establish a seamless integration new views are required to support existing user inter-
face features. Therefore it is necessary to develop interfaces between these two entities.

• Take the client server infrastructure into account when implementing visualizations. This
allows extending the environment without any modification of the client application.

• Create exchangeable modules for both data sources and visualizations. On the client side,
this allows the domain experts to decide which type of visualization is suitable for the
given problem.

• Establish a modular developing framework to minimize the implementation efforts for
new visualizations.

1.4 Thesis Overview

The next section describes conceptual models and methologies that are used in this thesis. Chap-
ter 3 introduces related projects that have a certain similarity to this concept. The method chapter
will describe, how the techniques and practices can be used and combined in order to establish
a solution. The implementation chapter gives a detailed overview over programming and devel-
oping techniques. The evaluation in chapter 6 first evaluates the performance of the implemen-
tation. The second part introduces the biological background and describes how the proposed
framework can be used to solve given use cases. The thesis ends with a conclusion and possible
improvements of this concept.

3

CHAPTER 2
Background

This chapter introduces theoretical backgrounds that form the basis of the presented thesis. Se-
lected conceptual models and methodologies are introduced that are required to understand the
methodology of this concept.

2.1 Visualization Pipeline

Figure 2.1: The visualization pipeline describes how to transform raw data into a displayable
image. Thus, the user gets insight into the original data and, depending on the application, may
be able to change the raw data which restarts the process [26].

The visualization pipeline (see Figure 2.1) embodies a data flow model describing how data
is moved within a collection of computation steps (modules) by a directed graph [35]. Modules
can be categorized into three types:

Source A source module produces data by providing it as an output. An example would be a
file reader or the result of a database query.

5

Import Filter Map Render

Vis

Insight

Figure 2.2: The visualization pipeline seen as a composition of formal functions (image source:
Telea [44])

.

Sink A sink module receives data as input. This can be a file writer or the user’s screen which
displays rendered images.

Filter A filter module is a combination of a source and a sink. It takes data at least from one
input, performs operations and passes the results to the output.

The concept describes in four steps how to generate an image from raw data. The compo-
nents are connected sequentially representing how data flows between the components. This can
be described formally by functions [44].

Formal Description

The visualization pipeline can be seen as a function Vis that maps between DI and I (see Figure
2.2) whereas DI is the set of all possible types of raw data and I is the set of produced images
(Function 2.1).

Vis : DI −→ I (2.1)

After examining the result image the user should be able to get insight into the input data.
Hence, it should allow the user to answer questions about the problem. Therefore a reverse
function Insight 2.2 in the opposite direction can be defined which maps the image back to raw
data.

Insight : I −→ DI (2.2)

To actually create the image from the raw data it is necessary to import the data first. This
means, that a representation of the original object has to be found. This representation is then
stored in a dataset. Conceptual this means mapping the raw information DI to a dataset D ∈ D.
Here, D is the set of all supported datasets. Importing data can be modeled by the function 2.3:

Import : DI −→ D (2.3)

It describes the process of converting the original information to the data structure that was
selected to represent the original phenomenon. In the best case this is a one-to-one mapping or
copying which usually involves reading data from an external storage or a measuring device.

6

Figure 2.3: For a heatmap matrix numeric input values have to be converted to a certain range.
This focus dataset is mapped to a suitable color scale. (image source: own work)

Depending on the application it might be necessary to select specific features in the imported
dataset or to eliminate non relevant features.

Filter : D −→ D (2.4)

The filtering process is a strict data manipulation operation. Thus, input and output of the
function (see Function 2.4) are both datasets but usually it is not necessary to visualize the entire
dataset. Therefore properties of the dataset might have to be limited or the size has to be reduced.
Formally, this is a selection of a subsets of interest which can be done in the spatial domain, the
attribute-value domain or in a combination of both (function 2.4).

The result of the filtering operation is called the focus dataset which should represent all
features of interest. The next step is to map this features into a visual domain (Function 2.5).

Map : D −→ DV (2.5)

This function maps the focus dataset to a visual domain like distances, colors, sizes or posi-
tions. The elements of this visual domain are what the user gets presented on the display.

The components

Due to Moreland [35] the visualization pipeline compromises three primary components.

• Modules

• Connections

• Execution

7

Modules

Modules are the functional units of the pipeline. They are responsible for:

Import (Data Acquisition) Importing is the process of collecting data from measurements or
simulation. This step collects raw data and stores it in specifically designed data structures. The
type of data structure strongly depends on the application. For smaller applications a file might
be sufficient but in larger environments relational data bases are essential to store the imported
dataset.

Filter Filtering in necessary because the imported data set may contain more information or
features than the user needs. Therefore methods are needed to extract subsets which are related
to the problem. Here decisions are made, which subset of the stored data is relevant for the
visualization. This subset is called the focus data.

Map The mapping step transforms the focus data set to a visual domain. This means that data
values are mapped to visual features. This set of features defines the type of plot.

Render The rendering process generates the final visualization and provides the image to the
user interface which allows the user to get insight into the original phenomenon.

Connections

Connections between the modules are responsible for the data flow between two modules. They
allow the modules to transmit their output to the next input port. The distance of this transmission
may depend on the topology of the application. If two modules are part of a single software
component the transmission can be done via the systems memory but if they are distributed over
multiple machines may require different and more complex transmission techniques.

Execution

The execution can be defined as the process which initiates the computation step of each module.

For certain scenarios a feedback loop is necessary for the pipeline. The user primarily gets
insight into the original phenomenon but, due to a back channel, is able to change the raw data
of the pipeline. This allows engaging with the measurement or simulation process often in order
to get immediate feedback about the change.

8

Figure 2.4: A scatter plot is a simple example for information visualization. This plot displays
the duration and the waiting time between eruptions of the ”Old Faithful Geyser” in Yellowstone
National Park [10].

2.2 Types of Data Visualizations

Information Visualization

The research area of information visualization (InfoVis) uses graphical methods to produce vi-
sual representations of abstract data to reinforce human cognition [41]. Abstract data might be
the result of measurements, simulations or various operations that generate output - datasets that
do not necessarily have a physical representation.

The aim of information visualization is to assist users in understanding the structure of data
by ”forming a mental model or image of something” [43]. Chi [21] defined information vi-
sualization as ”visualizations applied to abstract quantities and relations in order to get insight
in the data”. Therefore a proper visualization might help to recognize clusters, patterns or re-
lationships and enable the user to make decisions or infer knowledge. Typical examples for
information visualizations are:

• Scatter plot: A scatter plot uses a 2 dimensional cartesian coordinates to display pairs of
values (see Figure 2.4).

• Heat map matrices: A heat map can be used to visualize a MxN matrix of values (see
Figure 2.3).

9

• Parallel coordinates: They can be used to display a multivariate dataset (see Figure 6.5).

Datasets for information visualizations usually do not contain spatial dimensions but in some
cases they have a semantic relationship to a physical object or a location.

Scientific visualization

Figure 2.5: A volume rendering of the neuronal structures of a fruit fly is a typical example for
a scientific visualization (source: rendered with BrainGazer [20]).

The focus of scientific visualization (SciVis) is the presentation of data that has a direct re-
lation to a real world object or phenomenon. It is ”primarily concerned with the visualization
of three-dimensional phenomena, where the emphasis is on realistic renderings of volumes, sur-
faces, illumination sources” [24]. Hence, scientific visualizations often require a special 3D
rendering environment with different interaction methods. The purpose is to allow scientists to
gain insight into phenomenas or objects. Samples are often captured by scanners, microscopes,
sensors or they might be the result of simulations.

Scientific visualization is like information visualization a mature research field. A typical
application is volume visualization where the focus lies on rendering of three-dimensional im-
ages taken from objects (see Figure 2.5).

2.3 Multiple Coordinated Views

Multiple coordinated views are a user interface technique to display a single conceptual entity
by two or more distinct views. Figure 2.6 shows a screenshot of an application which has a

10

Figure 2.6: A screenshot of ComVis [34], an information visualization application which offers
a customizable user interface.

multi-view user interface. In this context distinct views allow the user to learn about different
aspects of the data [45]. For example the user interface offers an overview view and more de-
tailed views. The main view is used for the whole dataset while the detail views display smaller
parts with greater accuracy [39].

Today’s scientific applications often deal with multi-dimensional entities. The use of only
a single visualization might not be sufficient to answer a certain question efficiently. Therefore
multi-view user interfaces were introduced to enable different perspectives on the dataset. Cer-
tain interaction techniques allow coordination between views.

User interface designer have to decide how the user may interact and manage a set of dif-
ferent views. Too many or wrong arranged views might have in a negative consequences for the
users perception [39]. An indicator for the need of multiple views is if different views bring out
correlations and/or disparities (rule of complementarity) [45]. This supports the investigation of
multiple entities because the user does not need to remember components he wants to compare.

Coordination

As the name implies multiple views require coordination techniques among the views. Therefore
coupling functions are required which specify a mappings on how changes from one view are
propagated to the other views (propagation model). Very common interaction techniques are

11

brushing and linking [45].

Brushing

Brushing is a highlighting technique in multiple coordinated view environments. If the user
selects an element in one view, the same (or related) element gets simultaneously highlighted in
all the other views by the coordination system.

Linking

Linking, or navigational slaving, stands for the propagation of navigational actions from one
view to linked views [39]. This can be used to enable synchronized scrolling in distinct views or
to propagate filter settings as described in Figure 2.7.

Filterbox

Figure 2.7: Airline on-time performance: In this example two linked views are used to display
the arrival delay and the distance of flights (image source: adaptation from Crossfilter [4]). The
plots allow users to set filters in the left plot to limit the arrival time. The coordination system
applies the same filter to the right plot. As a result it can be seen that longer flights are more
likely to arrive earlier as scheduled.

2.4 Model View Controller Pattern

The model-view-controller principle is a software engineering design pattern. The purpose of
this concept is to keep a clean separation between user interactions, the data model and view on
the data. [32]. This pattern is based on the functionality of the observer pattern. Basically it is
being used to allow trigger procedures if the state of an observed data structure changes.

As the name suggests it consists of three separated components (see Figure 2.8).

• The model is an object. It represents the data that has to be presented in the view. It is
independent from controller and view.

• The view is responsible for obtaining the data from the model and presenting it to the user.
It is aware of the model and the controller

12

Model

Controller

Figure 2.8: The three components of the model-view-controller design pattern. The solid lines
represent direct associations. Dotted lines illustrate a relationship via an observer pattern.

• The controller receives user interactions to manipulate the model.

If the user changes the model via a view, the controller manipulates the data. Due to an
observer pattern, the view gets notified about the change and is able to update the view. A pas-
sive approach would be if the controller and view keep checking the model for changes (polling).

Both the model-view-controller and the observer pattern are well known and commonly
used design patterns in software engineering. Today they are an integral component of many
programming languages including web technologies [32].

13

CHAPTER 3
Related Work

This chapter introduces related work. It starts with literature about fundamental basics and tech-
niques of this thesis. The second part focuses on projects that deal with the visualization pipeline.
Each of this projects have a certain similarity to either the existing architecture or the methology
of this implementation. The last section introduces other scientific software environments that
include information visualizations.

3.1 Data Visualization

Visualization in general means to ”form a mental vision, image, or picture of (something not
visible or present to sight, or of an abstraction); to make visible to the mind or imagination”
(original source: Oxford English Dictionary, 1989). Due to accomplishment in computer graph-
ics data visualizations evolved to a mature research area in the last 20 years [18, 28].

In this time many definitions of information visualization were created. Gee et al. [25] stated
that ”information visualizations attempt to efficiently map data variables onto visual dimensions
in order to create graphic representations”, a statement which relates graphic representations
with data. As defined by many other researchers, the area of information visualization concen-
trates on the visual representation of abstract data [29, 38].

Due to the ”Guidelines for Using Multiple Views in Information Visualization” by Wang and
Baldonado [45] a view is defined as the combination of a set of data together with specifications
on how to display the data. These specifications define a technique like a scatter plot or a
heatmap to represent the data in an appropriate way. A single view can represent the data by
the use of one particular type of visualization. Multiple views obviously allow users to use
different types simultaneously while coordination techniques can be introduced to support the
investigation of conceptual entities (see Figure 3.1).

