
User guide: CloudyDay -
Rendering of clouds, atmosphere and light shafts

in HDR for testing Computer Vision algorithms
Michael Beham, Vienna University of Technology and AIT - Austrian Institute of Technology

Abstract – Rendering of clouds, atmosphere, and other natural phenomenon is an important topic

in computer graphics. In this technical report, we present a novel solution, which uses different

techniques to generate a realistic representation of the sky. We present a billboard-based approach

to create clouds. We use half-angle slicing to generate volumetric shadows. The resulting shadow

map is then used for casting shadows on the terrain, the clouds, and other objects. We also use and

compare different atmosphere models and providing light shafts. Furthermore, CloudyDay provides

HDR mapping, a bloom effect, colour grading as well as some natural phenomenon like rain.

 We develop CloudyDay to test an autonomous flying robot. We present several

enhancements, which consider the specific requirements of this specific application area. All objects

can be created by an artist. This is great workflow, if a specific test-case should be created. However,

creating a lot of different variations of an object is a time-consuming task. A more reasonable way is

to create the shapes with procedural modelling. This technique enables to create objects (in this

paper clouds, atmosphere,...) and vary the representation by varying the parameters.

User guide: CloudyDay

2 / 22

Table of contents:

INTRODUCTION 3

Requirements 3

Setup CloudyDay 4

SETUP A NEW SCENE 5

Configuration of terrain and atmosphere model 5

Configuration of 3D clouds layers 6

Configuration of particular 3D clouds: 7

Configuration of 2D clouds: 8

Configuration of rain effect 10

Configuration of fog 10

Configuration of 3D models 10

Configuration of Post-Processing effects 11

Setup scene 11

Modifying the scene at run-time 12

INTEGRATION OF PARTS INTO AN EXISTING PROJECT 14

Creating the atmosphere model (required for terrain, and clouds) 14

Adding a terrain to the scene (Optional) 15

Adding 3D clouds to an existing scene (Optional) 16

Adding 2D clouds to a existing scene (Optional) 17

Adding rain to a scene (Optional) 17

Adding post-processing effects to a scene (Optional) 18

REFERENCES: 19

APPENDIX A - CREATION OF A NEW PROJECT 21

User guide: CloudyDay

3 / 22

Introduction

This report gives a guide to setup CloudyDay. This library gives a realistic representation of a sky.

CloudyDay provides following features:

 Atmosphere:

o O'Neal approach [O’N05]

o Bruneton et al. approach [Bruneton 08]

 Objects

o Terrain and other objects

o Variance soft shadows

 3D clouds

o for low- and middle located clouds

o Volumetric shadows ,and shadows at terrain and other objects

o Simulation of cloud dynamics

 2D clouds

o for middle- and high located clouds

o Parallax mapping

o Displacement shader

o Nature phenomena (rain and fog)

 Post-Processing effects

o HDR Mapping

o Light Shafts

o Glare and star effect

o Colour grading

Requirements
We create CloudyDay with OpenSceneGraph 3.0. As developing environment, we use Microsoft

Visual Studio 2010. CloudyDay is tested with a Intel i5 processor with 8 GB main memory. To enable

all features of CloudyDay, the graphic card has to support tesselation shaders (OpenGL 4.0). We test

CloudyDay with a Nvidia's Geforce 420 GT, and Geforce 570 GTX graphic card.

User guide: CloudyDay

4 / 22

Moreover, we need following libraries to compile CloudyDay:

 OpenGL and GLEW library

 Carve library

 TinyXML 2 library

 OpenThreads

 OpenSceneGraph 3.0 with osgUntil, osgDB, osgGA, osgText, and osgViewer

Setup CloudyDay

The first step is to create a new (Visual Studio) project and copy all files in the directory. The shader

directory has to be added. Copy it to the directory that contains the project file (*.vcxproj).

Furthermore, the data directory has to be added. We copy it to the directory, which contains the

*.sln file. An example is shown in figure 4.

 The next step is to add the header files and the library. We copy all files and directories that are

located in the include directory of the CloudyDay archive to the include directory. The CloudyDay.lib,

which is located in the lib directory of the CloudyDay archive, have to be copied to the library

directory (e.g., lib). The next step is to set the additional include directory and additional library

directory in Visual Studio. We set at "Properties\\C/C++\\General\\Additional Include Directories"

the path to the include directory (e.g., "$(ProjectDir)/include/CloudyDay"). We also set at

"Properties\\Linker\\General\\Addidional Library Directories" the path to the lib file

("$(ProjectDir)/lib"). Then, we add the path to the CloudyDay.lib at

"Properties\\Linker\\Inpud\\Additional Dependencies". Now, CloudyDay can be used. Note, that also

the OpenSceneGraph libraries have to be added. In section: "Requriments" all libraries are listed,

which are needed for CloudyDay. Furthermore, a step by step guide is given in the chapter Appendix

A - Creating a new project.

