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  Take Away Points 

     1.    Although eye-tracking can tell us  where  a user is looking, understanding  what  a 
user is looking at can be more insightful in game design  

    2.    Different levels of abstraction can be used to represent a stimulus in gaze analysis, 
ranging from pixels, shapes and polygons to objects and even semantics  

    3.    By gaining access to the internal representation of scenes, it is possible to map 
gaze positions to objects and object semantics      

    25.1   Introduction 

 In the design of interactive applications, notably games, a recent trend is to understand 
player behavior by investigating telemetry logs as is the focus of many chapters in this 
book or by integrating the use of psychophysics as is the subject of Chaps.   26     and   27    . 
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In addition to these valuable methods, measuring where players are likely to focus 
could be a very useful tool in the arsenal of game designers. This knowledge can be 
utilized to help game designers decide how and where to allocate computing resources, 
such as rendering and various kinds of simulations of physical properties. This leaves 
as many computing cycles as possible free to carry out other tasks. Therefore, the 
perceived realism of a game can be increased by perceptually optimizing calculations 
that are computationally intensive, including physically based lighting, animations (e.g. 
ray-tracing Cater et al.  2003   , crowds of characters McDonnell et al.  2009  ) , physically 
correct simulations of the interaction of materials (e.g. collision detection (O’Sullivan 
 2005  ) , natural behavior of clothes or  fl uids etc.). Level-of Detail-variants of simula-
tion or rendering techniques can be used in regions which are less attended by the 
player, while accurate simulations can be used within the expected focus of a user. 
Verifying or improving game mechanics and AI could be other uses. 

 The study of gaze behavior can provide insight about the visual attention of players 
and thus assist game designers in identifying problems with gameplay due to a 
misguided visual perception of the game environment. Moreover, knowing what 
a player does or does not notice can be used to control the dif fi culty of a game. For 
example, the designer may choose to make important task-relevant objects less 
apparent in the user’s attentional  fi eld to increase the dif fi culty of the game, or 
accentuate them to decrease the dif fi culty. Other potentially useful computer graphics 
applications proposed so far include focus prediction for tone-mapping of high-
dynamic range images (Rahardja et al.  2009  ) , the selection of the optimal focal 
plane for depth-of- fi eld effects (Hillaire et al.  2008  )  and the minimization of vergence-
accommodation con fl icts in stereo 3D to reduce visual fatigue (Lang et al.  2010  ) . 
Further applications include the natural animation of eye-movements in agents 
(Itti et al.  2006  )  and estimating or increasing the visibility of in-game product place-
ments (Chaney et al.  2004 ; Bernhard et al.  2011  ) . 

 Eye-tracking can be used as a tool to study eye movements or gaze behavior 
(Duchowski  2003  ) . There are many application areas for the use of eye tracking and 
it has previously seen extensive use in psychology, neuroscience, human factors, and 
human computer interaction. Eye tracking devices, commonly referred to as eye track-
ers, were intrusive and cumbersome to use at the beginning, but recent advancements 
in eye tracking technology have made it possible to use them effortlessly without 
distracting users. Although low-cost solutions have emerged, more robust and accu-
rate eye tracking systems are still very expensive. Nevertheless, even with today’s 
technology the eye tracking process still suffers from various limitations which have 
an impact on accuracy (Hansen and Ji  2010  ) . Some of these issues are related to the 
calibration process, the ability to eye track different users, the fact that the eye is never 
completely still, and the extraction and interpretation of eye movements. 

 When an eye tracker is used to study gaze behavior in a computer game, the 
output data is essentially a sequence of gaze points de fi ned by a 2D position on the 
display screen and a timestamp. With this information, one can establish  where  gaze 
was deployed in screen-space over time. Analysing gaze data for static stimuli can 
be time consuming, but it is even more dif fi cult for dynamic stimuli (e.g. virtual 
environments such as games) (Ramloll et al.  2004 ; Stellmach et al.  2010  b    ) . 
A useful representation of gaze data are gaze point density distributions, which can 
quantify the amount of attention deployed to each region in the display. When a 
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stimulus rendered to the display is static or its changes are very limited (e.g. in web 
pages), it is suf fi cient to compute gaze point density distributions in screen space. 
A prominent tool to illustrate screen-space gaze density distributions is a  fi xation 
map (Wooding and David  2002  )  or heatmap. A heatmap visualizes gaze point densi-
ties with colors such that warm colors encode high densities and cold colors low 
densities. An example of a heatmap can be seen in Fig.  25.1 .  

