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Abstract

In a mixed-reality environment virtual objects are merged into a real scene. Such an augmenta-
tion with virtual objects offers great possibilities to present content in new and innovative ways.
The visual appearance of these virtual objects depends on a plausible lighting simulation. Oth-
erwise, virtual objects look artificial and out of place, which destroys the overall impression of
the perceived scene.

Reflective and refractive objects are an inherent part of our physical environment. Accord-
ingly, virtual objects of this type also enhance the overall impression and scope of a mixed-reality
application. Many mixed-reality systems still neglect them: Such objects require a complex light
simulation that is hard to embed in a mixed-reality system, which demands real-time frame rates
to handle the user interaction.

This thesis describes the integration of reflective and refractive objects in a mixed-reality
environment. The aim is to create a realistic light distribution that simulates reflections and
refractions between real and virtual objects. Another important aspect for a believable perception
are caustics, light focusing due to the scattering from reflective or refractive objects. Until
recently, this effect was simply excluded in the lighting simulation of mixed-reality systems.

The proposed rendering method extends differential instant radiosity with three other image
space rendering techniques capable to handle reflections, refractions and caustics in real time.
By combining these techniques, our method successfully simulates the various lighting effects
from reflective and refractive objects and is able to handle user interactions at interactive to real-
time frame rates. This offers a practicable possibility to greatly improve the visual quality of a
mixed-reality environment.
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Kurzfassung

In einer Mixed-Reality Umgebung oder gemischten Realität werden virtuelle Objekte in eine
reale Szene integriert. Eine solches Hinzufügen von virtuellen Objekten bietet eine innovative
Möglichkeit, um Inhalte interessant und ansprechend aufzubereiten. Für das visuelle Erschei-
nungsbild der virtuellen Objekte ist eine authentische Beleuchtungssimulation notwendig. An-
dernfalls wirken die virtuellen Objekte künstlich und deplatziert, was den Gesamteindruck der
wahrgenommenen Szene stört.

Reflektierende und refraktierende Objekte sind in der Realität allgegenwärtig. Virtuelle Ob-
jekte dieser Art können entsprechend das Erscheinungsbild und die Nutzungsmöglichkeiten ei-
ner Mixed-Reality Anwendung verbessern. In vielen Mixed-Reality Systemen werden sie den-
noch vernachlässigt: Für ihre Darstellung ist eine komplexe Lichtsimulation erforderlich. Eine
solche lässt sich jedoch in ein Mixed-Reality System, das wegen der Benutzerinteraktion auf
eine schnelle Bildausgabe angewiesen ist, nur schwer integrieren.

Die Diplomarbeit befasst sich mit der Integration von reflektierenden und refraktierenden
Objekten in eine Mixed-Reality Umgebung. Das Ziel ist eine realistische Lichtverteilung für die
Simulation von Reflexionen und Refraktionen zwischen realen und virtuellen Objekten. Für eine
überzeugende Darstellung sind außerdem Kaustiken wichtig. Dabei handelt es sich um Lichtfo-
kussierungen durch Streuung an reflektierenden und refraktierenden Objekten. Bis vor Kurzem
wurde dieser Effekt in der Beleuchtungssimulation anderer Mixed-Reality Systeme nicht be-
rücksichtigt.

Die von uns vorgeschlagene Methode erweitert den Differential Instant Radiosity Algorith-
mus mit drei anderen im Bildraum arbeitenden Techniken, die Reflexionen, Refraktionen und
Kaustiken in Echtzeit berechnen können. Diese Algorithmen werden bei unserer Methode er-
folgreich kombiniert. Dadurch können wir verschiedenste Lichteffekte von reflektierenden und
refraktierenden Objekten simulieren und außerdem die Benutzerinteraktion in Echtzeit gewähr-
leisten. Die Methode bietet eine praktische Möglichkeit um die visuelle Qualität einer Mixed-
Reality Umgebung zu verbessern.
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CHAPTER 1
Introduction

In a mixed-reality environment, virtual objects are merged into a real scene. A mixed-reality
environment lies between the real environment, which contains only real objects, and the virtual
environment, which just consists of virtual objects, as illustrated by Figure 1.1. This reality-
virtuality continuum [29] provides a classification for a mixed reality that includes augmented
reality, as in our case, and augmented virtuality, in which real objects are merged with a virtual
scene.

Such an augmentation with virtual objects offers great possibilities to present content in new
and innovative ways. There is a variety of interesting application areas that could, or already do
benefit from a mixed-reality approach. Figure 1.2 shows a small selection of some application
scenarios. A classical application example is advertising, in which a mixed-reality approach
allows actively involving the consumer into the advertising campaign, see Figure 1.2a. Another
application field is product visualization, like in Figure 1.2b or Figure 1.2c. Besides entertain-
ment, mixed reality can also be useful in medical areas, for the planning of operations or to aid
a surgeon during an operation, see Figure 1.2d. Other application fields are cultural heritage or
the education sector, see Figure 1.2e.

From a technical point of view, a mixed-reality system also needs to merge several differ-
ent subsystems that depend on each other. These subsystems are responsible for capturing the
perceived environment, handling the user interaction, determining the position and orientation
of the objects and simulating the light distribution. Finally, the mixed-reality system outputs an
image of the augmented environment.

real 
environment

virtual 
environment

augmented 
reality

augmented 
virtuality

mixed reality

Figure 1.1: Reality-virtuality continuum [29]
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(a) Advertising [2] (b) Product visualization [45]

(c) Product visualization [26]

(d) Medical areas [15]

(e) Education [20]

Figure 1.2: Fields of application for mixed reality. Figure (a) shows an advertisement for the
National Geographic Channel that draws virtual animals next to pedestrians. On a nearby screen,
it seems that these animals are part of the real scene and people even tried to touch the virtual
animals. Image copyright by Appshaker Ltd: www.appshaker.co.uk [2]. Figure (b) shows a
mixed-reality application on a mobile device that helps the user on the decision for new furniture.
Hence, it is possible to try different furnitures and get an impression of how they would look like
in their real environment. Image copyright by ViewAR - www.viewar.com [45]. In Figure (c),
the customer holds a LEGO box in front of a camera and gets an impression of the assembled
model in three dimensions. Image copyright by metaio - www.metaio.com [26]. Figure 1.2d
shows an overlay of a X-ray photograph on the camera image of leg. Image from an article
of the Technische Unversität München [15]. Figure 1.2e shows a mixed-reality application for
geometry teaching. Image courtesy of Kaufmann [20].
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The computation time is a limiting factor for all these tasks. Usually, a mixed-reality system
has some sort of user interaction. A lagging input system or a low output frame rate is annoying
for the user and would disturb the overall immersion. Therefore, a mixed-reality system should
generate the output images at interactive (about 10 frames per second) or preferably at real-time
(about 30 frames per second) frame rates.

An authentic lighting simulation is the most important factor for the visual appearance of
a mixed-reality scene. This means that the lighting of real objects and virtual objects should
interact in a natural way, so that the user perceives virtual objects as part of the real environment.

1.1 Scope of the work

The augmentation of a real scene with virtual content requires a plausible lighting simulation.
Otherwise, virtual objects look artificial and out of place, which destroys the overall impression
of the perceived scene. This master thesis focuses on a plausible light distribution in a mixed-
reality environment.

The emphasis lies on the integration of light effects from reflective and refractive objects in
a mixed-reality environment. This means for example that a virtual object should appear on a
reflective real object (e.g. a real mirror) or a real object should shine through a refractive virtual
object (e.g. a virtual drinking glass).

Reflective and refractive objects also scatter the incoming light rays, which may result in a
higher concentration of light in several areas. This focusing of light is called a caustic. This
thesis also describes the visualization of plausible caustics in a mixed-reality scenario.

We extend an existing mixed-reality framework that is part of the Reciprocal Shading for
Mixed Reality (RESHADE) project [42]. The rendering subsystem builds upon differential in-
stant radiosity [22]. It neatly combines several different rendering techniques and is able to
simulate a realistic light distribution in a mixed-reality environment. Besides some fundamental
principles about light, we describe the framework in more detail in Chapter 2.

1.2 Problem statement

Reflective and refractive objects are an inherent part of our physical environment and conse-
quently improve the appearance of a mixed-reality scenario. However, these kinds of objects
need special considerations during the lighting computation. A local illumination method, which
evaluates the lighting solely between the visible surface and the light sources, neglects the light
interaction between different surfaces and is therefore insufficient. In a scene with reflective and
refractive objects, the lighting simulation also needs to consider the surrounding objects of a
visible surface point, what is called a global illumination method. However, such an approach
needs more effort and indeed, a global illumination method is hard to embed in a mixed-reality
system that demands real-time frame rates to handle the user interaction.
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The intent of our lighting simulation is to model the light interaction between real and vir-
tual objects in a perceptually plausible manner, so that it appears realistic to a human observer.
Summarized, the two main research topics of this thesis are:

1. Research a technique to simulate the lighting of reflective and refractive objects in a
mixed-reality environment and integrate it into the RESHADE framework.

2. Research a technique to simulate caustic effects in a mixed-reality environment and inte-
grate it into the RESHADE framework.

An important constraint for a mixed-reality system is the computation time. For this reason,
the techniques to simulate reflections, refractions and caustics should at least run at interactive
frame rates, allowing user interaction without disturbing delays. Chapter 3 presents several
image space algorithms to simulate each of these three effects at real-time frame rates. Moreover,
it includes a short overview and comparison of other mixed-reality systems that handle reflective
and refractive objects.

Differential rendering is a fundamental technique to combine real and virtual objects in a
scene. For now it is sufficient to know that this method computes one light simulation exclusively
for all real objects and one together for all real and virtual objects in a scene. Then, the difference
between these two simulations is added to the captured image. It is crucial for differential
rendering to evaluate the light paths of all included components in the light simulation. These
paths determine the radiance contribution into the two differential rendering parts, i.e. should
the light contribute only to the real part or to the real and virtual part. Reflective and refractive
objects, either real or virtual, add several new light path combinations, including caustics and
indirect light bounces. Thus, a considerable part of this thesis is to classify such light paths.

As opposed to the original differential rendering algorithm, we also want to apply this tech-
nique to reflected or refracted real objects. For instance, inserting a reflective or refractive virtual
object into a scene invalidates the occupied area in the image. Hence, the corresponding reflected
or refracted surface has no relation to the visible area in the image because these points orig-
inate at a different location. In such a case, the differential rendering method needs to detect
the associated value in the camera image. Therefore, it back-projects the reflected or refracted
surface position into the camera image and adjusts the color values accordingly. As part of the
light path analysis, we need to identify these areas and also care about cases where no valid
back-projection data is available.

The following list contains the additional problem statements which arise from the two main
research questions:

• Reflection, refraction and caustic techniques should at least run at interactive frame rates.

• Classify the light paths for the differential rendering method between the light source, the
interacting objects and the camera.

• Identify the areas for reflective and refractive objects which need a back-projection and
handle the cases where no valid data is available.
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1.3 Contribution

We successfully integrate, reflective and refractive objects in a mixed-reality environment. Built
upon differential instant radiosity from Knecht et al. [22], our proposed method is able to handle
various lighting situations in a mixed-reality environment for reflective and refractive objects,
either real or virtual. This is the first rasterization-based approach that covers all these effects in
its entirety in a mixed-reality environment.

Due to the tight coupling with instant radiosity [21], indirect illumination on diffuse objects
also appears in reflections and refractions. Furthermore, these two types of objects realistically
react to real or virtual spotlights. Until recently, caustics were just ignored in the lighting sim-
ulation of other mixed-reality systems. Our method is able to scatter light from reflective and
refractive objects and create plausible caustics on nearby real or virtual objects. Figure 1.3 shows
reflections, refractions, and caustics in a mixed-reality scenario, generated with our framework.

Figure 1.3: Reflections, refractions, and caustics in a mixed-reality environment, generated with
our framework at interactive to real-time frame rates. The left figure shows a scene with different
virtual objects on a real desk that are illuminated by a virtual spotlight. The virtual Utah teapot
reflects the surrounding real and virtual objects. In the right figure, a virtual spotlight illuminates
a virtual glass, resulting in a colored caustic on the real desk. The desk is also realistically
refracted through the virtual glass.

We extend the traditional differential rendering method similar to Grosch [12] and apply this
effect also to reflected or refracted objects. This includes a detailed analysis of all light paths,
identifying the correct differential rendering buffer and a description of the back-projection.
The two main parts of this thesis describe the radiance computation for reflective and refrac-
tive objects and their integration in a mixed-reality environment with differential rendering, see
Chapter 4. Chapter 5 describes the light simulation of caustics in combination with differential
rendering.

The proposed method achieves interactive to real-time frame rates, so user interaction is still
possible. The technical aspects, with implementation details about our intersection approxima-
tion and the caustic algorithm, are explained in Chapter 6. The remaining part of this thesis
compares different intersection approximations and presents several example images of light ef-
fects from reflective and refractive objects in Chapter 7. Finally, we discuss the limitations in
Chapter 8 and show possible improvements for future implementations.
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The following list briefly summarizes the main contributions of this thesis:

• Extension for differential instant radiosity to simulate light effects from reflective and
refractive objects in a mixed-reality scenario.

• Handles various lighting situations for reflective and refractive objects. These objects can
be real or virtual and are able to reflect or refract other objects, either real or virtual.

• Plausible simulation of caustics with a fast splatting method in image space. Reflective
and refractive objects realistically scatter the incoming light onto real or virtual objects.

• Use a back-projection to apply differential rendering also for reflective and refractive ob-
jects. The involved surfaces are identified and missing cases are handled accordingly.

6



CHAPTER 2
Basic Concepts

This chapter gives a short survey of some basic principles and tools that are needed to analyze
and simulate the light distribution in a mixed-reality environment. The rendering methods in this
thesis do not have the intent to replicate the physically correct behavior of light in the real world.
Our aim is to simulate a perceptually plausible light distribution in a mixed-reality environment.
Nevertheless, our assumptions and simplifications build upon physical properties of light, so it
is essential to have a basic understanding of them.

In a simplified model [1], the light rays emanate from a light source into a scene. Typically,
in a mixed-reality environment the scene is populated with real and virtual objects. Each of
these objects behave differently to the incoming light rays. According to the material attributes
of the object, the light is absorbed and scattered. After all, some of these light rays reaches the
sensor of an observer, which results in a visual perception of the environment. The first three
sections in this chapter deal with the physical properties of light, the material attributes, and the
light distribution in a scene. We summarize this information from three different books [1,9,32]
that cover this topic in more detail.

Apart from that this chapter describes the RESHADE framework. This description covers
the subsystem to capture the environment, the tracking of the object position and orientation,
and the several techniques used in the rendering subsystem.

2.1 Light and Radiometry

Radiometry is the science that measures electromagnetic radiation. Further, light is a kind of
electromagnetic radiation. To be more precise, it is a flow of photons that carries energy. Every
photon has a certain frequency and wavelength that are proportional to its energy. Electromag-
netic radiation exists at every wavelength, but only a very small range is visible for the human
eye. This range is called the visible spectrum and lies approximately between 380 nanome-
ters and 780 nanometers. The wavelength of the radiation characterizes the color of the light.
Figure 2.1 shows a schematic representation of the visible spectrum. The energy of a photon

7



increases with the wavelength λ, i.e. violet photons carries more energy than red photons. Natu-
ral light sources consists of different intensities per wavelength whereas a laser light source has
most of its energy at a single wavelength (i.e. a monochromatic light source) [1].

400 nm 750 nm575 nm

infraredultraviolet

λ

Figure 2.1: The visible spectrum of the human eye. It is a narrow band on the electromagnetic
spectrum and lies approximately between 380 nm and 780 nm. (Color box from Gringer [11])

There are two different light models that describe certain lighting effects. Both of them built
upon the quantum optics model. On the one hand there is the wave model that uses the wave
properties of the light to describe the flow of photons. This model covers effects like diffraction
or interference. They only occur when the light radiates very small objects (size is comparable to
the wave length), so our rendering system does not support this model. On the other hand there is
the geometric optics model that describes the flow of photons as a stream of particles. It makes
several simplifications (i.e. the stream propagates on a straight line at infinite speed without
external influences) and uses basic optical laws to reflect or transmit the incoming light rays on
an object. Moreover, the wave-length of the light is vastly smaller than the radiated surface [9].
Thus, this model is perfectly valid for a rendering system in a mixed-reality environment.

The radiometric quantity to measure the amount of energy per unit time is called radiant flux
φ. It is measured in the units of watt (W). For example a light source emits radiant flux. The
quantities irradiance E and radiosity M (or radiant exitance) define the incoming and outgoing
radiant flux per surface area. They are measured in the units of watt per square meter (W/m2).
Probably the most interesting quantity for a rendering algorithm is radiance L. It is the radiant
flux per unit projected area per unit solid angle in the units of watts per steradian per square
meter (W/(steradian ·m2). The amount of radiance on a sensor of an observer determines the
perception of the environment. Actually, a rendering method computes this quantity. Formally
the radiance is:

L =
d2φ

dωdA cos θ
, (2.1)

where dω is the solid angle and dA cos θ the projected surface area [32]. Figure 2.2 illustrates
the radiance for a surface point x with a surface normal n.

θ

n

x dA

dω

L

Figure 2.2: The radiance L depends on a position x and a direction. It is the radiant flux per unit
projected area dA cos θ per unit solid angle dω. Illustration after Dutré et al. [9].
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Radiance has an important property in vacuum, which is called invariance of radiance, in
which the amount of radiance leaving a surface in a specific direction is equal to the amount
of radiance arriving at a surface from this direction. Our simplification neglects participating
media, so the radiance is constant in a specific direction.