The next chapter gives all instructions to create a new scene with CloudyDay. The second chapter

gives all instructions to integrate parts of CloudyDay into an existing project.

User guide: CloudyDay

5 / 22

Setup a new scene

This chapter gives instructions to configure CloudyDay. The resulting scene contains a terrain,

different types of clouds (3D and 2D), rain, some post-processing effects as well as shadows.

Configuration of terrain and atmosphere model

The first step is to configure the terrain and atmosphere. We configure both as follows:

osgCloudyDay::TerrainConfig* terrain_config = new osgCloudyDay::TerrainConfig();
terrain_config->SetTesselationShader(false);

terrain_config->SetPath2File("mountains.obj");
terrain_config->SetPath2DiffuseTexture("mountain_diffuse.bmp");
terrain_config->SetPath2DefinationTexture("definition1.tga");
terrain_config->SetPath2HeightTexture("mountain_heightmap.tga");

terrain_config->AddPath2Texture("snow.bmp");
terrain_config->AddPath2Texture("terrain_rock4.bmp");
terrain_config->AddPath2Texture("terrain_grass.bmp");
terrain_config->AddPath2Texture("boulder.bmp");
terrain_config->AddPath2NormalTexture("rock_bump6.tga");
terrain_config->AddPath2NormalTexture("rock_bump4.tga");

Scene::m_skydome = new osgCloudyDay::SkydomeHimmel(); //Bruneton approach
//Scene::m_skydome = new osgCloudyDay::SkydomeMie(); //Mie approach

First, we create a TerrainConfig object, and to determine, if the tesselation shader approach should

be used or the standard approach. If the tesselation shader approach should be used, we set the

SetTesselationShader() method to true. The next step is to set the paths to the 3D model and all

textures. An example of the textures is shown in figure 5. Additionally, we need to create a Skydome

configuration object. The user can select between the O'Neal [O’N05] and Bruneton et al.

[Bruneton08] approach.

The last step is to pass the terrain configuration object to the constructor of the scene object. An

example is given in the next line:

my_scene = new CloudyDay(terrain_config, false, false, false, true, true);

The first parameter is the terrain configuration object. The other parameters are need to set rain and
the post-processing effects. We discuss the other parameters later.

User guide: CloudyDay

6 / 22

Configuration of 3D clouds layers

The first step is to configure the 3D cloud layer. We use following code:

//Cloud Layer:
osgCloudyDay::CloudScene::GetStates()->AddLayer(0, osgCloudyDay::CloudScene::CT_Cumulus);
osgCloudyDay::CloudScene::GetStates()->setOvercast(0, 0.002551f/1.f);
osgCloudyDay::CloudScene::GetStates()->setMiddlePoint(0, osg::Vec3(0.f,0.f, 2000.f));
osgCloudyDay::CloudScene::GetStates()->setSize(0, osg::Vec3(10000.f, 10000.f, 10.f));
osgCloudyDay::CloudScene::GetStates()->setMeasureOvercast(0, 0.0f);
osgCloudyDay::CloudScene::GetStates()->setClot(0, 10);
osgCloudyDay::CloudScene::GetStates()->setVariance(0, 0.125f);
osgCloudyDay::CloudScene::GetStates()->setColour(0, osg::Vec4(1.f, 1.f, 1.f, 1.f));

The first step is to determine the cloud type of the 3D cloud layer. CloudyDay supports following

cloud types (an overview of different cloud types is depicted in figure 6):

 Cumulus: Cumulus clouds are very „puffy" in appearance. They have a flat base, and occur at

low altitude. Cumulus clouds are white [WCloud14].

 Stratus: These clouds are flat, hazy, and featureless. They occur at low altitude, and their

colour varies between dark gray to nearly white [WCloud14]. Stratus clouds can result in rain.

 Stratocumulus: Similar to cumulus clouds, but large dark, rounded masses. Instead of

cumulus, stratocumulus clouds usually occur in groups, lines, or waves [WCloud14]. They

occur at low altitude.

 Altocumulus: Altocumulus clouds are puffy" in appearance. Altocumulus clouds are white. In

difference to cumulus clouds, they are located at low altitude [WCloud14].

 Altostratus: Similar to stratus clouds, generally uniform gray to bluish-gray sheet or layer,

lighter in colour than nimbostratus and darker than high cirrostratus. They are located at

middle altitude [WCloud14].

 Nimbostratus : This cloud type has a considerably vertical and horizontal extent. They clouds

distribute over a wide area. They are located in low-to-middle altitude [WCloud14]. They are

associated with rain.

User guide: CloudyDay

7 / 22

 Cumulonimbus: Cumulonimbus clouds are dense towering vertical clouds. They form alone

in clusters, or along cold front squall lines. They are associated with thunderstorms and

atmospheric instability [WCloud14].

After definition of the cloud layer type, the amount of overcast has to determine (between 0 and 1).