 For computer games, we have to assume a dynamic stimulus, where temporal 
changes have a signi fi cant impact on the spatial distribution of gaze points on the 
screen. In this case one cannot accumulate gaze densities in screen space over long 
time periods because the viewpoint and the objects in the scene may considerably 
change their positions from one frame to the next. When spatial properties such as 
the viewpoint or object positions are changing frequently, it may not necessarily be 
appropriate to analyze  where  a user is looking. Instead, if we consider that semantic 
properties of scene objects are changing far less often, a more useful approach is 
to study  what  a user is looking at, especially since the meaning of game objects is 
supposed to have a major impact on the attention of a user. 

    25.1.1   Measuring “Where” But Analysing 
“What” Users Are Looking At 

 To analyze in a dynamic scene what a user is looking at, we need to record the 
changes in the display during the eye-tracking study. In the subsequent analysis, 
the recorded data is then used to reconstruct the frames depicted on the display in 

  Fig. 25.1    Example heatmap from one participant viewing game stimuli for 15 s. The visual 
representation of clustered areas indicate locations of a higher number of  fi xations       
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temporal alignment with the corresponding gaze data. Thus, gaze analysis tools 
provide screen recording functions which capture the images rendered to the dis-
play during the experiment. The screen recording can then be played back as a 
video during the analysis stage. A synchronous visualization of the recorded gaze 
data superimposed on the playback of the corresponding stimuli provides an intui-
tive clue about the behavior of a particular participant. But with this functionality 
alone, one can just study the behavior of a particular subject in particular situa-
tions. In dynamically changing games, it is unlikely that different subjects are pre-
sented the same stimuli while playing a game. To complicate things further, even if 
the participant partakes in a number of gaming sessions, it is unlikely that the same 
sequence of in-game events will be triggered to generate the same stimuli. 
Moreover, encoding  what  a participant might actually be looking at mainly depends 
on the person who performs the analysis. For many purposes, an objective statisti-
cal evaluation, such as computing the gaze density distribution over different 
objects, might be preferable. 

 Commercial gaze analysis tools can accumulate gaze-points for manually de fi ned 
regions of interest. To outline objects of interest in videos, the experimenter has to 
de fi ne regions of interest (e.g. bounding rectangles or polygons) around the objects 
on a frame-by-frame basis. This can be a tedious and time consuming procedure. 
To some extent, tools from computer vision, such as segmentation algorithms, could 
assist in this process. However, translating pixel regions to semantically encoded 
scenes remains a dif fi cult problem in computer vision. 

 Fortunately, obtaining a semantic representation of the stimulus is signi fi cantly 
easier for computer games, where information about any game entity can be 
extracted from the game application directly. Game engines usually render each 
image from an object-based representation of a scene, from which semantic infor-
mation can be obtained to a considerable extent. Recording the game engine’s inter-
nal representations of game states allows the conservation of object-space 
information of the stimuli, which is otherwise very dif fi cult to extract when only 
rendered images are available. Therefore, we could use these facilities to map gaze 
points back to the 3D objects that were observed during a gaming session. We 
assume that objects are modeled as semantically meaningful clusters of polygons, 
thereby allowing this approach to link gaze data to object semantics. This chapter 
outlines such an approach in more detail.  