2.2 Bidirectional Reflectance Distribution Function

The material attributes of an object defines the impact of the arriving light on a surface. Some
light might transmit through the object or gets reflected on its surface. Consequently, this affects
the perception of the object by the observer. This section explains the bidirectional reflectance
distribution function (BRDF) that determines how the surface of an object reacts to the incoming
light. The BRDF for a surface point x is the ratio:

fbrdf (x, ωi, ωo) =
dLo(x, ωo)

dEi(x, ωi)
, (2.2)

where dLo is the outgoing radiance in the direction ωo and dEi is the irradiance from direction
ωi. The BRDF has the units of steradians−1. Figure 2.3 shows the parameters of an isotropic
BRDF. Contrary to an anisotropic BRDF, it is rotation independent. Hence, the orientation of
the surface around the normal has no influence on the evaluation of the BRDF.

n
θi

θo

φ

x

dLo(x,ωo) dEi(x,ωi)

Figure 2.3: Schematic illustration of an isotropic bidirectional reflectance distribution function.
An isotropic BRDF depends on a position x, an angle θi, and an angle θo. The two angles are
formed between the surface normal n and the incoming radiance direction ωi and the outgoing
radiance direction ωo. Illustration after Akenine-Möller et al. [1].

According to the laws of physics the BRDF fulfills the Helmholtz reciprocity. This principle
states that switching the incoming and outgoing direction has no influence on the BRDF value:

fbrdf (x, ωi, ωo) = fbrdf (x, ωo, ωi). (2.3)

In addition, a physically based BRDF observes the law of energy conservation. Accordingly,
the reflected radiance is always smaller or equal to the incoming irradiance:

fbrdf (x, ωi, ωo) =

∫
Ω
fbrdf (x, ωo, ωi) cos θodωo ≤ 1, (2.4)
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where the integral
∫

Ω is evaluated over the hemisphere above the surface point x [32].
The relevant parameters for a BRDF can be acquired from real objects. This results in a huge

amount of data that is hard to evaluate. Instead, analytical models describe a BRDF for different
material characteristics. Figure 2.4 lists the different main categories. Diffuse surfaces equally
distribute the incoming light in all directions, mirror surfaces reflect the incoming light into one
specific direction and glossy surfaces reflect most of the light around one specific direction [9].
Usually, a BRDF is a combination of all these components.

L n

(a) Diffuse surface

L n

(b) Mirror surface

L n

(c) Glossy surface

Figure 2.4: Schematic illustration of the main BRDF categories. It shows the BRDF for a diffuse
surface, a mirror surface, and a glossy surface. Illustration after Pharr and Humphreys [32].

2.2.1 Ideal Reflection

A mirror like reflection of light, also named ideal specular reflection, underlies the law of re-
flection [1]. It states that the angle of incidence θi equals the angle of reflection θr. This means
that the direction of the incoming light ray and the direction of the reflected light ray form the
same angle with the surface normal. Figure 2.5a shows the derivation of the reflection vector r.
Utilizing vector algebra, the light direction is projected onto the surface normal and added twice
to the negative light direction:

r = 2(n · l)n− l, (2.5)

where n is the normalized surface normal, l the normalized direction to the light source and r the
resulting reflection direction. Note that the three vectors are coplanar, i.e. the reflected direction
r lies in the plane formed by the surface normal n and the light direction l.

2.2.2 Ideal Refraction

Refraction of light happens when the light interacts with a translucent object. Every time the
light travels through an interface between two different materials (e.g. from air through a glass
surface), it changes its direction. The law of refraction or Snell’s Law [1] describes this behavior
as:

η1 sin θi = η2 sin θt, (2.6)

where η1 and η2 is the index of refraction of the two involved materials and θi the incident angle
and θt the refraction angle. Heckbert [13] uses Snell’s law to derive the refraction vector. The
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(a) Reflection

n

tθt

cosθt tǁ

η1
η2

sinθt t

l
θi

-l+c1n

(b) Refraction

n

η1
η2

θcrit

l

l'

lc

l'c 

li l'i

(c) Total internal reflection

Figure 2.5: Derivation of the reflection direction, refraction direction, and total internal reflec-
tion. Figure (a) shows the computation of the reflection direction r from the light direction l and
the surface normal n. Figure (b) illustrates the determination of the refraction direction t as a lin-
ear combination of the vector t|| and the vector t⊥. Figure (c) shows total internal reflection that
occurs when the incident angle exceeds a critical angle θcrit. Illustrations after Akenine-Möller
et al. [1].

idea is to express the refraction vector as a linear combination between the vector t|| and the
vector t⊥, see Figure 2.5b. The vector t|| parallel to the unit surface normal n

t|| = −n (2.7)

and the vector t⊥ perpendicular to the unit surface normal n

t⊥ =
−l + c1n

|| − l + c1n||
=
−l + c1n

sin θi
, (2.8)

where c1 = cos θi = n · l. The linear combination of the refraction vector t is

t = cos θtt|| + sin θtt⊥

= − cos θtn+ sin θt
−l + c1n

sin θi
(2.9)

and expanded with η = η1
η2

= sin θt
sin θi

from the law of refraction

t = − cos θtn− ηl + ηc1n

= (ηc1 − cos θt)n− ηl
= (c1η − c2)n− ηl, (2.10)

where c2 = cos θt =
√

1− sin2 θt =
√

1− η2 sin2 θi =
√

1− η2(1− c2
1).

Equation 2.10 is used to compute the refraction direction, where n is the surface normal, l
the direction to the light source and η the ratio of the refractive indexes. The refraction index of
air is one, for all other translucent materials it is greater than one.
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A special case may occur when light travels from a higher refractive material into a lower
refractive material. When the incident angle θi exceeds a critical angle θcrit all light is reflected,
instead of refracted, which is called total internal reflection [7]. Light rays incident at the critical
angle refract them perpendicular to the surface normal, illustrated by Figure 2.5c. The critical
angle follows from Snell’s law, defined in Equation 2.6:

θcrit = sin−1 ηt
ηi
, (2.11)

where sinθt = 1 for a refraction angle of 90◦. Note that in case of total internal reflection, the
expression c2 can not be evaluated because the value under the square root is negative.

2.3 Rendering Equation

The rendering equation from Kajiya [18] is a mathematical framework to describe the light
distribution in a scene. A common representation of the rendering equation is the hemispherical
formulation:

Lo(x, ωo) = Le(x, ωo) +

∫
Ωx

fbrdf (x, ωi, ωo)Li(x, ωi) cos θidωi, (2.12)

where Table 2.1 describes the involved terms.

Term Description

Lo(x, ωo) The outgoing radiance from the surface point x in the direction ωo.
Le(x, ωo) The direct emitted radiance from the surface point x in the direction ωo.∫

Ωx
The integral evaluates to the total reflected radiance from the surface point
x in the direction ωo.

fbrdf (x, ωi, ωo) The BRDF for the surface point x, the incoming direction ωi and the out-
going direction ωo.

Li(x, ωi) The incoming radiance from direction ωi. Furthermore, this term also rep-
resents an outgoing radiance from another surface point x′ in the direction
−ωi denoted with Lo(r(x, ωi),−ωi), where the function r(x, ωi) deter-
mines the surface point x′.

Table 2.1: Involved terms in the rendering equation.

In other words, the rendering equation computes the outgoing radiance Lo(x, ωo) as the sum
of the direct emitted light Le from surface x and all the incoming light on surface x that is
reflected in the direction ωo. Figure 2.6 visualizes the involved terms of the rendering equation.

It is problematic to solve this integral equation analytically. The complexity lies in its re-
cursive composition and the occurrence of the unknown term (the outgoing radiance Lo) on the
left and right hand side of the equation. However, there is a formal solution that approximates
the result with a step-wise evaluation. Several rendering algorithms take advantage of this and
iteratively compute a solution for the outgoing radiance.
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θi
θo

x

ωo ωi

x'
n'

Ω

Lo(x,ωo) Li(x,ωi)
= Lo(r(x,ωi),-ωi)

Le(x,ωo)

Ωx'

Figure 2.6: The involved terms in the rendering equation. The outgoing radiance Lo(x, ωo) from
the surface x is the sum of the emitted lightLe(x, ωo) and all incoming light that is reflected from
point x. The outgoing radiance Li(x,−ωi) is evaluated recursively, shown by the hemisphere
Ω′x above surface x′. Illustration after Dutré et al. [9].

2.4 Reciprocal Shading Framework for Mixed Reality

The existing framework that we use to integrate the reflective and refractive light effects is part
of the RESHADE project [42], an abbreviation for reciprocal shading. In short, the scope of this
project is to realistically combine real and virtual objects in a mixed-reality environment. This
means that the light influence between different types of real and virtual objects should behave
perceptually plausible to a human observer.

Figure 2.7: Output image, created with the RESHADE framework. The spotlight illuminates the
virtual Stanford dragon that causes a green color bleeding on the real teapot. The markers are
used to identify and track the position and orientation of the objects. Image courtesy of Knecht
et al. [22]
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2.4.1 Tracking and Capturing

The RESHADE framework combines different subsystems to handle the requirements of a
mixed-reality scenario. An important aspect in such a scenario is the user interaction. In our
case, the user is able to manipulate the position and orientation of real and virtual objects. More-
over, it is possible to change the viewpoint of the camera as well as the adjustment of the light
sources. Therefore, it is necessary to identify the different entities and to track their relative
location to a coordinate origin. The responsible subsystem uses the Studierstube Tracker [24]
library and special markers (BCH ID-marker) for the identification. Figure 2.7 shows a typical
setup in a mixed-reality environment.

Besides tracking, the framework uses a conventional camera to capture the mixed-reality
scene every frame. Note that the tracking system processes the camera image, so this capturing
is one of the first tasks in the framework. In addition, a fish-eye camera records the surrounding
scene and stores it in a hemispherical environment map for further usage.

The following section explains the rendering subsystem of the RESHADE framework. It
combines several different rendering methods to simulate the light distribution between real and
virtual objects. However, before we describe the light simulation in detail we briefly present the
underlying methods.

2.4.2 Instant Radiosity

Instant radiosity from Keller [21] is a global illumination algorithm that is able to approximate
a solution for the rendering equation. It uses a set of virtual point lights and distributes them
on the illuminated surfaces. Each virtual point light (VPL) represents an additional light bounce
that possibly illuminates another surface, i.e. indirect illumination.

Originally, a ray-tracer determines the illuminated surfaces for the VPL placement. Alter-
natively, there exists a faster method for spotlight sources that uses reflective shadow maps,
invented by Dachsbacher and Stamminger [6]. This algorithm exploits the standard shadow
mapping technique that identifies the visible surfaces from a primary spotlight source. It stores
additional attributes in the shadow map, which specify a VPL on a visible surface point, like the
incident light direction or the radiant flux.

Moreover, it is important to account for the occlusion between all VPLs and a possible
illuminated surface during the lighting computation. Conventional shadow maps are too slow
to handle this large amount of VPLs that are needed for an appealing lighting result. Actually,
it is sufficient to approximate this visibility test with an imperfect shadow map as proposed by
Ritschel et al. [36]. This method renders an incomplete geometric representation (point splats)
of the objects into a low resolution shadow map. Due to the low frequency nature of indirect
light, this inaccuracy is appropriate and improves the performance vastly.

2.4.3 Differential Rendering

Differential rendering from Debevec [8] is a fundamental method to augment a captured image
from a camera with virtual content. It computes two different parts of radiance buffers. One
part contains the radiance from the light simulation of all real and all virtual objects. The other
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differential rendering part contains the radiance from all real objects that are only affected by
real components, e.g. real light sources, real virtual point lights, and real shadow casters.

Consider, all real objects that contribute to the light simulation are pre-modeled and have
approximated material attributes. Unfortunately, an accurate determination of the material at-
tributes is hardly possible. Mainly, because the BRDF is an approximation and cannot cover all
the subtle material details. Differential rendering minimizes this error by adding the difference
between the two radiance parts to the captured background image of the camera:

Lf = Lb + Lrv − Lr, (2.13)

where Lf is the final output image, Lb is the masked background from the camera, Lrv is the
differential part with the radiance from all real and virtual objects, and Lr exclusively contains
the radiance from only real components.

Figure 2.8 visualizes the differential rendering buffers for a scene containing a real desk
and a virtual teapot, illuminated by a real environment light. The first row shows the difference
between the real-virtual buffer Lrv and the real buffer Lr, in which the desk contributes to both
buffers and the virtual teapot only to the buffer Lrv. Note that the color values in Figure 2.8c
and Figure 2.8e are adjusted to represent also negative values, so gray means no difference. This
difference is added to the masked background Lb as illustrated by the second row.

(a) Lrv (b) Lr (c) Lrv − Lr

(d) Lb (e) Lrv − Lr (f) Lf = Lb + Lrv − Lr

Figure 2.8: Differential rendering buffers. It adds the difference between the two radiance
buffers Lrv and Lr to the masked background Lb: Lf = Lb + Lrv − Lr.

The idea is that for an exact material representation the computed radiance for real objects
Lr is equal to the captured image from the camera Lb. Note that the masked background Lb only
contains values for visible real objects because the differential rendering effect is just applied
to real objects. On the other hand, virtual objects directly use the computed radiance from the
buffer Lrv for the final output image, hence the background is masked out for virtual objects.
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2.4.4 Light Path Notation

The light path notation from Heckbert [14] is a formal expression that classifies the way of a
photon from the light source over different surfaces to the observer. This notation is helpful to
analyze the light distribution in a scene, to describe the potential of a light simulation, and to
compare different rendering methods.

In general, the light path notation contains symbols for the light, the eye, and the interacting
surface types. Quantifiers from the regular expression concept extends the light path notation and
simplify its usage. Table 2.2 summarizes the symbols and quantifiers of the light path notation
that we use in this thesis.

Nr Symbol Description

1 L Represents the light source
2 E Represents the eye point or the observer
3 D Classifies a diffuse surface interaction
4 S Classifies a specular surface interaction, e.g. a reflective or refractive surface
5 * Arbitrary number of surface interactions

Table 2.2: Symbols occurring in the light path notation.

A light path expression begins with the symbol L for the light source and ends with the
symbolE for the eye point. Moreover, the symbolsD and S are appended to the path expression
for each surface interaction (i.e. a light bounce on a diffuse or specular surface). For example
the light path LDE describes a direct illuminated diffuse surface, whereas the light path LDDE
contains a light bounce on a diffuse surface, as described before with the virtual point light in
Section 2.4.2.

2.4.5 Differential Instant Radiosity

The rendering subsystem builds upon differential instant radiosity from Knecht et al. [22]. As
the name implies, this method combines differential rendering and instant radiosity to simulate
the light distribution in a mixed-reality framework. It produces convincing results that simulates
direct lighting on a diffuse surface (LDE) and indirect illumination between diffuse surfaces
(LDDE), possibly with multiple light bounces (LDD∗E) either on real or virtual objects. Fig-
ure 2.9a illustrates these different cases with a spotlight source.

The framework supports several types of light sources. An environment light source imi-
tates the real ambient light. It is approximated with a set of virtual point light (VPL) sources
that depend on the real lighting conditions in the mixed-reality scene, see Figure 2.9b. This ap-
proximation utilizes the hemispherical environment map captured from the fish-eye camera. The
algorithm identifies the brightest areas on this image and uses importance sampling to place the
light sources onto a hemisphere. Remember that the fish-eye camera captures the surrounding
scene once per frame, so the VPLs are continuously repositioned according to the influence of
the real light.
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Figure 2.9: Possible light paths with differential instant radiosity. In Figure (a), the first path
LDE shows a direct illumination from a spotlight source. The second path LDDE is an indi-
rect illumination between diffuse surfaces. The third path LDDDE results from multiple light
bounces on diffuse surfaces. Figure (b) shows that the real ambient light is approximated with a
set of virtual point lights, which are located on a hemisphere.

The spotlight, which can be real or virtual, is a primary light source in the rendering subsys-
tem. This means that it is able to directly illuminate a diffuse surface on the one hand. On the
other hand, it is also possible to place VPLs on the illuminated surface to simulate the indirect
illumination. Spotlights use the aforementioned reflective shadow map algorithm for the place-
ment of the VPLs. Furthermore, a special type of primary light source also supports multiple
light bounces, in which an emitted VPL distributes an associated set of VPLs in turn, illustrated
with light path three in Figure 2.9a. Consider that all VPLs uses imperfect shadow maps for the
occlusion test.

Compared to the original differential rendering algorithm, differential instant radiosity ren-
ders the scene only once to determine the two differential radiance buffers Lr and Lrv. All
occurring light paths are pre-identified. Every component in the path, like the light source, the
VPL, or the surface, has a real or virtual flag. These flags are evaluated during the radiance
computation and determine the contribution to the buffers Lr and Lrv. The buffer Lr is only
modified when all components in the path are real.

All components in the light path are marked as real or virtual, except the eye point as il-
lustrated in Figure 2.10. For instance, the computed radiance from the first path LvDRE only
affects the buffer Lrv because the real surfaceDr is illuminated by a virtual light source Lv. The
same holds for the second path that contributes to Lrv. Note that the virtual surface Dv invali-
dates the visible point p′ in the camera image. Hence, this area is masked out in the background
image Lb, i.e. the differential rendering effect is just applied to real objects. In Figure 2.10b,
path three LrDrE contributes to both buffers Lr and Lrv, thus these two parts cancel out and
the captured value from Lb remains. Consider that only real shadow blockers affect the radiance
computation. Hence, differential instant radiosity ignores the virtual shadow blocker Dv in the
radiance computation (path four).

Taken together, differential instant radiosity computes the radiance from all primary light
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Figure 2.10: Concept of differential instant radiosity. The first and second path only affects the
buffer Lrv. The third path contributes to both buffers Lr and Lrv. Only real shadow blockers
affect the real part, see path four.

sources and all VPLs. Note that temporal coherence reduces the flickering from the limited
amount of VPLs. Furthermore, all radiance computations happen in high dynamic range, so a
tone mapper brings the buffers Lr and Lrv into low dynamic range before it adds their difference
to the masked background Lb. Table 2.3 summarizes the possible light paths that are simulated
with differential instant radiostiy.

Nr Path Description

1 LDE Direct illumination from a light source.
2 LDDE Indirect illumination of a diffuse surface.
3 LDD*E Indirect illumination of diffuse surface with multiple bounces.

Table 2.3: Possible light paths with differential instant radiostiy
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CHAPTER 3
Related Work

The following part discusses several techniques that are able to simulate reflections, refractions
and caustics in real-time. Moreover, this chapter presents other mixed-reality systems that inte-
grated reflective and refractive objects. We compare them with our approach and list the main
differences.