We also need to define the position of the cloud, and the size of the cloud layer. The clouds of the

layer are grouped to clots. So, we need to set the number of clots and the variance attribute. The

variance attribute determines the size of the clots. Then, the colour of the cloud has to be

determined. This parameter is needed to create greyish or white stratus clouds. CloudyDay supports

to create some layers of clouds. E.g.: To create a cloud with cumulus and stratus clouds, we use

following code:

//Cumulus clouds
osgCloudyDay::CloudScene::GetStates()->AddLayer(0, osgCloudyDay::CloudScene::CT_Cumulus);
osgCloudyDay::CloudScene::GetStates()->setOvercast(0, 0.002551f/1.f);
osgCloudyDay::CloudScene::GetStates()->setMiddlePoint(0, osg::Vec3(0.f,0.f, 2000.f));
osgCloudyDay::CloudScene::GetStates()->setSize(0, osg::Vec3(10000.f, 10000.f, 10.f));
osgCloudyDay::CloudScene::GetStates()->setClot(0, 10);
osgCloudyDay::CloudScene::GetStates()->setVariance(0, 0.125f);
osgCloudyDay::CloudScene::GetStates()->setColour(0, osg::Vec4(1.f, 1.f, 1.f, 1.f));

//Stratus clouds
osgCloudyDay::CloudScene::GetStates()->AddLayer(1, osgCloudyDay::CloudScene::CT_Stratus);
osgCloudyDay::CloudScene::GetStates()->setOvercast(1, 0.0011525f);
osgCloudyDay::CloudScene::GetStates()->setMiddlePoint(1, osg::Vec3(0.f, 0.f, 1000.f));
osgCloudyDay::CloudScene::GetStates()->setSize(1, osg::Vec3(20000.f, 20000.f, 10.f));
osgCloudyDay::CloudScene::GetStates()->setClot(1, 10);
osgCloudyDay::CloudScene::GetStates()->setVariance(1, 0.25);
osgCloudyDay::CloudScene::GetStates()->setColour(1, osg::Vec4(0.75f, 0.75f, 0.75f, 0.5f));

Configuration of particular 3D clouds:

Besides of 3D cloud layers, CloudyDay supports to create particular clouds. We support following

approaches:

 Random generated cloud: Single cloud, which is generated with a random generator

User guide: CloudyDay

8 / 22

 Wang Approach: Generation of a cloud (layer) using a 3D modelling application. The user can

define bounding box, in which CloudyDay distributes billboards.

 Creation using a watertight 3D model: Generation of a cloud using a 3D model. CloudyDay

distributes the billboards in the 3D model.

 Simulation: Simulation of clouds using a cellular automate.

First, we need to create a configuration object as follows:

osgCloudyDay::CloudState* clouds = new osgCloudyDay::CloudState();

To add a cloud resulting from a watertight 3D model, we use following code:

clouds->AddCloud(osgCloudyDay::CloudScene::CT_Cumulus, "Model/standford_bunny.obj",
 osg::Vec3(0.f,0.f,2125.f), osg::Vec3(100.f, 100.f, 100.f),
 CloudState::CStG_Voxel, osg::Vec4(1.f, 1.f, 1.f, 1.f));

First, we need to set the cloud type. Then, we need to determine the path to the watertight 3D

model. We also need to determine the position of the cloud, and the size. Furthermore, we need to

set the algorithm parameter to Voxel. Last, we need the colour attribute.

To add a cloud resulting from a watertight 3D model, we use following code:

clouds->AddCloud(osgCloudyDay::CloudScene::CT_Cumulus, "",
 osg::Vec3(0.f, 0.f,2125.f), osg::Vec3(100.f, 100.f, 100.f),
 CloudState::CStG_Simulation, osg::Vec4(1.f, 1.f, 1.f, 1.f));

As seen in this code, we need to set the algorithm attribute to Simulation.

To add a cloud resulting from a 3D model with bounding boxes, we use following code:

clouds->AddCloud(osgCloudyDay::CloudScene::CT_Cumulus, "wangcloudtest.obj",
 osg::Vec3(0.f,0.f,2125.f), osg::Vec3(100.f, 100.f, 100.f), CloudState::CStG_Wang,
 osg::Vec4(1.f, 1.f, 1.f, 1.f));

A particular 3D cloud, created with a random generator, is generated as follows:

clouds->AddCloud(osgCloudyDay::CloudScene::CT_Cumulus, osg::Vec3(0.f, 0.f, 1000.f),
 osg::Vec3(100.f, 100.f, 100.f), osg::Vec4(1.f, 1.f, 1.f, 1.f)));

Configuration of 2D clouds:

User guide: CloudyDay

9 / 22

In the previous section we discuss clouds, which are located at low and middle altitude. The

literature also differs between the following high-altitude clouds:





 Cirrostratus clouds: Cirrostratus clouds are very thin. They are similar to altostratus clouds,

but are located at high altitude [WCloud14].

