CloudyDay:
Rendering of clouds, atmosphere and light shafts
in HDR for testing Computer Vision (CV) algorithms

1
Michael Beham , Vienna University of Technology and AIT - Austrian Institute of Technology

Figure 1: CloudyDay: Rendering of 3D cloud:s (stratus, cumulus clouds at center), 2D clouds (stratocumulus
clouds at top) atmosphere, terrain, and airplanes to test Computer Vision (CV) algorithms.

Abstract - Rendering of clouds, atmosphere, and other natural phenomenon is an important topic in
computer graphics. In this technical report, we present a novel solution, which uses different techniques to
generate a realistic representation of the sky. We present a billboard-based approach to create clouds. We use
half-angle slicing to generate volumetric shadows. The resulting shadow map is then used for casting
shadows on the terrain, the clouds, and other objects. We also use and compare different atmosphere models
and providing light shafts. Furthermore, CloudyDay provides HDR mapping, a bloom effect, colour grading as
well as some natural phenomenon like rain.

We develop CloudyDay to test an autonomous flying robot. We present several enhancements, which
consider the specific requirements of this specific application area. All objects can be created by an artist.
This is great workflow, if a specific test-case should be created. However, creating a lot of different variations
of an object is a time-consuming task. A more reasonable way is to create the shapes with procedural
modelling. This technique enables to create objects (in this paper clouds, atmosphere,..) and vary the
representation by varying the parameters.

Computer Vision (CV) algorithms to detect other

L. Introduction objects, like airplane or mountains. Typically, a

Rendering of the sky, with atmosphere, clouds, and
light shafts, is a very important topic in computer
graphic. In this technical report, we present our sky
solution as well as our archived results.

Our application is created to test an autonomous
flying object. Such autonomous object uses

'eMail: 0726417 @student.tuwien.ac.at
Matriculation number: 0726417

dataset with different test-scenarios is created to test
CV algorithms. E.g. different lightning scenarios,
different objects,... Testing of Computer Vision (CV)
application in real-life is a very time-intensive, and
extensive task. Instead, computer-generated
simulation of test-cases enables to execute a lot of
different test-cases fast. In this report, we do not only
consider realistic drawing of the sky, but the special
requirements of testing CV algorithms.

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

high
aaaal

7000m

middle Altcumulus

Cirrostratus

——— >

A
o%&.%g%%gﬂ’%%Cimswmulus

animated. The
objects can be
created by an artist.
However, creating a
lot of different
variations of an
object is a time-
consuming task. To
simulate a specific

(AVATATATATA)
A ATATATATAA!

2000m
Cumulus

low

Stratuscumlus

ﬁsmtus
- S

test case (e.g. the
cloud should look
like a specific
object), artist gen-
erated modelling is
needed. However,
in a lot of test cases
only some con-

M

Nimbustratus

Figure 2: Overview of cloud types [WCloud14]

In the next sections, we give some background
information about clouds and testing of CV
applications. The last section of this chapter gives an
overview of the requirements of CloudyDay as well as
an overview of the main contributions. In chapter 2,
related work is presented. An overview of our
CloudyDay is given in chapter 3. Then, we describe
the used algorithms in detail. First, we present two
approaches for rendering the atmosphere. Then, the
clouds are in focus of this report and natural
phenomenon, like rain. In chapter 6, we describe our
post-processing effects. In chapter 7 details of our
implementation are given. Our archived results are
discussed in chapter 8. The last chapter gives a
summary of this technical report.

1.1 Background: Testing of Computer
Vision applications

In the recent times, applications using Computer
Vision (CV) find the way outwards of science
laboratories and take place in fabrics, sky and the
street. Cars are equipped with advanced driver
assistance systems, drones observe public places to
ensure the public safety, and robots are used for
quality control in fabrics. Computer Vision
applications act with the real world. A save operation
mode is very important to prevent accidents and
false working of the robots. So, testing of the CV
systems is important. If every test case has to perform
in the real world, this task is very expensive and time
intensive. An obvious idea is to use computer
generated simulations to reduce the amount of time
to test and the costs.

To test a computer vision (CV) system, a computer
generated scene is created. This scene builds up of
different geometric shapes, which illustrate the real
world [Zendel13]. Optionally, the shapes are

straints have to be

fulfil. Then, a more reasonable way is to create the
shapes with procedural modelling. This technique en-
ables to create objects (in this paper cloud, atmo-
sphere,...) and vary the representation by varying its
parameters (for creating different objects for the
same test-case).

Then, a test case can be performed using the
generated scene. Generating each test case by hand
is time intensive. To speed up this process, a test case
simulator is used. Such generator samples the
parameter space of the used objects and generate
different test-cases (e.g., the same scene with
different clouds). The computer vision algorithms
have to classify the objects, e.g., all airplanes. Then, all
correct classifications are counted (true/positive =
airplane detected as airplane, false/negative = no
airplane is detected by another object) as well as all
false classifications (false/positive = airplane is not
detected, a true / negative = another object is
detected as an airplane).

In this report, we focus on the requirements of
rendering CV test cases. More information of testing
computer vision algorithm are given by Zendel et al
[Zendel13].

1.2 Background: Clouds

In meteorology, a cloud is an accumulation of liquid
droplets or frozen crystals in the atmosphere
[WCloud14]. The literature differs among ten types of
clouds, depending of the appearance (see figure 2).

Stratus clouds: These clouds are flat, hazy, and
featureless. They occur at low altitude, and their
colour varies between dark gray to nearly white
[WCloud14]. Stratus clouds can result in rain.

Cumulus clouds: Cumulus clouds are very ,puffy" in
appearance. They have a flat base, and occur at low
altitude. Cumulus clouds are white [WCloud14].

2/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

Scene 3D clouds Post-Processing
! bloom L
| * HDR
o shadow map shadow map >
3 N
£ scene T
) L bright Y
= B grading
scene ¢ Cloud
camera | camera Y
g light-shafts light-shafts light-shafts star effect ¢
2 | result
>
| |
Figure 3: Overview of CloudyDay
Stratocumulus clouds: Similar to cumulus clouds, 1.3 Requirements and Contribution

but large dark, rounded masses. Instead of cumulus,
stratocumulus clouds usually occur in groups, lines,
or waves [WCloud14]. They occur at low altitude.

Altocumulus clouds: Altocumulus clouds are puffy"
in appearance. Altocumulus clouds are white. In
difference to cumulus clouds, they are located at low
altitude [WCloud14].

Altostratus clouds: Similar to stratus clouds,
generally uniform gray to bluish-gray sheet or layer,
lighter in colour than nimbostratus and darker than
high cirrostratus. They are located at middle altitude
[WCloud14].

Nimbostratus clouds: This cloud type has a
considerably vertical and horizontal extent. They
clouds distribute over a wide area. They are located in
low-to-middle altitude [WCloud14]. They are
associated with rain.

Cirrus clouds: Cirrus clouds appear in thin, and
wispy strands. They are white or light gray in colour,
and are located in high altitude clouds [WCloud14]

Cirrocumulus clouds: These clouds are high, thin.
Cirrocumulus clouds are white. Looks similar to
altocumulus clouds, but they are located at high
altitude [WCloud14].

Cirrostratus clouds: Cirrostratus clouds are very thin.
They are similar to altostratus clouds, but are located
at high altitude [WCloud14].

Cumulonimbus clouds: Cumulonimbus clouds are
dense towering vertical clouds. They form alone in
clusters, or along cold front squall lines. They are
associated with thunderstorms and atmospheric
instability [WCloud14].