15

Figure 3.1: The taxonomy of coordination mechanisms between different views [36] (image
source: Multiple and Coordinated Views in Information Visualization [39])

3.2 Applications of the Visualization Pipeline

”The conceptual model of the visualization pipeline” introduced by Haber and McNabb de-
scribes the process of how to create a visual representation of data in three major transforma-
tions. ”The goal of these transformations on the data, is to convert the information to a format
amenable to understanding by the human perceptual system while maintaining the integrity of
the information.” [26] The reference projects in this section use the visualization pipeline as
developing basis.

Schroeder et al. introduce the Visualization Toolkit [40], a library for the development of 3D
graphic and visualization applications. As the name proposes it can be used to build complex
applications from small components. Therefore it is essential to keep this pieces well defined
and establish simple interfaces between them.

A modular design enables the developer to introduce different programming languages for
components. Programming languages can be categorized into two groups. There are compiled
languages offering performance advantages at runtime and interpreted languages which offer a
greater flexibility to developers. As a result the core components of the toolkit were implemented
in a compiled language to gain performance. Interpreter languages were used for high level

16

components.
Another reason to introduce different programming languages is to maintain portability. The

use of different technologies enables components to run on multiple platforms and emphasizes
the use of consistent interfaces to allow a standardized data exchange.

Figure 3.2: The InfoVis Toolkit offers an internal structure consisting of data structures
(squares) and functions (ellipses) (image source: The InfoVis Toolkit [23])

Fekete et al. introduced the InfoVis Toolkit [23]. Here, the same approach was chosen by
introducing a framework of components but with a focus on two dimensional data visualiza-
tions. The proposed toolkit offers a large set of predefined visualizations and control elements to
simplify the implementation of visualizations. The aim is to accelerate the development process
in order to ”achieve a fast action/feedback loop required by dynamic queries”. As can be seen
in Figure 3.2 it offers components for different stages of the visualization pipeline starting from
the data acquisition readers to rendering controls.

Prefuse [29] takes the next step by introducing a user interface for crafting interactive visu-
alizations. The focus is to simplify the developing process in order to allow users to create novel
visualizations without having knowledge about programming languages or mathematical algo-
rithms. It introduces finer-grained building blocks than the InfoVis Toolkit [23] (see Figure 3.3)
to allow users to create visualizations that are specifically tailored for their use case.

IRIS Explorer [27, pages 633-654] breaks down the pipeline into its components. It offers
different modules for each part of the pipeline and lets the user construct the data flow according

17

Figure 3.3: The visualization pipeline in Prefuse. It illustrates the different states of data within
the pipeline where the developer can modify the process through parameters. (image source:
Prefuse [29])

to the given problem. Thus the first module is responsible for reading data from a file, a database
or some other application that runs simultaneously. The next step is to select an appropriate filter
module followed by the transformation step that transforms the data into displayable geometric
objects. The last step for the user is to set up an output module which either renders the image
on the user’s screen or writes the data into a file. Each module can be adjusted by a set of pa-
rameters. For example the user has to set the name of the input file or has to select the number
of used contours. For the data exchange between the modules the user has to define data types
by using a specifically designed data typing language. Due to its modular design IRIS Explorer
can be extended by user defined modules. Application interfaces are provided that even support
the distribution of module instances to execute the pipeline in a networked environment.

VisTrails [17] extends the concept of visualization pipelines by proposing visualization
trails (see Figure 3.4). It allows a much more detailed specification of data flows than the
previously introduced pipeline by Haber and McNabb [26]. The user interface supports the de-
velopment of a trail by connecting modules in the development stage. Depending on the type of
module each offers input and output ports. This variability allows querying data from different
sources, define data flows to enable preprocessing steps and generate one or more output visual-
izations. Due to the flexibility of this modular system this principle can be used to map scientific
workflows.

Zsu et al. [47] discusses how the visualization pipeline can be mapped to network nodes in
order to archive an efficient execution (see Figure 3.5). In this approach the nodes are connected
via a wide area network. Due to the geographical dimensions of such a network the transfer
times between the nodes play an essential role. To optimize the total delay of the pipeline the
problem is formulated analytically and takes computation times of modules and the transfer
delays between them into account. The proposed algorithms use these latencies to enable an
optimal mapping of the visualization pipeline to the nodes for high performance visualizations

18

Figure 3.4: A screenshot of the user interface of VisTrails [17]. Here, different modules can be
plugged together to allow a detailed specification of the visualization pipeline.

of large datasets.

Wu et al. [37] proposes a similar approach but introduces mechanisms to dynamically dis-
tribute pipeline steps to nodes according to visualization needs as well as time-varying network
and node conditions. This self adapting method aims to use the available resources as optimal as
possible. The aim is to establish a pool of resources which can be used by many users for differ-
ent applications. Due to the growing size of datasets and system resources which are connected
via the internet and located around the world a self adaptive system is needed. Cost models are
introduced which take processing and transfer times into account to compute optimal pipeline
configurations.

Ahmed et al. [16] distributed the components of the visualization pipeline over a grid-
computer based environment for scalability reasons. Due to limited processing power or memory
desktop computers provide insufficient performance to visualize large medical datasets. Today
this is often the case when datasets from medical detectors or simulations have to be visualized.
Therefore Ahmed et al. proposes a method to integrate a scientific visualization application in a
grid-computing environment. Mainly this is supposed to use the performance of a grid environ-

19

Figure 3.5: The proposed architecture ”Distributed Remote Intelligent Visualization Environ-
ment (DRIVE)” of Zsu et al. [47]. It consists of a number of virtual service nodes which work
together in order to minimize the end-to-end delays of the pipeline.

ment to do distribute processing steps to different node. Due to the implementation visualization
operations get broken into small sub tasks and get distributes to nodes where they get processed
by modules of the Visualization Toolkit [40] as previously introduced.

3.3 Conclusion

As can be seen by the number of publications in the last two decades the research area of in-
formation visualization became bigger and bigger. Today many applications rely on these well
established concepts, e.g. the visualization pipeline. A variety of visualization applications are
based on this concept while using it in many different ways. The Visualization Toolkit [40] was
one of the first approaches to implement the steps in separated modules. Fekete et al. [23] took
the next step and specializes the pipeline for information visualizations by introducing the Info-
Vis Toolkit. Prefuse [29] improved the usability by allowing the users to put together the com-
ponents in a graphical user interface without having programming skills. VisTrails [17] allows
establishing a much more detailed series of preprocessing steps in order to map a whole scien-
tific workflow into the application. It offers features to acquire data from different sources and
provides mechanisms that allow to output multiple visualizations. Due to the growing amount of
data especially in scientific scenarios desktop solutions became insufficient. Ahmed et al. [16]

20

therefore introduced a solution by implementing steps of the pipeline in network base grid for
performance feature.

Today the visualization pipeline has been used as a model in application for more than 20
years. ”The combination of simplicity and power makes the visualization pipeline still the most
prevalent metaphor encountered today.” (Moreland [35]) It is the basis of many visualization
solutions and therefore an essential part of this thesis.

Due to the stated publications the following conclusions can be derived:

• Depending on the application it may be advantageous to develop the modules of the
pipeline in different programming languages.

• The pipeline does not have to run on a single machine. It can be distributed on multiple
machines that are connected via a network.

• If each step is computed on specifically designed hardware, resources may be used more
efficiently and may result in a better overall performance.

• The output of the pipeline does not have to be displayed only in a single view. Multiple
visualizations can be used to display data simultaneously.

As a result it can be mentioned that the literature provides approaches that can be used to define
a solution for the previously defined problem (see Section 1.1).

21

CHAPTER 4
Software Design

This chapter describes the existing environment in the first part. The second part describes how
the defined techniques from the background chapter (see Section 2) can be put together and
applied to the existing environment to realize this software design concept.

4.1 Overview

This thesis proposes an additional feature for BrainGazer [20], an existing software environment
for biomedical image analysis, mining and retrieval. BrainGazer offers rendering features for
volumetric images and aims to support scientists in the research of neuronal structures of the
drosophila melanogaster. The user can operate with the environment by two different interfaces
(see Figure 4.1):

• Web-based database query interface: A webpage that offers different textual search
features. Here, the user can search for images or neurobiological objects in the database.

• BrainGazer: A client-sided desktop application that offers rendering features for volu-
metric images.

The user can access the web-based query interface by any browser. Exacly the same web
interface can be accessed by BrainGazer. Thus, the user is able to use the same search inter-
face from within BrainGazer. Here, the user can save instances of the results directly in the
application for faster access and easier handling.

4.2 Existing Client-Server Environment

The existing environment components (see Figure 4.1) can be grouped into a client and a server
side. The server components are single entities whereas the number of clients is not limited. The
server side consists of:

23

Client Side

Server Side

http://queryWebsite

Web Server Database ServerFile Server

Webbrowser BrainGazer

Figure 4.1: Client server structure showing the basic components of the environment. A web
server hosts the web interface (see Section 4.2), a database server and a file server. This web site
allows the user to query the database and enables user to download files form the file server.

• Web Server: Hosts the database query interface (web site)

• Database: Contais data records with relations to images

• File Server: Stores image files

When the user browses the query web site the web server runs the queries on the database.
Depending on the object type the user can download results from the file server.

Web-based Query Interface

The web server provides a web-based query interface, an ordinary web site to allow the user to
search for volumetric images and neuronal structures (objects). The query web site offers sev-
eral query features on different pages to enable searches by specific neurobiological properties.
Furthermore it enables the user to browse objects based on the relation between them. If the user
intends to search for an object the following steps are performed.

1. The user specifies a query in the search interface.

2. The search request gets send from the web site to the web server.

24

3. The web server performs a query on the database server and receives the result.

4. These results get sent back to the web site where they are listed on a result page.

This web interface is embedded as dedicated window (see Section 4.2) in BrainGazer, the client
application of the environment. As a result the user is able to use the same search features of the
web interface from within the application.

Client integration

The web interface can either be accessed by any web browser or by using BrainGazer, the client
application of the environment. If it is accessed by a web browser it offers the previously de-
scribed (see Section 4.2) query features to browse the database.

If the web interface is accessed by BrainGazer the query features of the web interface get
extended by advanced rendering and visual query features [20] - features that cannot be realized
by web technologies efficiently today. The web interface enables the user to save references of
search results in a client-side data structure called the workspace. The web site offers features
to transfer object references from result or detail pages to the workspace.

4.3 Existing User Interface

BrainGazer offers a multiple-coordinated view user-interface and supports a linking mechanism
between the user interface elements (see Section 2.3). The windows inside the application are
called viewports. Each viewport serves a specific purpose and can be adjusted in size and posi-
tion according to the user’s needs (see Figure 4.2).

So far BrainGazer offers the following types of viewports:

• Database: Web-based query interface (see Section 4.2) to perform queries on the database.
The results can be added to the workspace.

• 3D View: Provides rendering features for three dimensional object data.

• NeuroMap [42]: Graph visualization to illustrate relations between arborizations.

• Heatmap: Used to visualize how much a set of neurons overlap each other.

• Workspace: Enables the user to manage images and neurobiological objects in lists.

These existing views can be used to browse the database for images and neurobiological
objects, import instances of them in the local workspace and visualize them in a rendering
viewport.

The architecture of BrainGazer ”is based on a flexible plug-in mechanism which allows
independent modification or even replacement of system components.” (Bruckner et al. [20])
This work aims to extend the environment by additional data visualization viewports respectively
InfoVis viewports. The user interface supports multiple-viewport instances of a certain type.
Therefore new InfoVis viewports can be used to display different visualizations simultaneously.

25

Database

Workspace

viewport

Heatmap

Database3D Rendering
viewport

Figure 4.2: A screenshot of BrainGazer [20] showing multiple viewports in the existing user
interface.

Workspace Concept

The workspace (see Figure 4.3) is a special section of the user interface of BrainGazer (see Fig-
ure 4.2). Here, the user is able to manage viewports, queries and organize items in lists. The
workspace concept can be seen as a combination of the user interface and the specifically de-
signed workflows.