However, the 3D clouds are used to create stratus, cumulus, stratocumulus, nimbostratus, and

cumulonimbus clouds. These types of clouds are located at low and middle altitude. Instead, cirrus,

cirrostratus and cirrocumulus are located in high regions of the sky. For high-altitude cloud types,

CloudyDay provides a 2D cloud approach. The 2D clouds are configured as follows:

std::vector<osgCloudyDay::Cloud2DState> cloud2dstates;

osgCloudyDay::CirrusStratusCloudState cirrus = osgCloudyDay::CirrusStratusCloudState();
//osgCloudyDay::CirrusCloudState cirrus = osgCloudyDay::CirrusCloudState();
//osgCloudyDay::CirrusCumulusCloudState cirrus = osgCloudyDay::CirrusCumulusCloudState();
//osgCloudyDay::AltStratusCloudState cirrus = osgCloudyDay::AltStratusCloudState();

cirrus.setMiddlePoint(osg::Vec3(0.f, 0.f, 5000.0f));
cirrus.setSize(osg::Vec2(50000.0f, 50000.0f));

cloud2dstates.push_back(cirrus);

Besides the representation of 2D clouds with a simple 2D texture, CloudyDay also provides a cloud

generator of altocumulus and cirrus-cumulus clouds using a Perlin noise generator. To create a Perlin

noise cloud, we use following code:

std::vector<osgCloudyDay::Cloud2DState> cloud2dstates;
osgCloudyDay::PerlinCloudState cirruscumolus = osgCloudyDay::PerlinCloudState();
cirruscumolus.setSharpness(0.9f);
cirruscumolus.setCover(0.25f);

cirruscumolus.setMiddlePoint(osg::Vec3(0.f, 0.f, 5000.0f));
cirruscumolus.setSize(osg::Vec2(50000.0f, 50000.0f));

cloud2dstates.push_back(cirrus);

The clouds, created with an Perlin noise generator, can be used similar to the simple texture

approach. We only have to define the sharpness and the cover attribute. The sharpness attribute

defines the size of the resulting clouds. The cover attribute defines the number of clouds.

User guide: CloudyDay

10 / 22

Configuration of rain effect

Additionally, CloudyDay also supports rain. To configure this phenomenon, we use following code:

osgCloudyDay::RainState* rain = new osgCloudyDay::RainState();
rain->SetNumberOfParticles(100000);
rain->SetVelocity(osg::Vec3(0.f, 0.f, -1.f));
rain->SetPosition(osg::Vec3(0.f, 0.f, 1000.f));
rain->SetSize(osg::Vec3(2000.f, 2000.f, 1000.f));
Scene::m_rain = rain;

The number of particles attribute defines the density of the rain. The velocity defines the velocity of

the rain. The rainy region can be defined with the attributes position (the middle point) and the

size(size of the region).

Furthermore, the second parameter of the CloudyDay constructor has set to true. An example is

given in the next line:

my_scene = new CloudyDay(terrain_config, true, false, false, true, true);

Configuration of fog
Also a fog effect is supported. We use following code to configure the effect:

osgCloudyDay::Fog* fog = new osgCloudyDay::Fog();
fog->SetFogColour(osg::Vec3(0.5f, 0.5f, 0.5f));
fog->SetFogDensity(0.1f);

We need to define the fog colour and the fog density. The colour attribute defines the colour of the

fog. The density parameter defines the thickness of the fog. However, we can also use the 3D stratus

cloud layer to create fog (as see above).

The last step is to pass the fog to the other objects. Each object (terrain, atmosphere, cloud, 3D

model,...) has a SetFog() method. We only need to pass the fog object, as shown in the next line:

Scene::m_skydome->SetFog(fog);

Configuration of 3D models
Another important part is to add 3D models to the scene. A model can be added using following

code:

User guide: CloudyDay

11 / 22

std::vector<std::string> reflection_models;
reflection_models.push_back("DR400_Robin/bx2.obj");

std::vector<std::string> reflection_tex;
reflection_tex.push_back("DR400_Robin/bx2.bmp");

std::vector<int> ids_model;
ids_model.push_back(1);

To add an object, we add the paths to the models in a container. Then, we add the ids, needed for

colour grading (this effect is presented in the next section).

Configuration of Post-Processing effects

For setting the post-processing effects the last two parameters of the CloudyDay constructor has to

be set to true. The last but one parameter enables the glare effect, and the last parameter enables

the star effect. An example is given in the next line:

my_scene = new CloudyDay(terrain_config, false, false, false, true, true);

Furthermore, we can add LUTs for colour grading. To add an LUT we use following code:

std::vector<std::string> luds;
luds.push_back("../data/lud/neutralLUT.bmp");
luds.push_back("../data/lud/yellowLUT.bmp");

As presented in the previous section, for each object an identifier can be assigned to determine the

used LUT. The container has to pass at the Initialize method:

my_scene->Initialize(800,600,clouds, cloud2dstates, ids_model, reflection_models,
reflection_tex, fog, luds);