3.1 Reflection

Ray tracing [1] is a powerful algorithm that is able to find a solution for the rendering equation.
Apart from the fact that it is a global illumination approach, its strengths are emerging at a scene
with many reflective objects. The principle of the algorithm is easy to understand. However, it
is difficult to implement this technique in a fast way. The following section presents alternative
methods that approximate the reflections in image space but run at real-time frame rates.

Planar Reflections

One of the most elementary reflection method is on a planar surface [25], like a flat mirror. Planar
reflections are ideal reflections and underly the law of reflection, see Section 2.2.1. Another point
to observe, the surface normal is identical for every incident ray. Hence, following the incident
ray is sufficient to approximate a planar reflection. Reflecting either the view point or the objects
above the plane accomplishes this task, see Figure 3.1.

It is important that reflected objects are only rendered into the area of the mirroring surface,
marked with the symbol S. Otherwise, objects may appear at areas that do not belong to a
reflector. For example, the diffuse object D2 would wrongly reflect parts of diffuse object D1,
because it lies in the camera frustum. Former techniques exploits the stencil buffer to mark
the reflector area. Whereas, on todays GPU architecture, it is beneficial to render the reflected
objects into a texture and project it onto the reflector object.
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Figure 3.1: Planar reflection. Reflection above the planar surface S by mirroring the object D
or the camera E above the reflective plane with the normal n.

Environment Mapping

Environment mapping, introduced 1976 by Blinn and Newell [5], is able to approximate reflec-
tions on curved objects. Basically, they store the radiance of the surrounding scene in a two
dimensional map and uses computed look-up coordinates to retrieve the reflected environment
from this map.

Prominent extensions are sphere mapping and cubic environment mapping. Sphere map-
ping [1] uses a hemisphere to store the radiance values of the hole environment. For instance, a
photograph of a real metallic sphere results in a sphere map that reflects the hole environment.
Sphere maps are view dependent, which allows to compute the look-up coordinates only from
an arbitrary reflection vector. The look-up vector corresponds to the normal, as illustrated in
Figure 3.2a, where the normal n results from a vector addition of the view vector v and the
reflection vector r. For a fixed view vector v, with coordinates (0, 1, 0) it is computed as:

n =
(rx, ry + 1, rz)√
r2
x + (ry + 1)2 + r2

z

, (3.1)

where r is the normalized reflection direction. The normal n contains the look-up coordinates
(nx, nz) for the sphere map. We utilize a similar principle to determine radiance values from
the captured environment of a fish-eye camera. The image in Figure 3.2b shows the captured
environment from a fish-eye camera. Note that in this case, the picture only contains objects in
front of the camera, so it is not possible to reflect objects from behind as shown with ray r1 in
Figure 3.2a.

Cubic environment mapping, invented by Green [10] uses the six faces of a cube to store
the surrounding environment. Compared to sphere mapping, it is view independent, has a better
sampling characteristic, and is easier to generate in a renderer [1]. Figure 3.3a visualizes the
generation, where the view point Eenv is placed at the center of the reflector S. The surrounding
environment is rendered for each cube face. Finally, a three dimensional reflection vector renv
is used to retrieve the reflected radiance from the environment map EM .
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(a) Sphere mapping concept (b) Fish-eye picture

Figure 3.2: Concept of sphere mapping. Figure (a) shows that the look-up coordinate corre-
sponds to the normal n, computed as the sum of vectors v and r. The vector r1 reflects the
environment behind the sphere. Illustration after Akenine-Möller et al. [1]. Figure (b) visualizes
a hemispherical map captured with a fish-eye camera.

Reflections from classic environment mapping works well for distant objects, in which the
look-up coordinate solely depends on the direction of the reflection. Unfortunately, it is inaccu-
rate for objects near to the reflector or for flat surfaces. Figure 3.3a illustrates such a case, where
the reflected ray r1 and r2 point to the same value in the environment map, although they should
reflect a different surface. Different solutions exists to handle the limitations. The general idea
is to additionally include the position of the reflected surface into the look-up coordinate.

Eenv
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r
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(a) Cubic environment mapping

S

EM

Dr

v

E

(b) Distance impostor

Figure 3.3: Cubic environment mapping. Only the direction of the reflected ray is used to
determine the reflected surface. Figure (b) illustrates how to incorporate the ray position to find
a more accurate intersection point by marching along the reflected ray.

Bjorke [4] uses a proxy geometry for the surrounding environment. His method computes
the intersection between the reflection ray and the proxy geometry (e.g. a sphere) and modi-
fies the look-up coordinate accordingly. Usually, the surrounding scene does not match with
the proxy geometry, which results in visible artifacts, i.e. the structure of the proxy geometry
emerges in the reflection.
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The method of Szirmay-Kalos et al. [41] additionally stores the distance from the reflection
center to the reflected surface point in the environment map. This so called distance impostor is
used to iteratively compare the distance along the reflected ray with the distance in the environ-
ment map. Figure 3.3b illustrates the marching on the reflected ray r. Starting from the reflection
position, a brute force approach would step along the ray, comparing every corresponding envi-
ronment map entry until it finds an accurate intersection point. To improve this iteration, their
method finds two enclosing intersection points with a fast linear search along the ray. Finally, a
secant search computes a refined intersection location for these two points.

The work from Umenhoffer et al. [44] extends this idea and uses several environment maps
to store the surrounding scene. This allows to store surfaces that are occluded from the reference
point of the environment map, illustrated in Figure 3.4a. The different layers can be obtained
by depth peeling or by rendering a fixed number of layers. Besides the distance, these layers
also contain the normal and the material properties of the surface. Each layer is intersected with
the reflection direction and the closest intersection determines the environment map layer. De-
pending on the material properties of the surface, the algorithm returns the radiance or computes
an additional ray that is used to intersect the set of layers in turn. Hence, their technique is
able to simulate reflections and refractions with multiple bounces, including self-reflections (see
Figure 3.4b).

(a) Environment map layers (b)

Figure 3.4: Figure (a) shows the concept of layered cubic environment maps that are able to
store attributes also of occluded surfaces. Figure (b) shows a self-reflection. Images courtesy of
Umenhoffer et al. [44]

The two aforementioned environment mapping method runs both at real-time frame rates.
However, there are difficulties to determine the correct step size along the ray, which may result
in artifacts.

Reflective Impostors

Instead of environment maps, Popesco et al. [35] uses impostors to handle reflections at real-time
frame rates. An impostor is a rectangle with a two dimensional texture that contains the rendered
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geometry of an object. This simplification is used for the reflection computation, instead of the
original geometry. Figure 3.5a illustrates the principle of impostor reflections.

Every reflective object has a set of impostors. Each element in this set represents an object
that should appear in the reflection. Changing the orientation or the position of the object, or the
position of the reflector invalidates the impostor. In such cases, the impostor is newly created.

SDimp Dimp

Dimp

E

(a) (b)

Figure 3.5: Figure (a) illustrates impostor reflections. The impostor set of the reflective teapot
S contains three impostors. Each is intersected with the reflection ray, instead of the original
geometry, and the closest distance specifies the intersection point. Figure (b) shows an example
of multiple reflections with impostors, image courtesy of Popescu et al. [35]

To determine the reflected radiance, the algorithm iterates over all impostors in the corre-
sponding set and intersects each with the reflection vector. The nearest intersection point iden-
tifies the radiance of the reflected surface. Even higher order reflections are possible but that
would require to treat an impostor as reflective, see Figure 3.5b. Moreover, their work extends
the simple billboard impostors with depth information. They intersect the reflection ray with the
depth map from the impostor to produce higher quality reflections.

3.2 Refraction

Image-space refraction methods approximate the interaction of light with translucent objects.
More specifically, they apply the law of refraction, see Section 2.2.2, to the view ray, which has
the same effect. The direction of the incident vector changes on every interaction with a surface
boundary, i.e. on entry and exit points.

Single refractions compute the bending only once, at the entry point. The resulting refracted
direction can be used to look-up the radiance from an environment map, or with any other
method from Section 3.1. Single refractions are useful for relatively thin objects, for instance a
glass window.

Cubic Distance Impostors

Usually, general shapes of translucent objects need more effort. The aforementioned distance
impostor technique from Szimary-Kalos et al. [41] is also capable to simulate multiple refrac-
tions. In place of the surrounding scene, the distance impostor stores the depth and normal of
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the refracting object, e.g. the teapot as seen from inside. Moreover, this time the intersection
algorithm uses the refraction operation instead of the reflection. To compute the refraction,
the algorithm starts identical as in the single case but all successive surface interactions use
the distance impostor technique to approximate the refraction. Distance impostors can be pre-
computed for static geometry. Their approach works well for convex shapes, where most points
are visible from the object-center.

Refractions on two Surface Interfaces

The human visual system is tolerant to refraction approximations. For this reason it is acceptable
to limit the refraction computation to the entry and exit point. The technique from Wyman [46]
computes the refraction direction from two surface interactions.

The algorithm uses two passes. The first pass draws the back-faces of the refractive object
from the camera position and stores the depth and the normal in a texture. The subsequent
pass draws the front faces and computes the refraction direction for the first surface intersection.
Without ray tracing, it is tricky to determine the location of the second surface intersection.
From Figure 3.6a we observe that point p2 lies on the ray p1 + t · rt, where t is the ray parameter
to estimate. Therefore, Wyman estimates t with the distance between the front and back-faces
dv, which is computed with the stored depth values from the first pass. This gives an adequate
approximation for convex shapes and a low index of refraction ratio. For higher ratios, the
refracted ray rt tends into the direction of the inverted normal n1. For this reason, Wyman pre-
computes the distance to the back-face dn for every vertex. Interpolating between dv and dn
gives a preciser estimate for ray parameter t:

t =
θt
θi
dv + (1− θt

θi
)dn, (3.2)

where θi is the incident angle and θt the refraction angle. The normal on the second surface is
determined from the normal buffer of the first pass by generating projective texture coordinates
from the second surface location. Finally, they retrieve the radiance from an environment map
with the computed refraction direction. Figure 3.6b illustrates the different texture buffers.

In a follow up, Wyman [47] proposes an extension to refract nearby geometry. The ex-
tended algorithm draws the objects behind the refractive object in an additional pass into a
background texture. This texture is mapped onto a plane that acts as proxy geometry for the
background scene. Instead of the environment map, the refracted ray intersects this background
plane. Storing also the depth in the background texture allows an iterative refinement of the final
intersection position, resulting in a more accurate refraction. Note that the reflected or refracted
position must lie inside the field of view, otherwise the background texture contains no valid
color information.

Pre-computing the distance to the back-faces dn is only feasible for static geometry. In their
work, Oliveira and Brauwers [30] present a method that handles also deformable objects. This
approach performs a ray-intersection with a depth texture to find the position on the second
surface. The first pass stores the depth and normal of the back-faces in a texture, identical to
the previous method of Wyman. In a subsequent pass, minimum and maximum depth values are
extracted from this depth texture, which limit the search interval for the ray-intersection. The
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Figure 3.6: Figure (a) illustrates a refraction on two surface interfaces. The second surface point
p2 lies on the refraction ray rt and is estimated with a weighted combination of the distances dv
and dn. The images in Figure (b) shows the distance between the front and back surface, the
normals at the back-faces and the final refraction. Images courtesy of Wyman [46].

third pass computes the refraction ray for the first surface. Moreover, the algorithm marches
along the refraction ray and checks for an intersection with the depth texture. Essentially, the
depth of the projected ray position is compared with the corresponding value in the depth texture.
This resulting position is used for the second refraction.

3.3 Caustic

Reflective and refractive objects scatter the incoming light, resulting in areas with a higher con-
centration of photon energy. This light focusing is known as a caustic. Figure 3.7 illustrates a
caustic on a diffuse surface from a refractive sphere.
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S

Figure 3.7: A caustic is a light focusing due to the scattering on reflective or refractive objects.

Backward Ray-Tracing

The two fundamental principles to simulate caustics arise from ray tracing. In his work, Arvo [3]
reverts the ray tracing process, starting the rays from the light source, instead of the camera. In a
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pre-processing step, a light map gathers the incoming light for every surface in texture space. A
classic ray tracing pass, from the camera, additionally uses these maps to simulate the caustics.

Photon Mapping

Jensen [17] presents another technique, called photon mapping to simulate the effect of caustics.
It is a full global illumination method, able to approximate a solution for the rendering equation.
This method shoots photons from the light source, traces them through the scene and finally
stores the last hit position on a diffuse surface in a spatial data structure, i.e. photon map.
Jensen generates two different types of photon maps: First, a global photon map for the general
light distribution, to speed up the subsequent ray tracing pass and second, a photon map with a
higher resolution for every object that is able to create a caustic. For caustic photon maps, the
method shoots the photons directly towards the caustic caster, resulting in a dense distribution
of photons. Caustics are simulated directly with this photon map. The algorithm queries the
photon map (remind, it is a spatial data structure) and collects the arriving flux of the N nearest
neighbors within a sphere of radius r. The total flux is weighted by the occupied area of the
circle with radius r. This filtered flux is used to illuminate the diffuse surface.

Caustics in Image Space

Image-space methods borrow ideas from both approaches to simulate caustics at real-time frame
rates. Essentially, they render the caustic caster from the location of the light source and uses an
image-space approximation of ray tracing (as discussed in Sections 3.1 and 3.2) to identify the
final diffuse surface. This information is stored in a texture, representing the photon map. This
photon texture is later used to visualize the caustic patterns.

Szimary-Kalos et al. [41] uses distance impostors to locate the diffuse surface position. Their
method stores the arriving photon power, the texture identification, and texture coordinates of
the surface in a photon texture. In a subsequent pass, they utilize this map to render point splats,
which are modified by the BRDF, to visualize the caustics. The filtering of the arriving flux
depends on the splat size, which must be manually adjusted.

Each texel in the photon map corresponds to an emitted photon. Functionally, this texture
imitates the spatial data structure of the photon mapping algorithm. Consider that photon energy
spreads out and also influences the neighboring area. Therefore, Jensen filters the photon energy
with a nearest neighbor search. However, such queries in a spatial data structure do not fit well
on todays GPU architectures, due to their random access nature.

Wyman and Davis [49] present a novel method to imitate this filtering, which gathers the
photon energy in a separate caustic buffer. They create the photon map similar to the aforemen-
tioned technique. Instead of a direct visualization, the algorithm splats the photons in a caustic
buffer, which can happen in light or screen space. A subsequent pass filters this buffer by accu-
mulating the light contribution of neighboring texels and weights it by the occupied area. This
follows from the idea that neighboring texels in the caustic buffer represents coherent areas on
the hit diffuse surface. Finally, this caustic buffer modulates the color of the diffuse surface to
simulate the caustic pattern.
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Alternatively, the approach from Umenhoffer et al. [43] splats the photons into an environ-
ment map (i.e. a caustic buffer) that acts as a further point light source, see Figure 3.8. As before,
it draws the caustic caster from the view of the light and approximates the final hit position on
the diffuse surface with a layered environment map [44]. The resulting photon map contains the
arriving flux and the direction to the center of the caustic buffer. A subsequent pass, generates
triangles from the photon buffer and draws them into the caustic buffer. This buffer, which is an
environment map, stores the accumulated irradiance and the distance with respect to its center.
In a last step, the caustic buffer acts as an additional point light source that creates the caustic
effect. Note, that this illumination only affects surfaces with a similar distance than the one
stored in the caustic buffer. Splatting into the caustic buffer imitates the filtering process, so this
technique omits the manual adaption of the splat size.

(a) Caustic triangle (b) Photon hits (c) Caustics

Figure 3.8: Caustics triangles are generated from the photon hits and rendered into an envi-
ronment map. This map acts as an additional light source and visualizes the caustics. Images
courtesy of Umenhoffer et al. [43].

3.4 Mixed Reality

As already mentioned, reflective and refractive light effects are difficult to integrate in a mixed-
reality environment. This section provides an overview of previous work on this topic and
elaborates the differences to our method.

One of the first methods that incorporate reflective and refractive objects into a mixed-reality
scene comes from State et al. [40]. In their approach, they place a real metallic or glass sphere
into the scene. They extract the areas occupied by this object from the camera image and remap
them onto a reflective or refractive object. Originally, this is used to show the potential of their
tracking algorithm but it also produces convincing reflections on virtual objects. However, this
method is only able to reflect the real environment, see Figure 3.9a.

In his fundamental work about differential rendering, Debevec [8] augments the camera
image with reflective and refractive objects, see Figure 3.9b. As opposed to our method, the
differential rendering effect is ignored for these objects. For example, the differential effect
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(a) (b)

Figure 3.9: In Figure (a), a real metallic sphere is placed into the scene, extracted from the
camera image and mapped onto the virtual teapot to simulate the reflection, Image from a pre-
sentation video of State et al. [40]. Figure (b) shows a mixed-reality scene with reflective and
refractive objects from Debevec [8].

is missing on a reflected real surface, so only an approximated representation (i.e. Lrv part)
appears in the reflection.

The approach of Grosch [12] does not have this limitation, which combines photon map-
ping and differential rendering to include virtual objects in a photograph. It emits photons onto
virtual objects and stores their energy on the final hit position. The resulting differential pho-
ton map also contains negative values to mark occluded areas. During the final composition,
rays through each pixel of the photograph identify the objects as real or virtual. Color values
for real and diffuse surfaces are altered according to the differential photon map entry. For re-
flective and refractive virtual objects an additional ray-tracing pass determines the final diffuse
surface intersection. By projecting this point back onto the photograph, it is possible to apply
the differential rendering effect also to reflective and refractive objects. This technique produces
convincing results for reflections and refractions from virtual objects, including caustics (Fig-
ure 3.10a). However, the involved techniques restrict the approach to off-line rendering and is
currently not practicable in an interactive mixed-reality scenario.

A mixed-reality scenario with reflective and refractive objects is presented in the master
thesis of Pirk [33]. His method uses a static environment map to approximate reflections. How-
ever, classic environment map reflections work only well for distant objects. Generally, such
an approximation is obvious for objects near to the reflector, which is a common scenario in a
mixed-reality environment. Refractions work either with a static environment map or with the
captured camera image. The refraction ray is computed just for the first surface intersection, i.e.
when the ray enters the object. Except for the static limitation, the method provides nice results
for simple scenes and runs at real-time frame rates, see Figure 3.10b.