This application is created to test an autonomous
flying robot. We want to test different representations
of clouds at different times of a day. Furthermore,
rain, light shafts and other natural phenomenon
should be supported. In summary, our application
has to fulfil the following requirements:

1. Realistic rendering of low and middle
located clouds: The view position is always
lower than 4000m. The realistic rendering of
the clouds is important as well as the real-
istic in-cloud experience.

2. Controlling the algorithms with
parameters: To create many different test
cases, the algorithms should be control-able
with parameters.

3. Controlling the algorithms by an artist: To
create a specific test-case an artist should
also be able to create a specific result.

According to these requirements, we develop
CloudyDay. Instead of developing new techniques
from the scratch, we use existing approaches and
combine them in a novel way. The new combination
of well-suited techniques requires to adapt each to
ensure a realistic experience. The main contributions
of our work are:

e Clouds: Realistic rendering of different
cloud-types with volumetric shadows.

e Atmosphere model: We provide two
atmosphere models and use it for shading of
the clouds, and other objects.

3/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

Figure 4: Textures to generate the terrain

e Testing of Computer Vision: The objects
and effects are created to test computer
vision (CV) applications. The scene should be
controlled using parameters. However,
artist-controlled techniques should also be
supported.

2. Related Work

Our work based on a lot of other work. In this section
the most sophisticated works of rendering clouds,
and atmosphere, are presented.

Clouds: Rendering of clouds is an important topic in
realistic rendering of natural objects. In a lot of

computer games, clouds are only drawn using a 2D
texture. This approach is adequate, if the view camera
is located on the ground of the earth. In flight
simulators or other application scenario, where the
viewer camera is in the sky, 3D approaches are
needed. In literature common approaches are the use
of particles respectively billboards, 3D textures or 3D
models. In following, we present some of the most
sophisticated works to create clouds.

Clouds can be created using 3D models. Bouthors et
al. [Bouthors08] presents a technique to represent
clouds, and provides a novel-based shadow and
light-scattering technique.

Figure 5: Result of the atmosphere algorithm: Bruneton et al. (top) and O'Neal (bottom)

4/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

Boundingboxes atmosphere

@)
(0]
00
% |00 |9 @
0] Olo
o) (0]
o |o° oo
Billboards

cloud texture

Figure 6: Cloud generation algorithm

Another popular technique to display clouds are the
use of 3D textures. [Ikits04] The cloud is created using
a simulation model. Then, the 3D texture is drawn
using popular techniques, like slicing or raycasting
[IkitsO4].

Billboard techniques are very well known suited for
rendering clouds. Harris et al. [HarrisO1] present in a
framework to simulate the generation of clouds. The
clouds are simulated clouds using a Navier-Strokes
equation system. The resulting clouds are rendered
using billboards.

Wang [Wang02] presents another technique to
render clouds with billboards. Instead of simulating
the creation of clouds, he presented an artist-
controlled technique. The advantage using billboard
techniques is a very good in-cloud experience.

Our approach based on the technique from Wang.
However, we extend their technique, to integrate an
atmospheric model, implement volumetric shadows
using half-angle slicing, and provide shafts-of-lights.

Atmosphere: Another challenging problem is the
realistic rendering of the atmosphere. To get realistic
results, the incoming light, single and multiple
scattering, as wells as the out coming light has to be
considered [Bruneton08].

To simplify the atmosphere calculation, usually some
simplifications of the atmosphere model are done. A
typical simplification is to ignore the multiple light
scattering, using a flat earth hypotheses, constant
atmosphere density, and ignoring the Mie scattering
[Bruneton08]. The flat Earth hypothesis results in
acceptable works, if the viewer is on the ground.
Ignoring the multiple light scattering is acceptable, if
only daylight should be simulated. The multiple light
scattering is important for twilight [Bruneton08].

We are implementing the approach from O'Neal
[O'NO5] and Bruneton et al. [Bruneton08]. Both
approaches use the Earth hypotheses and calculate
the single light scattering. The O'Neal simulates the

effects by using only a very low sampling rate. The
approach from Bruneton et al [Bruneton08] pre-
process the effects. At runtime they use the pre-
computed lookup-tables to calculate a realistic
atmosphere[Bruneton08]. Bruneton et al.
[Bruneton08] also consider multiple light scattering.
Besides of integration of both approaches, we show,
how we can integrate our cloud approach in this
algorithm.

Light Shafts: Light shafts are another important
effect. The light shafts results from light, which is
scattering off of some particles in the media (e.g., air).

A simple technique is to generate shadow volumes
[Mit04a]. Polygons are extruded from the light
source. This volumes are coloured using the light
colour, and they are attenuated with the distance.
Then, the resulting volume is blended in the
framebuffer,. However, this simple approach results in
some errors between the light shafts and the scene
geometry (due the z-buffering).

A method to create light shafts is to use sampling.
The atmosphere is sampled to detect regions within
shadow. This region is then used to generate shafts
of light. An example is given by Dobashi et al.
[Dobashi00]. They create a several spheres with
different radius. The centre is located at the viewer's
position. Then, they map the shadow texture of the
clouds to the spheres. This results to light shafts,
which results from clouds.

A similar approach is done by Bruneton et al.
[Bruneton08] modifies the shadow volume technique
to create light shafts. Then, the shadow volume is
sampled to calculate light shafts.

Another method to generate light shafts is presented
by Mitchell et al. [Mit07a]. They create light shafts as
post-processing effect. They render the sun white
and the geometry black in an additional framebuffer.
Then, the light shafts are calculated using a simple
blur filter. The resulting texture is blended to the
scene.

5/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

ight direction 4 half-angle ’\ight direction
vector
half-angle N/ i
vector [
~—
view
view direction
dire‘ction/
7 iz

Figure 7: Rendering of 3D clouds

3. Overview of CloudyDay

According to the requirements presented in section
1.3, we develop CloudyDay. Our main goal is to
generate a realistic representation of the sky. We also
consider the integration of other objects, like terrain,
and airplanes. Furthermore, we consider the specific
requirements for testing Computer Vision algorithms.

We implement ten types of clouds (as presented in
section 1.2). According to our requirements (see
section 1.3), the lower and middle located clouds are
implemented using a 3D billboard approach. This
approach gives a realistic representation of the
clouds as wells as a good in-cloud experience.
Clouds, that are located at high altitude, are only
represented with a static 2D planes. This approach
saves processing time. Furthermore, our solution
provides a realistic rendering of the atmosphere, rain,
and fog. We also integrate some post-processing
effects to get a more realistic representation of the
scene and to support more test cases.

An overview of CloudyDay is depicted in figure 3.
First, the clouds are generated in an initial pre-
processing step. Then, the scene, without the clouds,
is rendered from the light source, and from the
viewer's perspective. The rendering of the light
source is needed to calculate shadows. Each object is
shaded using Phong shading. For rendering of the
atmosphere, we provide two approaches. In another
step, the clouds are rendered from the light source
and from the viewer position using our half-slicing
approach. The last step is to composite the scene,
and to process the post-processing effects.

In the next chapter, we present each step in detail.
First, the atmosphere is presented in detail. In this
chapter, we also present in detail the shading of the
terrain, and other objects. In chapter 5, the creation
and the rendering of the clouds is presented.
Additionally, we implement a rain, and fog, which is
also presented in chapter 5. In chapter 6, the post-
processing effects of CloudyDay are in focus.