Setup scene
The last step is to setup the scene. We use following code:

my_scene = new CloudyDay(terrain_config, false, false, false, true, true);
my_scene->Initialize(800,600,clouds, cloud2dstates, ids_model, reflection_models,
reflection_tex, fog, luds);

osg::ref_ptr<osg::Group> root (new osg::Group);

root->addChild(my_scene->GetLightCamera().get());
root->addChild(my_scene->GetViewCamera2());

User guide: CloudyDay

12 / 22

root->addChild(my_scene->GetLightCloudCamera().get());
root->addChild(my_scene->GetBlurShadowMapCamera().get());
//root->addChild(my_scene->GetLightshaftCamera());

root->addChild(my_scene->GetViewCamera());
root->addChild(m_lightCloudCamera.get());

root->addChild(my_scene->GetHUD().get());
if(my_scene->UseBloom() || my_scene->UseStar())
 root->addChild(my_scene->GetBlurProcess().get());
if(my_scene->UseBloom() || my_scene->UseStar())
 root->addChild(my_scene->GetBlur2Process().get());
root->addChild(my_scene->GetLuminanceCalculation().get());
root->addChild(my_scene->GetPostProcess().get());

osgViewer::Viewer viewer;
viewer.setCamera(my_scene->GetViewDepthCamera());

The first step is to create the CloudyDay object. As presented earlier, we need to pass the

TerrainConfig object . Moreover, we need to define some attributes, which determine the post-

processing effects. Then, we create a root object, and add the cameras to the root object. We add a

camera for the sun, for the viewer, and for the clouds. If the shadow map should be blurred, we have

to add the BlurShadowMap camera additionally. The last step is to add the cameras for the post-

processing effects.

Modifying the scene at run-time
At runtime, some parameters can be modified. The sun position can be set as follows:

switch(ea.getEventType())
{
 case 'j' : helperkey=1; sincosPos.x() += b;
 break;
 case 'l' : helperkey=2; sincosPos.x() -= b;
 break;
 case 'k' : helperkey=3; sincosPos.y() -= b;
 break;
 case 'i': helperkey=4; sincosPos.y() += b;
 break;

}

osg::Vec4 value = osg::Vec4(0.f, 0.f, 0.f, 1.f) *
osg::Matrix::inverse(Scene::GetLightCamera()->getViewMatrix());

osg::Vec3f eye = osg::Vec3f();
osg::Vec3f center = osg::Vec3f();
osg::Vec3f up = osg::Vec3f();
Scene::GetLightCamera()->getViewMatrixAsLookAt(eye, center, up);

center = osg::Vec3(0.f, 0.f, 0.f);

osg::Vec3f center2eye = eye-center;
float length = center2eye.normalize();;
center2eye.x() = sinf(sincosPos.y())*cosf(sincosPos.x());
center2eye.y() = sinf(sincosPos.y())*sinf(sincosPos.x());
center2eye.z() = cosf(sincosPos.y());

if(center2eye.x() == 0.f && center2eye.y() == 0.f && center2eye.z() == 1.f)
{
 switch(helperkey)
 {

User guide: CloudyDay

13 / 22

 case 1 : sincosPos.x() += b;
 break;
 case 2 : sincosPos.x() -= b;
 break;
 case 3 : sincosPos.y() -= b;
 break;
 case 4 : sincosPos.y() += b;
 break;
 }
 center2eye.x() = sinf(sincosPos.y())*cosf(sincosPos.x());
 center2eye.y() = sinf(sincosPos.y())*sinf(sincosPos.x());
 center2eye.z() = cosf(sincosPos.y());
}

center2eye.normalize();
center2eye *= length;

osg::Vec3 binm = osg::Vec3(0.f, 1.f, 0.f);
osg::Vec3 dir = center2eye;
binm.normalize();
osg::Vec3 h = binm^dir;
h.normalize();

osg::Vec3f lightPos = center2eye+center;
Scene::GetLightCamera()->setViewMatrixAsLookAt(lightPos, center, h);
Scene::GetCloudCamera()->setViewMatrixAsLookAt(lightPos, center, h);
Scene::m_skydome->SetLightPosition(lightPos);

osgCloudyDay::SkydomeMie* skymie =
dynamic_cast<osgCloudyDay::SkydomeMie*>(Scene::m_skydome);
if(skymie != 0)
{
 osgCloudyDay::CloudScene::sunLightColour = skymie
 ->CalculateSunColour(Scene::GetLightCamera()->getViewMatrix());

 my_scene->UpdateLightForClouds();
}

To enable/disable light scattering at clouds, we use following code:

osgCloudyDay::CloudGeometry::blur = true;

User guide: CloudyDay

14 / 22

Integration of parts into an existing project

In the previous chapter, we present a guide to configure CloudyDay to create a new scene. However,

this plug-in can also be used to integrate only parts into an existing project. In the following, we

present each step in detail to integrate some parts of CloudyDay into an existing project.