The work of Pessoa et al. [31] also builds upon environment maps to include reflective and
refractive objects into a mixed-reality system (Figure 3.11a). They use a static environment map,
built from photographs of the application area, to define the entire surrounding scene. Further,
manually placed light sources imitate the real light conditions. Every virtual reflective object
needs another environment map, which is created once per frame. Subsequent filtering of this
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(a) (b)

Figure 3.10: Figure (a) shows an image created with differential photon mapping from
Grosch [12] that is able to simulate caustics. Image courtesy of Grosch [12]. Figure (b) shows
a refractive dragon in mixed-reality scene generated with the framework of Pirk [33]. Image
courtesy of Pirk [33].

map enables indirect light or glossy reflection effects. Virtual refractive objects use the captured
camera image directly, instead of an environment map, to determine the refraction contribution.
They combine these techniques with a spatial BRDF, Fresnel reflectance and differential render-
ing to simulate various light effects. Compared to our approach, a few differences emerge. We
capture the surrounding scene dynamically with a fish-eye camera and determine the real light
condition automatically from the resulting environment map. The framework from Pessoa et al.
handles reflections and refractions only from virtual objects and the differential rendering effect
is missing. Moreover, refracted objects have no transmittance color and caustics are not con-
sidered. Apart from that our method currently simulates only ideal reflections and refractions
whereas the method of Pessoa et al. is also able to approximate glossy reflections. Their method
produces convincing results for various lighting situations at interactive frame rates.

(a) (b)

Figure 3.11: Figure (a) shows a mixed-reality scene with a reflective teapot, image courtesy of
Pessoa et al. [31]. In Figure (b), the virtual object realistically refracts the surrounding objects
and casts a caustic onto the real desk, image courtesy of Kán and Kaufmann [19]
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In a recent publication, Kán and Kaufmann [19] describe a rendering system that is based
upon GPU ray-tracing to simulate the light distribution in a mixed-reality environment at inter-
active frame rates. Similar to Knecht et al. [22], they compute the differential rendering solution
in only one pass. For this, Kán and Kaufmann proposes an adapted ray-tracing process that
computes the radiance with four different types of rays, i.e. a separate light and shadow ray for
the Lrv and Lr buffer. Moreover, this method creates a photon map to simulate caustics. Final
diffuse surface hits of light photons are identified on the GPU and later processed on the CPU to
build the spatial data structure for photon mapping. This photon map is then additionally used
in the aforementioned ray-tracing process. Their technique simulates various lighting effects in
a physical correct and realistic manner, including multiple reflections, refractions and caustics.
Compared to our approach, the biggest difference is rendering speed. Instead of ray-tracing we
use an image-space approximation for the intersection computation. Of course, this approxima-
tion is not as accurate but it produces convincing results at significantly higher frame-rates. Apart
from that, their approach does not simulate indirect illumination from diffuse surfaces. Whereas
in our method, indirect illumination also appears in reflections and refractions. Nonetheless,
the method of Kán and Kaufmann creates stunning light effects from reflective and refractive
objects that realistically merge with the real environment, see Figure 3.11b.
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CHAPTER 4
Reflections and Refractions with

Differential Rendering

The light simulation in the RESHADE framework builds upon differential instant radiosity and
is able to realistically simulate the light distribution in a mixed-reality environment. This method
uses differential rendering, the fundamental technique to integrate virtual objects into a captured
image from a camera.

Differential rendering works well for diffuse objects, however, it is challenging to apply this
technique also to reflective or refractive objects. The reason is that the radiance of a visible point
on such an object now comes from a reflected or refracted surface. Therefore, it is important for
a plausible augmentation to apply the differential rendering effect also to reflective and refractive
objects, so that they seamlessly merge with a real scene (like in Figure 4.1).

Figure 4.1: Reflections and refractions in a mixed reality environment. In Figure (a), the differ-
ential rendering effect is also applied to the real desk in the reflection of the virtual teapot. In
Figure 4.1b, the virtual Stanford bunny refracts real and virtual objects.

Two questions arise: how do we compute the radiance for a reflected or refracted surface and
how do we combine the computed radiance values with the captured camera image. This chapter
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describes the radiance computation for reflective and refractive objects and further explains the
concept behind their integration in a mixed reality environment with differential rendering.

4.1 Computing the Radiance of Reflected and Refracted Light
Paths

Recall that radiance has an important property in a setting without participating media, as in our
mixed-reality scenario: The amount of radiance that leaves a surface in a specific direction is
equal to the amount of radiance that arrives at a surface from this direction (see Section 2.1).
According to this invariance of radiance along a ray, our lighting simulation simply computes
the radiance for every visible reflected and refracted surface point.

Initially, our method identifies the two visible surfaces from the reflected and the refracted
view direction (prefl and prefr in Figure 4.2). This intersection computation is based on an
image-space approximation, which is presented later in Chapter 6. Hence, for the following
section, we assume that this intersection data are already available.

The incoming radiance is collected from all primary light sources and from all virtual point
lights, which simulate the indirect illumination. This computation evaluates the BRDF at the
reflected and refracted surface points prefl and prefr with all light sources in the scene. All
input parameters are known from the intersection approximation. These include the material
attributes, the surface normal and the two directions, which are the incoming direction from the
light source and the outgoing direction along the reflection or refraction ray. Moreover, at this
stage, we test for an occlusion between the surface point and the corresponding light source to
handle shadows.
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Figure 4.2: Illustrates the radiance computation for the reflected and refracted surface points
prefl and respectively prefr. The incoming radiance Ls towards the observer E is a linear
combination between Lrefl and Lrefr, weighted by the reflectance characteristics of object S.

Figure 4.2 outlines this gathering. First, the view ray hits the refractive teapot S and is split
into a reflective and refractive part. The intersection approximation traces these two rays and
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finds the reflected and refracted diffuse surface points prefl and prefr. Afterwards, the light-
ing stage evaluates the BRDF with every possible light source and accumulates the incoming
radiance.

As a result, we get two different radiance solutions, one for the reflected surface Lrefl and
one for the refracted surface Lrefr. Note that this exitant radiance is along the reversed reflected
and refracted ray direction, indicated by the arrows in Figure 4.2. Both originate at the inter-
section point between the view ray and the reflective and refractive object. Consequently, the
incoming radiance Ls for an observer along its view direction is simply a linear combination of
Lrefl and Lrefr. The coefficients in this linear combination depend on the reflection and refrac-
tion characteristics of the visible object. Their determination follows in the next section. Note
that the following example images are already presented in a mixed-reality context, although
this integration into a real scene is discussed later in Section 4.2.

4.1.1 Fresnel Equations

Ideal specular reflections perfectly mirror the incoming radiance towards the reflected ray direc-
tion. The corresponding BRDF consists of a Dirac delta function δ(θi − θo), which evaluates to
zero for every possible direction except the reflection direction [9]. The angles θi and θo are be-
tween the surface normal and the incoming or outgoing ray direction, compare with Figure 2.5.
However, this BRDF model only applies to objects that entirely reflect or refract the incoming
radiance.

A more realistic model should involve the Fresnel equations, which are based on physical
assumptions. The Fresnel equations define the amount of reflected and refracted light from
a perfectly flat surface, flat in terms of the geometric optics light model. For a specified set of
material attributes, this amount only depends on the incident angle θi. We use the approximation
from Schlick [38] to evaluate the complex Fresnel equations, which is a de-facto standard in real-
time rendering. Schlick observes that for grazing angles (θi goes towards 90◦) the reflectance
quickly converges to one. This results in the following equation

fr(θi) = f⊥ + (1− f⊥)(1− θi)5, (4.1)

where f⊥ is the Fresnel factor at normal incidence. Due to the conservation of energy, the
refracted part is 1 − fr(θi). Thus, radiance is either reflected or refracted but no portion gets
absorbed.

We manually specify a Fresnel factor f⊥ as a material attribute for each reflected and re-
fracted object. Figure 4.3 shows the influence of the Fresnel factor f⊥ on the reflected radiance.
At grazing angles, noticeable on the border of the teapot in the right image, the reflection appears
brighter. Alternatively, we allow to directly compute this value from the refraction index:

f⊥ =
(η − 1)2 + k2

(η + 1)2 + k2
, (4.2)

where η is the refraction index and k is the extinction coefficient, required for metallic ob-
jects [44]. Note that η is a ratio between the refraction indexes of the two involved materials.
However, in our scenario the second surface is always air, which has a refraction index of one,
so η is simply the refraction index of the object.
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(a) (b)

Figure 4.3: Image (a) shows an ideal reflection. Image (b) shows the influence of the Fresnel
equation on the reflected radiance.

4.1.2 Transmittance

Refractive objects have another interesting characteristic. They are translucent, so a certain
amount of light is absorbed when it goes through the object. A color filter imitates this absorption
process for colored objects. This means that the refracted radiance Lrefr is multiplied with a
color filter to simulate objects with a colored translucent material.

(a) (b)

Figure 4.4: A refractive object with a translucent material color. Image (a) uses a color filter with
a default thickness. Whereas the image (b) shows an absorption that varies with the thickness of
the object.

Our approach uses a color filter tr that varies with the thickness of the object as defined by
the Beer-Lambert law [1]:

tr = e−α
′cd, (4.3)

where α′ is the absorption coefficient, c is the concentration and d is the thickness of the object,
i.e. the distance the light travels through the object. The coefficient α′ is the minimal absorption

34



at a specified thickness and computed as:

α′ =
− log(trgb)

dmax
, (4.4)

where trgb is the translucent color weighted by the thickness dmax. In our system, a refractive
material stores the required parameters for the computation of the color filter tr. Note that the
thickness d varies with the view orientation and is computed by the intersection approximation.
On the other hand, our system also supports a filter with a default depth, which results in an
equal absorption of light, see Figure 4.4 for a comparison.

4.1.3 Multiple Reflections and Refractions

Up to this point, the described radiance computation only handles one reflective or refractive
object. To express it in light bounces, this means that the light hits a reflective or refractive object
once, changes its direction and arrives at a diffuse surface, i.e. the paths LSDE or LSSDE.
In case of multiple reflective or refractive objects in a scene, the light bounces possibly multiple
times before it finally hits a diffuse surface. Figure 4.5a illustrates multiple bounces on reflective
and refractive objects.
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(a) (b)

Figure 4.5: Multiple bounces of the light on reflective and refractive objects. The radiance is
attenuated at every surface interaction, see the reflected sphere in the image (b).

The outgoing radiance of the diffuse surface is attenuated with every bounce on a reflective
or refractive object. Therefore, our system computes the Fresnel factor at every surface interac-
tion from the incoming and outgoing radiance direction, whereas the intersection approximation
provides the surface normal and material attributes. All these factors are multiplied together and
result in a Fresnel factor fr for the hole path:

fr = fr1 · fr2 · · · · · frn , (4.5)

where fri are the Fresnel factors at each light bounce. Figure 4.5b visualizes this attenuation,
where the reflective sphere appears darker on the reflective teapot.
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The same principle holds for second-order rays that interact with colored refractive objects.
Our approach stores the absorption color filter tr for the hole path:

tr = tr1 · tr2 · · · · · trn , (4.6)

where tri is the color filter at each light bounce on a refractive object. Contrary to a single
reflection, the reflected radiance Lrefl may also be affected by an absorption color filter, which
happens when the reflected view ray hits a colored refractive object. Accordingly, our method
stores a separate transmittance color filter for the reflective and refractive radiance part.

Unfortunately, this approach has some limitations when a second-order ray hits a refractive
object. Ideally, this ray is split into a reflective and refractive part and traced independently.
However, our intersection approximation only handles one path for the reflected view direction
and one path for the refracted view direction, i.e. it stores the intersection data of only one hit
diffuse surface per path. Under these circumstances, our approach is to exclusively follow the
refracted ray direction when a higher order bounce happens on a refractive object. We observed
that this approximation works reasonably well in most scenarios.

4.1.4 Composition of the Radiance Equation

We now return to the composition of the incoming radiance along the view direction. The
incoming radiance Ls is a linear combination of the outgoing radiance from the reflected and
refracted diffuse surface:

Ls = frrefl · trrefl · Lrefl + frrefr · trrefr · Lrefr, (4.7)

where Lrefl and Lrefr are the outgoing radiances of the reflected and refracted surfaces. The
weighting coefficients of the linear combination depend on the Fresnel factors (frrefl , frrefr ) and
the transmittance color filters (trrefl , trrefr ) along the path of the reflected and refracted view
direction. Figure 4.6 shows the outgoing radiance from a reflective teapot for two illumination
scenarios. Note the color bleeding on the reflected sphere in the teapot (Figure 4.6b).

Furthermore, we use an additional parameter to simulate slightly reflective materials that
incorporates the outgoing diffuse radiance of the reflective or refractive object. The diffuse
radiance part Ld is computed by the differential instant radiosity method as described in the
previous Section 2.4. To enhance flexibility, reflective and refractive objects also store diffuse
material attributes. A reflectivity parameter controls the additional amount of diffuse radiance:

L = (1− kr) · Ld + kr · Ls, (4.8)

where kr is the reflectance parameter, Ld is the diffuse radiance, and Ls is the radiance from the
reflection and refraction. To hold the law of the conservation of energy, the parameter kr always
is less or equal to one. Generally, this parameter is explicitly set to one or to zero, which is a
diffuse surface in the first case or an ideal reflective or refractive surface in the second case. The
teapot in Figure 4.6a has a reflective parameter kr slightly smaller than one to simulate the direct
illumination from the spotlight, see the handle of the teapot.

Table 4.1 summarizes the possible light paths that are handled by our radiance computation.
Reflective and refractive objects react to direct and indirect illumination, taking into account
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(a) (b)

Figure 4.6: Images show the outgoing radiance for a reflective teapot from a direct and indirect
illumination. The bright handle of the teapot (Image (a)) results from a reflectivity parameter
slightly smaller than one. Note the color bleeding on the reflected sphere in the teapot (Im-
age (b)).

multiple bounces on reflective or refractive objects. Note that these multiple bounces are listed
explicitly with the term S′∗ in the light path because they are subjected to some limitations. We
already mentioned one limitation that restricts the radiance computation to only one diffuse sur-
face per ray path. The other limitations are related to the image-space intersection approximation
and are discussed further in Chapter 6.

Nr Path Description

1 LSE Direct illumination from a light source.
2 LDS’*SE Direct illumination of diffuse surfaces appearing in reflections.
3 LDS’*SSE Direct illumination of diffuse surfaces appearing in refractions.
4 LDDS’*SE Indirect illumination of diffuse surfaces appearing in reflections.
5 LDDS’*SSE Indirect illumination of diffuse surfaces appearing in refractions.

Table 4.1: Possible light paths in the radiance computation. The term S′∗ in the light path
describes multiple light bounces.

We have seen how to compute the incoming radiance for reflective and refractive objects.
Most of the presented example images already show reflective or refractive objects in the context
of a mixed-reality environment. The following section describes the integration of this radiance
computation in a scenario that requires a plausible simulation of the light interaction between
real and virtual objects.
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4.2 Differential Rendering

Differential rendering is essential for a smooth integration of virtual objects into a mixed-reality
environment but difficult to apply for reflective and refractive objects. A simple approach would
be to ignore the differential rendering technique for these kind of objects as done by Debevec [8].
However, the estimated material becomes immediately noticeable to an observer and reduces
the visual quality of the augmented scene. Consequently, it is preferable to use differential
rendering also for reflective and refractive objects, which improves the overall impression of the
mixed-reality environment, compare the appearance of the desk in the reflection of the teapot in
Figure 4.7. The following section explains the application of differential rendering for reflective
and refractive objects, which includes the radiance contribution to the real Lr and real-virtual
buffer Lrv, and the handling of the buffer Lb from the captured camera image.

(a) without differential rendering (b) with differential rendering

Figure 4.7: Figure (a) shows a reflective teapot, rendered without differential rendering. Hence,
the estimated material attributes of the real desk are quickly noticeable in the reflection of the
teapot. Otherwise, Figure (b) shows that differential rendering improves the overall impression
of this scene.

4.2.1 Real and Real-Virtual Radiance Buffer

Linking the incoming radiance from the reflected and the refracted surface with differential
rendering requires an identification of all contributing components, whether they are real or
virtual. As in differential instant radiosity, we analyze the light path for every visible surface.
Depending on the real-virtual flags of the included components in the light path, the outgoing
radiance from a surface contributes either to both buffers Lr and Lrv or solely to the buffer Lrv.

As mentioned before, the radiance of a visible point on a reflective or refractive object refers
to the outgoing radiance from the corresponding reflected and refracted surfaces. This means
that the real-virtual flag of the reflective or refractive object has no influence on the chosen
differential buffer, only the real-virtual flag of the reflected or refracted surface is crucial.

Consider the reflective virtual teapot in Figure 4.8 that shows the two differential rendering
buffers Lrv and Lr from Figure 4.7. The virtual teapot reflects the real desk that is illuminated
by the real VPLs from the environment. Therefore, the outgoing radiance contributes to both
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buffers. Otherwise, the illumination of the virtual spotlight, the radiance from the virtual bunny,
and the radiance from the virtual sphere only affect the buffer Lrv. Note that the area on the
reflective teapot refers to the outgoing radiance of these reflected surfaces.

(a) Lrv (b) Lr

Figure 4.8: This images depicts the two radiance buffers Lrv and Lr of the differential rendering
method for the final image Lf in Figure 4.7. The area on the reflective teapot corresponds to the
outgoing radiance of the reflected surfaces, which is the bunny, the desk, and the sphere for Lrv
and just the desk for Lr.

This means that we need to classify the involved components for every visible reflected and
refracted surface. Note that this analysis already includes multiple bounces on reflective and
refractive objects that occur between the observer and the first visible diffuse surface, i.e. the
reflected or refracted surface. Moreover, it is identical for a reflected and a refracted surface.
The outgoing radiance contribution from a reflected surface to the differential rendering buffer
depends on the components in the path from the light source to the reflected surface. The other
part of the light path, which goes from the reflected surface to the observer, has no influence
on the decision about the chosen buffer. Even if this portion contains multiple bounces on
reflective objects, no matter if on real or virtual objects, important is only the real-virtual flag
of the reflected point on a diffuse surface and the corresponding path of its incoming radiance.
Accordingly, the outgoing radiance affects the buffer Lrv when the path from the light source
to the reflected object contains a virtual component. Otherwise, if all components are real, the
radiance contributes to both buffers Lr and Lrv.