4. Atmosphere, terrains, other objects
and shadowing

The realistic rendering of the atmosphere and other
objects, like airplane, is very important to create
realistic computer vision test-cases. In this chapter,
we present the two implemented atmosphere model
in the first section. Then, the shading of the terrain
and other objects is in focus as well as the shadow
mapping. For shadow mapping, we need an efficient
implementation of the Gaussian blur. Our efficient
implementation of the blur filter is in focus of the last
section in this chapter.

4.1 Atmosphere Model

Figure 8: Sunlight

A very important part of CloudyDay is the realistic
rendering of the atmosphere. To simulate the
atmosphere, the light equation has to be solved
[Bruneton08]:

L(x,v,s) = Lo+ R(L)+ S(L)(x,v,x)
Lo(x,v,5) = T(x,x5)Lgnor 0

R(L)(X, v, S) = T(X, xO)I(L)(xO' S)
S, v,s) = f T, y)IL) (Y, v,5)dy

4T

where L, is the direct sunlight, L,, attenuated
before reaching x by T (x, x,).It is O, if the sun is not
visible (occluded by the terrain). R(L) is the light
reflected at x, and also attenuated before reaching x

6/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

and S(L) is the inscattered light. is the

simulation is very time-intensive.

This

CloudyDay provides two atmosphere models. The
first method implements the technique from O'Neal.
Multiple scattering is ignored. The equation is
reducedto L = Ly + R(L) + S(L).

Scattering is solved using low sampling and
simplifying of complex functions using simpler 1D
functions. More details are presented by ONeal
[O’'NO5].

A more realistic model is presented by Bruneton et al.
[Bruneton08]. Instead of the method from O'Neal,
they account the multiple scattering. This enables a
more realistic sunset. They pre-compute the light-
transport equation and using this technique to
display the atmosphere. All details of this algorithm
are presented by Bruneton et al [Bruneton08].

Figure 9: Airplane with reflection

4.2 Terrain and objects

Beside the atmosphere and clouds, terrain and other
objects (like airplanes) are important. In this section
we present our approach to integrate it in the
application.

Terrain: The terrain is created using a height-map,
bump map, and normal map. The artist can switch
between a simple terrain geometry with parallax
mapping, and a tessellation shader approach. The
advantage of using the tessellation shader approach
is, that regions near the viewer are shown in higher
detail, than regions that are far away (level-of-
details). Regions, which are near to the viewer, are
shown with high level of detail. We use a high
tessellation factor. Otherwise, the region is
represented with less level of detail. We set the
tessellation factor low.

Additionally, we provide several textures to shade the
terrain (grass, snow, stones, and boulder textures) as
well as a texture, which defines the ground. The
colour, and opacity defines, if a snow, grass or stone
texture should be used for texturing. An example is
shown in figure 4.

The stone and boulder textures consist of a bump
map and normalmap. We use the bump map to add
more detail. We use these textures for displacement
and parallax mapping.

The creation of the terrain using textures enables to
use procedural terrain generators. The generator
result in textures which can be used as heightmap
and defines the regions of grass, stones, snow and
lots of more. Furthermore, the textures can be
created easily by the user with a image processing
software (requirement 3).We will add this workflow in
future work.

Objects: In the scene also other objects, like
airplanes, can be rendered. Such objects are shaded
with the Phong lighting model using Phong shading.
All objects are textured. Additionally, we calculate for
each object the atmosphere colour in the vertex
shader (as presented in the previous section). In the
fragment shader the atmosphere colour is mixed
with the ambient and diffuse colour. For reflection
CloudyDay provides creating an environment map
using a cube texture.

4.3 Shadow mapping

Shadows are a very important part in the nature,
especially for testing CV application. Shadows are a
common source of error. E.g., the shadow of a

| airplane could be detected as airplane instead as
" shadow. Furthermore, CV application should detect

objects, which are casted of a shadow.

For calculation of the shadows we use the well
known variance shadow algorithm. This algorithm
results in soft shadows using an approximation of the
normal distribution. We prefer soft shadow
algorithms because soft shadows also occur in
nature. If we would implement hard shadows, some
false/positive matches could be occur (i.e. they detect
an shadow as airplane), because the shadows have
hard edges.

However, variance shadow maps based on following
inequality (Chebychev’s inequality, one-tailed
version):

2
o
P(x 2 t) < Pmax(t) = T (=)

where is the mean, o2 is the variance. This
inequality gives us an upper bound of the Gaussian
distribution. According to Donnelly [Donnelly06] we
use the value p,,q,(t) to approximate the true value
p (resulting from the Gaussian distribution). The
mean p is calculated by using:

=M
and the variance a2 is calculated by using:
0_2 = M2 - Mlz,

where:
M, = E(x) = J-ooxp(x)dx
M, = E(x?) = fooxzp(x)dx

7/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

e xirati

Figure 10: Stanford bunny rendered with our 3D cloud algorithm

At rendering from the light source we save the first
and second moment of the distance from the light
point to the closest polygon in a shadow map. The
sum is than calculated using anisotropic filtering and
an additional Gaussian blur filter. At rendering from
the viewer camera, we use the resulting shadow
mapping. If the actual fragment is in shadow, we
calculate p,,q, to calculate the soft-shadow.

For clouds, we only use the standard shadow map
approach, which is generated by the cloud rendering
algorithm. Before shadow mapping, we also blur the
shadow map using a Gaussian blur filter with size of
9.

4.4 Gaussian Blur

We implement a Gaussian blur filter using linear
interpolation presented by Rakos et al. [Rakos10]. In
order to get an efficient implementation of the
Gaussian filter, we use following property: "The two-
dimensional Gaussian filter can be implemented by
multiplication of two one-dimensional Gaussian
functions" [Rakos10]. So, we blur the image in the
vertical direction in a first pass. The resulting image is
than blurred in horizontal direction in a second pass
[Rakos10].

To reduce the number of texture fetches, we take
advantage of the linear interpolation. We can get the
average of two pixels by using a single texture fetch.
We only need to sample between both texels. The

.;-*l

linear interpolation gives us the mean of both texels.
For generating a filter of size 2, we only need N/2
samples [Rakos10].

The Gaussian blur filter is used to blur the shadow
map. We also use this filter to generate a bloom
effect. An adapted approach of this blur filter is also
used to create a star effect and the light scattering.

5. Clouds

The clouds are a main contribution of this technical
report. CloudyDay supports ten types of clouds,
which are created using a 3D billboard-based
approach or with the simpler 2D approach.

In the next sections, we describe our 3D billboard-
based approach in detail. First, we present four
techniques to create clouds. Then, the rendering of
the 3D clouds is presented in detail. Then, our 2D
approach is in focus to create high altitude clouds
like cirrus. In the last section, we describe our rain,
and fog implementation.

5.1 Generation of 3D Clouds

In the first step, the clouds are generated. The artist
defines the type of the cloud, the location within the
scene, and the generation algorithm. In this section,
we present our four techniques to generate clouds.

Creation using Wang approach: Our solution of
rendering clouds based on the work of Wang
[Wang01]. Wang presents an artist-controlled

.

‘o - S LS

Figure 11: Shadow at cumulous clouds and in-cloud experience of a stratus cloud.

8/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

technique to generate 3D clouds. CloudyDay also
support their approach.