    25.1.2   Overview 

 The remainder of the chapter is organized as follows. Section  25.2  introduces the 
reader to relevant concepts of human visual attention and eye movements. Eye track-
ing methodology is discussed in Sect.  25.3 . The section also brie fl y describes some 
of the related work in studying visual attention and gaze behavior in computer games. 
Section  25.4  presents some related work in creating 3D gaze data visualizations and 
logging game data. Section  25.5  describes a unique pipeline that can be used to study 
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gaze behavior in games, while Sect.  25.6  details the underlying algorithms for 
mapping  fi xations to objects. Section  25.7  then discusses ways to use such mappings 
to collect statistics and draw conclusions. Representative examples of using this 
pipeline are presented in Sect.  25.8  and some limitations of the work in Sect.  25.9 . 
Finally, Sect.  25.10  summarizes and discusses the work and highlights some of the 
key issues and important areas of further research in this emerging area.   

    25.2   Visual Attention and Eye Movements 

 Humans have different sensory systems which convert information from the environ-
ment into neural signals that are then interpreted by the brain. To derive meaning, the 
brain implements processes that select, organize, and interpret the information from 
our senses. To enable living in complex environments, humans rely strongly on 
vision, which consists of two broad components. The  fi rst is  perception , which is 
pre-attentive. The second is  cognition , which involves high-level processes, such as 
thought, reasoning, and memory (Palmer  1999  ) . The delineation between these two 
is not sharp, and signi fi cant feedback and cross-talk exists between the two. When 
carrying out a task, the human visual perception aggregates low-level features into 
higher level representations, thus informing cognitive processes while affecting gaze 
direction. In turn, cognitive processes can guide perception, for instance by actively 
focussing attention on a particular part of a scene (Yarbus  1967  ) . 

 Since the information-processing capacity of our brain is limited, incoming 
information has to be  fi ltered so that we are able to process the most important sen-
sory inputs. Visual attention is the control mechanism which selects meaningful 
inputs and suppresses those of low importance. Our eyes can sense image details 
only in a 2° foveal region, due to a rapid falloff of spatial acuity towards the periph-
ery of the fovea. To reposition the image onto this area, the human visual system 
uses different types of eye movements. Saccades are fast and ballistic eye move-
ments used to reposition the fovea. These movements are both voluntary and 
re fl exive and last between 10 and 100 ms. There is virtually no visual information 
cognitively processed during a saccade (Duchowski  2003  ) . Between eye move-
ments,  fi xations occur, which often last for about 200–300 ms (Snowden et al.  2006  ) . 
During a  fi xation, the image is held approximately still on the retina; the eyes are 
never completely still, but they always jitter using small movements called tremors 
or drifts (Snowden et al.  2006  ) . According to Jacob and Karn  (  2003  ) , a scan path is 
a spatial arrangement of a  fi xation sequence. A common way to visualize a  scan 
path , or  gaze plot , is to overlay a snapshot of the stimuli with  fi xations drawn as 
circles, as shown in Fig.  25.2 . These circles are interconnected with lines that repre-
sent the saccadic eye movements. Their radius can be adjusted to indicate the dura-
tion an observer has been looking at that particular point.  

 The cognitive psychology and neuroscience literature contains a vast array of 
reports on models that try to predict the mechanisms of attention (Wolfe  2000  ) . The 
most established is a model which divides attention into bottom-up and top-down 
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processes (James et al.  1890  ) . In bottom-up processing, the visual stimulus captures 
attention automatically without volitional control (Itti et al.  1998  ) . Low-level, 
bottom-up features which in fl uence visual attention include contrast, size, shape, 
color, brightness, orientation, edges, and motion. In contrast, top-down processes 
focus on the observer’s goal; they depend on the task. Low-level features in the 
environment that trigger pre-attentive focus are called  salient . Features that attract 
attention as a result of performing a speci fi c task are called  task relevant . However, 
bottom-up and top-down processes cannot be separated perfectly, and there is much 
interaction between both (van Zoest and Donk  2004 ; Wolfe  2007  ) . 