Figure 4.9a shows two different light paths, in which the first is LvDvSvE and the second
is LvDvDrSvE. Both paths contribute only to the buffer Lrv, because the first part of the path
(dashed line) contains virtual components. The same applies to the third path LrDrDvSvE in
Figure 4.9b: although the light source is real, the radiance only goes to the buffer Lrv because
the last two bounces are on the virtual box and the virtual teapot. On the other hand, the fourth
path LrDrSvE affects both buffers Lr and Lrv, because the reflected surface interacts only with
real components. During the radiance computation, our method tests for an occlusion between
the surface point and the light source, illustrated by the dotted line in the left image. Only real
shadow casters have an influence on the Lr buffer, as described by Knecht et al. [22].

To incorporate differential rendering with the radiance computation, we define a helper func-
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Figure 4.9: The labeling in the light path helps to determine the corresponding differential ren-
dering buffer. Paths one, two, and three affect only buffer Lrv. The reflected radiance in path
four goes to both buffers Lr and Lrv.

tion r(x) that identifies a real component in a given light path:

r(x) =

{
true if x is real
false otherwise

, (4.9)

where the argument x is a light source, a virtual point light, or a point on a surface. Next, the
radiance equation that computes the incoming radiance along the view direction (defined with
Equation 4.7) directly addresses the light sources and is rewritten as:

L′s =
∑

ls ∈ lights
frrefl · trrefl · L

′
refl(ls) + frrefr · trrefr · L

′
refr(ls) (4.10)

L′refl(ls) =

{
Lrefl(ls) if r(ls) ∧ r(prefl)
0 otherwise

(4.11)

L′refr(ls) =

{
Lrefr(ls) if r(ls) ∧ r(prefr)
0 otherwise

, (4.12)

where lights is the set of all direct light sources and virtual point lights. The points prefl and
prefr represent the first visible point on a diffuse surface from the reflected or refracted view
direction. Note that the reflected or refracted ray might bounce multiple times on reflective or
refractive objects before it finally reaches a visible diffuse surface point, i.e. the reflected or
refracted surface location. Consider, the buffers with superscript account for the correct differ-
ential rendering buffer. This equation computes the incoming radiance L′s from the outgoing
radiance of a reflected and a refracted surface and accounts for the differential rendering effect.
Finally, the two differential rendering buffers are:

Lrv = (1− kr) · Ld + kr · Ls (4.13)

Lr = (1− kr) · L′d + kr · L′s, (4.14)
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where kr is the reflectivity parameter, Ld is the amount of diffuse radiance, and Ls is the incom-
ing radiance from the reflected and refracted surface. The diffuse output L′d from differential
rendering already accounts for this effect (see Chapter 2.4) and reflective or refractive objects
use the aforementioned computation of L′s.

Some parts of the differential rendering equation have not been mentioned. Virtual objects,
or in our case a virtual reflected or refracted surface, need to mask out the occupied area of the
virtual surface in the background image Lb. Only the Lrv buffer is used for them, because the
background is covered by the virtual surface and becomes invalid. Aside from that, the captured
area from the camera image of a reflective or a refractive object usually has no relation to the
corresponding area in the differential buffers, i.e. the reflected or refracted surface maps to a
different location in the camera image. Hence, this means that the buffer Lb needs a special han-
dling. The following section describes this in more detail and finally presents the composition
of the output image.

4.2.2 Composition of the Output Image

Inserting a virtual object, like the teapot in Figure 4.7, invalidates the values in the captured
camera image. Hence, the screen space color value from the buffer Lb has no relation to the
screen space color value, with the same xy-coordinates, of the differential rendering buffers Lr
or Lrv. Usually, this area is masked out for virtual diffuse objects, but it may refer to a real
surface in case of a reflective or refractive object.

The original differential rendering technique uses only the buffer Lrv in such an event, ne-
glecting the differential rendering effect for reflective objects. For instance, the real desk would
appear with the approximated radiance Lrv in the reflection of the teapot, which reduces the
overall impression of the scene (see Figure 4.7a). To improve the visual appearance, our ap-
proach also applies differential rendering to reflected and refracted real surfaces.

Therefore it is important to identify the corresponding value in the captured image of the
camera for a real reflected or a refracted surface. This requires a back-projection of these surface
positions into the camera image, similar to the method of Grosch [12]. The value at the position
of the back-projected point in the camera image adjusts the original buffer Lb. However, our
method also supports real reflective or refractive objects. In such cases, the original value in
the camera image might be appropriate when it reflects and refracts a real surface or becomes
invalid for a virtual surface.

Figure 4.10 illustrates this concept for the virtual reflective teapot. The reflected real surface
points, which are visible on the virtual teapot, are back-projected into the camera image, see
Figure 4.10a. The corresponding value adjusts the masked background Lb, so the real desk
appears on the reflective teapot, as in Figure 4.10b. Differential rendering adds the difference
between the two radiance solutions Lrv−Lr to this masked and adjusted background image Lb.
Note that gray means no difference between the computed values in Lrv and Lr in Figure 4.10c.

Three different scenarios arise for the usage of the buffer Lb. The value is masked out,
the original value remains valid, or comes from the back-projection into the camera image. To
distinguish these cases, we need to classify the components in the light path, whether they are
real or virtual. Contrary to the classification of the real and virtual radiance buffer, we now use
the second part of the light path that goes from the reflected or refracted surface to the observer.
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(a) captured camera image (b) Lb

(c) Lrv − Lr (d) Lf = Lb + Lrv − Lr

Figure 4.10: Differential rendering adds the difference Lrv − Lr to the masked background Lb.
Usually, virtual objects are masked out in the buffer Lb, except for virtual reflective or refractive
objects. These areas are adjusted with the values from the back-projection into the captured
camera image.

Figure 4.11 illustrates these cases. The first light path is LDvSrE, in which the second part
of the path (dashed line) contains a virtual object. Hence the value of Lb is masked out. The
color value of Lb is valid in the second path LDrSrE, because the real teapot reflects a real
object. On the other hand, the value of Lb in the right image needs a back-projection, because
the reflected path three LDrSvSrE contains a virtual component. Viewed in isolation, the
corresponding refracted path four LDrSrSrE would map to the original value of Lb. However,
the original value of Lb is only valid when both, the reflected and refracted path portions, contain
real components.

Let us briefly consider again the decision on the correct radiance buffer from the last section
in case of multiple bounces on reflective objects, as with light path three in Figure 4.11b. Re-
gardless if the multiple bounces occur on real or virtual reflective objects between the observer
and the visible reflected surface: only the portion from the light source to the reflected point (on
the diffuse surface Dr) is used to determine the correct differential-rendering buffer Lr or Lrv.
The Sections A.1 and A.2 in the Appendix list all possible cases and describe the derivation of
Lb, including the composition of the final output image Lf , in more detail.
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Figure 4.11: Light path classification for the back-projection. Lb is masked out for path one. Lb
remains the original value for path two. Path three and four must be considered in conjunction,
resulting in a back-projection to determine Lb.

To summarize, the original value of the camera image is valid when the reflected and re-
fracted surfaces are real and the path from the observer to these surfaces contains only real
objects. In all other cases, we need a back-projection into the camera image or need to mask the
corresponding area in the image.

Before we show the composition of Lb, we define the following four helper functions:

1. Function r(x) maps a real surface to true and a virtual to false, see Equation 4.9.

2. Function rp(x, y) evaluates the portion of the light path between two surface points x and
y. It returns true when all components, including the start and end points, are real or false
if one is virtual:

rp(x, y) =

{
true if ∀c ∈ x→ y : r(c)

false otherwise
(4.15)

3. Function Lb(x) takes a surface point, projects it into the camera space and returns the
corresponding color value from the captured camera image.

4. Function L′b(x) determines this color value only for a real surface:

L′b(x) =

{
Lb(x) if r(x)

0 otherwise
(4.16)

Unfortunately, the intersection approximation and the back-projection function are not al-
ways able to return a valid result because back-projected points could be outside of the view
frustum of the camera. However, for the following part we assume correct return values, the
missing cases are discussed further in the next two parts, see Section 4.2.3 and Section 4.2.4.
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The back-projection function is specified as:

L′bp(p, prefl, prefr) =


Lb(p) if rp(p, prefl) ∧ rp(p, prefr)

frrefl · trefl · L
′
b(prefl) +

frrefr · trefr · L
′
b(prefr)

otherwise

(4.17)

It returns the original value from the camera image, Lb(p), when all involved objects are real.
Otherwise, it returns the corresponding color value in the camera image for the back-projected
reflected, L′b(prefl), or refracted, L′b(prefr), location. Note that these two color values are atten-
uated by the Fresnel factors and the transmittance color filters.

Note that the radiance computation happens in high dynamic range, so a tone mapper brings
the two radiance parts, Lr andLrv, into low dynamic range before their difference is added to the
background Lb. Moreover, we introduce an additional scaling parameter α for the differential
part that further reduces the approximation error from the real radiance bufferLr. This parameter
α is the ratio between the background value Lb and the real radiance part Lr. Essentially, this
factor is equal to the alternate formulation from Debevec [8] that accounts for the relative error
in the differential rendering effect.

The differential rendering equation accounts for the correct background value with the fol-
lowing adaption:

Lb = (1− kr) · L′b(p) + kr · L′bp(p, prefl, prefr) (4.18)

∆L = Lrv − Lr (4.19)

Lf = Lb + L′env + α ·∆L, (4.20)

where argument p is the visible surface point on the object, either on a diffuse object or on a re-
flective or refractive object. The arguments prefl and prefr are the reflected and refracted diffuse
surface positions. Function L′bp(p, prefl, prefr) is the back-projection function for reflective and
refractive objects. Frequently, the reflection or refraction ray misses all real and virtual objects,
which is handled by the term L′env, see the next Section 4.2.3. Note that this formulation of the
differential rendering equation already accounts for diffuse objects (kr is zero) and the correct
masking of their background value.

As stated before, the back-projection function is not always able to deliver a correct color
value. Furthermore, the differential rendering equation needs to deal with missing intersection
data that is approximated with the term Lenv. The next section discusses these cases and ad-
dresses the two limitations in more detail.
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4.2.3 Missing Intersection Data

In the previous section, it was assumed that all necessary intersection data are available to com-
pute the outgoing radiance for a reflected and a refracted surface. However, not all reflected or
refracted rays intersect some geometry of a real or a virtual object. Actually, the probability that
these rays miss all objects is high, since a mixed-reality environment is only populated with a
limited amount of pre-modeled real objects. In such an event, there is no surface information to
carry out the radiance computation, see Figure 4.12a for an illustration.
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Figure 4.12: Missing intersection data are approximated by an environment map. Image (b)
shows the Lenv buffer of the rendering in Figure 4.7, note the attenuation from the Fresnel
factor.

Therefore, our method approximates the missing geometry with an environment map. This
map contains the captured environment from a real-time video feed of a fish-eye camera, updated
every frame. Similar to sphere mapping, we compute look-up coordinates from the reflected or
refracted ray and store this radiance value in a separate buffer Lenv. This radiance is attenuated
with the Fresnel factors and multiplied with the transmittance color filter. Figure 4.12b shows
the approximated radiance from the environment map for the final output image of Figure 4.7.
Also note in this image that the buffers Lr and Lrv remain unaffected in these areas of the teapot
because the computed radiance Ls is empty for the reflected and refracted surface.

Generally, only virtual reflective or refractive objects require the information from the Lenv
buffer, because the captured pixel for a real object in the camera image already maps to the
correct reflected or refracted environment value:

L′env =

{
0 if rp(p, prefl) ∧ rp(p, prefr)
Lenv otherwise

(4.21)

Note that it is always preferable to directly use the information from the camera image, because
it accurately represents the captured scene. In certain cases, when the reflective or refractive
surface is real, it is possible to use the original value in the camera image although the reflected
or refracted ray hits the environment map. Therefore, our approach classifies an environment
map hit as real, i.e. the helper function rp(x, y) treats them as real components.
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4.2.4 Missing Back-Projection Data

Reflections and refractions are not limited to the visible area of the camera. These rays may
intersect geometry outside the field of view on the one hand or are occluded by some other
geometry inside the camera frustum on the other hand. For this reason, our method also needs
to deal with missing data during the back-projection. Figure 4.13 illustrates this two cases.
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Figure 4.13: Missing data in the back-projection. Figure (a) shows a reflected surface outside
the field of view (dotted line). Figure (b) shows an occluded real geometry that lies inside the
camera frustum.

If the reflected or refracted surface lies outside the field of view, our method simply uses the
radiance from the Lrv buffer and thus ignores the differential rendering effect.

In case of occluding geometry, the back-projection would return a wrong color information
from the camera image, which has no relation to the reflected or refracted surface. Figure 4.13b
illustrates this case, in which the real reflected surface at point 1 lies inside the camera frustum.
However, the back-projection would falsely return the color value from point 2.

To identify such a problem, our approach compares the depth value between the visible point
and the back-projected point. When these two depths lie within an epsilon range, the back-
projected color value is suitable, otherwise the Lrv buffer is used, as before. In Figure 4.14a, the
green top face of the box wrongly appears in the reflection whereas a depth comparison correctly
handles this missing case, as shown in Figure 4.14b. Note that we only use the depth information
from real objects, i.e. we exclusively render the real objects in a depth only pass and store their
distance.

For a refractive object, the result of the back-projection may be valid for the reflected and
the refracted surface or may fail for one of them. Ideally, we would use the back-projected
value for the valid part and the buffer Lrv for the missing case. Unfortunately, we do not have
access to the separate reflective or refractive radiance part for the differential rendering buffers
Lr and Lrv. Currently, in our approach, Lr and Lrv contains the radiance from both surfaces.
Hence, we tested two different methods to handle the missing cases for refractive objects, where
Figure 4.15 visualizes the results.

If one back-projection fails, either of the reflected or the refracted surface, we use the value
from Lrv and ignore the differential rendering effect, see Figure 4.15a. The other approach
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(a) (b)

Figure 4.14: The green top face incorrectly appears in the reflection of the teapot (Image (a)).
A depth comparison detects these errors and therefore uses the data from the buffer Lrv (Im-
age (b)). Also note the missing back-projection data in the field of view at the border of the desk
appearing in the reflection.

(a) (b)

Figure 4.15: In Figure (a) we use Lrv when one back-projection fails. In Figure (b) we always
use the refraction part when it is valid.

simply ignores the reflective part if one back-projection fails, but always tries to use the refracted
part, see Figure 4.15b. From a formal point of view, the first method is more appropriate,
however, the second result creates less artifacts.
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CHAPTER 5
Caustics with Differential Rendering

Until recently, caustics were just ignored in the lighting simulation of other mixed-reality sys-
tems. However, caustics are tightly connected to reflective and refractive objects and improve
the overall impression of a mixed-reality scene, see Figure 5.1. The absence of such effects may
disrupt the perception of the user, who is familiar with real light conditions and also expects a
similar behavior for a mixed-reality environment.

(a) Reflective caustic (b) Refractive caustic

Figure 5.1: Caustics due to the scattering of light from reflective and refractive objects. In
Figure (a), a virtual spotlight illuminates the virtual bunny, which causes a caustic on the real
desk. In Figure (b), a virtual object is illuminated by a real spotlight, resulting in a virtual caustic
on the desk and the wall.

Caustics occur due to a higher concentration of photons in some areas on a diffuse surface.
The light path of the scattered photons is complementary to the already presented reflective or
refractive light path. In case of caustics, the light interaction on a reflective or a refractive surface
is located in the first portion of the path. Whereas for reflections and refractions, this interaction
happens in the last part. Consider, for instance in Figure 5.1a, a scene with a reflective object
illuminated by a spotlight: The corresponding photon path is LSDE, in which the reflected
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photon arrives at a visible diffuse surface (e.g. the real desk), and the complementary reflective
light path is LDSE, which represents the reflected radiance from a diffuse surface (e.g. the real
desk in the reflection of the bunny).

Our approach simulates caustics from reflective and refractive objects, either real or virtual.
Instead of a physically correct light distribution, our aim is to create perceptually plausible caus-
tics that appear on real or virtual diffuse surfaces. The following section describes this method
and its incorporation with differential rendering.

5.1 Radiance Computation

We simulate caustics with the approach from Wyman [49], which imitates the classic photon
mapping algorithm but achieves higher frame rates. The classic algorithm emits photons from
the light source towards the reflective or refractive object and traces the scattered photons until
they land on a diffuse surface. This location and the incoming flux are stored in a spatial data
structure, i.e. the photon map. Unfortunately, this spatial data structure (kd-tree) is not directly
usable on todays GPU architecture. Hence, we utilize the idea from Wyman and store the final
hit location with the attributes of the arriving photon in a two dimensional texture buffer that
acts as the photon map. Instead of a ray-tracer, as in the original photon mapping algorithm, we
use an image-space intersection approximation to detect the final hit position.

Conceptually, the photon arrives at an infinitesimally small area that results from the inter-
section of the ray and the diffuse surface. However, the photon energy also spreads over to the
neighboring area. For this reason, Wyman introduces an additional caustic buffer that contains
the filtered photon energy from the surrounding area. Our method is based upon this concept but
differs in the generation and application of the caustic buffer. The creation of the photon buffer
and the caustic buffer is described further in Section 6.6.

Figure 5.2 illustrates the caustic simulation. First it emits the photons from the light source
and stores their diffuse hit location phit, see Figure 5.2a. Then it gathers the photon intensities
of the neighboring areas and applies this radiance Lc to the corresponding diffuse surface, see
Figure 5.2b.
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Figure 5.2: Photon emission from the light source (Image (a)). Applying the additional radiance
Lc to the diffuse surfaces (Image (b))
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For the following part, let us suppose that the caustic buffer is already available. Note that
this buffer is separately created for the reflected and refracted photon direction, which originates
at the caustic caster. The buffer contains the gathered energy from all incoming photons in a
specified neighborhood, represented by the small circles in Figure 5.2b. This incoming radiance
is attenuated by the distance to the light source, but also depends on the Fresnel terms and the
transmittance color filter, see Figure 5.3a, which shows the intensity from a refractive caustic
buffer. Moreover, the caustic buffer contains the incoming direction of the photons.