The artist defines bounding boxes of the cloud using
an arbitrary 3D modelling software. Then, CloudyDay
loads the bounding boxes, and distributes billboards
within the bounding boxes. Each billboard is defined
by the size, the position, the opacity, the
corresponding bounding box and the texture to
display. After sampling the billboards within the
bounding boxes, we calculate for each billboard the
nearest neighbour. If the distance is smaller than an
artist-defined threshold, the billboard is deleted. This
operation saves processing time and ensures, that
the billboards are distributed over the bounding
boxes more uniform. In figure 6, an overview of the
cloud algorithm is shown.

Creation using random sequences: Additionally,
Cloudy-Day supports to create the clouds
automatically. We use a similar approach to Wang,
but we generate the bounding boxes automatically
using a random generator.

First, we create a bounding box. The size is selected
randomly. The first box is placed at the bottom of the
cloud. Then, the next bounding box is placed aside of
the previous generated bounding box. For this task,
we calculate two random generated angles, which
defines the joint position of the bounding box. We
repeat this process until the cloud is created. After
generation of the bounding boxes, we use the same
approach, presented above, to generate the 3D
cloud.

This generation algorithm can be used to create a
cloud layer. An artist defines the size of the layer, as
well as the number of cloud clusters, the density of
the cloud layer, and the cloud type. The cloud clusters
are distributed over the layer area randomly. We use
for this task a Sobel sequence, because low
discrepancy sequences ensure a uniform distribution
of the clots. First, we create some clouds to form the
cloud clusters. Then, we measure the cloud density in
the cloud layer. If the cloud density is lower as an
artist-defined threshold, we add some clouds to each
cloud cluster. We repeat this process until the
threshold is larger than the defined cloud layer
density.

Parameter of Layer Type Min Max
Type Integer 0 6
Middle point Vector -Inf Inf
Size Vector -Inf Inf
Overcast Float 0 1
Number of clots Integer 1 Inf
Variance Float 0 1

Inf
Inf

Colour Vector O

Opacity Float 0

Table 1: Parameters of 3D clouds

Creation using 3d models: Besides the random
generation of clouds, the application also supports to
generate clouds using a 3D model. This feature is
important for testing a specific representation of a
cloud (e.g., cloud looks similar to an airplane). The
user can easily generate clouds easily by using a
watertight 3D model. Then, the clouds are generated
automatically to test the classification between
airplanes and clouds.

Our approach enables to generate a 3D cloud by
using a watertight 3D model. For this task, the
application voxelize the watertight 3D model. We use
the approach from Crane et al [Crane07]. First we
calculate the AABB bounding box of the 3D model.
Then, each triangle of the shape is rendered into a
slice of a 3D~texture using an orthogonal projection.
We set the near plane of the orthogonal camera to
match with the current slice. The far plane is set to
infinity. Additionally, a stencil buffer is initialized to
zero. Then, the shape is rendered. The stencil buffer is
incremented, if the triangle passes the back face test.
Otherwise, the stencil buffer is decrement (i.e,, if the
back face test is failed). After rendering the
watertight 3D model, a voxel is created for each
nonzero entry of the stencil buffer. This process is
repeated for each slice of the 3D texture.

We create the clouds as presented earlier. After
vocalization each voxel is used as a bounding box,
and we sample billboards within each box. The user
can define the cloud type (e.g., cirrus, stratus,...). The
user can also define the resolution of the 3D texture.
We use a resolution of 16A3.

Simulation of the clouds using cellular automat:
Cloudy-Day also enables to simulate the clouds using
cellular automate. We implement the approach from
Dobashi et al. [Dobashi00], which based on the work
of Nigel. This approach provides following features:

e Growing of the clouds

e Extinction of the clouds

o Wind effects

e Controlling cloud motion using ellipsoids

According to Dobashi et al. [Dobashi00], we use a
cellular automaton to simplify the cloud dynamics.
The simulation space is divided into voxels. For each
cell three values are assigned, which determines the
actual status of the cellular automaton. We use
following attributes:

¢ humidity value: The humidity determines, if
enough vapour is available to form a cloud.

9/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

t

Figure 12: Stratocumulus clouds with (b) and without (a) light scattering

e activation value: The activation factor
determines, if a phase transition occurs.

e clouds value: The could value determines
the cloud particles

The growing of the clouds is simulated as follows:

hum(p,t + 1) = hum(p,t) && !act(p,t)

cld(p,t+1) = cld(p,t) || act(p,t)
act(p,t+1) =!lact(p,t) && hum(p, t)&& f(p)
where

f() = act(p +(0,0,1),t) || act(p — (0,0,1)
|| act(p + (1,0,0),t) || act(p — (1,0,0)
|| act(p + (0,1,0),t) || act(p — (0,1,0)
|| act(p + (0,0,2),t) || act(p — (0,0,2)
|| act(p + (2,0,0),t) || act(p — (2,0,0)
|| act(p + (0,2,0),t) || act(p — (0,2,0)

Then, CloudyDay simulates the extinction and
regeneration of the cloud as follows:

cld(p,t +1) = cld(p, t)&& IS(rnd > pext(p,t)
hum(p,t + 1) = hum(p, t)|| IS(rnd < phum(p, t)
act(p,t + 1) = act(p, t)|| IS(rnd < pact(p,t)
The wind is calculated as follows:

hum(p,t + 1) = hum(p — v, t),if p.x —v.x > 0,
otherweise 0

cd(p,t+1)= cld(p —v,t),if p.x —v.x >0,
otherweise 0

act(p,t +1) = act(p — v, t),if p.x —v.x >0,
otherweise 0

The cloud motion is controlled using ellipsoids. Each
ellipsoid is defined by the position, radius, and
lifetime. At each iteration of the simulation, we move
the ellipsoid according a wind vector. Furthermore,
the lifetime is decreased. If the lifetime lower than 0,
than the ellipsoid is deleted and a new ellipsoid is

generated. At each iteration of the simulation, we
update the probabilities pact, phum, and pext. pact
and phum are set high in the centre of the ellipsoid
and low at the border. phum is set high at the border
of the ellipsoid and low at the centre of the
ellipsoid. pext, pact and phum is set to zero, if it is
outside of all ellipsoids.

After simulation of the clouds, we use a splatting
algorithm to generate the 3D clouds. Each billboard
is displayed with eight billboards. Before sampling
the volume, we are smooth the it with linear
interpolation.

Figure 13: Altocumulus clouds generated with
cellular automaton

5.2 Rendering of 3D Clouds

After creation, the clouds are rendered. We use a
similar approach to Wang [Wang01]. The clouds
consists of a set of billboards, which are grouped
within a 3D bounding box. To create different cloud
types, we mix 16 cloud textures (as presented by
Wang [Wang01]). The textures give a realistic look of
the cloud. CloudyDay also provides volumetric
shadows. Furthermore, we integrate the atmosphere
model and improve the shading. In following, all
modifications of the Wang [Wang01] approach are
presented in detail.

10/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

. e .

hl

Figure 14: 2D clouds (altocumulus) with parallax mapping (left) and with displacement mapping (right)

Half-angle-slicing: To generated volumetric
shadows, we adapt the half-angle slicing algorithm
for our proposes. Half-angle slicing is well known
algorithm to generate volumetric shadows for 3D
volumes and based on the slicing algorithm.

Slicing is a technique to display a 3D texture by using
2D planes, texturing and blending. Each slice shows a
layer of the 3D texture. Then, the slices are sorted
after their depth. Additionally, the slices are blended
using the front-to-back (or back-to-front operator,
depending on the rendering direction of the slices).