 Computational models have been developed which aim to predict which aspects 
of an image attract visual attention. The  fi rst models concentrated on modelling 
gaze behavior using low-level features, such as color, intensity and orientation 
(Treisman and Gelade  1980 ; Koch and Ullman  1985 ; Itti et al.  1998  ) . Such models 
compute for each pixel of an image a measure of saliency, the result of which is 
called a  saliency map . However, it has been shown that task-related gaze behavior 
can dominate over saliency (Land et al.  1999  ) . Per-pixel measures of task relevance 
have more recently appeared, and these are called  task maps  (Cater et al.  2002 ; 
Navalpakkam and Itti  2005 ; Sundstedt  2007  ) . Established theories about visual 
search assume that low-level features characteristic of target objects (e.g. color 
or intensity) are enhanced and guide the search (Wolfe  1994  ) . A similar intuitive 
interpretation is that top-down control raises the saliency of important objects (Oliva 

  Fig. 25.2     Scan Paths : example scan path from an experiment (Bernhard et al.  2011  )  with a 3D 
First Person Shooter game featuring a dynamic camera. The  numbered circles  indicate successive 
 fi xations connected by  lines , which denote  saccades . The radius of each circle in the latter 
representation is proportional to the relative duration of each  fi xation       
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et al.  2003 ; Navalpakkam and Itti  2005 ; Elazary and Itti  2008  ) . However, though 
there are reasonable theories for top-down mechanisms concerning visual search 
tasks, they do not directly explain how attention is deployed in complex and chang-
ing tasks, such as those occurring in computer games. Eye-tracking studies are a 
reasonable method for investigating top-down attention from the opposite perspec-
tive, that is, analyzing how visual attention behaves under particular complex stim-
uli and tasks. The following section will describe eye tracking methodology in more 
detail and how it has been used in relation to computer games.  

    25.3   Eye-Tracking Methodology and Games 

 Eye-tracking is a technology developed to monitor eye movements allowing us to deter-
mine where an observer is looking at a given time. An eye tracker is used to sample the 
state of the human eyes. For each sample, a  gaze point  (a 2D location in screen space) is 
estimated. This information can give us insight into what attracted the attention of an 
observer or what they found interesting (Duchowski  2003  ) . Eye trackers measure the 
physical rotations of the eyes to determine the gaze direction. Gaze has also been referred 
to as the vector between the eye and the gaze point (Hornof et al.  2003  ) . This informa-
tion can be recorded and used in of fl ine analysis or for real-time interaction. 

 The most common system for capturing eye movements is the video-based cor-
neal re fl ection eye-tracker (Duchowski  2003  ) . The main advantage with this method 
is that it can be non-intrusive and does not necessarily require the user to wear any-
thing. In video-based eye tracking, a camera is focusing on one or both eyes while 
the eye movements are being recorded. The light source re fl ection on the cornea 
(caused by infrared light) is measured relative to the location of the pupil’s center. 
These two points are used as reference to compensate for head movements. This is 
the way it works for remotely installed light sources. 

 Before operating a video-based eye tracker, a calibration process is necessary to 
 fi ne-tune it for each individual user (Poole and Ball  2005  ) . A common calibration 
method is to measure gaze at prede fi ned strategically positioned stimuli on screen, 
such as the corners of a grid (Duchowski  2003  ) . Eye trackers normally produce a 
large amount of raw data since humans perform several saccades per second. A typi-
cal gaze data sample includes for each eye a 2D gaze point, the pupil’s 2D location 
in the camera image, the distance of the eye from the camera, the pupil’s size, a 
timestamp in milliseconds and a unique sample identi fi cation number (Tobii  2006  ) . 
For more information regarding gaze data samples, please see the overview by 
Ramloll et al.  (  2004  ) . The raw data needs to be  fi ltered and reduced before it can be 
analyzed. In this process it is common to identify  fi xations and saccades (Rothkopf 
et al.  2004  ) . Sometimes blinks are also identi fi ed as separate events. The identi fi cation 
of  fi xations is a complex problem and there is no unique method for  fi ltering the raw 
data (Salvucci et al.  2000 ; Hansen and Ji  2010  ) . 

 Eye-tracking is often used under the assumption that there is a strong correlation 
between the focus of gaze and the actual focus of visual attention. Indeed it is 



550 V. Sundstedt et al.

possible to focus mentally on stimuli in the peripheral visual  fi eld, outside the foveal 
region. In this case, the internal visual-attention system (covert visual attention) is 
focused on a particular place, whereas eye-movements (overt visual attention) are 
directed to other places. For many applications, such as rendering 3D environments, 
the prediction of overt attention may be suf fi cient to perceptually optimize render-
ing of speci fi c objects since regions outside the fovea are not perceived in high 
detail. In such cases the focus of attention may be estimated by a predictor algo-
rithm, while eye-tracking is used only to infer the predictor in the  fi rst place and to 
evaluate the performance of predictor heuristics (Marmitt and Duchowski  2002 ; 
Peters and Itti  2008  ) . 