As described in Section 4.2 the user starts an investigation with BrainGazer by searching for
images or neurobiological objects in the embedded web-based database query interface. From
here the user is able to select a set of images or neurobiological objects and load them as in-
stances into BrainGazers workspace. By doing this the selected instances appear as list entries
in a new query list. If the user selects one of this lists the contained items are displayed in the
list below, the second part of the workspace. (see Figure 4.4)

Initially the set of instances of a viewport is empty. The user has to associate instances to the
viewport manually by using mouse actions. By dragging a set of instances from e.g. a query list

26

Figure 4.3: A screenshot of the top section of BrainGazers workspace. It contains listings of
viewports and query lists. The ’lists’ section allows the user to group data items to user defined
lists or filter data items due to predefined filters.

Figure 4.4: A screenshot of the viewports item list. The checkbox controls the visibility of
items in the viewport whereas the color boxes can be used to open a color selection dialog.

and dropping them on a viewport instances get associated to the viewport. After dropping the in-
stances the view gets updated automatically. The set of instances then appears in the workspace
as separated viewport item list (see Figure 4.4). To enable a better visual separation between
different instances each viewport list item supports individual visual properties (color, appear-
ance, visibility). To share a set of instances and their visual settings among multiple viewport
BrainGazer supports viewport groups.

A vital component of the workspace concept and important feature for this thesis is the link-
ing mechanism between the views. All the viewports and the workspace support brushing [45].
When the user selects a certain instance or set of instances, the same instances get highlighted
in every other viewport where an instance of the same object is present in the item list.

27

4.4 Architectural Design Overview

This section describes how the visualization pipeline can be used to extend the existing applica-
tion and its environment. To enable the integration both client and server side need to be taken
into account.

Adapted Visualization Pipeline

This design concept takes advantages of the client-server architecture by implementing the indi-
vidual modules of the visualization pipeline (see Section 2.1) on both the client and server side
as illustrated in Figure 4.5.

Figure 4.5: This figure illustrates how the three modules of the visualization pipeline (see Fig-
ure 2.1) get distributed on the existing client server structure. The data aquisition step is not part
of this design concept. The filtering takes place on the server side while clients are responsible
for mapping and rendering step. The user is able to control the filter on the server side and the
mapping on the client side.

This separation has the following advantages:

• It enables the distribution of pipeline modules to different components of the architecture
(see Figure 4.1). The filtering process takes place on the server side while both map-
ping and rendering are performed by a client. Servers usually provide more memory and
processor resources while client PCs often contain better graphics hardware.

• The server is able to provide its services to multiple clients.

• Implementing the visualization pipeline in a modular way allows developers to exchange
certain parts. A single server can host multiple filter modules. Each individual module
provides different datasets. Here, the main data source is the database but other data
sources can be considered as well.

• On the client side it allows the user to change the type of visualization.

28

The data acquisition is not part of this proposed design concept. For this thesis it is assumed
that the relevant data is stored in accessible data sources like databases or file servers. Due to the
lack of the import step the pipeline gets reduced to three modules. Consequently the reduction
of modules reduces the number of connections as well. Due to the distribution to client and
server-side special care has to be taken on the connection between filter and map module.

Pipeline Course

A client initiates the pipeline by sending a user defined request to the server. The server is re-
sponsible to answer the request and return the focus data to the client. Therefore it is necessary to
ensure that clients receive individual focus datasets according to their requests. This connection
is essential in order to allow users to control the filter module.

If the filter module receives a request from the client it has to perform a query on the
database. Therefore the server-side environment usually provides a query language (e.g. SQL)
to retrieve the stored information. This result dataset, the focus data, gets now sent back to the
client.

After receiving focus data client-side procedures start the mapping step. The user may con-
trol the module either by adjusting workspace item properties (see Section 4.6) or by changing
visualization specific parameters (e.g., color scale for a heatmap). The map procedure ends with
the rendering process which is performed by the viewport. Depending on the used visualization
techniques the viewport is responsible for the rendering procedures.

One goal of this software design concept is to develop a modular framework. This frame-
work requires both the implementation of modules as well as a software design for an infras-
tructure to hosts the pipeline modules. Consequently implementations are required on both the
server and on the client-side.

4.5 Server features

This section concentrates on the server-sided software architecture. First, the design of both
infrastructure and filter modules according to the visualization pipeline is introduced. The sub-
sequent sections introduce relevant implementation details.

Overview

The server is responsible for the filtering step of the visualization pipeline (the importing step is
not part of this thesis). Due to the modular design it is required to host a set of different filter
modules. Therefore a specifically designed infrastructure is required. The user on the client side
creates a request by using BrainGazer which is sent to the server to initiate the pipeline process.

To allow users to select a specific filter module an addressing scheme is necessary. Therefore
the request must to contain identifier information to allow the dispatching mechanism to decides
which filter module to use (see Figure 4.6). After the corresponding filter receives the request it
queries data sources and returns the focus data to the client.

29

Figure 4.6: The server-sided infrastructure provides a dispatching mechanism which enables
developers to implement a set of different data providers (DP). According to an identifier that
has to be part of a request the inquiry gets directed to the specified data provider to start the
filtering process.

Figure 4.7: The server sided components of the implemented visualization pipeline. The client
initiates the pipeline by sending a request. According to this input the filter queries the database
and the data model converter converts the results to a standardized data model.

As introduced the filters do not only have to query data sources, they have to accept and pro-
cess requests as well. For this additional functionality this thesis defines the term data provider.
A data provider is an filter instance which is responsible for (see Figure 4.7):

1. Accepting client requests

2. Performing queries on different data sources (the filtering step), e.g. databases

3. Return focus data back to client

30

Technically they can be seen as server sided filter instances designed to query one or more data
sources.

The data provider and the hosting infrastructure can be (but don not have to be) hosted on
the same a web server that is being used to host the database query interface (see Section 4.3).
The server functionality (web site hosting, see Section 5.1) can be extended to enable the filter
step. If using the same web server no additional server is required.

Data Provider Infrastructure

Figure 4.7 points out all the components to host data provider modules. On arrival of a request
the dispatching mechanism decides which data provider to contact. In order to allow making
this decision requests must contain addressing information. After dispatching the correspond-
ing data provider examines the request and performs queries on at least one data source, i.e. a
database.

A single data provider prepares and returns focus data for a specific use case. Different use
cases may require data in individual formats. To enable the modular approach on the client side
the focus data has to be returned in a consistant data model. The aim of this model is to be com-
patible to different types of visualization on the client side. Focus data often comes as tabular
data but more complex use cases might require the visualization of graph or network structures.
Hence, it is essential for the modularity of the concept to convert responses into a standardized
data model before sending it to the client.

Most visualizaton tools support tabular data models [22]. Due to the biological context of
this thesis different data structures might have to be visualized. Therefore different types of data
models can be possible:

• Table Model: A two dimensional table with a fixed number of columns and an open
number of rows.

• Matrix Model: Similar to the table but with equal number of rows and columns.

• Network Model: A data model containing nodes and vertices.

In the corse of this thesis a standardized table data model is implemented (see Section 5.2).

Web Environment

Due to the existence of the web server in the environment (see Section 4.4), communication
technologies based on web protocols are used to establish the link between filter and map mod-
ule. These protocols are capable to transfer requests and focus data between the server and a
client. Thus, it is mandatory to introduce them on the client side as well.

31

In general, webpages are implemented as HTML files and stored on a web server. Here,
the files can be located by using a combination of the servers address (URL) and their filename.
A client requests these files by using a web browser. The web browser downloads the file and
renders the webpage. In the context of this thesis, a visualization webpage is used to realize a
data visualization. Here, the visualizations are implemented by using a combination of HTML
and additional web technologies (see Section 5.3). These files get requested by BrainGazer and
rendered in a specifically designed viewport.

Initially clients do not have information about the set of HTML files on the server. This
requires an additional mechanism, a visualization info service, on the server side in order to
allow clients to obtain information about the hosted visualization webpages.

4.6 Client Features

Overview

As illustrated in figure 4.5 the client side is responsible for the mapping and rendering parts of
the visualization pipeline. Additionally the user is able to control certain steps. To continue the
modular approach the client-side parts of the pipeline need to be exchangeable as well. Hence,
from a single focus dataset more than one visualization can be realized (see figure 4.8). This
enables the user to observe multiple visualizations of the same focus data simultaneously.

41

A C

14

..
.

3

5

2

7

...

Focus Data

Figure 4.8: Client-side components of the visualization pipeline. A single focus dataset can be
represented by multiple visualizations types simultaneously. The user may choose which type is
the best to solve the given problem.

The mapping module gets the focus dataset from the filter and converts the data into a visual
scale. Examples for visual scales are a position in a coordinate system, color or transparency.
This step strongly depends on the type of the used visualization, e.g. for a heatmap matrix data

32

values have to be converted into colors. Depending on the type of visualization the user is able to
control certain mapping parameters, e.g., the user may choose the color scale used by a heatmap.

The rendering is done by a specific BrainGazer viewport. These visualization viewports
are configured to serve as web browser for visualization webpages. They are responsible for
both downloading a single HTML file from the server and rendering the webpage in their view
window. Users can set up the applications user interface by placing the viewports on the screen
as desired (see figure 4.2).

Visualization Worksheets

Figure 4.9: The links of a visualization worksheet to other system entities. A worksheet receives
object identifiers from the workspace, has to request data from a data provider, host one or more
visualizations and links the views to the workspace.

In this software design concept a visualization worksheet is a data visualization in a that
aims to support the user in solving a certain use case. It is implemented as a single webpage
and gets displayed in a BrainGazer viewport. If the user associates a set of instances to the
visualization viewport (see Section 4.3) their object identifiers get included in a request and sent
to a data provider in order to acquire a focus dataset (see Section 4.5). A visualization worksheet
is responsible for:

• Data Provider Connection: Connect the client side to a data provider to acquire focus
data according to the request.

• Multiple Visualization Types: Host one of more types of visualizations to display the
focus dataset in multiple ways.

33

• Workspace Integration: Connect to BrainGazers workspace to enable the exchange of
object identifiers as well as the linking and brushing mechanisms.

Figure 4.9 points out the relations between the entities. Consequently the developer has to de-
cide which type of visualization is more appropriate to solve the given problem. The introduced
visualization webpages (see Section 4.5) or worksheets have to be designed to fulfill the require-
ments of BrainGazers workspace concept to enable a seamless integration (see Section 4.3. The
following section will describe these three points in detail.

Data Provider Connection

This requirement connects the worksheet, where the mapping takes place, with the filter part of
the visualization pipeline. This module is responsible to acquire enriched datasets from a data
provider on the server. A worksheet is bound to a specific use case and acquires enriched data
from at least one data provider.

To start the pipeline process a request must be defined by the client (see figure 4.5, the user
controls the filtering step). Therefore the user has to drop instances on the viewport. Con-
sequently the request is created and sent to the server. It has to include an object identifiers,
individual filter parameters and an identifier to allow the dispatching mechanism.

Multiple Visualization Types

To host multiple visualizations on a single visualization webpage a client-sided infrastructure
is required. If the worksheet receives focus data the infrastructure has to provide the received
dataset to all implemented visualizations. Furthermore the infrastructure is responsible for trans-
mitting user interactions to the visualizations.

Workspace Integration

To fully integrate the visualization into BrainGazers workspace concept it is required to extend
the existing linking and brushing mechanisms to the new visualizations. Therefore a bridge
mechanism is needed to enable a data exchange between the viewport and the worksheet. This
bridge mechanism has to transmit:

• Workspace item identifier: If the user drops instances on the viewport the corresponding
object identifiers have to be transmitted to the worksheet. If the focus dataset contains
related object identifiers a transmission to the viewport is necessary.

• Viewport item settings: The item settings of each individual viewport list item have to be
transmitted to the worksheet (color, transparency, visibility).

• Selections: Selected objects have to be transmitted to the views and vice versa.