Creating the atmosphere model (required for terrain, and clouds)
The first step is to create a atmosphere model. This step is also required, if a terrain or clouds should

be created. The first step is to configure the atmosphere model, as presented earlier:

Scene::m_skydome = new osgCloudyDay::SkydomeHimmel();

Then, we need to create the atmosphere. For the O'Neal [O’N05] approach, we use following code:

osgCloudyDay::SkydomeMie* skymie =
dynamic_cast<osgCloudyDay::SkydomeMie*>(Scene::m_skydome);
m_atmopshere = new osgCloudyDay::AtmosphereMie();
//m_atmopshere->SetFog(m_fog);
m_atmopshere->Initialize();
root->addChild(m_atmopshere->GetNode());

We only need to create a AtmosphereMie object and we have to initialize it. Then, we need to add
the resulting geode to our camera. If we want to use the approach from Bruneton et al. [Bruneton
08], we use following code:

m_precompute = new osgCloudyDay::AtmospherePrecompute();
m_precompute->compute();

osgCloudyDay::AtmosphereHimmel* atmohimmel = new osgCloudyDay::AtmosphereHimmel();
atmohimmel->m_inscatter = m_precompute->getInscatterTexture();
atmohimmel->m_irradiance = m_precompute->getIrradianceTexture();
atmohimmel->m_transmittance = m_precompute->getTransmittanceTexture();

osgCloudyDay::SkydomeHimmel::m_inscatter = m_precompute->getInscatterTexture();
osgCloudyDay::SkydomeHimmel::m_irradiance = m_precompute->getIrradianceTexture();
osgCloudyDay::SkydomeHimmel::m_transmittance =m_precompute->getTransmittanceTexture()

//m_atmopshere->SetFog(m_fog);

User guide: CloudyDay

15 / 22

atmohimmel ->Initialize();
root->addChild(atmohimmel->GetNode());

First, we need to create a AtmospherePrecompute object. Then, we pre-compute the atmosphere

with calling the compute function. The next step is to create a AtmosphereHimmel object and to set

the pre-computed textures. Then, we create the Atmosphere object and call the Initialize() method.

The resulting Geode is added to the camera.

Adding a terrain to the scene (Optional)

A terrain object can be added easily. The first step is to configure the terrain as presented earlier:

osgCloudyDay::TerrainConfig* terrain_config = new osgCloudyDay::TerrainConfig();
terrain_config->SetTesselationShader(false);

terrain_config->SetPath2File("mountains.obj");
terrain_config->SetPath2DiffuseTexture("mountain_diffuse.bmp");
terrain_config->SetPath2DefinationTexture("definition1.tga");
terrain_config->SetPath2HeightTexture("mountain_heightmap.tga");

terrain_config->AddPath2Texture("snow.bmp");
terrain_config->AddPath2Texture("terrain_rock4.bmp");
terrain_config->AddPath2Texture("terrain_grass.bmp");
terrain_config->AddPath2Texture("boulder.bmp");
terrain_config->AddPath2NormalTexture("rock_bump6.tga");
terrain_config->AddPath2NormalTexture("rock_bump4.tga");

To add a atmosphere, shaded with O'Neals atmosphere model [O’N05], we use following code.

if(m_terrainconfig->UseTesselationShader())
 m_terrain = new osgCloudyDay::TerrainGeometry(m_terrainconfig);
else
 m_terrain = new osgCloudyDay::TerrainMIE(m_terrainconfig);

m_terrain->SetFog(m_fog);
m_terrain->Initialize();

scene->addChild(m_terrain->GetNode());

The first step is to create a TerrainMIE or TerrainGeometry object, depending the value of tesselation

attribute. Then, we need to call the Initialize() method. Then, we add the resulting Geode to the

camera. To create a terrain with the Bruneton approach [Bruneton 08], we use following code:

osgCloudyDay::TerrainHimmel* m_terrainhimmel = new
osgCloudyDay::TerrainHimmel(m_terrainconfig, m_terrainconfig->UseTesselationShader());

User guide: CloudyDay

16 / 22

m_terrain = m_terrainhimmel;
m_terrain->SetFog(m_fog);
m_terrain->Initialize();

scene->addChild(m_terrain->GetNode());

The code is similar to the O'Neal approach [O’N05]. We only use a TerrainHimmel object.