 Jacob and Karn  (  2003  )  give a comprehensive overview of eye tracking in human-
computer interaction research. This is a review of work regarding the application of 
eye movements to user interfaces both for analyzing them (usability measurement) 
and as a control mechanism (input). Jacob and Karn summarise a range of usability 
studies and discuss what users, tasks, and eye tracking metrics were used. Some 
mentioned eye tracking metrics include  fi xations, gaze duration, area of interest, 
scan path, etc. In addition to estimating the position of the foveal focus, various 
other features useful for analysis, such as  fi xation counts or amplitudes of saccades, 
can be extracted from eye-tracking data (Duchowski  2003  ) . 

 Wooding and David  (  2002  )  introduced the concept of  fi xation maps as a means 
of quantifying eye-movement traces. Wooding also explored the concept of similar-
ity between eye-movement patterns from different individuals and to which degree 
their  fi xations covered the image. Overlapping  fi xations are visualised using a three-
dimensional surface plot, also referred to as a landscape or terrain based on the fact 
that the value of any point indicates the height or amount of property (discrimina-
tion/detection/perception) at that point. Wooding pointed out that the  fi xation dura-
tion can be taken into account by creating a dwell map, which also represents not 
only the areas  fi xated, but also the time these were  fi xated upon. Notably  fi xation 
duration, which is used in this chapter to weigh  fi xation counts, is suggested as a 
good indicator for estimating how strongly cognitive functions, such as object 
identi fi cation (De Graef et al.  1990  ) , memory (Henderson et al.  1999  )  and monitor-
ing of task-relevant objects (Land et al.  1999  )  are involved. The relationship between 
human gaze control and cognitive behavior in real-world scene perception is 
reviewed in (Henderson  2003  ) . 

 There are various application areas, including computer graphics, virtual reality, 
and games, where saliency and task models have been used with varying degrees of 
success. In graphics for example, these models have been used to inform global 
illumination algorithms (Yee et al.  2001 ; Haber et al.  2001 ; Cater et al.  2003 ; 
Sundstedt et al.  2007  ) . Luebke et al.  (  2000  )  and Murphy and Duchowski  (  2001  )  
demonstrated that geometric detail in the periphery of the visual focus can be 
reduced without decreasing the perceived rendering quality by using an eye-tracker 
for gaze-contingent rendering optimizations. Komogortsev and Khan attempted to 
predict the visual focus of multiple eye-tracked viewers in order to perform percep-
tually optimized video and 3D stream compression (Komogortsev and Khan  2006  ) . 
Gaze behavior was also studied when certain tasks had to be carried out. To analyze 
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gaze behavior in natural tasks, several studies were conducted with easy tasks 
ranging from handwashing to sandwich-making (Hayhoe et al.  2003 ; Canosa et al. 
 2003 ; Pelz and Canosa  2001  ) . 

 There are different ways of analyzing eye tracking data stemming from computer 
game players. First, the game can be played and eye tracked in real-time, storing the 
relevant information for later analysis. The second option is to show pre-recorded 
videos from the game, but then the observer is only passively observing the game 
and does not interact with the application, which might affect the eye movements. 
Finally, eye tracking could be used to analyze screenshots/still images from a game. 
The  fi rst option is the most  fl exible since it allows for player interaction and a more 
natural gaming scenario. 