34

To address each item individually it is necessary to introduce a reasonable addressing scheme
for instances between viewport and worksheet. Each object can be categorized to a certain type.
Additionally an instance has an identification number. The combination of number and the type
is a unique identifier and can be used to address instances in the workspace or visual elements
in views, representing these instances.

35

CHAPTER 5
Implementation

This chapter describes implementation details of all the methods introduced in the previous
chapter. The first part describes how the server-side components are being realized. The second
part concentrates on the client-side elements as well as the integration into BrainGazer.

5.1 Existing Environment

BrainGazer is the desktop application of the environment which is realized by C++ and the Qt
library [9]. It implements instances of the Qt WebKit to embed websites into a desktop appli-
cation. The WebKit allows developers to implement a bridge interface between the application
and the embedded website to enable a communication between the two sides.

The web server is an Apache Tomcat server [2] which hosts web applications that are im-
plemented by using the Google Web Toolkit (GWT) [12]. The GWT is used to implement both
websites and server-side services in Java [8]. The GWT compiler creates an AJAX applications
for the server together with websites including optimized JavaScript code for the client side.

5.2 Server Features

Overview

As introduced in the previous chapter (see Section 4.5), the server is mainly responsible for
the filtering step of the visualization pipeline (see Figure 4.5). The server hosts a set of data
providers where each provider includes an individual filter. The set of data provider instances is
running on the server waiting for client requests. The processing of a data provider request can
be separated into the following steps.

1. The server receives a request from a client.

37

2. The dispatching mechanism forwards the request to a data provider according to the iden-
tifier string.

3. The data provider examines the request and creates a data source query according to the
included parameter.

4. In case of multiple involved data sources the results have to be joined.

5. The data model builder converts the result of the query, the focus dataset, to a standardized
data model.

6. The data model Java object has to be converted to a string.

7. The method returns the data model string to the client.

To implement the server sided infrastructure Java Servlets are introduced. A Servlet is an in-
stance of a Java class that provides a callback function which allows to respond to client requests.
It can be implemented to host the set of data providers. The callback function gets processed
when a request arrives to the server. Here, the dispatching mechanism is implemented.

Data Provider

As described in Section 4.5 a data provider contains a filter mechanism which requires certain
input parameters. These parameters are essential to define the database query. They must include
a set of object identifiers and, depending on the use case, filter specific settings.

To acquire data from a relational database queries have to be defined by the use of SQL
(Structured Query Language [15]), a programming language designed to manage and query
relational databases. This string based language allows to retrieve specific contents from the
database. Therefore a SQL string has to be dynamically constructed to include all necessary
request parameters. The next step is to execute the query and wait for the results.

After receiving the acquired results from the database server the focus dataset gets created.
Depending on the use cas it might be necessary to query more than just one database. In such
a case the focus dataset is the combination of multiple result sets of the individual database
queries. If the database queries are completed the standardized data model has to be created.
Depending on the use case this conversion is an individual process that has to be implemented
for each data provider separately.

Listing 5.1 shows the Java source code of a simple data provider. Depending on the use case
raw data may exist in different data sources. Hence, if a data provider instance has to query
multiple data sources it is necessary to merge the result to create a single data set. Finally this
result set has to be converted into a data model which can be sent back to the client.

1 public class ExampleProvider implements IInfoVisDataProvider {
2

3 // unique identifier string
4 public static String identifier = "DataProviderID";

38

5

6 @Override
7 public String getIdentifier() {
8 return identifier;
9 }

10

11 @Override
12 public void provideData(HttpServletRequest request, HttpServletResponse

response) {
13

14 // convert HttpServletRequest to a request
15 DpRqxObject requestdata = convert(request);
16

17 // create queries
18 String query1 = "SELECT * FROM ... WHERE ... " + requestdata.parameterX;
19 String query2 = "SELECT * FROM ... WHERE ... " + requestdata.parameterY;
20

21 // establish connections to data sources
22 DatabaseConnection con1 = new DatabaseConnection(source1);
23 DatabaseConnection con2 = new DatabaseConnection(source2);
24

25 // perform queries
26 ResultSet results1 = con1.execute(query1);
27 ResultSet results2 = con2.execute(query2);
28

29 // join the result sets to get the enrichted dataset
30 ResultSet finalResult = joinResults(result1, result2);
31

32 // convert focus dataset into a data model structure
33 DataModel dm = buildDataModel(finalResult);
34

35 // create JSON string from data model
36 String resultJSON = new Gson().toJson(dm);
37

38 // send data model back to client
39 response.write(resultJSON);
40 }
41 }

Listing 5.1: This example shows the Java source code of a simple data provider. The method
provideData(...) gets executed directly after the dispatching step.

In the first line of the code example (Listing 5.1) the class is declared and the data provider
interface is implemented. The interface requires the implementation of the getIdentifier method
(line 7) which returns the identifier string for the data provider host. The filtering and data model
conversion is implemented in the provideData method (line 12). The query procedure starts
by examining the client request (line 15) and creating database queries in consideration of the
request (line 18). The SQL queries are composed by item references and additional parameters
included in the request. This is how database records related to specific neuronal objects can be
retrieved from data sources. After performing the queries (line 26) the two result sets have to be
joined (line 30) to get a single focus dataset which can be converted into a data model (line 33).
This data model is an instance of a java class and needs to be converted into a string in order to

39

allow the transmission to the client. The result of this procedure is a string which gets returned
to the client (line 39).

Data Model

The focus dataset that needs to be transferred to clients have to follow certain criterias. First the
dataset can only be transferred as a string. Only a string based data structure can be processed
by the web technologies used on the client side. Furthermore the dataset has to be converted in a
standardized format to enable the proposed modular apprach on the client side as well. Therefore
a Java class is implemented to simplify the conversion to a string. This class is capable to store
a tabular shaped dataset and provides methods to create a dataset (see Table 5.1).

void addColumn(String id, String datatype, HashMap<String, Object> attributes)+
Adds a new column to the data structure and append attributes. Required for initialization.
void addColumn(String id, String datatype)
Adds a new column to the data structure without any attributes. Required for initialization.
int getColumnCount()
Returns the column count of the instance.
addRowData(String id, Object[] data, HashMap<String, Object> attributes)
Adds the elements of the data array to the instance. The elements data type must correlate
with the data type descriptors of the columns.

Table 5.1: The methods of the implemented table data model. The purpose of this data model
is to allow a simple conversion to the JSON format. Update or delete methods are not required.

Figure 5.1: An illustration of the implemented table data model. It allows the developer to
define various columns for different data types and supports additional attribute elements for
each row and column.

40

The implemented table data model (see Figure 5.1) is capable to store a two dimensional
array of data values with additional attributes for each individual row and column. Before using
the table model, the developer has to define the data type (integer, float, string) of the column.
This has an effect on the conversion to a string.

1 {
2 columns : [
3 {"id":"col1", "datatype":"string", "name":"Col1", "attr2":34},
4 {"id":"col2", "datatype":"int", "name":"value", "attr2":21},
5 {"id":"col3", "datatype":"dec", "name":"precision", "attr2":15},
6],
7 rows : [
8 {"id":"id1", "name":"A_128"},
9 {"id":"id2", "name":"F_270"},

10 {"id":"id3", "name":"K_436"},
11],
12 data : [
13 ["value_1", 471, 2627],
14 ["value_2", -23, 0.467],
15 ["abcd", 9385, 16678]
16]
17 }

Listing 5.2: The representation of the previously introduced table data model (see Figure 5.1)
as JSON string. The focus dataset is sent to a client via this format.

JSON [13] is a string based and human readable text format. It can be simply generated and is
supported by many programming languages. To convert an instance of a Java class to a JSON
string the GSON class library is introduced. GSON [5] is an open source Java library that
supports conversions from Java objects to JSON strings. The result of a conversion is illustrated
in Listing 5.2.

An instance of the GSON class library is used by the data provider class to convert the focus
dataset into a JSON string (see Listing 5.1, line 36) which gets returned to the client as response
of the request.

Data Provider Host

The data provider host is responsible for hosting a set of data provider instances. As described
in Section 5.2 the host is implemented as GWT Servlet class. Instances of this class can be
contacted by HTTP requests using remote procedure calls (RPC) from clients across a network.
The client addresses servlets by using a composition of the server domain name, servlet name
and the data provider identifier string (see Figure 5.2).

To realize this mechanism a map data structure is introduced. A map can be used to store
a set of key-value pairs. While a key has to be unique by definition the value can hold any data
structure of a certain predefined type.

The data provider host is implemented as HTTP servlet class.

41

http: // myserver / infovisdata / DPx

Server URL Servlet

DataProvider identifier string

Figure 5.2: An URL (Uniform Resource Locator) is a string to identify and locate a resources
in a computer network. This way, clients are able to address the server. Additional to the servers
URL data providers can be addressed in this string as well. The dispatching mechanism in the
Servlet examines the data provider identifier string to direct the request to the requested data
provider.

The data provider host separates the identifier from the URL string and uses it to address
the corresponding data provider instance in the map data structure. The filter method of the data
provider gets called with the request (see Section 4.5) as parameter. If the identifier string cannot
be found in the map the dispatching mechanism responds with an error message.

Visualization Infrastructure

To host the visualization web pages an ordinary web space is needed to host .html files which
contain the HTML code of the visualization worksheets (see Section 4.6). No additional server
components are required because the rendering of the web pages takes place on the client side.
It is essential that this web server is accessible for clients to allow them to acquire these web
pages.

5.3 Client Features

Overview

The implementation of the client features consists of two parts. First the web based implemen-
tation of the mapping and rendering step will be described as well as the link to the server.
The second part explains the extensions to the existing application to allow a communication
between the application and the embedded visualization websites (bridge interface).

Client-side Pipeline

This section focus is the assembling and ’wiring’ of the client-side components. Examples
implementations with visualizations will be described in the evaluation section of this thesis
(see Section 6.2).

Mapping

As previously introduced the mapping of the visualization will be realized by web technologies
like HTML and JavaScript. HTML is used to create a basic web page layout while JavaScript
is required to realize visualizations and interaction methods. Here state-of-the-art JavaScript

42

libraries can be introduced to establish the worksheet infrastructure and realize views. This
client-side infrastructure has to provide possibilities to implement more than one data visualiza-
tion on a single web page.

Rendering

The rendering is performed by InfoVis viewports, a BrainGazer viewport configured to display
a single web page. It processes the HTML and JavaScript code of the involved HTML files
and renders the web page. The final result of this step is displayed in a viewport. This step
can be compared to the rendering of a web page in a browser but without navigation features
(address bar, bookmarks, ...). An InfoVis viewport is set to display a specific visualization
website providing one or more different data visualizations.

Client-side Infrastructure

As stated in Section 4.4 the goal of this thesis is to develop a modular framework. The pipeline
components have to be modular to allow a flexible usage in worksheets (see Section 4.6). Es-
pecially views must be designed so that they can be applied to different datasets. Therefore it
is mandatory to introduce the model-view-controller design pattern (MVC) (see Section 2.4) for
views.

To avoid the implementation of the needed design patterns from scratch existing JavaScript
frameworks can be introduced. AngularJS [1] is an open source JavaScript library that encour-
ages the implementation of the model-view-controller design pattern in web applications. The
next section will introduce selected features of AngularJS. These features are needed in order to
describe the implementation of the model-view-controller in this thesis.

Introduction to AngularJS

AngularJS [1] is designed to establish a clean separation between the three involved compo-
nents: the model, the controller and the view. The model can be any kind of data structure while
a view is a representation of the model, e.g. a table on a website. A controller is necessary to
bind the model to the view.

Directives are additional markers for HTML, i.e., attributes or tag names. AngularJS in-
troduces a series of built-in directives to simplify the implementation of common tasks, e.g.
displaying a list (see Listing 5.3).

1 <ul ng-controller="MyCtrl">
2 <li ng-repeat="person in employees">
3 {{person.firstname}} {{person.lastname}}
4
5

Listing 5.3: This example creates a simple list of names included in the ’employees’ scope
variable by the use of ng-repeat. This directive can be used to repeat a li element for each person

43

in the list of employees. In this example the variable employees is the model and the HTML list
is a template for the view.