(a) (b)

Figure 5.3: Refractive caustic from a virtual glass. Image (a) shows the intensity from the caustic
buffer in screen space. The caustic affects the diffuse surface and also appears in the reflection
and refraction, as shown in Image (b).

To simulate caustics, our method evaluates the BRDF of the diffuse surface with the cor-
responding attributes in the caustic buffer, i.e. the incoming direction and the intensity. This
resulting radiance is added to the diffuse radiance. In addition, caustics should also appear in
reflections and refractions. Therefore, we also evaluate the reflected and the refracted diffuse
surfaces. This additional radiance is added at the following three places:

Ld = Ld + Lc(pdiff ) (5.1)

Lrefl = Lrefl + Lc(prefl) (5.2)

Lrefr = Lrefr + Lc(prefr), (5.3)

where Ld is the diffuse radiance, Lrefl is the radiance from the reflected, and Lrefr is the
radiance from the refracted surface. The caustic radiance is defined with Lc and returns the cor-
responding radiance for the passed surface position, in which pdiff is a diffuse surface position,
prefl is a reflected surface position, and prefr is a refracted surface position. Figure 5.3b depicts
the caustic effect for all three cases.

Virtual Point Lights So far, the caustic radiance directly influences a diffuse surface. How-
ever, this additional radiance also affects other nearby objects, similar to an indirect light bounce
on a diffuse surface. Generally, a virtual point light should be placed at an illuminated object.
In case of a reflective or refractive object, our approach reflects or refracts the virtual point light
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and places it on the final hit position of the photon. The intensity of this virtual point light de-
pends on the photon intensity and the material properties at the hit location. Figure 5.4 shows
an example image without this effect and with the indirect illumination from additional VPLs
placed on the caustic.

(a) without VPLs (b) with VPLs

Figure 5.4: Caustic on a real desk. Image (a) without VPLs and Image (b) with VPLs resulting
in an indirect illumination of the real wall.

Nr Path Description

1 LSS’*DE Caustic from a reflective object.
2 LSSS’*DE Caustic from a refractive object.
3 LSS’*DDE Indirect illumination of a diffuse surface from reflected photons.
4 LSSS’*DDE Indirect illumination of a diffuse surface from refracted photons.

Table 5.1: Possible light paths for the caustic simulation. The term L′∗ in the light path describes
multiple light bounces.

Table 5.1 summarizes the possible light paths that are handled by our caustic method. The
multiple bounces L′∗ suffer from the same limitations as in the reflective and refractive radi-
ance computation. Also note that we currently only support spotlight sources in our caustic
simulation.

The images in this chapter already incorporate the virtual caustics in a mixed-reality scene.
Differential rendering accounts for the various combinations of real and virtual caustic casters
and receivers, which we consult in the next part.

5.2 Differential Rendering

Merging the additional radiance from a caustic of a reflective or refractive object also requires a
classification of the included components in the light path. Whether the photons scatter from a
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real or a virtual object and finally hit a real or virtual diffuse surface determines the contribution
to the corresponding differential rendering buffer.

The resulting radiance from the caustics affect the buffers Lr and Lrv when all components
are real in the path between the light source and the diffuse surface hit. Otherwise, the radiance
only contributes to the buffer Lrv when it contains one virtual object. Figure 5.5 shows these
two buffers, which additionally contain the radiance from a refractive caustic. The final output
image is shown in Figure 5.3b.

(a) Lrv (b) Lr

Figure 5.5: The two differential rendering buffers from a refractive caustic. Lrv contains the
virtual caustic (Image (a)) whereas the buffer Lr is not affected (Image (b)). Note that the upper
part of the glass is missing in the reflection of the teapot because the reflected and refracted
second-order ray finally hits the environment map and therefore contributes to Lenv, see Sec-
tion 4.2.3.

This means that the caustic radiance is added to the differential-rendering buffers. Formally,
this is expressed as:

Lrv = Lrv + Lc (5.4)

Lr = Lr + L′c (5.5)

, where Lc is the radiance from the caustic and L′c contains the caustic radiance only from real
components. It is defined as:

L′c =

{
Lc if r(ls) ∧ rp(p, phit)
0 otherwise

, (5.6)

where the argument ls is the light source that emits the photons, argument p is the visible point
on the caustic caster that scatters the photon, and phit is the final position of the photon on a
diffuse surface. The helper function r(x) evaluates the real-virtual flag of a light source, as in
Equation 4.9, and the function rp(p, phit) classifies the path between the visible point on the
caustic caster p and the final hit location phit, see Equation 4.15. Instead of two single locations,
we need to consider the hole path, because a photon may bounce multiple times on reflective or
refractive objects before it lands on a diffuse surface.
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CHAPTER 6
Implementation

The previous two chapters described the general concept of the radiance computation of re-
flections, refractions and caustics and their integration in a mixed-reality environment. Some
implementation-specific details were omitted for the sake of clarity. The following part deals
with these gaps and presents the techniques behind the intersection approximation for reflec-
tions and refractions. Beyond that, this chapter also describes the generation of the photon map
and the caustic buffer and their application to simulate caustics on diffuse surfaces.

A brief technical specification of the programming environment follows before we turn to
the implementation details. The RESHADE framework is implemented in C# and uses DirectX
10 as the rendering API, wrapped with the SlimDX library, and HLSL with Shader Model 4 as
the shading language.

6.1 Deferred Shading

One of the main building blocks in the RESHADE framework, especially for the differential
instant radiosity method, is deferred shading [1]. Deferred shading decouples the rendering of
the object geometry from the lighting computation. This means that in a first step, all objects are
rendered once from the viewpoint of the camera. The objects are transformed into screen space
and their geometric attributes and material parameters are stored in several texture buffers. This
resulting set of textures is called a geometric buffer, or short G-Buffer.

Accordingly, the illumination computation of all contributing light sources is carried out
only with the data stored in the G-Buffer, which is an advantage in many ways. The G-Buffer
is created once per frame, consequently also the object geometry is rendered once, regardless of
the number of light sources. Moreover, the lighting computation takes only visible pixels into
account. Apart from the performance gain, this method also has advantages from a software-
engineering perspective. The G-Buffer acts like an interface between the geometry stage and
the lighting stage. Introducing a new type of object (for example a new material) requires no
adjustment of the lighting stage. Conversely, a new type of light has no influence on the geometry
stage, as long as both conform to the interface of the G-Buffer.
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6.1.1 Primary G-Buffer

One of the first tasks in the rendering system of the RESHADE framework is the creation of
the primary G-Buffer, GBufview, from the view point of the camera. This pass draws all real
and virtual objects, including the reflective and refractive objects. Each value in the G-Buffer
corresponds to a set of attributes from an object. Table 6.1 lists the content of the primary
G-Buffer.

Nr Attribute Description

1 Color The diffuse surface color.
2 Depth The depth of the surface in normalized device coordinates.
3 FlagRV The flag to distinguish between a real and virtual surface.
4 Material The material attributes of the surface, e.g. the diffuse intensity.
5 Normal The normal of the surface in world-space coordinates.
6 Reflectance The reflectance of the surface, which is usually zero for a diffuse surface

and one for a reflective or refractive surface.

Table 6.1: Content of the primary G-Buffer Gbufview.

The primary G-Buffer GBufview is passed to the lighting stage, which computes the diffuse
radiance (Ld) for all visible surfaces. Note that each value in the G-Buffer represents a visible
surface. The radiance computation evaluates all direct light sources and all virtual point lights
with the stored surface attributes in the G-Buffer. Except for the position, all surface attributes
can be directly retrieved from the G-Buffer. Utilizing the view-projection matrix of the camera,
the world position is reconstructed with the stored depth and its corresponding coordinates in
screen space. Note that this layout is only a semantic consumption of the G-Buffer. Technically,
we combine several attributes to lower the memory size of the buffer. For instance, the real-
virtual flag (FlagRV) is packed together with the surface depth (Depth). A positive depth value
represents a real surface whereas a negative value indicates a virtual surface.

6.1.2 Reflective and Refractive G-Buffer

As already stated, our intersection method determines the diffuse surface visible from the re-
flected and refracted view direction. The resulting surface attributes are written into two ad-
ditional G-Buffers, one for the reflected surface, GBufrefl, and one for the refracted surface
GBufrefr. Note that both G-Buffers are also in the screen space of the camera. This means
that a value in one of these G-Buffers is a visible surface on a reflective or refractive object but
it refers to the attributes of a reflected or refracted surface. Figure 6.1 illustrates the primary
G-Buffer and the G-Buffer from the reflected view direction. The reflective G-Buffer contains
only attributes in the area of the reflective teapot.

Table 6.2 shows the structure of the reflective and refractive G-Buffer. Compared to the pri-
mary G-Buffer, they also contain the Fresnel factor and the transmittance color filter. Instead of
a depth value, this buffer stores the full world space position because reflections and refractions
are not limited by the field of view and possibly lie outside the visible area. Furthermore, it
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Figure 6.1: Stored attributes in the G-Buffer for real and virtual objects. The left column shows
the primary G-Buffer and the right column the reflective G-Buffer. First row is the final output
image, second row the diffuse color, third row the normal (with absolute values) and the last row
contains the depth and world position.
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Nr Attribute Description

1 Color The diffuse surface color.
2 FlagRV The flag to distinguish between a real and virtual surface.
3 FlagPathRV The flag to evaluate the path to this surface.
4 Fresnel The Fresnel factor.
5 Material The material attributes of the surface, e.g. the diffuse intensity.
6 Normal The normal of the surface in world space coordinates.
7 Position The world space position of the surface.
8 Transmittance The transmittance color filter.

Table 6.2: Content of the reflective and refractive G-Buffer Gbufrefl and Gbufrefr.

contains an additional flag for the reflective or refractive path. This flag is true when all com-
ponents from the first intersection along the path to the reflected or refracted surface are real.
Otherwise, it is false, so at least one bounce occurs on a virtual object. The two real-virtual
flags help to determine the differential rendering buffers, Lr and Lrv, and are used during the
back-projection to find a correct value for Lb. The reflective and refractive G-Buffer are passed
to the radiance computation, which calculates the outgoing radiance and applies the differential
rendering effect.

6.2 First Intersection for Reflections and Refractions

Our method uses on an image-space approximation to find the intersection point between the
reflected or refracted ray and the objects in a mixed-reality scene. In contrast to a ray-tracing
approach, each reflective or refractive surface interaction needs special treatment. Considering
the possible light paths from Table 4.1, we separately handle the first surface bounce, or the first
two surface bounces in case of a refraction. A subsequent step identifies the reflected or refracted
surface, contained in the remaining path. Take for example the path LDS′∗SSE (number three
in Table 4.1). Starting from the eye-point, our approach finds the refraction ray from the first
portion (SSE) and determines the reflected and refracted surface in the remaining path (DS′∗).

The next part describes the first surface intersection, including the computation of the re-
flection ray and the approximation of the refraction direction on two surface boundaries. Once
the reflection and refraction rays are determined, they are passed further to the next stage, which
finds the reflected and refracted surface position. We support different intersection modes, which
are discussed in the subsequent sections: basic planar reflections in Section 6.3 and two more
general intersection techniques that are based upon cubic environment mapping in Section 6.4,
and reflective impostors in Section 6.5. Note that due to deferred shading, it is easy to switch to
another intersection technique as long as the output is consistent with the format of the reflective
and refractive G-Buffer.
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6.2.1 First Intersection for Reflections

Initially, we need to intersect the view ray from the camera with the reflective object, which
simply is the visible point in a z-buffer based renderer. Figure 6.2a outlines this process, where
the first surface intersection is at location p1. The incoming view direction is then reflected about
the surface normal. This resulting ray is passed further to the actual intersection approximation
that determines the reflected surface.

Note that the depth buffer is already populated with correct values from the primary G-
Buffer pass. Hence, we can use the equal function for the depth comparison, which speeds up
the rendering and computes the subsequent intersection only for truly visible surface points.
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Figure 6.2: Initial surface intersection. Figure (a) shows the detection of the first intersec-
tion points for reflections (p1) and refractions (p2). These points are passed further to find
the reflected and refracted surface points. Figure 6.2b illustrates the refraction approximation.
The second surface point p2 is estimated with the distance dv between the front and back-
faces: p2 ≈ p1 + dv · rt.

6.2.2 First Intersection for Refractions

Refractions on a single surface are equal to the aforementioned reflection case, except that this
technique refracts the view ray. To enhance the visual quality of refractions, we additionally
implement the method from Wyman [46]. This method refracts the viewing ray twice, on the first
surface boundary and on the second surface boundary at the exit point of the ray, corresponding
to p1 and p2 in Figure 6.2a.

Determining the exit point p2 on the second surface boundary would require marching along
the refracted ray rt, see Figure 6.2b. The idea of Wyman is to approximate this exit point in a
much faster way as:

p2 ≈ p1 + dv · rt, (6.1)

where p1 is the first intersection position, dv is the distance between the depth of the front and
back face along the view direction v, and rt is the refracted view direction.

Utilizing deferred shading, our implementation draws the front-faces and the back-faces of
the refractive object. Note that we only render the geometry of the refractive object in these two
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passes. It stores the distance along the view ray and the surface normal in intermediate texture
buffers. As suggested by Wyman, we store the attributes of the most distant back-faces. For
this reason, the depth-comparison function is set to greater when the back-faces of the refractive
object are rendered in the second pass. Figure 6.3 visualizes these buffers. Please note that the
image is cropped to omit the black border areas.

Figure 6.3: Intermediate texture buffers for the refraction. First row shows the normal and depth
of the front-faces and the second row shows the values of the back-faces.

The following pass uses the intermediate texture buffers. First it reconstructs the surface
position p1, similar as in the primary G-Buffer pass, and computes the first refraction ray rt.
Moreover, it calculates the distance dv between the stored front and back-face distance along the
view ray. The approximated point p2 = p1 + dv · rt is projected into screen space and used to
look-up the surface normal from the back-face texture. Now we are able to determine the second
refraction ray. For this computation, we use the negative surface normal and the reciprocal index
of refraction 1

ηs
, because this time the ray leaves the object. Finally, the resulting ray is forwarded

to the intersection approximation.
A higher index of refraction bends the ray stronger, hence the second surface location p2 may

point to an area outside of the refractive teapot (black area in Figure 6.3). Consequently there
is no valid surface normal. As described by Wyman, we substitute the missing normal with the
projection of the refraction ray rt onto the plane defined by the view direction v. Furthermore,
we neglect total internal reflections. The idea of Wyman is to use the tangential vector at the
surface location p2 as the resulting refraction ray in such an event. This is essentially the same
as the projection of the refraction ray rt onto the plane defined by the second surface normal n2.

Note that the article of Wyman also contains a more accurate approximation that requires a
pre-computation step, see the previous Section 3.2. However, this simple refraction approxima-
tion already provides plausible results since small deviations in refractions are barely perceptible
for the human eye.
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6.3 Planar Reflection

Our implementation supports basic planar reflections. This special case is only able to find
one surface intersection from the reflected view direction. Multiple bounces, refractions, or the
scattering of photons are not possible with our method.

First, this technique mirrors the camera above the reflection plane, draws all possible re-
flected objects and stores their surface attributes in intermediate texture buffers. A subsequent
pass computes the first intersection position and uses projective texture coordinates to acquire
the reflected surface attributes from the intermediate textures. Finally, it writes these attributes
into the reflective G-Buffer GBufrefl. The possible light paths are: LDSE and LDDSE.

6.4 Cubic Environment Mapping

Cubic environment mapping is a standard technique in real-time rendering that determines the
reflection on a curved object. This method is used to compute the location of the reflected and
refracted surface after determining the first reflection or refraction ray. We implemented the
standard algorithm and additionally extend it with depth information to refine the intersection
position.

6.4.1 Standard Cubic Environment Mapping

Every reflective and refractive object has its own environment map. The six faces of the cube-
map represent the surrounding scene from the center of the object. For the creation, the envi-
ronment mapping algorithm places a camera, with a field of view of 90◦, at the center of the
reflective or refractive object. Then, it draws the surrounding objects and stores their surface
attributes in several cube map texture buffers. Figure 6.4 shows the resulting cube map from the
scene in Figure 6.5, the surrounding objects are captured from the center of the teapot. The co-
ordinate axes define the view and up direction of the camera for each individual face as specified
in the DirectX documentation [27]. Moreover, it keeps the distance of the surface to the center
that is later used with the look-up direction to reconstruct the world space location. Note that we
utilize a geometry shader and draw the surrounding objects in one pass, instead of six passes for
each face, as described in the DirectX SDK [28].

An additional pass identifies the reflective or refractive ray for the first surface intersection.
The resulting ray acts as the look-up vector for the cube map. This queried surface information
is then written into the reflective or refractive G-Buffer.

The standard approach has several limitations. The look-up direction for the cube map just
depends on the reflection or refraction direction, i.e. it ignores the start position of the ray.
Moreover, the captured environment is only accurate at its center. Figure 6.5a depicts these
limitations, see the wrong shadow in the reflection. Moreover, when the camera moves, the
surface appears to swim in the reflection.
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Figure 6.4: Cubic environment map. Illustrates the viewing coordinate system for the corre-
sponding faces.

6.4.2 Layered Cubic Environment Mapping

For this reason we extend the standard approach with the more sophisticated method from Umen-
hoffer et al. [44]. This technique additionally utilizes the distance to the surrounding objects
in the intersection computation and is therefore able to approximate intersections from nearby
objects more accurately. Furthermore, it supports self-reflections and multiple bounces on re-
flective and refractive surfaces, see the handle of the teapot in Figure 6.5b.