 Recent studies suggest that in adventure games,  fi xation behavior can follow 
both bottom-up and top-down processes (El-Nasr and Yan  2006  ) . Visual stimuli are 
reported to be more relevant when located near objects that  fi t players’ top-down 
visual search goals. In  fi rst-person shooter games, as opposed to adventure games, 
gaze tends to be more focused on the center of the screen (Kenny et al.  2005 ; El-Nasr 
and Yan  2006 ; Bernhard et al.  2010  ) . In an experiment involving active video game 
play, nine low-level heuristics were compared to gaze behavior collected using eye 
tracking (Peters and Itti  2008  ) . This study showed that these heuristics performed 
above chance, and that motion alone was the best predictor. This was followed by 
 fl icker and full saliency (color, intensity, orientation,  fl icker, and motion). 
Nonetheless, these results can be improved further by incorporating a measure of 
task relevance, which could be obtained by training a neural network on eye track-
ing data matched to speci fi c image features (Peters and Itti  2008  ) . 

 Starker and Bolt proposed using an eye-tracker to guide synthesis of speech in a 
way that narration refers to the current object of the user’s interest (Starker et al. 
 1990  ) . Although eye-tracking is used for real-time user-to-system feedback, their 
models of interest map gaze to objects, and successively the user’s level of interest 
for each object is inferred. This resembles our methodology of inferring objects’ 
importance by mapping eye-tracking data to semantic properties. In recent years, an 
increased number of eye-tracking experiments have been conducted using virtual 
environments or computer games (Rothkopf et al.  2007 ; Kenny et al.  2005 ; El-Nasr 
and Yan  2006 ; Jie et al.  2007 ; Sundstedt et al.  2008  ) . These studies support the 
hypothesis that in conditions where a task has to be carried out, gaze behavior is 
mainly dominated by task relevance rather than salient features in the stimuli, as 
task-relevant objects are continuously monitored by the visual system (Land et al. 
 1999  ) . Note that once a target is found and monitored during a task, the models for 
top-down control from visual search are no longer appropriate. 

 In the last few years, there has been an increasing amount of work done in the  fi eld 
of studying visual attention in games and using gaze to control games. Sundstedt 
 (  2010  )  and Isokoski et al.  (  2009  )  give more extensive overviews of visual attention 
studies in gaming and the use of eye tracking as an interaction device. El-Nasr 
and Yan, for example, studied the differences between players’ eye movement pat-
terns in two 3D video games (El-Nasr and Yan  2006  ) , assessing whether the eye 
movement patterns in a game follow top-down or bottom-up processes. They found 
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that exploiting visual attention in games can help reduce frustration and increase 
engagement (El-Nasr and Yan  2006  ) . Kenny et al. presented a study which investi-
gated eye gaze data during a  fi rst-person shooter (FPS) game in order to  fi nd which 
information was more important in distributing interactive media algorithms (Kenny 
et al.  2005  ) . Sennersten studied eye movements in an action game tutorial and was 
interested in how players direct their gaze, in particular what, where and when they 
 fi xate on speci fi c objects (Sennersten  2004  ) . Sennersten and Lindley  (  2009  )  used a 
real-time gaze object logging system to investigate visual attention in an FPS game. 

 McDonnell et al. studied a variety of humans in crowds to determine which parts 
of the characters people tend to observe most (McDonnell et al.  2009  ) . Jie and Clark 
developed a 2D game in which the strategy and dif fi culty level was controlled based 
on the eye movements of the player (Jie et al.  2007  ) . Hillaire et al. developed an 
algorithm to simulate depth-of- fi eld blur for  fi rst-person navigation in virtual envi-
ronments (Hillaire et al.  2008  ) . Later, they also used a model of visual attention to 
improve gaze tracking systems in interactive 3D applications (Hillaire et al.  2010  ) .  

    25.4   Understanding Playing Behavior Based on Eye Tracking 

 Understanding player behavior is important for both game designers and research-
ers, for instance in evaluating player experience. There exist several ways to analyze 
such behavior, each potentially revealing different aspects of the psychology 
involved in playing computer games. This chapter focusses exclusively on one such 
approach, namely the study of eye-tracking data obtained while participants are 
playing games (Sundstedt  2007,   2008 ; Stellmach  2007 ; Nacke et al.  2008 ; Bernhard 
et al.  2010 ; Bernhard et al.  2011  ) . 