To enable the model-view-controller functionality a controller is necessary to glue the model
and the view together. The actual view is realized when the snippet gets finally executed in a
web browser. AngularJS calls the set of data structures in the model the scope (see Listing 5.4).

1 function MyCtrl($scope) {
2 $scope.employees = people;
3 }

Listing 5.4: A simple definition of a controller named ’MyCtrl’ with a scope variable
’$scope.employees’. Here, the scope variable gets initialized by the content of the JavaScript
object named ’people’. The controller gets assigned to the view by the ng-controller directive
(see Listing 5.3).

As a result every time when the scope variable is changed the view in the browser window
is updated to the new set of items. AngularJS supports event handler functions called watch
statements (see Listing 5.5) which can be bound to scope variables. As a result such procedures
are executed whenever the value of the supervised scope variable gets changed.

1 $scope.$watchCollection(’employees’, function(newSet, oldSet) {
2 // do something
3 });

Listing 5.5: This snippet shows a watch statement that monitors the scope variable ’employees’.
Here ’watchCollection’ is used to monitor the number of elements in the scope variable
’employees’.

User defined directives

AngularJS introduces multiple built-in directives for commonly used functions but allows devel-
opers to define individual directives. Thus they can simplify the HTML code of the web page for
specific tasks. For example the code of Listing 5.3 can be adopted into a template and declared
as directive.

1 <userlist listdata="employees"></userlist>

Listing 5.6: The HTML code of Listing 5.3 can be converted into a template to simplify the
usage. The input data for this directive gets handed over via an attribute.

Usage of AngularJS

For the implementation of this software design concept AngularJS is primarily used to simplify
the implementation process of new visualization worksheets. AngularJS features enable devel-
opers to minimize the implementation efforts. Here, AngularJS is specifically used for:

• The implementation of visualizations can be simplified by creating user defined directives
for each visualization. The focus dataset or mapping information can be handed over by

44

attributes (see Listing 5.6). These directives can be used to implement different data visu-
alizations as individual modules. As a result they can be included in different worksheets.

• Certain data sets can be stored in scope variables. Watch statements (see Listing 5.5) can
be introduced to react to changes of certain data structures like item lists, focus datasets or
mapping parameters (see Section 4.6). Furthermore scope variables can be used to share
data sets among multiple directives.

• AngularJS encourages the implementation of reusable modules. The same modules can
be used in different worksheets.

The worksheet infrastructure (see Section 5.3) depends on these aspects.

Worksheet Infrastructure

Figure 5.3: The framework of a visualization web page. The orange and green cycles illustrate
scope variables in different modules. If the values of these variables change, watch-procedures
(see Listing 5.5) is executed. Green dots represent variables responsible for item lists and the
focus dataset, while red dots point out workspace settings.

As can be seen in Figure 4.5 the user is able to control both the filter and the mapping step
of the implemented pipeline structure. Therefore connections between the modules and control
mechanisms are a vital part of this software design concept. This section describes the imple-
mented AngularJS infrastructure for visualization worksheets which is responsible to enable the

45

proposed pipeline functionality on the client-side. As illustrated in Figure 4.6 a worksheet re-
quires links to the workspace and the server. Both are necessary to fulfill the requirements (see
Figure 5.3).

• Server Connection: For the link between a visualization worksheet on the client side
and data provider on the server side both web-based, e.g. the servers URL and worksheet
specific parameters like the involved data provider are required.

• Workspace Connection: The link to the applications workspace concentrates on the in-
tegration into the existing workspace concept (see Section 4.6). To exchange object iden-
tifiers and linking and brushing parameters a fixed set of functions is required to transmit
item references and their individual settings.

All the static parameters for both links are summarized in a specifically designed module.
This module represents the basis for the connection functionality and is designed to be reusable
for all worksheet implementations. It defines scope variables for the workspace integration and
provides a template for the server connection (AngularJS factory).

The base module must be implemented by every worksheet. Consequently worksheets in-
herit the set of scope variables as well as the connection template. As a result the scope variables
of the base module can be watched by the worksheet in order to react to changes. This mecha-
nism works in both ways. The base module monitors the same scope variables as the worksheet
to transmit changes to the workspace.

Due to the combination of the base module and a worksheet module the effort to implement
a new worksheet is reduced to a minimum. The developer has to monitor the base module’s
scope variables by watch statements and hand over updates to views. Hereby it is not necessary
to watch all scope variables from the base module. Depending on the visualization type the
developers have to decide which features can be supported by the view.

Server Connection

When the user adds items to the viewport, the item references get sent to the item list scope
variable of the base module (see green arrow in Figure 5.4). The worksheet controller detects
this update via a watch statement and creates a request including the new set of items.

46

Figure 5.4: When the user adds or removes items from the viewport, the list of items in the
base module gets updated as well as the item list of the worksheet controller (green arrow). The
worksheet controller defines the request and creates a data provider service with a data provider
id and the request as parameter (orange arrow). The focus dataset is received by the worksheet
controller. This triggers the view controller(s) to update the visualizations.

1 angular.module(’NgInfovisBase’, [])
2 .factory(’dataProvider’, function ($http, bgBridge) {
3 return function (dataProvider, rqxdata, success, error) {
4

5 var serverURL = getServerURL();
6 var url = serverURL + "infovisviews/data/" + dataProvider;
7

8 $http.post(url, JSON.stringify(rqxdata))
9 .success(function (data) {

10 success(data);
11 })
12 .error(function (data) { error(data); });
13 };
14 })

Listing 5.7: Definition of a data provider factory in the base module ’NgInfovisBase’ module.
This factory can be used by worksheets to initiate connections to the server

The link to the server is established by using the connection template of the base module
(AngularJS factory). To use this factory to create a service the following parameters are required
(see Listing 5.7, line 3):

47

• A data provider identifier string.

• The payload of the server request.

• A success function which is executed if the server successfully returns the requested focus
dataset.

• An error function in case of a problem, e.g., the server is not available.

The request gets sent to a specific data provider on the server (see orange arrow in Figure 5.4)
by a HTTP post request (line 8). By definition this type of request does not restrict the length of
its payload [7]. Therefore it is suitable to transfer requests without limiting the amount of item
references or parameter.

1 angular.module(’WorksheetModule’, [’NgInfovisBase’, ’NgHeatmap’, ...])
2 .controller(’WorksheetController’, function ($scope, dataProvider,

dataTypes) {
3

4 // declare scope variable for the focus dataset
5 $scope.focusDataset = {};
6

7 // watch the item list scope variable of the base module
8 $scope.$watch(’bridge.itemList’, function (newVal, oldVal) {
9

10 // prepare request
11 var rqxObject = prepareRQxObject();
12

13 // initiate a data provider request
14 dataProvider("DataProviderID", rqxObject,
15 function (ServerResponseData) {
16 // load server response to scope variable
17 $scope.focusDataset = ServerResponseData;
18 },
19 function (error) {
20 // error handling
21 }
22);
23 }, true);
24 });

Listing 5.8: This example of a worksheet implementation shows how a data provider request is
initiated. A change of the ’itemList’ variable triggers the request. The response is saved in the
’focus dataset’ scope variable.

The scope variable of the focus dataset is assigned to the visualization directive by a param-
eter in the HTML code of the worksheet. Hereby it is essential for the function of the binding to
use the same controller (see ’WorksheetController’ in Listing 5.8 and Listing 5.9).

48

1 <body ng-controller="WorksheetController">
2 <heatmap table=’focusDataset’ selection=’bridge.selectedItems’></heatmap>
3 </body>

Listing 5.9: The table attribute in line 2 connects the scope variable ’focusDataset’ to the
heatmap. This is how data is loaded into a view. It is essential for the functionality that both the
HTML markup and the worksheet module declare the same controller. The selection attribute
will be introduced in Section 5.3.

Workspace Connection

This section describes how user interactions from the application or the workspace are transmit-
ted to worksheets. As can be seen in Listing 5.8 (first line) the declaration of a module may
contain dependencies to other modules. As a result scope variables can be passed via HTML
parameters to directives (see Listing 5.9).

Figure 5.5: If the user makes changes in the workspace the scope variables of the base module
are changed via the web bridge (red arrows). The scope variables for the color and the visibility
can only be changed from the workspace whereas the selection can be changed from the work-
sheet as well. The worksheet scope variables may watch these variables for changes to adapt the
view.

49

Qt WebKit Bridge

As stated in the previous section the base module declares scope variables which are bound to
application signals via the so called Qt WebKit Bridge. This class enables the JavaScript envi-
ronment of worksheet websites to access application functions and vice versa. The Qt WebKit
Bridge instance creates a ’bridge object’ for the JavaScript environment. This JSON object con-
tains a set of functions and slots. Functions can be called to send data to the application. Slots
can be connected by the developer with JavaScript functions to allow the application to execute
JavaScript code (see Figure 5.6).

func2(...){

 ...

}

func1(...)

Qt WebKit Bridge

Qt Environment

Qt WebKit / Web Page Environment

<!DOCTYPE html>

 <html>

 <head>

 <script type= "text/javascript">

 </script>

 </head>

 <body>

 ...

 </body>

</html>

func1(...){

 ...

}

func2(...)

Bridge Object

Figure 5.6: The bridge object enables a communication between the web page environment
of the website and the parent application. If a JavaScript function is connected to a slot of the
Bridge Object the function can be called from the Qt environment (red arrow). Functions of the
Bridge Object can be called from the

The data that needs to be exchanged are JSON strings containing sets of item references
with additional parameter, e.g. color or visibility settings. These strings have to be created and
interpreted on both sides.

Implementation of the Qt WebKit Bridge

The Qt WebKit declares a ’bridge object’ in the JavaScript environment of the displayed web
page. The slots of this object are connected to application functions. They are triggered when
the user changes the item list of the viewport (see Section 4.3) or an item properties (see Sec-

50

tion 4.6). The base module implements JavaScript functions and connects them to these slots
(see Listing 5.10, line 2).

1 if (typeof bridgeObject.selectItems !== "undefined") {
2 bridgeObject.selectItems.connect(function (itemReferenceList) {
3 $rootScope.$apply(function () {
4 bridge.selectedItems = $.parseJSON(itemReferenceList);
5 });
6 });
7 }

Listing 5.10: This code snippet connects the slot ’selectedItems’ of the bridge object to a
local function which copies the the item list to the scope variable ’selectedItems’. As a result
selections from the application are sent to the visualization.

The functions of the bridge object (see Listing 5.11) can be utilized to send signals from the
worksheet to the application.

1 $rootScope.$watch(’bridge.selectedItems’, function (newVal, oldVal) {
2 if (typeof bridgeObject.setSelection !== "undefined") {
3 var items = bridge.selectedItems;
4 bridgeObject.setSelection(JSON.stringify(items));
5 }
6 });

Listing 5.11: This code snippet executes a function of the bridge object and passes a list of item
references to it. As a consequence the application receives the list and is able to change the
selection in the application.

Bridge Object Features

Table 5.2 introduces the implemented slots and functions of the implemented bridge object. They
are by the application to communicate or transfer data between the visualization worksheet and
the application. The parameter of these functions and slots are used to transfer item references
(identification number and type) and workspace properties like appearance and visibility.

51

Function Description
itemsChanged(added, removed) Add or remove data from the visualization when the

user drags objects from the workspace into the
viewport. ’added’ is an array of JSON objects
containing item identifiers and properties.

added = [{
type: "1",
id: "1234",
appearance: {r:255,

g:255,
b:255,
a:255},

visibility: true
}, ...]
removed = [{
type: "1",
id: "1234"

}, ...]

itemAppearanceChanged(states) Changes the appearance of the specified objects
when the user adjusts settings (color and
transparency) of one or more objects in the
workspace. ’states’ is an array of JSON objects
containing item references and their appearance
properties as an array of color and alpha values.

states = [{
type: "1",
id: "1234",
appearance: {r:255,

g:255,
b:255,
a:255}

}, ...]

itemVisibilityChanged(states) Changes the appearance and the visibility of the
specified objects. ’states’ is an array of JSON
objects containing items and their visibility
properties as boolean values.

states = [{
type: "1",
id: "1234",
visibility: true

}, ...]