Adding 3D clouds to an existing scene (Optional)

The first step of creating 3D clouds is to configure it. To configure a 3D cloud layer, we use following

code:

osgCloudyDay::CloudScene::GetStates()->AddLayer(0, osgCloudyDay::CloudScene::CT_Cumulus);
osgCloudyDay::CloudScene::GetStates()->setOvercast(0, 0.002551f/1.f);
osgCloudyDay::CloudScene::GetStates()->setMiddlePoint(0, osg::Vec3(0.f,0.f, 2000.f));
osgCloudyDay::CloudScene::GetStates()->setSize(0, osg::Vec3(10000.f, 10000.f, 10.f));
osgCloudyDay::CloudScene::GetStates()->setClot(0, 10);
osgCloudyDay::CloudScene::GetStates()->setVariance(0, 0.125f);
osgCloudyDay::CloudScene::GetStates()->setColour(0, osg::Vec4(1.f, 1.f, 1.f, 1.f));

This code is equal as presented earlier in this report. To add a particular cloud, we use following
code:

osgCloudyDay::CloudState* clouds = new osgCloudyDay::CloudState();
clouds->AddCloud(osgCloudyDay::CloudScene::CT_Cumulus, "Model/standford_bunny.obj",
 osg::Vec3(0.f,0.f,2125.f), osg::Vec3(100.f, 100.f, 100.f),
 CloudState::CStG_Voxel, osg::Vec4(1.f, 1.f, 1.f, 1.f));

As seen in this line, the configuration of the cloud is equal. To create the 3D clouds we have to add

following code:

my_scene = new Scene();
m_scene->CreateCloudCamera();
m_cloudcreator = new osgCloudyDay::CloudCreator(scene);
m_cloudcreator->Initialize(clouds);

root->addChild(my_scene->GetLightCloudCamera().get());

The first step is to create a scene object and a camera to render the 3D clouds. The next step is to

create a CloudCreator object, and we need to initialize it. The last step is to add the camera to the

scene. The 3D cloud approach renders into two textures:

CloudScene::fbo_cloud_texture //result from viewer
CloudScene::fbo_light_texture //result from light source (shadow map)

These textures can be used to integrate the3D clouds into our own OSG project.

User guide: CloudyDay

17 / 22

Adding 2D clouds to a existing scene (Optional)
The 2D clouds can also be added to an existing scene. We use following code:

osgCloudyDay::AltStratusCloudState cirrus = osgCloudyDay::AltStratusCloudState();
cirrus.setMiddlePoint(osg::Vec3(0.f, 0.f, 5000.0f));
cirrus.setSize(osg::Vec2(50000.0f, 50000.0f));

osgCloudyDay::Create2DCloud* m_create2dclouds = new osgCloudyDay::Create2DCloud();
m_create2dclouds->Initialize(cirrus);

root->addChild(m_create2dclouds->GetNode());

First, we need to configure the 2D clouds. This code is equal to the code presented in the previous

chapter. Then, we need to create a Create2DCloud object. We need to pass the configuration of the

2D clouds and to call the Initialize() method. The last step is to add the resulting Geode to the

camera.

Adding rain to a scene (Optional)

Rain can be added very easily to an existing project. We use following code to add rain:

osgCloudyDay::RainState* rain = new osgCloudyDay::RainState();
rain->SetNumberOfParticles(100000);
rain->SetVelocity(osg::Vec3(0.f, 0.f, -1.f));
rain->SetPosition(osg::Vec3(0.f, 0.f, 1000.f));
rain->SetSize(osg::Vec3(2000.f, 2000.f, 1000.f));
Scene::m_rain = rain;

osgCloudyDay::Rain::CreateShader();
osgCloudyDay::Rain::CreateTexture();
osgCloudyDay::Rain* m_rain = new osgCloudyDay::Rain();
m_rain->Initialize();

root->addChild(m_rain->m_geode);

First, we need to create the shader and the 3D raindrop texture. Then, we create a Rain object and

we need to call the Initialize() method. The last step is to add the Geode to the existing scene.

User guide: CloudyDay

18 / 22

Adding post-processing effects to a scene (Optional)

The post-processing effects can also be added to an existing scene. We use following code:

m_hud = new osgCloudyDay::HUD();
m_hud->SetSceneTexture(osgCloudyDay::Scene::GetSceneTexture());
m_hud->SetGodrayTexture(osgCloudyDay::Scene::GetGoodRayTexture());
m_hud->SetCloudTexture(osgCloudyDay::CloudScene::fbo_cloud_texture);

osgCloudyDay::HUD::Initialize();
m_hud->CreateCamera();

m_blur = new osgCloudyDay::Blur(4);
m_blur->CreateCamera();
m_blur2 = new osgCloudyDay::Blur(5);
m_blur2->CreateCamera();

m_luminance = new osgCloudyDay::LuminanceCalculation();
m_luminance->CreateCamera();

m_postprocess = new osgCloudyDay::PostProcess(hdr_mapping, use_avglum, m_bloom, m_star);
for(unsigned int i = 0; i < luds.size(); i++)
 m_postprocess->AddLUT(luds[i]);
m_postprocess->CreateCamera();

m_hud->CreateGeometry();
m_blur->CreateGeometry();
m_blur2->CreateGeometry();
m_postprocess->CreateGeometry();
m_luminance->CreateGeometry();

root->addChild(my_scene->GetHUD().get());
if(my_scene->UseBloom() || my_scene->UseStar())
 root->addChild(my_scene->GetBlurProcess().get());
if(my_scene->UseBloom() || my_scene->UseStar())
 root->addChild(my_scene->GetBlur2Process().get());
root->addChild(my_scene->GetLuminanceCalculation().get());
root->addChild(my_scene->GetPostProcess().get());

First, we need to create a HUD object. Before initialization, we have to set the scene, good-ray and
cloud textures. Then, we add 2 Blur (vertical and horizontal blur), a LuminanceCalculation, and a
PostProcessing object. At creation of the PostProcessing object, we pass the HDR Mapping method,

Linear

Modified Reinhold Uncharted

Reinhard

User guide: CloudyDay

19 / 22

and we define, if the average luminance, the bloom, and star effect should be calculated. We also
need to create a camera and a screenquad for each object. The last step is to add the cameras to the
scene.