Our implementation creates two additional cube map layers, a layer for the front-faces and
one for the back-faces of the reflective or refractive object. As suggested by Umenhoffer, our
technique marches along the reflective or refractive ray. At each step, it computes a new look-
up vector from the corresponding position on the ray and retrieves the stored distance from the
cube map. It compares this distance with the actual distance on the ray, finding the first pair
of overshooting and undershooting, i.e. the ray distance is greater or smaller compared to the
stored distance. These two locations are further used to refine the intersection position with a
secant search, as described by Umenhoffer.

This intersection computation is repeated for each of the three layers. After all, the adjusted
look-up vector of the closest distance is used to read the surface attributes from the corresponding
cube map layer. As before, these attributes are output into the reflective or refractive G-Buffer.

Our implementation achieves good results for convex objects but produces severe artifacts
for flatter surfaces, unfortunately also with the enhanced layered cube map approach. Note that
we will compare the different intersection approximations in Chapter 7.
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(a) (b)

Figure 6.5: Cubic environment mapping. The standard approach uses only the reflection direc-
tion to look-up the reflected surface, what produces wrong results, e.g. the wrong shadow in
the reflection of the teapot (Image (a)). Layered cubic environment mapping traces along the
reflection ray to refine the intersection approximation, see Image (b). Note the self-reflection of
the teapot-handle.

6.5 Impostors

An impostor approximates the geometric shape of an object with a rectangle and several textures,
containing its surface attributes. Instead of the entire geometry, the algorithm just intersects the
reflected or refracted ray, from the first surface intersection, with the impostor rectangles.

In nearly all of our mixed-reality scenarios, the impostor method provides a plausible and
stable intersection approximation, which also includes multiple bounces on reflective and re-
fractive objects. Compared to the aforementioned implementation of layered cubic environment
mapping, impostors are faster and are also able to handle flat reflective or refractive surfaces.
Apart from that, their usage is intuitive and they are straight-forward to implement.

Our approach is based on the method of Popescu et al. [35], which we briefly mentioned in
Section 3.1. In their article, Popescu et al. describe two types of impostors: reflective billboards
and reflected depth maps, which additionally utilize stored depth values to refine the intersection
position. However, our refinement method does not rely on their concept of a simplified rotated
depth map, in exchange it combines ideas from relief mapping, invented by Policarpo et al. [34],
and the aforementioned layered cubic environment mapping from Umenhoffer et al. [44]. In
combination, these two methods provide a fast and robust intersection refinement and are, in our
opinion, more intuitive to implement compared to the original approach.

6.5.1 Impostor Array

Initially, a set of impostor objects is assigned to each reflective or refractive object. This means
that each reflective or refractive object has a corresponding impostor set, containing all other real
and virtual objects of the mixed-reality scene. Figure 6.6a illustrates this for a scene with two re-
flective and three diffuse objects: the impostor set of the reflective teapot S1 is {D1, D2, D3, S2}
and the impostor set for the reflective sphere S2 is {D1, D2, D3, S1}.

63



S1
S2

E

D2

D3

D1

(a)

D1 D2 D3 S2 D1 D2 D3 S1
0 2 4 61 3 5 7

S1 S2

(b)

Figure 6.6: Each reflective object has a set of impostors. In Figure (a), the impostor set for the
object S1 is {D1, D2, D3, S2} and for object S2 it is {D1, D2, D3, S1}. Figure (b) shows the
structure of the impostor array. Reflective and refractive objects point to their corresponding
impostor subset, indicated by the arrows.

The several sets of impostors are combined in a single array, in which one array element
refers to a specific impostor. Impostor entries of reflective and refractive objects additionally
link to the corresponding range of their impostor subset, depicted with the arrows in Figure 6.6b.
Hence, this array defines all necessary data for the intersection computation.

6.5.2 Impostor Update

Before their actual usage, we need to refresh the impostor data once per frame. Each element in
the impostor set is updated, although this update is only required for a change in the alignment
between the reflective object and the impostor object. Note that this update procedure, as well
as the intersection, is identical for reflective and refractive objects.

For this recreation, we place a camera at the center of the reflective object, render the impos-
tor object and store the surface attributes in several textures. This update process is repeated for
every impostor object. The view direction of this camera is along the center of the two objects,
which is from cs to ci as illustrated in Figure 6.8a. To reduce the distortion for flat objects, we
also allow to manually set the view direction. For instance, the desk D1 in Figure 6.6a produces
less intersection artifacts when the view direction is aligned with the up vector of the world coor-
dinate system. As described by Hu and Qin [16], we use an orthographic projection to draw the
impostor object. This projection matrix is defined by the minimum and maximum extents of the
transformed axis aligned bounding box (AABB) with the view matrix of the impostor camera.

The surface attributes are output into several texture arrays, in which one slice refers to
a specific impostor. Figure 6.7 visualizes two textures with surface attributes from the three
impostors used in the scene of Figure 6.9. An impostor array element also contains the center
of the near plane pn, the center of the far plane pf (both in world space) and the impostor
normal n, which corresponds to the view direction of the camera. Additionally, we store the
view-projection matrix of the camera that inherently specifies the dimension of the impostor
rectangle, i.e. points inside the rectangle are within the range -1 to +1 in normalized device
coordinates (NDC).
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Figure 6.7: Each column represents an array slice that refers to one specific impostor, i.e. the
real desk, the real box, and the virtual bunny. The first row shows the surface color and the
second row the depth values for each impostor from Figure 6.9.

6.5.3 Impostor Intersection

Once the impostor set is created, our method uploads the hole impostor array to the GPU with
the initial range pointing to the corresponding subset of the reflective object. Then it iterates
over this set, defined by the passed range, and finds the closest intersection with the reflection
ray. This means that every impostor object in the subset is intersected with the passed ray.

If the closest intersection point lies on a diffuse surface, the algorithm returns the surface
attributes. Otherwise, for a reflective surface, a new ray is computed from the stored surface
attributes and is used to compute the next intersection. This time, it iterates over the subset of
the intersected impostor which is determined by the stored range. This process is repeated until
the ray hits a diffuse surface or reaches a maximum number of bounces. Note that in case the
algorithm misses all impostors, it queries the environment map with the corresponding ray and
outputs the captured radiance value instead. Moreover, if a second-order ray hits a refractive
object it bends the ray only at the first surface boundary, a limitation of our approach.

We support two different intersection methods. The first uses only the rectangle of the im-
postor, similar to the billboard reflection from Popescu et al. [35]. This method intersects the
ray with the plane defined by the center of the near plane pn and the impostor normal n, see
Figure 6.8. In a subsequent step, we transform this point with the stored view-projection matrix
of the impostor camera and map it to the texture coordinate range between 0 and 1. The ray
intersects the impostor rectangle when the coordinates of the intersection lie between 0 and 1,
otherwise the ray misses the impostor. Moreover, the algorithm retrieves the depth value from
the impostor texture, in which a valid entry indicates that the ray truly hits an impostor surface.
This means that the ray may intersect the rectangle but misses the surface, i.e. the black ar-
eas in Figure 6.7. In Figure 6.9a, the mixed-reality scene is rendered with the basic billboard
reflections.
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Figure 6.8: Figure (a) visualizes the creation of an impostor. A camera is placed at the center
of the reflective or refractive object cs with the view direction pointing to the impostor center
ci. The axis aligned bounding box (AABB) determines the projection extends. Figure (b) shows
the intersection of a ray with an impostor. Initially, it detects the undershooting (pu) and over-
shooting (po) points on the ray r. It then uses these two points to refine the intersection with a
binary search.

(a) Reflective billboards (b) Impostors with a depth map

Figure 6.9: Figure (a) was rendered with reflective billboards, in which the bunny appears too
near in the reflection of the teapot. Also note the wrong reflection of the green top face of the
real box. Compare with Figure (b), which produces a more accurate reflection by utilizing the
stored depth values in the impostor intersection.
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The second method utilizes the stored depth to refine the intersection position and produces
more accurate results, see Figure 6.9b. Essentially, we trace a ray in a depth map, similar to
relief mapping from Policarpo et al. [34]. They perform a fast linear search to detect the first
intersection and refine this position with a subsequent binary search. However, we changed the
linear search to the method from Umenhoffer et al. [44], which detects a pair of undershooting
and oversshooting points, see the points pu and po in Figure 6.8b. We find this method more
practical because it reduces the interval for the binary search. For this, we intersect the ray
with the impostor planes located at pn and pf , resulting in points p1 and p2. We then map
them to the texture coordinate range and determine the step size along the ray between p1 and
p2. Moreover, we compute the delta increments along the ray with similar triangles. Now, our
algorithm marches along the ray and detects the first pair of under- and over-shooting points. i.e.
it compares the depth on the ray with the stored depth in the impostor texture, as described by
Umenhoffer et al. [44]. Finally, the algorithm refines these two points with a binary search (a
secant search would also be possible) and outputs the corresponding surface attributes from the
impostor texture into the reflective or refractive G-Buffer.

6.6 Caustics

We simulate caustics with the image-space method from Wyman [49]. This technique requires
two passes. In the first pass it emits photons from the light source onto the reflective or refractive
object, i.e. the caustic caster, and stores the hit position in a texture, called the photon map. The
second pass splats these photons into an additional texture, the caustic buffer, which is used to
visualize the caustics.

6.6.1 Photon Map

For the creation of the photon map, we render the caustic caster from the view-point of the light
source and determine the reflection or refraction ray from the first intersection. This ray is passed
further to the intersection approximation that determines the final diffuse surface with one of the
previously discussed methods, i.e. cubic environment mapping or the impostor technique. We
store attributes of the hit diffuse surface and attributes of the arriving photon in the photon map,
see Table 6.3.

Nr Attribute Description

1 Direction The incident direction of the arriving photon.
2 FlagPathRV The real-virtual flag to evaluate the photon path.
3 Intensity The intensity of the arriving photon.
4 Normal The normal of the hit diffuse surface.
5 Position The world space position of the hit diffuse surface.

Table 6.3: Content of the photon buffer.
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The photon intensity depends on the flux of the light source, weighted by the number of
emitted photons. We use an occlusion query to count the emitted photons as proposed by Shah
et al. [39]. Note that occlusion queries are asynchronous, hence we use the result from the
evaluation of the last frame. In addition, the photon intensity is attenuated by the distance to the
spotlight and the cone filter of the spotlight as well as by the Fresnel factor and transmittance
color along its path. Figure 6.10 shows the content of the photon map in light-space from the
final image in Figure 6.11a.

(a) Incident direction (b) Intensity (c) Surface normal

Figure 6.10: Photon map. Contains the incoming photon direction (absolut values), photon
intensity and the surface normal of the diffuse hit position.

6.6.2 Caustic Buffer

Photon energy not only affects the hit location but also the neighboring area. This energy accu-
mulation is estimated with a caustic buffer as described by Wyman. Therefore, we render a grid
with the same dimension as the photon map and look-up the corresponding world position from
the stored photon texture in the vertex shader. This point is expanded to a surface aligned quad
in the geometry shader, in which the size of the quad is computed from the world-position of
the adjacent photons, similar as in the work of Wyman [48]. Moreover, we constrain this splat
size by a user-defined minimum and maximum value. Additive blending is enabled to count the
incoming photons on an area, gather the photon intensity and the incident direction. Table 6.4
summarizes the content of the caustic buffer.

The resulting caustic buffer is in screen-space and each value contains the gathered photon
information from its neighboring area, see Figure 6.11. One can imagine this as a kind of light-
map, which is dynamically recreated every frame. Analog to a light-map, each entry in the
caustic buffer modifies the color of the corresponding surface. These values are simple treated
as an exclusive point light source for one specific diffuse surface, i.e. we evaluate the BRDF for
this surface and the caustic light source. Note that we compare the stored depth in the caustic
buffer with the depth of the diffuse surface form the primary G-Buffer. The caustic effect is only
applied when these depth values are within a specified epsilon range.

Additionally, the intensity is scaled to adapt for the photon concentration, so areas with a
higher photon count should appear brighter than areas containing fewer photons. We multiply
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Nr Attribute Description

1 Depth The depth of the hit diffuse surface, which is used to reconstruct the
world-space position.

2 Direction The accumulated incident direction of the arriving photons. The aver-
age incident direction is determined by a division through the number of
incident photons.

3 FlagPathRV The real-virtual flag of the caustic splat.
4 Intensity The gathered intensity of the arriving photons.
5 Photons The number of incoming photons.

Table 6.4: Content of the caustic buffer.

(a) Final image Lf (b) Intensity

(c) Average direction (d) Photon count

Figure 6.11: Caustic buffer. It contains the gathered intensity, the averaged incoming photon
direction, and the number of arriving photons.
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the photon intensity with an empirically determined scaling factor kc:

kc =
bmin(n,nmax) − 1

bnmax − 1
, (6.2)

where n is the number of incoming photons, the parameter nmax is the required photon count
for a maximum intensity and parameter b weights the interpolation. Figure 6.12 visualizes this
function for different parameters b and the maximum intensity nmax at 16 and 32 incoming
photons.

Accordingly, this caustic buffer is used in the lighting computation of a diffuse surface to
visualize the caustic pattern. Consider that we use the caustic buffer also for the reflected and
refracted surfaces. To accomplish this task, we project the reflected or refracted surface point
into screen-space and look-up the corresponding values in the caustic buffer. As with a diffuse
surface, we compare the depth values and apply the caustic effect only when they are within a
specified epsilon range.
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Figure 6.12: Scaling factor for the caustic intensity. Illustrates the scaling factors for different
weighting factors b. Figure (a) has the maximum intensity at 16 arriving photons and Figure (b)
reaches the maximum at 32 incoming photons. The scaling factor lies between zero and one.
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CHAPTER 7
Results

This chapter presents output images of several mixed-reality scenarios, simulated with our ren-
dering approach. Our primary test platform is a PC with an AMD Phenom X2 Processor at
3.10 GHz, 4 GB of main memory, and a NVIDA GeForce GTX 260 GPU with 896 MB of ded-
icated memory. We use a Logitech C250 Webcam to capture the mixed-reality scenario and an
uEye camera from IDS with a fish-eye lens to generate the environment map. The environment
map is pre-captured and identical for all scenes. The lighting conditions are nearly identical in
our test cases and this capturing has a minimal influence on the frame-rate.

The second test platform is a PC with an Intel Core2 Quad CPU at 2.8 GHz, 8 GB of main
memory, and a NVIDIA GeForce GTX 580 with 1.5 GB of memory. For this test-platform, the
environment map is dynamically recreated once per frame. We use an uEye camera from IDS
with a fish-eye lens and a Logitech HD Pro 910 webcam to capture the mixed-reality scenario.
In general, we use the primary test-platform, otherwise it is mentioned for each figure.

The resolution of the final output images is 1024x768 pixels. Differential instant radios-
ity uses 256 VPLs for the light simulation, with an imperfect shadow map size of 128 pixels
and 1024 points per VPL to approximate the scene. The linear search interval of the impostor
intersection has 64 steps and the binary search has 8 steps. The resolution of the impostor tex-
ture is 512x512 pixels. Environment map intersection uses a resolution of 512x512x6 pixels.
Photon mapping was carried out with a photon map and a caustic buffer size of 512x512 pixels
for each. We use a minimum splat size of 0.005 and a maximum splat size of 0.007 with a
maximum intensity at 32 photon hits, and a base factor of 1.3. All of these parameters can be
manually adapted, unless otherwise mentioned we use these standard settings in combination
with reflective impostors to generate the final output images.

Figure 7.1a shows the virtual Utah teapot with a reflective material. The teapot reflects the
virtual Stanford bunny and a virtual sphere. The objects in the scene are illuminated with a
virtual spotlight. Note that the pink color bleeding from the bunny on the sphere appears in the
reflection of the teapot. Moreover, the spotlight directly affects the handle of the teapot. This
scene is rendered with 11 fps. The frame-rate increases to 22 fps when the number of virtual
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point lights is reduced to 64 VPLs. In general, the frame-rate mostly depends on the number of
virtual point lights and on the number of visible reflective and refractive pixels.

(a) Reflective virtual teapot (11 fps) (b) Refractive virtual bunny (7 fps)

Figure 7.1: Figure (a) shows the virtual Utah teapot with reflective material illuminated by
a virtual spotlight, rendered with 11 fps. Note the pink color bleeding on the sphere in the
reflection of the teapot. Figure (b) shows the virtual Standord bunny with a translucent blue
material, rendered with 7 fps.

In Figure 7.1b, the virtual Stanford bunny has a refractive colored material. The thickness
of the bunny influences the translucent material color. For instance, the body of the bunny
appears more blueish than its ears. The bunny realistically refracts the real desk and the virtual
teapot. Note that the real red pen has no pre-modeled geometric representation, so the intersected
surface lies on the real desk. However, these small errors are hard to detect for the human eye.
The frame-rate is about 7 fps.

In case of caustics, the performance also depends on the number of emitted photons, i.e.
the size of the photon map. Figure 7.2 shows a scene with a real mirror that reflects a virtual
glass. The virtual glass casts a caustic on the real desk, which also appears in the reflection

(a) Caustic from a virtual object. (6 fps) (b) Image size 800x600, photon map 256x256 (10 fps)

Figure 7.2: Caustic from a virtual object in a real mirror.

of the real mirror. The image is rendered with 6 fps. Reducing the resolution of the photon
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map to 256x256 pixels, which corresponds to less emitted photons, increases the frame-rate to
8 fps. Moreover, setting the image size to 800x600 reduces the amount of visible pixels and
therefore also the complexity of the lighting computations. The frame-rate increases to 10 fps,
see Figure 7.2b.

Figure 5.1a from the introduction in Chapter 5 was rendered with the second test platform,
which shows a reflective virtual bunny illuminated by a virtual spotlight. It casts a reflective
caustic onto the real desk. All intersection computations occur on the GPU, so the second test
platform achieves higher frame rates due to its more powerful hardware configuration. This
scene was rendered with 19 fps.

Our approach handles various lighting situations in a mixed-reality environment. Figure 7.3
shows a scene with a real bottle illuminated by a virtual spotlight. The real bottle is pre-modelled
and reacts to the virtual spotlight in a realistic manner.

(a) Reflection (8 fps) (b) Refraction (9 fps)

(c) Caustic (6 fps)

Figure 7.3: Light effects from a real bottle illuminated by a virtual spotlight.