Half-angle slicing uses the duality between the front-
to-back, and back-to-front operator to calculate the
volumetric shadows. First, the angle between the
viewer and the light position is calculated (the half-
angle vector). If the angle is lower than 90 degree,
than the mean vector of the light direction and
viewing direction is calculated. Otherwise, the mean
of the inverted viewing direction and light direction
is calculated. Then, all slices are created. Each slice is
oriented to the half-angle vector. To display the
volumetric shadows each slice is drawn two times.
First, the slice is drawn from the viewer position. If
the viewing direction is inverted, we use the back-to-
front operator, otherwise the front to back operator.
Then, the same slice is drawn from the light source
position using the front-to-back operator. Then, the
same slice is drawn from the light perspective. This
approach is depicted in figure 7. While drawing the
viewing perspective, the user can read the shadow

texture and we use it to create volumetric shadows.
We repeat this process until all slices are processed.

Instead of displaying a 3D texture, we display the
clouds using billboards. Then, we sort the billboards
after their depth. We group the billooards with
similar depth. Each group of billboard is used instead
of the slices. Then, we render each group of
billboards as presented above. In opposite to the
original half-angle approach, the billboards are
oriented to the viewer instead of the half-angle
direction. This orientation prevents the typical slicing
error.

Shading: At rendering the clouds in the viewer
framebuffer, each billboard is shaded. At first, we
map for each pixel a texture, showing a part of the
cloud. Then, Wang uses for shading of clouds
following equation [WangO01]:

C = Camp *+ Caisy

The ambient colour is set by an artist, which depends
by the height of the actual fragment. The diffuse
colour is calculated by the vector from the vertex
position to the middle point of the bounding box.

In our application, we use the same diffuse part. The
set of the billboards within a bounding box are
grouped to a clump of the cloud. We calculate the
directional component of shading for a given vertex
in the cloud by first computing the vector to that
point from the shading group center. We also find the

sample(uv, o+y*10)

—

Figure 15: Our rain approach

y=90° y=90°

3D Texture

y=0° y=0°

11/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

vector from the group center to the sun, and
compute the dot product of the two vectors after
normalization.

However, instead of varying the ambient colour to
simulate the shadows, we use a constant colour. We
calculate the shadows using half-angle slicing as
presented earlier.

Furthermore, we add the atmosphere colour to the
cloud. Depending on the atmosphere approach, we
use different shading equations. For the approach of
Bruneton [Bruneton08], we use following formula:

C= Camb + Cdiff + Iscatter +C * Iextinction

.where is the atmosphere colour, I 4iteris the
scattering factor, I.yiinctioniS the extinction factor,
Campis an ambient term, Cy;ffis the diffuse term of
Wang.

For using the atmosphere model from O'Neal, we
adapt the shading as follows:

C=Comp + Cdiff + Catmsphere

Wwhere Comspnere is the atmosphere colour.

After shading the cloud, the volumetric shadows are
added. We sample the shadowing map and multiply
the final colour with the sampled value. The billboard
are blended.

Scattering of Light: Our shadow algorithm is also
used to simulated light scattering. At each iteration
of the cloud shadow, the shadow map is blurred. We
use a simple Gaussian filter with size 3. More
information of Gaussian blurring are presented in
section 4.3.

Shadows at other objects: The volumetric shadows
results in a shadow map, which saves the opacity. To
cast shadows resulting from the clouds on the terrain
and other objects, we adapt the Variance Shadow
Map. After drawing the clouds, we create a depth
shadow map as well as for the shadow map as
presented in section. Later in shadowing, we
multiply the opacity of the cloud to the result of
shadow mapping.

5.3 Rendering and Creation of 2D clouds
The 3D clouds are used to for rendering stratus,
cumulus, stratocumulus, nimbostratus, and
cumulonimbus clouds. These types of clouds are
located at low and middle altitude. Instead, cirrus,
cirrostratus and cirrocumulus are located in high
regions of the sky. As presented in section 1.3, the
camera is always lower than clouds, which are
located at high altitude (requirement 1). To save
processing time, we use a simpler 2D approach.

First, we create a 2D plane to display the texture. A fat
plane would look unrealistic, especially, if the view
direction is parallel to the billboard. Instead, we use

quadratic function with a saddle-point to achieve a
more realistic look. The plane is textured with a cloud
texture. The texture shows an image of the cloud
layer.

Optionally, CloudyDay provides an algorithm to
generate altocumulus and cirrus-cumulus clouds
with an Perlin noise generator. We use the Perlin
noise using following function:
C=1-s""°

where s is the sharpness factor (we set s to 0.95), ¢
determines the coverage (we set ¢ to 0.2), and p is
the Perlin noise. An overview of all parameters is
given in table 2.

Parameter of 2D Cloud Type Min Max
Type Integer O 6
Middlepoint Vector -Inf Inf
Size Vector -Inf Inf
Shaprness (optional) Float 0 1
Cover (optional) Float 0 1

Table 2: Parameters of 2D clouds

For shading, we use a parallax mapping algorithm
[KanekoO01]. The 2D texture defines the opacity and
the height of the cloud. Additionally, we use a normal
map for shading. We create it with a Sobel filter. The
Sobel filter creates the gradient in the x and vy
direction. Then, we calculate the normal using the
cross product of the two gradients.

Similar to the shading of terrains, CloudyDay also
supports the shading using displacement shading.
The alpha value is used as heightfield and the normal
texture defines the normals.

The advantage of this approach is, that the
processing time is reduced. Another advantage using
the 2D representation is that cirrus, and cirrocumulus
are difficult to represent with our 3D algorithm. Our
billboard approach works is more well suited for big
voluminous clouds. Small, thin clouds result in errors
by changing the viewer position [Wang01].

5.4 Rain

CloudyDay also provides rain. Rain occurs usually
with stratus, cumulonimbus, and nimbostratus
clouds (see section 1.2).

For creating the rain, we use a simple particle system.
We use following equation:
Xipg =X+ wvp* f

where x is the raindrop position, v is the velocity of a
raindrop (set to (0,-9.81,0), w is a weighting factor
and f the force. The lifetime of each particle is
updated as follows:

12/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

li+1 = li - dl
where | is the lifetime, and dl is a decrease factor.

At rendering, each particle is drawn with alpha
blending. Additionally, we add a 3D texture to each
particle. Each slice of the 3D texture represents a
raindrop from a certain viewing direction [Kshitiz06].
This technique ensures a correct representation of
each raindrop from different viewing directions. First,
we measure the orientation from the viewer to each
particle. Then, we display the most similar raindrop
representation. In figure 16, this algorithm is

i Linear WF Reinhold

i

Figure 16: Results of different HDR mapping algorithms

illustrated in detail. In table 3, an overview of the
parameters of the rain implementation is given.

Parameter: Type Min Max
Density Integer 0 1
Size Float 0 Inf
Middle point of Region Vector -Inf Inf
Size of Region Vector -Inf Inf
Velocity Vector -Inf Inf
Lifetime Float 0 1

Table 3: Parameters of our rain implementation

5.5 Fog

Rain usually occurs, if water condensates. Beside of
rain, also some fog occurs. To display fog, CloudyDay
provides a simple fog algorithm. We use following
equation:

F(z) = e %2,

where k; and k, are two user-defined constants. We
implement the equation in the fragment shader of

the atmosphere, terrain and other objects. F(z) is
used to mix the fog colour with the scene colour.

Using the fog over the entire scene is not always
desirable. E.g., the airplane can overfly such regions.
In such scenarios, an artist can use the 3D stratus
clouds. This technique enables to draw fog at a
specific region within the scene.

