

FÜR INFORMATIK

Faculty of Informatics

Diplomarbeitspräsentation

Reflections, Refractions and Caustics in a Mixed-Reality Environment

Masterstudium: Visual Computing Christoph Johann Winklhofer

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich: Computergraphik Betreuer: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer Mitwirkung: Dipl.-Ing. Mag.rer.soc.oec. Martin Knecht, Bakk.techn

Mixed-Reality Environment	Problem Statement
In a mixed-reality environment, virtual objects are merged into a real scene. This augmentation offers great possibilities to present content in innovative ways.	 Integrate light effects from reflective and refractive objects in a mixed-reality environment.

The emphasis of this thesis lies on a perceptually plausible light simulation for reflective and refractive objects in a mixedreality environment, so virtual objects should seamlessly merge with the real environment.

• Simulate caustics, which is a light focusing due to scattering.

• Compute these complex lighting effects in real time to handle the user interaction without delay.

Apply the differential rendering effect also to reflected and refracted real surfaces.

Differential Rendering for Reflected and Refracted Surfaces

- Differential rendering (DR) is the fundamental method to merge virtual objects with a real scene.
- Reduces the error from the material approximation.
- Computes two light solutions: for real objects

for real and virtual objects and adds their difference to the masked camera image.

• The problem is that the color value of the visible point p' has no relation to the reflected point p_{refl} in the camera image. The original DR algorithm uses only the estimated material (see the reflection of the desk in the teapot).

- Re-use information from the camera image by a back-projection of p_{refl}.
- Contributes to the overall impression.

Method

Back-project reflected point (p_{refl})

• Compute the two light solutions: for real and virtual only for real objects.

and adjust the camera image when possible.

 Substitute missing geometry with an environment map.

• Compose the final image as

Results

A real mirror reflects a virtual sphere. The light bounces multiple times (about 10 fps*).

Contributions

- Extension for differential instant radiosity: integrate reflective and refractive objects.
- Handles various lighting situations: for real and virtual objects and light sources.
- Plausible simulation of caustics: until recently ignored in mixed-reality systems.
- Back-projection: Use differential rendering for reflections and refractions.

$L_{f} = L_{b} + L_{env} + L_{rv} - L_{r}.$

 Differential rendering is also applied to reflected and refracted real objects.

Implementation

• Reflections, refractions and caustics were integrated into the RESHADE framework:

light simulation for diffuse objects, based upon differential instant radiosity.

• Our method runs entirely on the GPU and achieves interactive to real-time frame rates.

• These effects were computed with three image-space methods:

Reflective impostors, which reduce the intersection complexity.

Refractions on the entry and the exit point of the ray.

A fast splatting method to generate the caustic pattern.

A virtual colored glass on a real desk. The virtual light is scattered and appears as a caustic on the real desk (about 8 fps*).

*fps are frames per second on our test platform: CPU: AMD-X2 3.1 GHz, GPU: NVIDIA GTX-260 896 MB

Kontakt:christoph.winklhofer@gmx.at