Table 5.2: This table introduces the implemented slots of the
bridge object as well as the parameter or return values. To use
slots they have to be connected to local JavaScript functions (see
Listing 5.10).

Workspace features can be triggered by calling the JavaScript function from the bridge object.
By adding parameters to this functions data can be exchanged between the two sides. Table 5.3
introduces the functions of the bridge object. These functions can be called from the JavaScript
environment of the web page.

52

setSelection(selection) Sets the selection in the workspace when the user
selects objects in the visualization. ’selection’ is an
array of JSON objects containing item identifiers.

selection = [{
type: 1,
id: "1234"

}, ...]

addItems(newItems) Adds items from the visualization to the worksheet.
Can be used when the focus dataset contains
references to related items. ’newItems’ is an array
of JSON objects containing item identifier.

newItems = [{
type: 1,
id: "1234",

}, ...]

Table 5.3: This table introduces the implemented functions of the
bridge object as well as the parameter. These functions can be
directly called via the bridge object.

Interpretation as Model View Controller Cascade

Viewport environment Worksheet

Controller2

Controller1 Controller3

View1
Workspace

View3
Visualization

Base module

Figure 5.7: The usage of at least tree different controllers establishes multiple model-view-
controller cycles (see Figure 2.8).

Due to the implementation of at least three controllers per worksheet multiple model-view-
controller cycles are realized (see Figure 5.7).

The first cycle is integrated in the viewport environment. Its model contains item references
and settings. The application presents this list as workspace to the user. This list offers features

53

to adjust both the list items and various settings for each item. When the user changes these
settings the controller updates the model from the viewport. This model is shared between the
viewport and the worksheet, i.e. the base module.

Via the bridge object the item list is shared with the worksheet. The worksheet controller
’watches’ this list for changes to request a new focus dataset. A change of this dataset triggers
the view to update the visualization(s).

Due to the ability of worksheets to add items to the workspace the sequence can be reversed.
If the user decides to add a new item from the worksheet to the workspace the shared model
gets updated. This change triggers the viewport to display the new item and the base module to
acquire a new focus dataset.

54

CHAPTER 6
Evaluation

6.1 Objective Evaluation

This section describes the performance of the proposed concept by presenting latency measure-
ments of the pipeline. The purpose of this performance evaluation is to measure the efficiency of
the pipeline components. After these measurements it can be evaluated if the concept performs
sufficiently in the existing environment by determining the efficiency of each individual step.

Evaluation Strategy

The evaluation was conducted with a fixed set of 20 workspace items. The references of these
items were hard coded into the source code of the base module and were included in the request.
This results in a JavaScript object of 212 bytes which was sent to the server and resulted in an
focus dataset of 2960 bytes. The size of the JavaScript objects was determined by introducing
sizeof.js [11].

Latencies are measured by logging time stamps at several places between the involved com-
ponents (see Figure 6.1). The differences between these time stamps allow to determine laten-
cies, e.g., the processing time of a data provider. Therefore log messages were added to the
source code of both the worksheet and the server components to return the system time at dif-
ferent stages of the pipeline. These messages log the system time in milliseconds as integer.
Therefore it’s possible to determine the latencies by simply subtracting consecutive values. The
rendering step of the pipeline is not considered in this evaluation because it strongly depends on
the type of the used visualization. This section concentrates on the delivery of the focus data.

Time measurement points where located before the following positions:

• T0: Initializing the data provider request (worksheet)

• T1: Arrival of the request at the server, before dispatching (server)

55

Figure 6.1: This illustration points out the places in the pipeline where time measurements are
made. A request is initiated in the worksheet controller at T0 and ends at T7.

• T2: start of data provider (server)

• T3: data base request (server)

• T4: merging result sets from different sources (server)

• T5: data model builder (server)

• T6: returning data model back to worksheet (server)

• T7: data provider response (worksheet)

After placing this measurement points 20 runs where performed. The time spans between the
logs can be interpreted as the time consumption of the processing steps.

Infrastructure

The measurements were performed on a PC running Windows 7 (64 Bit) with 16 GB RAM and
a 3.4 GHz CPU with four cores1. The web server components were running on the same PC
for the evaluation. Only the database is located on a different machine running Ubuntu 11.04
(32 bit) with 2 GB RAM and a 3 GHz processor2. In the evaluation environment the PC and
the database server both are connected by GBit Ethernet in a local area network. A ping test
revealed a latency of less than 1 ms.

Results

As can be seen the longest time is spent between initializing a request and receiving it on the
server (176 ms). The time spent for dispatching the request is lesser than 1 ms. This time cannot

1Intel Core i7-2600 @ 3.4 GHz
2Intel Pentium 4 @ 3 GHz

56

0 25 50 75 100 125 150 175 200 225

T1-T0

T2-T1

T3-T2

T4-T3

T5-T4

T6-T5

T7-T6 6 ms

1 ms

< 1 ms

16 ms

11 ms

< 1 ms

176 ms

time in milliseconds after T0

Figure 6.2: An illustration of the processing delays caused by the implemented components.
These are averaged values after 20 measurements.

be measured exactly because the resolution of 1 ms does not allow an accurate measurement.
More time is required for creating a database request (11 ms) and waiting for the response
(16 ms). The time to process the response as well as converting the response to a data model
takes less than 1 ms. Sending back the reply to BrainGazer takes significantly longer.

Discussion

As can be seen in Figure 6.1 the longest delay occurs between initializing a data provider re-
quest and receiving it on the web server. This delay might be the result of a bad JavaScript
processing performance of BrainGazer. As stated in Section 5.1 the Qt WebKit is used to embed
the websites. To prove this assumption a benchmark comparison between the embedded web
browser and a desktop browser was conducted. It revealed a significant lack of performance of
the embedded browser (see Table 6.1).

Benchmark Website Firefox 31.0 Qt WebKit Difference [%]
browsermark.rightware.com 4238 140 97%
peacekeeper.futuremark.com 1159 707 39%
www.speed-battle.de 1172 78 93%

Table 6.1: Benchmark results comparison between the embedded web browser of BrainGazer
(Qt WebKit, see Section 5.1) and a standard desktop browser on the same PC (for specifications
see Section 6.1). The numbers are the results of website benchmark tests. A higher value
indicates a better performance.

To strengthen the hypothesis of the bad performing Qt WebKit the same measurements

57

browsermark.rightware.com
peacekeeper.futuremark.com
www.speed-battle.de

where performed by a standard web browser (see Browser statistics [14] for a list of standard
web browsers). In this scenario the measurements revealed latencies between T0 to T1 of only
15 ms. As a result it can be stated that the delays are caused by the embedded Qt WebKit.

It can be seen that dispatching of the request is performed very quickly (T2-T1). Due to the
small number of data providers (9) in the map data structure the dispatching can be finished very
fast.

To create the database query the request object needs to be processed. This depends on
the size of the request and causes a small delay of 11 ms. Consequently the query needs to be
executed (T4-T3).

In this evaluation use case a post processing of the result set is not required. Therefore no
time is spent for this step (T5-T4). This delay might be significantly higher when multiple data
sources are involved. This would require a merging procedure of the different data sets.

Creating the data model requires to convert the result set into a different data structure (T6-
T5). Therefore the complete dataset needs to be rebuilt. It can be said that the duration of this
procedure depends on the size of the dataset.

Back on the client side the performance lack of the Qt WebKit occurs again. After receiving
the response the dataset gets copied into a scope variable. Unfortunately the bad performance of
the Qt WebKit in comparison to a standard web browser has a significant impact on the proposed
concept. As a result it can be said that the decision to introduce web technologies on the client
side (see Section 4.5) simplified the implementation of worksheets but led to a bad usability in
the existing environment.

6.2 Case studies

This section will describe two use cases and how the proposed concept can be used to solve the
given problems. The first section will introduce the biomedical background that is necessary to
describe the use cases.

Biomedical Background

The aim of circuit neuroscience is to understand the computational function of neuronal circuits.
Scientists try to reverse-engineer biological circuits to gain knowledge about their structure and
logic to understand their computational algorithms [46].

An often used modeling organism is the Drosophila Melanogaster, the commonly known
fruit fly. Due to the high degree of stereotypy in insect nervous systems it has become an im-
portant modeling organism in circuit neuroscience in order to create brain atlases [20]. There is
a direct homology between Drosophila genes and genes that affect human diseases. A signifi-
cant proportion of the known human genes are similar to Drosophila genes. On the other side a
large number of Drosophila protein sequences has similarities to those of mammals [33]. Thus,
knowledge gained from Drosophila brain studies might be helpful to form hypotheses about the
human brain.

58

Projection

Cell Body

Arborization

Neuropil

Figure 6.3: Segmented anatomical structures in the context of a Drosophila Melanogaster
brain [42]

A neuron consists of a composition of cell body, projections and any number of arboriza-
tions (see Figure 6.3). The cell bodies are blob-shaped structures containing the nucleus of the
cell. Arborizations are tree like terminal branches that connects the neuron to other neurons to
enable a communication via synapses. The connections between cell bodies and arborizations
are called projections. Additionally to this object classification the brain and the associated ven-
trical nerve cord (VNC) is divided into functional or spatial sub regions of the nervous system
called neuropils [42].

Data Acquisition

To study the nervous system of the Drosophila Melanogaster scientists have acquired a large
number of confocal microscopic image stacks of individual Drosophila brains [3]. They are
using molecular genetic techniques [19] to highlight specific neurons in the samples. This tech-
nique results in a fluorescence effect which makes the targeted neurons stand out from the re-
maining tissue. The volumetric images of brain tissue and the highlighted structures can be
generated by registering the scans from the first channel to a standard brain template. This tem-
plate is a standard image generated by averaging a set of representative scans to a reference scan.
The neurons are visible on the second channel of the microscope. The final image is the result
of the two channels combined with the template.

By creating binary masks and geometry files the scientists point out interesting structures
and store the segmented neurons separately. The generated mask and geometry files are saved
on a file server whereas both references to images and their neuronal structures are stored in a
relational database [42].

59

Then the generated files run through a series of preprocessing steps to detect overlapping
structures. The generated percentage values indicate how much two individual structures over-
lap each other. These percentage values are stored along with references to both objects in a
specifically prepared database table [20]. As a result overlapping or staining values can easily
be accessed for further analysis.

Use Case: Image Staining per Neuropil

Finding similar anatomical structures in a set of individual images is an often required step in
the workflow of an experiment. This is how the scientists are able to find out different shapes of
structures in genetically identical groups (lines).

Visualization Approach

Figure 6.4: 3D rendering of a volumetric image data of a Drosophila Melanogaster brain. The
green channel shows the fluorescence staining of neurons. The gray channel represents a stan-
dard brain template.

The number of highlighted (stained) voxels in a certain region of the brain is an important
value to compare a set of images concerning similar neuronal structures (see Figure 6.4). High
staining values in a certain area might indicate the presence of neurons. During the prepro-
cessing of the images the number of stained voxels is counted and stored as an integer in the

60

database. These values can easily be used to introduce a visual comparison method.

All the values are stored in a single database table with references to images and neuropils.
Hence the content of this data table can be categorized as multivariate data and the involved
object types define the input data types of the visualization.

Figure 6.5: A screenshot of an interactive parallel coordinate system as implemented in List-
ing 6.1. The thick red lines on the vertical axes represent filter selections to allow the user to pick
only samples which fit into a certain range (blue lines). The filtered data can then be accessed
by a scope variable.

Parallel coordinate systems are a widely used visualization method for multivariate data and
have become well-known for exploratory data analysis [30]. They can be implemented with
interaction features, e.g. brushing to allow the user to select a certain subset of samples. A se-
lection technique in an interactive visualization is essential for allowing the user to pick samples
which fit into a certain range.

To visualize the image staining the vertical axes of the parallel coordinate system can be
used to represent the neuropils. The images are then represented by lines between the axes
which connect the staining values of each individual neuropil. Figure 6.5 is an example of the
visualization showing the staining values of a set of images (lines) on seven neuropils (vertical
axes). In this example the user has set a filter on each axes to pick a subset in order to find similar
images.