6. Post-processing

In the post processing step, the scene is composited,
and the light shafts are calculated. Furthermore, we
calculate bloom
effects and a star
effect. CloudyDay

also provides
techniques for
HDR mapping
and colour
grading.

The post-pro-
cessing effects
enable many
different test-

cases for testing
of CV algorithm.
We can test the
influence of
shafts of lights,
and test different
mappings of the high dynamic range to the
low dynamic device colour-space. Each of the
effects are difficult for object recognition algorithms.
In the following sections, we describe each step in
detail.

6.1 Light shafts

The light shafts are created as a simple post-
processing effect presented by Kenny Mitchell. We use
an additional framebuffer attachment at rendering
from the viewer camera. We draw the sun white, and
all other objects black. For drawing the rain and
clouds, we use blending (black colour with the
corresponding alpha value) additionally. After
drawing all objects, the light shafts are calculated
using following equation:

n . L(si,0)
L(s,0,0) = exposure Z decay' w— —

i=
where the exposure controls the overall intensity, the
weight factor w controls the intensity of each sample,
and decay dissipates each samples contribution as
the ray process away from the light source. n are the
number of samples [Mit04a]. This algorithm results in
shafts of lights, if the viewer looks to the sun. An
example is shown in figure 17.

13/21

Figure 17: Sunset and cumulus clouds

6.2 Bloom

In addition to the light shafts, CloudyDay provides a
simple bloom implementation. The bloom effect is a
very important effect for testing of computer vision
algorithms. A common test case is to distinct
between airplanes and other objects. In bottom,
several objects have a very high reflectance. This
reflection can be seen from the airplane. Such
scenarios can be produce false-positive recognition
errors (e.g., a car is detected as airplane).

In the first step, we check for each pixel in the
viewing buffer, if the intensity is higher than an artist-
defined threshold. If the intensity is higher as the
threshold, we subtract the threshold from the
intensity and saves the resulting intensity in an own
texture. Otherwise, we set in the texture 0. Then, the
resulting texture is blurred using a Gaussian filter. The
last step is to add the texture to the final image.

6.3 Star effect

Another important effect are stars, which results from
reflections. The stars are caused by microscopic
bumps and scratches in the camera optic, which
produce internal reflections and refractions
[Luksch07].

[

To achieve this effect we use a special blur filter. We
blur the image, resulting from the threshold
(presented in the previous section), in horizontal and
vertical direction. Both resulting textures are saved.
Then, we take the maxima from both texture and add
it to the final image. This operation results into a star
like grow.

To achieve bigger stars, Luksch [Luksch07] performs
this filter several times. Using the same filter several
times is time-intensive. Instead, we down-sample the
bright image and we perform these operations for
each size. The resulting textures are than merged into
one texture, which is added to the final image. The
advantage of this approach is, that it can be
implemented fast. We can use the result of the bloom
effect after horizontal blurring.

6.4 HDR mapping

After calculation of the star effect and the bloom
effect, we map the high dynamic range of the scene
to the lower dynamic range of the device colour
space. The mapping is called HDR mapping.

A good mapping between the high dynamic range to
the lower dynamic device range is very important. In
some test cases, the robot is below the clouds. Then,

- e

»:%.

S —.

S~ a—

ﬁmm_..m ,.-—&_.E —

Figure 18: Growing (top) and shrinking (bottom) of clouds

14/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

the scene is dark (due the shadows). If the robot is
above the clouds, than the scene is very bright. If we
do not provide a good mapping, we lost a lot of
details of the clouds. The low dynamic range of the
device colour space is small.

We implement a similar approach to Luksch
[Luksch07] CloudyDay support four HDR mapping
algorithms:

i . alL
e Linear mapping:L,., = _L’W
w
i L
e Reinhard's operator: L., = Hicﬂ
scaled

¢ Modified Reinhard's operator:
Lscaled (1 + Lszcaled)

_ white

L =
new 1+ Lscaled

* Uncharted:x =C, + C, + C,
L _ x(Ax+ CB) + DE
new(X) = ¥ B) + DF

E/F

where, L pite is set to 2.5 and Lggq04 is calculated as
follows:

aLy

Lscaled = I
w

where L, is the average luminance and a is called
key.

The average luminance L, is calculated using an
image pyramid. First, we calculate the luminance
using following equation for each fragment:

R\" /0.2126
(G) * (0.7152)
B 0.0722

The weights are also used for the YUV colour model
and it covers the human perception of colour more
closely than the mean. The average luminance is
calculate as follows:

Ly

- 1
L, = exp (Nz log(0.001 + Ly,))

To calculate the sum, we downsize the image. We use
four passes to generate a image pyramid. The first
pass starts with a size of 256x256. For each pixel, we
use the average of a 4x4 pixel group. To reduce the
number of samples, we use the linear interpolation of
the texture. We always sample the texture at the
middle point of four pixels. Linear interpolation gives
us the average of the 4 neighbor pixels. Using this
approach reduce the number of samples from 16 to
4. We repeat this process until we result with an
image of size 1.

The key value % is calculated as follows [LukschO7]:

a =max (0,15 - 1) +0.1

0.1L, +

The key value controls the exposure of the HDR

mapping. Optionally, the user can define a constant
factor. We recommend a value between 0.1 (result in
a dark image) and 0.5 (result in a bright image).

6.5 Colour grading

In the last step of the post-processing pipeline,
CloudyDay performs colour grading. The artist can
modify the colours using standard image processing
software.

This technique changes the colour of each pixel
using a 3D lookup table. We use a 3D texture with the
size of 32 for each dimension. The texture is
simulated using linear interpolation. An artist can
modify the 3D lookup table to simulate some camera
errors, like colour engraving. Optionally, the user can
use for different objects a different 3D lookup table.

7.

Our application is implemented with C++ and
OpenGL. As shader-language we use the OpenGL
Shading Language (GLSL). The 3D clouds and the
rain effect are implemented using geometry shaders.
The terrain implementation also uses tessellation
shaders to implement a view-depended level-of-
detail.

Implementation

We implement our application using the open soucre
rendering engine: OpenSceneGraph (0SG). OSG is an
open source 3D rendering engine. A key feature of
OpenSceneGraph are a lot of different plug-ins. The
plug-ins enable to adapt OpenSceneGraph to the
needs of our requirements. For our requirements, we
develop our own plug-in.

8. Results and Discussion

In this section we present the results of CloudyDay.
First, we discuss our 3D cloud rendering algorithm.
Then, we present our results of the 2D cloud
algorithm. Besides the clouds, we also compare the
atmosphere algorithms, and discuss the post-
processing algorithms.

8.1 3D Clouds

The 3D clouds are the main contribution of our
clouds. We adapt the approach from Wang [Wang01]
to render clouds, which are located at low and
middle altitude. In this section, we discuss our
archived results.

Generation: We provide four cloud generation
algorithms. Our implementation based on the
algorithm from Wang [Wang01]. We implement their
cloud generation algorithms using standard
modelling applications like Blender or Maya. This
approach is good for an artist-generated workflow.

Another artist controlled workflow is the use of 3D
models to generate clouds. CloudyDay provides a
voxelization algorithm to generate 3D clouds. This
technique is very well suited to test the cloud

15/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

recognition of the CV application

Instead of the artist controlled techniques, CloudyDay
provides random generated clouds. The algorithms
create a layer of clouds. We use a simple algorithm to
generate clouds using bounding boxes.