Figure 7.4 compares the lighting effects for a real or virtual reflective object that is illumi-
nated by a spotlight source, either real or virtual. In Figure 7.4a, the real caustic wrongly appears
on parts of the desk that should ideally be occluded by the virtual yellow box. The reason is that
the virtual yellow box blocks the photons of the real spotlight source, so the real differential-
rendering buffer Lr remains empty for these areas. Hence, differential rendering is not able to
cancel out the real caustic on the desk resulting in a wrong illumination. These images are gen-
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erated with the second test platform, resulting in a higher frame rate. Also note that the virtual
yellow box is correctly reflected in the real pocket bottle.

(a) Real light and real object (20 fps) (b) Virtual light and real object (20 fps)

(c) Real light and virtual object (20 fps) (d) Virtual light and virtual object (20 fps)

Figure 7.4: Comparision of light effects from real or virtual objects. Images are rendered with
the second test platform.

Impostor reflections are able to handle multiple bounces. Figure 7.5 presents a scene with
a real mirror, reflecting a virtual sphere with a reflective material. Multiple light bounces con-
tribute to the image quality. However, more than three bounces are merely recognizable.

Reflective impostors provide convincing and stable results in most test scenarios. However,
they are not able to handle self-reflections and artifacts may arise because not the whole geom-
etry is visible from the center of the reflective or refractive object. For instance in Figure 7.6a,
parts of the ears from the bunny are missing in the reflection of the teapot.

Layered cubic environment mapping is able to handle self-reflection, see Figure 7.6b. Our
approach uses three environment layers, which produces good results for convex objects. Each
reflective or refractive object has an exclusive environment map. Compared to the impostor
reflections, the frame-rate is lower because it needs to render the surrounding scene for every
layer.

Figure 7.7 compares different intersection methods. Cubic environment mapping produces
wrong results for flat reflective or refractive surfaces, see Figure 7.7a. The reflected surface
appears too near in the reflection. Our approach uses a static number of cubic environment
layers. Hence, occluded surfaces are missing and produce artifacts in the approximation of the
reflection, see Figure 7.7b. With the standard billboard approach, the reflections also appears too
near in the mirror, compare Figure 7.7c with Figure 7.7d. Furthermore, flat objects need a special
handling with the standard billboard approach, i.e. the alignment of the view direction during
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(a) Zero iterations (16 fps) (b) One iteration (10 fps)

(c) Two iterations (10 fps) (d) Three iterations 10 fps)

Figure 7.5: Multiple reflections. A real mirror reflects a virtual sphere with a reflective material.

(a) Reflective impostors. (6 fps) (b) Layered cubic environment mapping (3 fps)

Figure 7.6: Comparison of reflective impostors and layered cubic environment mapping, show-
ing multiple reflections and reflective caustics. The detail in Figure (a) shows artifacts of the
impostor approximation, in which the geometry might be missing in the reflection. The detail in
Figure (b) shows a self-reflection.
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the creation. Otherwise, the billboard approximation of the geometry appears in the reflection.
These artifacts from the standard billboard reflections are more evident in Figure 6.9a from the
Section 6.5. For instance, the alignment of the impostor normal was not adjusted for the real
box, so the green top face wrongly appears in the reflection. Moreover, the reflected surrounding
scene is to near in the reflection of the teapot.

(a) Cubic environment mapping (12 fps) (b) Layered cubic environment mapping (11 fps)

(c) Billboard reflection (13 fps) (d) Impostor reflection (12 fps)

Figure 7.7: This figure compares different intersection methods.
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CHAPTER 8
Conclusion and Future Work

This thesis discussed a method to simulate the lighting effects for reflective and refractive objects
in a mixed-reality environment. The presented method handles various lighting situations for
real and virtual objects and light sources. It provides convincing results and runs at interactive
to real-time frame rates, so user interaction is possible.

The proposed method in this thesis has some limitations and of course, there are a lot of
possibilities for future improvements. The following part discusses these points and completes
this thesis with a brief conclusion.

8.1 Limitations and Future Work

Differential Rendering Reflective and refractive effects are built upon the original differential
instant radiosity technique. In certain cases, this method produces wrong double shadows and
inconsistent color bleeding as discussed by Knecht et al. [22]. Furthermore, all real objects that
contribute in the lighting computation must be pre-modeled. All these problems are already
addressed in a follow up from Knecht et al. [23] but are not included in this approach.

Real caustics are only canceled out when they are not blocked by virtual objects. This means
that the real caustic is blocked by a virtual object and the real differential partLr does not contain
the caustic contribution, see Figure 7.4a.

Currently, we store the computed radiance for a diffuse surface, a reflected surface, and a
refracted surface together in the two differential rendering buffers Lr and Lrv. For differential
rendering and the back-projection, it would be more manageable to have a separate radiance
buffer Lr and Lrv for each of the three parts. Hence, it would be possible to correctly handle
all missing cases in the back-projection, like the one shown in Figure 4.15. Moreover, with this
adaption, we could separately apply the scaling factor α to a real reflected or refracted surface,
which accounts for the relative error in the differential rendering effect.

Reflections and Refractions In most scenarios, reflective impostors provide stable results.
However, not the whole geometry of the impostor object may be visible from the center of the
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reflective or refractive object. In such an event, these areas are missing in the reflection or
refraction, see Figure 7.6a. This limitation is solved in the work of Rosen et al. [37].

For refractions, our approach roughly approximates the second refraction direction and does
not support total internal reflection. To enhance the visual quality, a future extension could be
to integrate a more accurate computation of the second refraction direction with the method of
Olivera and Brauwers [30] and consider total internal reflection with the method from Davis and
Wyman [7].

During multiple bounces, the impostor refracts the ray only on a single surface. It is possible
to store the front and back-faces also for an impostor, which allows computing the refraction on
the entry and exit point of the ray. Furthermore, our approach traces only one ray direction when
a second-order ray hits a refractive impostor.

Layered cubic environment mapping supports multiple reflections and refractions. Our ap-
proach currently generates only three layers, which works well for convex objects but fails for
flat surfaces. A possible future improvement would be to dynamically generate these layers with
depth-peeling, as mentioned by Umenhoffer [44]. This means that also occluded objects are
visible from the reference point, which should eliminate the artifacts from Figure 7.7b.

Caustics We use a simple splatting technique to visualize caustics. Due to the regular sam-
pling pattern of the photon map, the photon density may be too high or too low for some areas.
Moreover, unnecessary photons are emitted that correspond to areas in the photon map not cov-
ered by the reflective or refractive object. The method of Wyman and Nichols [50] handles these
problems with an adaptive photon generation.

Furthermore, the caustic algorithm would benefit from a new GPU shader model that sup-
ports tessellation. At the moment, the total number of the emitted photons and their alignment
depends on the resolution of the photon map. With DirectX 11 and its tessellation functionality,
it is possible to emit photons on demand. This means that the aforementioned adaptive caustic
method from Wyman and Nichols [50] would be more intuitive to implement and would work
faster on newer hardware architecture. Therefore, one of the next steps could be to migrate the
framework to an actual DirectX 11 implementation, which includes the shader model 5 [28].

The caustic algorithm is an image-space method and due to the depth resolution, artifacts
may arise in certain cases, e.g. the caustic is applied to a wrong diffuse surface. However, such
cases are rare and are simply handled by a manual adaption of the epsilon value, which is used in
the depth comparison. Nevertheless, an improved epsilon test would reduce the requirement for
this manual adaption. For this reason, this test could also compare the involved surface normals,
which then need to be additionally stored in the caustic buffer. Apart from that, caustics are only
generated from a spotlight source, so a future work could generate caustics also from virtual
point lights.

8.2 Conclusion

The intent of our approach was a perceptually plausible light simulation for reflective and refrac-
tive objects, including caustics in a mixed-reality environment. Our method extends differential
instant radiosity, which is able to realistically simulate the light distribution in a mixed-reality
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scene. We analyzed the additional light paths from reflective and refractive objects. This infor-
mation was utilized to compute their outgoing radiance and augment the captured scene with vir-
tual content. The differential rendering algorithm was improved with a back-projection method,
which allows applying this effect also to reflected and refracted real surfaces. As a consequence,
reflections or refractions seamlessly merge with the real scene and this improved the overall
impression of a mixed-reality environment.

Although our approach applies the differential-rendering effect whenever possible, artifacts
arise due to missing information in the back-projection. Therefore, it is important to have an
accurate approximation of the material attributes from the real objects. Furthermore, it would
be beneficial to incorporate an enhanced reflectance model that builds upon physical proper-
ties. Currently, our implementation uses a simple Blinn-Phong BRDF model. An alternative,
for example, would be the Cook-Torrance [1] BRDF model, which also considers the Fresnel
equations for a diffuse surface.

The intersection computation uses an image-space method with impostors. The impostor
algorithm provides convincing results, even though the intersection result is only an approxi-
mation. We observed that small errors are barely noticeable for the human eye, especially for
refractions. Hence, it would be interesting to perform a user study and evaluate different criteria
for a plausible perception in a mixed-reality scene.

With the growing processing power of hardware, GPU ray-tracing, or a hybrid approach
combined with a z-buffer based rasterizer, may become a valid alternative to simulate the light
distribution in a mixed-reality scene. For example, image-space approximations have problems
with concave objects and materials with a higher index of refraction, so a ray-tracing technique
would provide more precise results in such cases. However, deformable or animated virtual
objects require higher demands on the ray-tracer and on the computing power but are inherently
handled by the impostor method on the other hand. Besides, augmented-reality software on
mobile devices becomes increasingly popular. The hardware resources for these devices are
limited by their size and other factors, like the battery life time. Accordingly, real-time rendering
algorithms that produce convincing results but rely on fast approximations remain an alternative
for this sector.

In addition, this thesis described a method to simulate caustics in a mixed-reality environ-
ment. Our method generates caustics from real or virtual spotlights and this light pattern appears
on diffuse surfaces, either real or virtual. Our approach does not rely on physically correct as-
sumptions. This means that the incoming photon energy is only a crude approximation, although
the difference between an estimated caustic and a realistic caustic is mostly hard to detect for the
human eye. The aim was to generate perceptually plausible caustics, however, an improved caus-
tic algorithm should build upon physically correct assumptions, particularly in a mixed-reality
environment that tries to imitate the real lighting conditions.

To our knowledge, the presented method in this thesis is the first rasterization-based ap-
proach that covers all these light effects from reflective and refractive objects in its entirety and
is also able to fully handle the user interaction in a mixed-reality application. Our framework
handles various lighting situations for real and virtual objects and light sources. This offers a
practicable possibility that greatly improves the visual quality of a mixed-reality environment.
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APPENDIX A
Light Paths for the Back-Projection

This chapter shows all possible light paths that occur for reflective and refractive objects in a
mixed-reality environment. These paths help to identify the initial situation and to define the
composition of the final output image.

A.1 Light Paths for Reflection

This part contains the light paths for reflective objects. Figure A.2 illustrates the including
components. All components, except the camera, can be real or virtual. The camera (E) sees the
visible point (p) on the reflective object (S) and also the reflected point (prefl) on object (D).

E

Dr,v

Lr,v

Sr,v

p

prefl

Figure A.1: Light path for reflections. Contributing components are the light source (L), the
reflective object (S), the reflected object (D) and the camera (E).

Table A.1 specifies the composition of the final image Lf with differential rendering. All
components in the light path, like the light source (L), the reflected surface (D), and the reflective
surface (S) can be real (r) or virtual (v). Note that for multiple reflections we set the reflective
object (S) to real when all light bounces happen on real surfaces. Consequently this flag is virtual
(v) when only one surface is virtual. The function Lb(x) takes a surface location (p or prefl)
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and returns the corresponding value in the captured camera image, a one in the column indicates
that this value is used. The remaining columns Lrv, Lr, and Lf define the differential rendering
contribution.

Nr L D S Lb(p) Lb(prefl) Lrv Lr Lf

1 r r r 1 0 Lrefl Lrefl Lb(p)
2 r v r 0 0 Lrefl 0 Lrefl
3 v r r 1 0 Lrefl 0 Lb(p) + Lrefl
4 v v r 0 0 Lrefl 0 Lrefl
5 r r v 0 1 Lrefl Lrefl Lb(prefl)
6 r v v 0 0 Lrefl 0 Lrefl
7 v r v 0 1 Lrefl 0 Lb(prefl) + Lrefl
8 v v v 0 0 Lrefl 0 Lrefl

Table A.1: Light paths for reflection according to differential rendering.

We observe from Table A.1 that the real-virtual flag of the light source has no influence on
the usage of Lb. Moreover, the original value Lb(p) from the camera image is used when the
reflected object and the reflective objects are real (row one and three):

Drefl ∧ S (A.1)

, where the flag real (r) maps to true and virtual (v) to false. The back-projected value Lb(prefl)
is used for Lb when the visible reflected object is real and the reflective object is virtual (row
five and seven):

Drefl ∧ ¬S (A.2)

, where the flag real (r) maps to true and virtual (v) to false.
Utilizing the helper functions r(x) and r(x, y), which maps a real surface or a path between

two surface points to true, we can rewrite the back-projection as:

L′bp(p, prefl) =

{
Lb(p) if r(p, prefl) ∧ r(prefl)
L′b(prefl) otherwise

(A.3)

L′b(x) =

{
Lb(x) if r(x)

0 otherwise
(A.4)

A.2 Light Paths for Reflection and Refraction

This part contains the light paths for reflective and refractive objects. Figure A.2 shows the
including components. All components, except the camera, can be real or virtual. The camera
(E) sees the visible point (p) on the refractive object (S), the reflected point (prefl) and the
refracted point (prefr) on the diffuse objects (D).
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Dr,v
prefl

prefr

p

Lr,v

Dr,v

E

Sr,v

Figure A.2: Light path for reflections and refractions. Contributing components are the light
source (L), the reflective object (S), the reflected object (D), the refracted object (D), and the
camera (E).

Table A.2 specifies the composition of the final image Lf with differential rendering. All
components in the light path, like the light source (L), the reflected surface (Drefl), the refracted
surface Drefr, and the refractive surface (S) can be real (r) or virtual (v). The function (Lb(x))
takes surface locations (p, prefl, or prefr) and returns the corresponding value in the captured
camera image, a one indicates that this value is used. The remaining columns Lrv, Lr, and Lf
define the differential rendering contribution. For reasons of clarity we omit the Fresnel factors
in the column header. This means that Lb(prefl), Lb(prefr), Lrv, and Lr are implicitly weighted
by the Fresnel term and transmittance color filter.

As mentioned before, the real-virtual flag of the light source has no effect on the usage of
Lb. From Table A.2 follows that the original value Lb(p) is used for Lb when all participating
surfaces are real (row one and five):

Drefl ∧ Drefr ∧ S (A.5)

, where the flag real (r) maps to true and virtual (v) to false.
The back-projection of the reflected surface point depends on the set of real-virtual combi-

nations that evaluates to one for Lb(prefl). Identfiying the different cases results in:

Drefl ∧ ¬Drefr ∧ S ∨
Drefl ∧ Drefr ∧ ¬S ∨
Drefl ∧ ¬Drefr ∧ ¬S

(A.6)

, where the flag real (r) maps to true and virtual (v) to false. Simplifying this disjunctive
normal form utilizing Boolean algebra results in:

Drefl ∧ ¬Drefr ∨
Drefl ∧ ¬S (A.7)

, so Lb(prefl) is used for Lb, when the reflected object is real and one of the refracted or the
reflective surfaces is virtual.
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For the refracted object, a similar approach results in:

Drefr ∧ ¬Drefl ∨
Drefr ∧ ¬S (A.8)

, where Lb(prefr) is used for Lb, when the refracted object is real and one of the reflected or the
reflective surfaces is virtual.

Since our system also supports multiple reflections and refractions, we need to evaluate a
reflective or refractive path instead of only considering the refractive object S. Therefore we
introduce the function r(x, y) that takes the refractive object as argument x and the diffuse
surface hit as argument y, which is either a reflected or refracted surface. It returns true when
all reflective or refractive surfaces along this path are real. Otherwise, it returns false when only
one light bounce happens on a virtual surface.

In combination with the other helper function r(x), we can rewrite Equation A.5, now ac-
counting for multiple reflections and refractions, as:

r(p, prefl) ∧ r(p, prefr) ∧ r(prefl) ∧ r(prefr) (A.9)

, rearrange Equation A.7 as:

r(prefl) ∧ (¬r(p, prefl) ∨ ¬r(prefr)) (A.10)

and Equation A.8 as:
r(prefr) ∧ (¬r(p, prefr) ∨ ¬r(prefl)) (A.11)

The usage of the original value in the camera image and the back-projected camera values is
mutually exclusive. Either we use Lb(p) or a combination of Lb(prefl) and Lb(prefr). Formally
this is written as:

L′bp(p, prefl, prefr) =

Lb(p) if
r(p, prefl) ∧ r(p, prefr)∧
r(prefl) ∧ r(prefr)

L′b(prefl) + L′b(prefr) otherwise

(A.12)

L′b(x) =

{
Lb(x) if r(x)

0 otherwise
(A.13)

A.3 Light Paths for Caustics

This part contains the light paths for caustics. Figure A.3 illustrates the including components.
All components, except the camera, can be real or virtual. The photon is emmited from the light
source (L) and is scattered on the reflective or refractive object (S). The camera (E) sees the
photon hit point (phit) on the diffuse surface object (D).

Table A.3 specifies the contribution to the differential rendering buffers Lrv and Lr. All
components in the light path, like the light source (L), the diffuse surface (D), and the reflective
or refractive surface (S) can be real (r) or virtual (v).

Table A.3 shows that the incoming radiance on a diffuse surface is only added to the real
differential buffer Lr when all contributing components are real.
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E

Dr,v

Lr,v

Sr,v

phit

Figure A.3: Light path for caustics. Contributing components are the light source (L), the
reflective or refractive object (S), the diffuse object (D) and the camera (E).

Nr L D S Lrv Lr

1 r r r Lphoton Lphoton
2 r v r Lphoton 0
3 v r r Lphoton 0
4 v v r Lphoton 0
5 r r v Lphoton 0
6 r v v Lphoton 0
7 v r v Lphoton 0
8 v v v Lphoton 0

Table A.3: Light paths for caustics according to differential rendering.
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