61

Before the investigation starts the user has to select both a set of images and neuropils by
using the database search interface. From there the results are added to the workspace and in the
next step to the novel infovis viewport. After dropping the items the worksheet loads the needed
data for the visualization and renders the parallel coordinate system. If this worksheet is used
in combination with a 3D viewport, the user is able to visually compare the neuronal structures
of the results of the worksheet investigation. Therefore the user loads the volumetric images
of possible candidates into a 3D viewport and compares the areas of interest by overlaying the
segmented neuronal structures to the images.

Implementation of the Visualization Worksheet

The visualization instance can be embedded as AngularJS directive which is used within the
HTML code of the worksheet website (see Section 5). Through the attributes of this directive
data can be exchanged with the view. In the developing stage of the worksheet, the directive of
the parallel coordinate system has to be connected with one or more data provider and the appli-
cation by using scope variables of the server and the workspace connection (see Section 5.3).
The following listings are representative code segments from the implementation to describe the
proposed concept.

1 <body data-ng-controller="AppController">
2 <div id="viscontainer">
3 <parallelcoordinates
4 table="imageNeuropilStaining"
5 dataselection="bridge.selectedItems"
6 axisselection="bridge.selectedItems"
7 filtereddata="bridge.filteredItems">
8 </parallelcoordinates>
9

10 <itemstoworkspacebutton
11 items="bridge.selectedItems">
12 </itemstoworkspacebutton>
13 </div>
14

15 <loadinganimation status="bridge.isloading"></loadinganimation>
16

17 <script type="text/javascript">
18 // data provider definition, see below
19 </script>
20 </body>

Listing 6.1: The HTML skeleton of the parallel coordinates visualization.

Listing 6.1 is the HTML skeleton necessary for a single visualization and its integration into
the application. The tag <parallelcoordinates ...> in the third line is a user defined AngularJS
directive that introduces the plot. Its attributes link the plot to the scope variables of the Qt We-
bKit Bridge and the data provider without the usage of additional event handler functions. This
is how the linking mechanism of BrainGazer gets extended to the visualization. The following
list introduces the scope variables of Listing 6.1 necessary to connect the parallel coordinate
system to both the server and the application (see Figure 5.3):

62

• table: The input data for the plot (focus data) which results directly from the data provider
response (see Listing 6.2).

• dataselection: A set of identifiers representing the selected data lines of the plot.

• axisselection: A set of identifiers representing the selected axis of the plot.

• filtereddata: A set of identifiers representing filtered data lines.

The table attribute is assigned to imageNeuropilStaining a scope variable which is filled by
the data provider (see Listing 6.2). data selection and axis selection both are lists of identifiers
representing selected axis or lines. These two attributes can be used bidirectionally in order to
propagate selected items from the visualization to the application and vice versa.

The code segment of Listing 6.2 is the definition of the server connection to connect the visu-
alization to the corresponding data provider on the server. First, the worksheet dependent scope
variable ’$scope.imageNeuropilStaining’ is declared which contains the focus dataset after a
request.

1 <script type="text/javascript">
2 angular.module(’NgImageStaining’, [’NgBase’, ’NgParallelCoordinates’])
3 .controller(’AppController’, function ($scope, dataProvider, dataTypes) {
4

5 $scope.imageNeuropilStaining = {}; // scope variable declaration
6

7 $scope.$watch(’bridge.itemList’, function (newItems, oldItems) {
8

9 var requestObject = {...}; // initialize and prepare the request object
10

11 $scope.bridge.isloading = true; // show loading animation
12

13 // data provider definition
14 dataProvider("imageNeuropilInstanceStaining", requestObject,
15 function (table) { // successfully received server response
16 $scope.imageNeuropilStaining = table; // visualization data
17 $scope.bridge.isloading = false; // hide loading animation
18 },
19 function (error) {...} // error handling
20);
21 });
22 });
23 </script>

Listing 6.2: Controller definition and data provider functionality

The watch statement (Listing 6.2, line 7) gets triggered every time the list of associated items
of the viewport is changed. Hence, if the set of items changes, a data provider request is sent to
the server and updates ’$scope.imageNeuropilStaining’ in order to update the visualization.

The scope variable ’imageNeuropilStaining’ is connected to the view controller (see List-
ing 6.2 line 5). Therefore it can be watched by the view controller to re-render the visualization
in case of a data update (line 14).

63

1 angular.module("NgParallelCoordinates", [])
2 .directive(’parallelcoordinates’, function () {
3 return {
4 restrict: ’E’, // directive option
5 scope: { // scope variables = HTML parameter
6 table: ’=’, // enriched dataset
7 axisselection: ’=?’ // selection
8 },
9 template: "<div id=’parallel-coordinates’></div>",

10

11 link: function (scope, element, attrs) {
12 var pc1 = new ParallelCoordinates(’parallel-coordinates’);
13

14 scope.$watch(’table’, function (newVal, oldVal) {
15 pc1.clearPC(); // reset view
16 pc1.update(newVal.data, newVal.rows, newVal.columns); // update view
17 });
18

19 // user select items in the workspace
20 scope.$watch(’axisselection’, function (newVal, oldVal) {
21 if (pcSelection.axis != undefined)
22 pc1.highlightItems(newVal);
23 }, true);
24

25 // user selects items in the view
26 pc1.AxisSelectionChanged = function (selection) {
27 scope.axisselection = _.map(selection, function (d) {
28 return { "id": d.id, "type": d.type };
29 });
30 };
31 }
32 };
33 });

Listing 6.3: This simplified listing describes how a view is ’wired’ with the base module. The
watch statements detect changes of the base modules scope variables and perform changes to
the view. If the user selects items in the view a scope variable of the base module is changed to
trigger the watch statements in the base module.

The HTML and JavaScript source code of both Listings 6.2 and 6.3 enable a fully functional
visualization. Due to the design modules responsible for the visualization and the bridge can be
reused without modifications in other worksheets. The next use case demonstrates the usage of
multiple visualizations in one worksheet.

Use Case: Arborization Overlap

As mentioned in Section 6.2 the connectivity of neurons plays an essential role in understanding
how information is transmitted and processed in the brain. Hence, neuroscientists try to gain
more knowledge about the wiring of neurons.

A necessary but not sufficient condition for the existence of a connection is a spatial overlap
between the arborizations of neurons (Neuromap [42]) (see Figure 6.6). At first the user estab-

64

Figure 6.6: 3D rendering of three overlapping arborizations (red, green, yellow). An overlap-
ping indicates that these structures might be synaptically connected at certain regions in order to
transmit information.

lishes a set of possible arborizations in the workspace and associates it to the InfoVis viewport.

A data visualization of the overlap values can be helpful as first step of a workflow although
the spatial context of overlapping regions might get lost in a 2 dimensional visualization. But if
the visualization is used in combination with a 3D view the spatial context can be reestablished
by the linking mechanism. This allows the user to visually observe the overlapping regions in
the 3D view and to determine if the overlap indicates a synaptic connection.

Visualization Approach

In a processing step of the segmentation procedure overlapping values are computed automati-
cally. Along with references to arborizations they get stored in the database. As a result a record
contains two references to arborizations and an overlap value. If using a set of arborizations as
input, a matrix of overlapping values can be put together.

For the illustration of matrices multiple visualization types are suitable. A very common
method is to use a heatmap (see Figure 2.3. Hereby color scales are used to represent numerical
values of a certain range. Each data value is mapped to a certain color according to the scale.

Another method is to use a chord diagram (see Figure 6.7) to display the data values. It dis-
plays the data as segments of a circle and displays the relations by connecting pairs of segments.

As a result two different visualization types are suitable to support the user at dealing with
this use case. This requires methods to display multiple views and mechanisms to switch be-
tween them. In the context of this use case a heatmap is better suited to find out pairs of over-
lapping structures and enables to visually compare overlapping values. Both visualization types
have advantages and disadvantages. A chord diagram is better suitable to answer the question

65

Figure 6.7: A chord diagram representing the overlapping between a set of arborizations. A
connection of two segments represents an overlapping. By highlighting individual segment and
the connections the user immediately sees if the selected arborization overlaps other arboriza-
tions.

whether a single arborization overlaps certain other structures. Therefore in a chord diagram
multiple segments or connections can be selected to find out the overlaps among the selected
arborizations.

The user starts the investigation by setting up a collection of relevant arborizations in the
workspace. After associating these arborizations to the InfoVis viewport the two visualizations
are rendered (see Figure 7.1.

Implementation of the Visualization Worksheet

1 <div class="tab-container">
2 <div id="tab1" name="Heatmap" class="tab active">
3 <heatmap
4 table=’overlapTable’
5 selection=’bridge.selectedItems’>
6 </heatmap>
7 </div>
8 <div id="tab2" name="Chord Diagramm" class="tab">
9 <chorddiagramm

66

10 table=’overlapTable’
11 selection=’bridge.selectedItems’
12 appearance=’bridge.itemList’>
13 </chorddiagramm>
14 </div>
15 </div>

Listing 6.4: The HTML skeleton of a multi-view worksheet. Both visualizations use the same
scope variables.

Listing 6.4 uses two visualization directives. Both directives are using the same scope vari-
ables for the enriched dataset (overlapTable) and the selection. The heatmap does not support
appearance settings because it uses colors to represent values. Therefore the appearance is only
connected to the chord diagram. To enable the switching mechanism the two directives are en-
closed by div elements and assigned to CSS properties3. The switching mechanism adjusts these
CSS parameters if the user decides to change the view. As a result the views can be displayed
separately or simultaneously.

Figure 7.1 shows the result of the implementation in BrainGazer. The user can choose
between two visualization types. For this use case the heatmap is better suitable to find out
the overlapping between two arborizations whereas the chord diagram can better be used to find
out if two or more arborizations have overlapping regions.

3Cascading Style Sheets, style sheet language to define visual features of web pages.

67

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

This thesis proposes a visualization framework that aims at extending an existing scientific vi-
sualization environment by additional two dimensional data visualizations (see Figure 7.1). It
describes the technical background of the implementation starting from the database backend
and ends with the integration on the client-side application.

This software design concept aims at integrating new views into an existing environment
and at hiding the infrastructure from the user. Due to the workspace integration users are able to
interact with the InfoVis viewport like any other viewport.

7.2 Future work

This chapter describes possible improvements to the proposed concept. So far this proposed soft-
ware design concept is implemented to enable new possibilities to compare three dimensional
object representations by using two dimensional information visualizations. The main focus of
the implementation was to create a prototype which is, as the objective evaluation shows (see
Section 6.1), far away from being perfect. The following illustration of the data flow illustrates
possible bottlenecks in the pipeline structure. Potential improvements are described in the next
sub sections.

Figure 7.2 illustrates the basic architecture of the proposed pipeline concept. These compo-
nents and the connections between them are potential candidates for improvements. Of course
the performance of the system could be improved by better hardware components but the fol-
lowing sub sections focus on implementation details to improve conceptual issues as well as to
eliminate performance bottlenecks.

69

Figure
7.1:

T
his

screenshotof
B

rainG
azer

show
s

a
3D

view
w

ith
a

connected
w

orksheet.
T

he
bar

above
the

visualizations
allow

s
the

user
to

sw
itch

betw
een

the
tw

o
visualization

types.
A

s
can

be
seen

this
w

orksheetsupports
both

a
heatm

ap
and

a
chord

diagram
.

T
he

side-by-side
view

allow
s

displaying
the

focus
datasetthrough

m
ultiple

visualizations.

70

Figure 7.2: The main components and connections of the pipeline between the database and the
visualization.

Server-side caching

The web server is responsible for performing database queries. This is done by sending a query
string (i.e., an SQL statement) to the database server. This query contains a set of use case
specific parameters to get exactly the wanted datasets. This set may contain object identifiers
or commands to collect data from different database tables. As a result more complex queries
might lead to a higher workload of the database.

Figure 7.3: The data flow with a cache on the web server. If the client sends a request the server
checks if the cache contains the results. Only if the cache does not contain a valid entry (cache
miss) a database query is performed.