References:
[Bouthors08] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. 2008.

 Interactive multiple anisotropic scattering in clouds. In Proceedings of the 2008

 symposium on Interactive 3D graphics and games (I3D '08). ACM, New York, NY, USA,

 173-182.

[Bruneton 08] Bruneton, E. and Neyret, F. (2008), Precomputed Atmospheric Scattering. Computer

 Graphics Forum, 27: 1079–1086.

[Crane07] Crane, Keenan and Llamas, Ignacio, and Tariq, Sarah: "Real Time Simulation and Rendering

 of 3D Fluids", 2007, GPUGems 3, chapter 30, Addison-Wesley

[Dobashi00] Y.Dobashi, K.Kaneda, H.Yamashita, T.Okita, T.Nishita, "A Simple, Efficient Method for

 Realistic Animation of Clouds," Proc. SIGGRAPH2000, 2000-7, pp. 19-28.

[Donnelly06] Donnelly, William, and Andrew Lauritzen. 2006. "Variance Shadow Maps." In

 Proceedings of the Symposium on Interactive 3D Graphics and Games 2006, pp. 161– 165.

[Kshitiz06] Kshitiz Garg and Shree K. Nayar. 2006. Photorealistic rendering of rain streaks. ACM Trans.

 Graph. 25, 3 (July 2006), 996-1002

[Green08] Simon Green: "Volumetric Particle Shadows", NVIDIA Whitepaper , 2008

[Harris01] Mark J. Harris and Anselmo Lastra, Real-Time Cloud Rendering. Computer Graphics Forum

 (Eurographics 2001 Proceedings), 20(3):76-84, September 2001

[Kaneko01] Tomomichi Kaneko and Toshiyuki Takahei and Masahiko Inami and Naoki Kawakami and

 Yasuyuki Yanagida and Taro Maeda and Susumu Tachi: " Detailed shape representation

 with parallax mapping", In Proceedings of the ICAT 2001, 2001

[Luksh07] Luksh, C.: Realtime HDR rendering. Tech. Rep., Institute of Computer Graphics and

 Algorithms, TU Vienna (2007)

 [Mit07a] MITCHELL K.: Volumetric Light Scattering as a Post-Process. Addison-Wesley, 2007, pp.

 275–285.14

[Müller12] Daniel Müller, Juri Engel, Jürgen Döllner: Single-Pass Rendering of Day and Night Sky

 Phenomena. VMV 2012: 55-62

[O’N05] O’NEILS.: Accurate atmospheric scattering. In GPUGems 2: Programming Techniques for

 High-Performance Graphics and General-Purpose Computation(2005), Addison-

 WesleyProfessional.

[Nishita99] Nishita, T.; Dobashi, Y., "Modeling and rendering methods of clouds," Computer Graphics

 and Applications, 1999. Proceedings. Seventh Pacific Conference on , vol., no.,

 pp.218,219, 326, 1999

User guide: CloudyDay

20 / 22

[Perlin02] K.Perlin. Improving noise. In Proceedings of the 29th annual conference on Computer

 graphics and interactive techniques. ACM Press, 2002.

[Tariq07] S Tariq: "Rain", NVIDIA Whitepaper, 2007

[Wang03] Niniane Wang. 2003. Realistic and fast cloud rendering in computer games. In ACM

 SIGGRAPH 2003 Sketches & Applications (SIGGRAPH '03). ACM, New York, NY, USA, 1-1.

[WCloud14] Wikipedia: "Cloud", 2014, Available at: http://en.wikipedia.org/wiki/Cloud

 (date: 1.10.2014)

[Zendel13] O. Zendel, W. Herzner, and M. Murschitz. Vitro - model based vision testing for

 robustness. Proceedings to the 44th International Symposium on Robotics - ISR 2013,

 pages October 24–26, 2013

User guide: CloudyDay

21 / 22

Appendix A - Creation of a new Project
In this chapter, we show all steps to create a new project in detail.

Create a new project Select "Empty Project"

Go to the created directory Add the data directory from the archive

Add include, library and shader directory to the
directory, that contains the *. vcxproj file.

Add OSG libraries and include files to the project

Add a *.cpp file Set the Include and library paths

User guide: CloudyDay

22 / 22

Define the additional dependencies Add *.dll files in the release directory.

Ready to code!