CloudyDay also provides a simulation model using
cellular automat. The simulation model provides
growing of clouds, extinction of the clouds and wind
effects. The advantage of this approach is that is easy
to implement. Furthermore, the simulation can be
controlled by ellipsoids. The resulting cloud is always
within some ellipsoids. The controlling of the clouds
with ellipsoids makes it easy to perform a specific
test-case.

Figure 19: Cumulus clouds from top

Shading and volumetric shadows: The half-angle
slicing algorithm results in volumetric shadows. A
nice example of our approach is given in figure 10.
The ears of the bunny cast a shadow at the body.
Instead of normal shadow mapping, the opacity of
the cloud is considered. Furthermore, inner parts of
the cloud are also in shadow. This is important for a
realistic rendering of the in-cloud experience.

The advantage of the half-angle slicing algorithm is
that it results in a realistic look with moderate
processing costs. According to other billboard
approaches, the billboards have to be sorted one
time. However, instead of rendering the billboards in
one call, multiple layers of billboards are created,
which are drawn 2 times. First, we draw the billboards
from the viewing perspective. Then we draw the
billboards from the light perceptive to create the
shadow map.

The integration of atmosphere model enables a
realistic representation of the clouds. The
atmosphere model is used to simulate the impact of
the atmosphere scattering. At the sunset, the
atmosphere results in a realistic look of the clouds. At
the day, they result in a bluish representation.

A big advantage of this approach is the good in-
cloud experience. If the viewer flies due the clouds,

the billboards displays small details within the
clouds. This representation is especially well suited
for fog and Stratus clouds. An example of the in-
cloud experience is figured in figure 11.

However, the volumetric shading algorithm results in
some errors. An error occurs by changing between
front-to-back and back-to-front shadowing. Both
operators result in the equal representation.
However, changing the slicing algorithm results in a
significant change of the orientation of the
billboards. A small, but recognizable change of the
clouds can be seen. This error depends on the size of
the billboards. If we would use smaller billboards, the
error gets smaller.

8.2 2D Clouds

The 3D approach is not well suited for drawing cirrus
clouds [Wang01]. Cirrus clouds are very big but thin.
Billboards, which are oriented to the viewer, would
result in an unrealistic behaviour of the clouds, if the
viewer position is changed. Instead, we use a simpler
2D approach for high altitude clouds, like cirrus or
cirrus cumulus. We only draw a texture of a cloud
using a 2D plane. This approach is adequate, because
the viewer is below the high altitude clouds. Another
advantage of this approach is, that it saves
processing time.

The 2D clouds are very well suited for our proposes.
The camera is always lower than 4000 m (see
requirement 1 in section 1.3). A realistic in-cloud
experience is not needed, and only the bottom of the
cloud is shown. As presented in section 5.3, we
provide a parallax mapping and a displacement
shading approach. The advantage of the
displacement approach is, that it results in a more
realistic look than the parallax mapping. The resulting
clouds look more bulky. In figure 19 a comparison
between parallax mapping and displacement
shading is given.

In addition to the high level clouds, we implement a
simple altocumulus generator with Perlin noise. The
Perlin noise generator provides altocumulus and
cirrocumulus clouds. A disadvantage of our
implementation is, that we do not provide any
generator to generate the cirrus, cirrocumulus and
cirrostratus textures.

8.3 Atmosphere

The atmosphere is a very important part of our sky
approach. We use the atmosphere model to create
the atmosphere and to shade other objects, like
terrain and airplanes, realistic. As presented in
chapter 4, we implement two approaches.

O'Neal proposes a very low sampling rate (<5
Samples) for his method. However, using current
graphics hardware enables to use higher sampling
rate. Another simplification of O'Neals approach is to

16/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

use different shaders, depending on the objects
position. O'Neal provides a shader, if the object is
below the camera, and another shader, if the camera
is above the camera. Otherwise, another shader is
used. However, in our application scenario, we
cannot make this distinction. The terrain can be
higher than the camera (mountains), and the clouds
can below the camera (if the airplane overfly clouds).
However, both shaders can be merged into one, and
we query the object's position.

The main advantage of this algorithm is that it can be
implemented fast. The algorithm can be
implemented in one shader. However, we need to
determine the values of many parameters. Finding a
good parameter setting is very time intensive.

Additionally, we implement the approach from
Bruneton et al. [Bruneton08]. Their technique
simulates single scattering, as well as multiple
scattering. In figure 5 the resulting atmosphere with
terrain is shown. As seen in this figure, their
technique looks very good. Especially, the
atmosphere results in more realistic look at sunset
(see figure 13). The algorithm is more time-intensive
to implement. However, it results in a very realistic
model of the atmosphere.

8.4 Terrain and objects

Another important part of CloudyDay is the
integration of the terrain and other objects (e.g.,
airplanes). We use the atmosphere model to create a
realistic representation of these objects.

Optimally, the terrain can be created using
tessellation shader. Our approach depends on a
view-depended level-of-detail. Regions near the
viewer are drawn with more detail, than regions that
are far away. This approach enables a very detail
representation of the terrain.

We use for shading of the terrain and other objects
the Phong shading approach. Instead of
interpolation of the colours between the vertices, we
interpolate the normals, and the lightning is
calculated for each fragment. This implementation
prevents artefacts, resulting from colour
interpolation.

8.5 Rain and fog

Rain and fog are two important phenomenon in
nature. The rain is implemented using a simple
particle system and each raindrop is shown using a
billboard and a texture. The fog is created with a
decreasing exponential function or with stratus
clouds.

A raindrop is usually very thin but long (similar to a
stroke). If we would use a simple 2D texture, the
raindrops would be look unrealistic, if the camera
positions shows from the top to the bottom (or vice

versa). Instead of a 2D texture, we use a 3D texture of
the rain, which consider the viewing direction to the
raindrop. This results in a more realistic represent-
ation of the rain.

The rain implementation can be adjusted with
several parameters. The rain intensity can be adjusted
with the density, size, lifetime, and velocity
parameters. Furthermore, the region, where the rain
occurs, can be determined. The parameters can be
adjusted by an artist or the test-case generator.

Both, the rain and the fog are important to test CV
algorithms. Both phenomenon affect the
representation of objects. Fog influences the texture.
If the fog is very thick, than objects can be invisible.
The rain also results in some problems of object
detection.

A disadvantage of our rain implementation is, that
we do not simulate the raindrops on the camera lens.
This effect would enable more difficult test-cases. In
future work, we will add such effect. Furthermore, the
rain implementation can be adapted to create a snow
and hail.

Figure 20: Nimbostratus clouds with rain and fog

8.6 Post-Processing

In this section, we discuss the results of the post-
processing effects. First, the scene is composted.
Then, the light scattering and bloom effect is created.
Furthermore, we implement a star effect. In the last
step, the HDR mapping is done, as well as the colour
grading to adjust the final colours. In this section, we
discuss each step in detail.

Light shafts: The light shafts are created as a post-
processing effect. The main advantage of this
approach is that is very easy to implement and it
results in a good representation. An example of the
light-shafts is given in figure 12.

The disadvantage of this approach is, that this
approach only works, if the sun is within the viewing
frustum of the camera. In future work, we will create
a viewing-independent solution, which consider the
terrain and the clouds.

17/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

Figure 21: Bloom and star effect at the airplane.

Bloom and star effect: CloudyDay also provides a
bloom and a star effect. The bloom effect is used to
create blooms, which results from specula
reflections[Lukks07]. The star effect results from the
microscopic bumps and scratches in the camera
optic, which produce internal reflections and
refraction [Lukks07]. The bloom and star effect are
important to test CV algorithms because it is difficult
to handle for object recognition algorithms.