An approach to this problem would be a server-side caching mechanism that temporarily
stores query results (see Figure 7.3). If a client requests data, the results are stored in the cache
and sent back to the client. If the web server receives the same request again it can easily
respond to the request with the cached data. Consequently this would lead to a load removal at
the database server. On the other hand this feature requires caching techniques and additional
memory. A caching system would be necessary to manage the cache entries. A srawback of this
solution would be a heavier workload of the web server.

71

Data compression

’JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate’ [13]. An object consists
of a set of key/value pairs. Especially JSON object arrays of the same type contain the same
names for each array element. This leads to overhead which might cause a longer server response
time.

Figure 7.4: The data flow with a compression mechanism on the web server and on the client
side. The compression function (C) on the web server compresses the JSON object and the client
decompresses it (D).

A compression mechanism on the web server reduces the size of data that has to be trans-
ferred (see Figure 7.4). This would lead to a faster transmission but requires additional pro-
cessing power on the web server and on the clients machines. A simple way to achive this
compression solution is to use a common built-in compression technique of web servers like
GZIP. It’s an often used algorithm which is supported by all major web browsers and servers [6].
Another compression technique can be introduced for the worksheets like HTML and JavaScript
files. This method reduces the file size and improves the loading time of the website in the
browser.

Incremental Updates

So far, every time the user adds a new instance item to a viewport the entire dataset of the visu-
alization is updated. Valid data that already exist on the client side is deleted and is replaced by
the same information plus the data from the new instances. This problem does not only concern
the transmission of the data. The database query and the preprocessing of the enriched dataset
require calculation efforts for the web server.

The solution of the problem would be the introduction of incremental updates. This means
that only the visualization data is required from the server that is related to the newly added
instance items of the viewport. The server sends the partial update and the client merges it with
the already existing visualization data.

72

Improve Implementation of Data Provider

The server components of this software design concept are implemented as Java classes by the
use of the Google Web Toolkit [12]. Therefore any part which is implemented within the Java
environment requires a full re-compilation of the web server. As a consequence the user cannot
extend the server by new data providers without the knowledge about the implementation.

To solve this problem a more modular approach is needed. A more dynamic way of adding
would be an additional API to allow a dynamic integration of new components to the server.
An alternative solution to this problem might be a more generalized data provider concept as
described in the next section.

Generalized data provider

Another way of expanding the functionality is to reduce the complexity of data providers on the
server side. In the proposed pipeline concept database queries are defined on the server side.
On arrival of a client request the query is extendet by item references and is executed. A more
generalized approach would be to define the queries on the client-side. This way, only a single
data provider would be necessary. The dispatching step would be obsolete. On the other hand
the client becomes responsible for a part of the filtering. The client needs to transform the results
to the standardized data model (see Section 4.5). This would change fundamental parts of the
proposed concept (see Section 4.4). The implementation of a single generalized data provider
would lead to a relief of the web server. On the other hand the data traffic would increase be-
cause the results of database queries are transmitted as raw data.

By acquiring contents from different data sources the client has to join the results to preserve
the focus dataset. This enables a new more dynamic approach but leads to more complex visual-
ization worksheets. Furthermore precautions must be considered in terms of database security.

73

Bibliography

[1] AngularJS. http://angularjs.org/. Accessed: 2014-02-26.

[2] Apache Tomcat. http://tomcat.apache.org/. Accessed: 2014-05-06.

[3] BrainBase Database. http://brainbase.imp.ac.at/bbweb. Accessed: 2014-11-28.

[4] Crossfilter - Fast Multidimensional Filtering for Coordinated Views. http://square.github.
io/crossfilter/. Accessed: 2014-11-28.

[5] google-gson - A Java library to convert JSON to Java objects and vice-versa . https://code.
google.com/p/google-gson/. Accessed: 2014-02-18.

[6] HTTP Compression. http://www.http-compression.com/. Accessed: 2014-02-18.

[7] HTTP Methods: GET vs. POST. http://www.w3schools.com/tags/ref_httpmethods.asp/.
Accessed: 2014-02-26.

[8] Java. http://www.oracle.com/technetwork/java/javase/downloads/index.html. Accessed:
2014-07-31.

[9] Qt Project. http://qt-project.org. Accessed: 2014-02-26.

[10] Scatterplot of Old Faithful Geyser Eruptions. http://commons.wikimedia.org/wiki/File:
Oldfaithful3.png. Accessed: 2014-07-21.

[11] sizeof.js. http://code.stephenmorley.org/javascript/finding-the-memory-usage-of-objects/.
Accessed: 2014-09-16.

[12] The Google Web Toolkit Project. http://www.gwtproject.org. Accessed: 2014-02-26.

[13] The JSON Standard. http://www.json.org/. Accessed: 2014-05-13.

[14] w3schools.com - Browser Statistics. http://www.w3schools.com/browsers/browsers_
stats.asp. Accessed: 2014-02-26.

[15] Information Technology - Database Language SQL. http://www.contrib.andrew.cmu.edu/
~shadow/sql/sql1992.txt, 1992. Accessed: 2014-07-31.

75

http://angularjs.org/
http://tomcat.apache.org/
http://brainbase.imp.ac.at/bbweb
http://square.github.io/crossfilter/
http://square.github.io/crossfilter/
https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
http://www.http-compression.com/
http://www.w3schools.com/tags/ref_httpmethods.asp/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://qt-project.org
http://commons.wikimedia.org/wiki/File:Oldfaithful3.png
http://commons.wikimedia.org/wiki/File:Oldfaithful3.png
http://code.stephenmorley.org/javascript/finding-the-memory-usage-of-objects/
http://www.gwtproject.org
http://www.json.org/
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[16] A. Ahmed, K. Latiff, M. S. A .and Abu Bakar, and Z. A. Rajion. Visualization pipeline for
medical datasets on grid computing environment. In International Conference on Compu-
tational Science and its Applications 2007, pages 567–576, Aug 2007.

[17] L. Bavoil, S.P. Callahan, P.J. Crossno, J. Freire, C.E. Scheidegger, C.T. Silva, and H.T. Vo.
Vistrails: enabling interactive multiple-view visualizations. In Visualization, 2005. VIS 05.
IEEE, pages 135–142, Oct 2005.

[18] B. B. Bederson and B. Shneiderman. The craft of information visualization: readings and
reflections. M. Kaufmann, 2003.

[19] A. H. Brand and N. Perrimon. Targeted gene expression as a means of altering cell fates
and generating dominant phenotypes. Development (Cambridge, England), 118(2):401–
15, June 1993.

[20] S. Bruckner, V. Soltészová, M. E. Gröller, J. Hladuvka, K. Bühler, J. Y. Yu, and B. J.
Dickson. Braingazer - visual queries for neurobiology research. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1497–504, 2009.

[21] E. H.-H. Chi. A Framework for Information Visualization Spreadsheets. Springer Science
& Business Media, 1999.

[22] M.C.F. de Oliveira and H. Levkowitz. From visual data exploration to visual data mining:
a survey. IEEE Transactions on Visualization and Computer Graphics, 9(3):378–394, July
2003.

[23] J. Fekete. The infovis toolkit. In Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on, pages 167–174, 2004.

[24] M. Friendly. Milestones in the history of thematic cartography, statistical graphics, and
data visualization. http://www.datavis.ca/milestones/, 1995. Accessed: 2014-11-28.

[25] A. G. Gee, M. Yu, and G. G. Grinstein. Dynamic and interactive dimensional anchors for
spring-based visualizations. Technical Report 2005, 2005.

[26] R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual model for scien-
tific visualization systems. In Visualization in Scientific Computing, pages 74–93. IEEE
Computer Society Press, 1990.

[27] C. D. Hansen and C. R. Johnson. The Visualization Handbook. Elsevier Butterworth-
Heinemann, 2005.

[28] H. Hauser, D. Weiskopf, Kwan-Liu Ma, Jarke van Wijk, and Robert Kosara. Scivis, infovis
- bridging the community divide?! IEEE Visualization Conference Compendium, pages
52–55, 2006.

[29] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for interactive information vi-
sualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, pages 421–430, New York, NY, USA, 2005. ACM.

76

http://www.datavis.ca/milestones/

[30] J. Heinrich and D. Weiskopf. State of the Art of Parallel Coordinates. In Proceedings of
the Eurographic conference 2013, pages 95–116. Eurographics Association, 2012.

[31] R. Kosara. A little Space, Please - SciVis and InfoVis face off. American Scientist, Volume
97, Number 2:150, March-April 2009.

[32] B Lahres and G. Rayman. Praxisbuch Objektorientierung: Das umfassende Handbuch.
Galileo Press, Bonn, 2nd edition, 2009.

[33] T. F. C. Mackay and R. R. H. Anholt. Of flies and man: Drosophila as a model for human
complex traits. Annual Review of Genomics and Human Genetics, 7(1):339–367, 2006.

[34] K. Matkovic, W. Freiler, D. Gracanin, and H. Hauser. Comvis: a coordinated multiple
views system for prototyping new visualization technology. In Proceedings of the 12th
International Conference Information Visualisation, 7 2008.

[35] K. Moreland. A survey of visualization pipelines. IEEE transactions on visualization and
computer graphics, 19(3):367–78, March 2013.

[36] C. North and B. Shneiderman. A taxonomy of multiple window coordinations. Technical
report, University of Maryland, 1997.

[37] W. Qishi, G. Jinzhu, Z. Mengxia, N.S.V. Rao, H. Jian, and S.S. Iyengar. Self-adaptive
configuration of visualization pipeline over wide-area networks. Computers, IEEE Trans-
actions on, 57(1):55–68, Jan 2008.

[38] T. Rhyne, M. Tory, T. Munzner, M. Ward, C. Johnson, and D.H. Laidlaw. Information and
scientific visualization: separate but equal or happy together at last. In Visualization, 2003.
VIS 2003. IEEE, pages 611–614, Oct 2003.

[39] M. Scherr. Multiple and coordinated views in information visualization. Technical report,
University of Munich, 2008.

[40] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and implementation of
an object-oriented toolkit for 3d graphics and visualization. In Proceedings of the 7th
Conference on Visualization ’96, VIS ’96, pages 93–ff., Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

[41] A. N. Shahrul, Y. Suraya, and S. Shahar. Application of information visualization tech-
niques in representing patients’ temporal personal history data. In Visual Informatics:
Bridging Research and Practice, IVIC ’09, pages 168–179, Berlin, Heidelberg, 2009.
Springer-Verlag.

[42] J. Sorger, K. Buhler, F. Schulze, Tianxiao Liu, and B. Dickson. neuromap - interactive
graph-visualization of the fruit fly’s neural circuit. In Biological Data Visualization (Bio-
Vis), 2013 IEEE Symposium on, pages 73–80, Oct 2013.

[43] R. Spence. Information Visualizion. Addison-Wesley, 2001.

77

[44] A Telea. Data visualization - principles and practice. A K Peters, 2008.

[45] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using multiple
views in information visualization. In Proceedings of the Working Conference on Advanced
Visual Interfaces, AVI ’00, pages 110–119, New York, NY, USA, 2000. ACM.

[46] R. Yuste. Circuit neuroscience: the road ahead. Frontiers in Neuroscience, 2(17):6–9,
2008.

[47] Mengxia Zhu, Qishi Wu, N.S.V. Rao, and S.S. Iyengar. Adaptive visualization pipeline
decomposition and mapping onto computer networks. In Multi-Agent Security and Surviv-
ability, 2004 IEEE First Symposium on, pages 402–405, Dec 2004.

78

	Introduction
	Problem Statement
	Approach
	Requirements
	Thesis Overview

	Background
	Visualization Pipeline
	Types of Data Visualizations
	Multiple Coordinated Views
	Model View Controller Pattern

	Related Work
	Data Visualization
	Applications of the Visualization Pipeline
	Conclusion

	Software Design
	Overview
	Existing Client-Server Environment
	Existing User Interface
	Architectural Design Overview
	Server features
	Client Features

	Implementation
	Existing Environment
	Server Features
	Client Features

	Evaluation
	Objective Evaluation
	Case studies

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