Our used techniques are very easy to generate.
Furthermore, we can implement it fast with our
down-sample approach. As seen in figure 1, the
resulting bloom and star effect look very good.

HDR Mapping: After calculation of the light shafts,
we map the high dynamic range into the low
dynamic device colour space range. As presented in
section 6.2, CloudyDay provides four HDR mapping
algorithms. An example of the different HDR
mapping techniques is shown in figure 20.

As presented by Luksch [Luksch07], Reinhard’s
operator has a good contrast and show all details of
the scene. However, the image looks rather grey. With
the Modified Reinhard’s operator one lose a bit of the
contrast, but the colours are more saturated. The sky
is dark with both operators.

Colour grading: Additionally, CloudyDay supports
colour grading. This technique enables to modify the
resulting colours for each object by an artist.

The advantage of colour grading is that the colour
grading can be created easily. The artist can create
different effects by creating of several lookup tables.
The lookup tables can be created with any image-
editing software or 3D modelling software. Each of
the lookup tables can be used to create different test-
cases. E.g., to simulate colour engraving. CloudyDay
supports own lookup tables for different objects.

9. Summary and Future Work

In this technical report, we present an application to
generate volumetric clouds, atmosphere, and other
natural phenomenon. We adapt the half-angle slicing

approach to generate shadowed clouds. The clouds
can be simulated using cellular automate.
Furthermore, we generate light shafts, as well as HDR
mapping, and colour grading.

We consider the specific requirements for testing
computer vision applications. E.g., clouds, which
looks like airplanes, can be generated. Furthermore,
all effects can be controlled by modifying the
parameter space. This enables to generate a lot of
different test-cases by modifying each attribute. E.g.,
the atmosphere can be used to adapt test different
lighting conditions, colour grading can be used to
simulate sources of errors and more.

In future work, more natural phenomenon should be
implemented, like snow and lightning. Such natural
phenomenon enables to test difficult test-cases,
which are difficult or expensive to simulate in real-
world. Furthermore, more errors of a camera should
be simulated (e.g., motion blur) to test the effects of
some errors, result from the camera.

References:

[Bouthors08] Antoine Bouthors, Fabrice Neyret,
Nelson Max, Eric Bruneton, and Cyril Crassin.
2008. Interactive multiple anisotropic
scattering in clouds. In Proceedings of the 2008
symposium on Interactive 3D graphics and
games (13D '08). ACM, New York, NY, USA, 173-

182.
[Bruneton 08] Bruneton, E. and Neyret, F. (2008),
Precomputed Atmospheric Scattering.

Computer Graphics Forum, 27: 1079-1086.

[Crane07] Crane, Keenan and Llamas, Ignacio, and
Tarig, Sarah: "Real Time Simulation and
Rendering of 3D Fluids', 2007, GPUGems 3,
chapter 30, Addison-Wesley

[Dobashi00] Y.Dobashi, K.Kaneda, H.Yamashita,
T.Okita, T.Nishita, "A Simple, Efficient Method
for Realistic Animation of Clouds," Proc.
SIGGRAPH2000, 2000-7, pp. 19-28.

18/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

[Donnelly06] Donnelly, William, and Andrew
Lauritzen. 2006. "Variance Shadow Maps." In
Proceedings of the Symposium on Interactive
3D Graphics and Games 2006, pp. 161-165.

[Ikits04] Milan Ikits, Joe Kniss, Aaron Lefohn,
Charles Hansen: "Volume Rendering
Techniques’, GPUGems, pp. 667-692, Addison
Wesley, 2004

[Kshitiz06] Kshitiz Garg and Shree K. Nayar. 2006.
Photorealistic rendering of rain streaks. ACM
Trans. Graph. 25, 3 (July 2006), 996-1002

[Green08] Simon Green: "Volumetric Particle
Shadows", NVIDIA Whitepaper, 2008

[Harris01] Mark J. Harris and Anselmo Lastra, Real-
Time Cloud Rendering. Computer Graphics
Forum (Eurographics 2001 Proceedings),
20(3):76-84, September 2001

[Kaneko01] Tomomichi Kaneko and Toshiyuki
Takahei and Masahiko Inami and Naoki
Kawakami and Yasuyuki Yanagida and Taro
Maeda and Susumu Tachi: " Detailed shape
representation with parallax mapping", In
Proceedings of the ICAT 2001, 2001

[Luksch07] Luksch, C.: Realtime HDR rendering.
Tech. Rep., Institute of Computer Graphics and
Algorithms, TU Vienna (2007)

[Mit07a]MITCHELL K.: Volumetric Light Scattering
as a Post-Process. Addison-Wesley, 2007, pp.
275-285.14

[MitO4a]Mitchell, J. 2004. "Light Shafts: Rendering
Shadows in Participating Media." Presentation
at Game Developers Conference 2004

[Miller12] Daniel Mduller, Juri Engel, Jirgen
Déllner: Single-Pass Rendering of Day and

Night Sky Phenomena. VMV 2012: 55-62

[O’'NO5] O'NEILS.: Accurate atmospheric
scattering. In GPUGems 2: Programming
Techniques for High-Performance Graphics
and General-Purpose Computation(2005),
Addison-WesleyProfessional.

[Nishita99] Nishita, T.; Dobashi, Y., "Modeling and
rendering methods of clouds' Computer
Graphics and Applications, 1999. Proceedings.
Seventh Pacific Conference on , vol, no,
pp.218,219, 326, 1999

[Perlin02] K.Perlin. Improving noise. In
Proceedings of the 29th annual conference on
Computer graphics and interactive
techniques. ACM Press, 2002.

[Rakos10] Daniel Rakos: "Efficient Gaussian blur
with linear sampling”, 2010, Available at:
http://rastergrid.com/blog/2010/09/efficient-
gaussian-blur-with-linear-sampling/ (date:
1.10.2014)

[Tariq07] S Tarig: "Rain", NVIDIA Whitepaper, 2007

[Wang03] Niniane Wang. 2003. Realistic and fast
cloud rendering in computer games. In ACM
SIGGRAPH 2003 Sketches & Applications
(SIGGRAPH '03). ACM, New York, NY, USA, 1-1.

[WCloud14] Wikipedia: "Cloud", 2014, Available at:
http://en.wikipedia.org/wiki/Cloud (date:
1.10.2014)

[Zendel13] O. Zendel, W. Herzner, and M.
Murschitz. Vitro - model based vision testing
for robustness. Proceedings to the 44th
International Symposium on Robotics - ISR
2013, pages October 24-26, 2013

19/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

Further Images

Figure 22: Altocumulus clouds Figure 23: Sunset

__

Figure 24: Shadows, casted from clouds, are Figure 25: Cumulus and altostratus clouds (big, thin)
created using Variance Shadow Map

&I_
Figure 26: Stratocumulus cloud Figure 27: Cumulus and altostratus clouds (small, thin)
" B
Figure 28: Sunset Figure 29: Star effect

20/21

CloudyDay: Rendering of clouds, atmosphere and light shafts in HDR for testing CV algorithms

—

Figure 30: Sunset and glare Figure 31: Bloom at day

p—

Figure 32: Clouds at middle altitude (simulated) Figure 33: Bottom of cumulous clouds

~

Figure 34: Sunset and cumulus clouds Figure 35: Cumulous and stratus clouds

Figure 36: Cumulus and cirrus cumulus clouds Figure 37: Cumulus and cirrocumulus clouds

21/21