 Gaze analysis on the basis of eye-tracking data (Ramloll et al.  2004  )  yields  fi ne-
grained information regarding objects and events that are typically attended to in 
games (Sundstedt  2007 ; Stellmach  2009  ) . We see this as a valuable tool that can be 
employed during the design cycle of novel games, as it can reveal where players are 
focussing their attention. 

 One of the earlier experiments in this realm maps  fi xation points to objects in a 
pseudo-3D game scenario, which is then used to answer the question as to whether 
the presence or absence of a task in fl uences  fi xation behavior (Sundstedt  2007 ; 
Sundstedt et al.  2008  ) . They record the full game state, enabling the game engine to 
later replay all actions, thereby facilitating the mapping of  fi xation points to poten-
tially moving objects. Later, it was shown that this approach extends to full dynamic 
3D scenes (Bernhard et al.  2010  ) , con fi rming the utility of gaze-to-object mapping 
techniques. 

 The  fi ndings of Sennersten and Lindley provide further corroboration (Sennersten 
and Lindley  2008  ) , showing that analyzing gaze in terms of Volumes of Interest 
(VOIs) or Objects of Interest (OOIs) provides insights that are dif fi cult to obtain 
with screen-space techniques only. Sennersten and Lindley ( 2008  )  integrate the 
HiFi game engine with an eye tracker to map gaze coordinates to objects in a scene. 
As mentioned previously, Sennersten and Lindley (Sennersten and Lindley  2009  )  
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used a gaze object logging system to investigate visual attention in game 
environments. 

 Stellmach et al.  (  2010    c  )  discuss the trends and requirements for gaze visualiza-
tion techniques. They describe a user study with experts in the  fi eld and outline 
which features are desirable for the visualization of gaze data. One of their sugges-
tions is to aggregate different visualizations. Speci fi cally, they describe three gaze 
visualization techniques for superimposing aggregated  fi xation data over 3D stim-
uli: (a) projected, (b) object-based, and (c) surface-based attentional maps. These 
are brie fl y elaborated here. 

  Projected  attentional maps are 2D planar overview representations of 3D gaze 
data. They can be informed by a 2D Gaussian distribution in a manner similar to 
contour plots (Wooding and David  2002 ; Stellmach et al.  2010    c  ) . If the view 
changes, the projected attentional maps have to be recalculated. The performance 
does not depend on the size of the scene or the number of objects, and it is acceler-
ated with less gaze data. 

 The  object-based  approach assigns a color value to each 3D object to describe its 
visual attractiveness (e.g. visual attention). The performance of this method is inde-
pendent of the viewpoint and is only affected by object and gaze data quantities. 
This bears similarities to the aforementioned gaze-to-object mapping techniques. 

 The  surface-based  approach displays gaze data as 3D heat maps on the surfaces 
of the model. A gaze ray is mapped to the triangles of the mesh and a 3D Gaussian 
is used to splat gaze information across the mesh surface. Here, the mesh needs 
to be carefully chosen to obtain smooth attentional maps (Stellmach et al.  2010  b    ) . 
The surface-based attentional maps are the most time consuming to compute and 
performance is affected by the amount of gaze data and model complexity. Similar 
to the object-based approach, it is also independent of viewpoint modi fi cations. 

 The main contribution of Stellmach et al.  (  2010  b    )  is toward better visualization 
techniques for 3D stimuli via the three mentioned attentional maps, albeit without 
the goal of improving gaze-to-object mapping techniques. These 3D attentional 
maps aim to assist in visually better comprehending and inspecting the various 
aspects of gaze data (e.g.  fi xations duration, count, frequency). They may also be 
combined to provide visualizations at different levels of detail. The work was 
conducted with a static 3D scene and a dynamic viewpoint, but does not include 
dynamic objects. 

 Stellmach et al.  (  2010a      )  extend upon this work by experimenting with 3D scan 
path visualizations. They also introduce the models of interest (MOI) timeline, 
which can help to determine which object was viewed at a speci fi c instant, thereby 
serving the same purpose as the recording of game states (Sundstedt  2007 ; Sundstedt 
et al.  2008  ) . Additionally, they visualize the camera path with traces pointing at 
each gaze position. 

 Alternatives to the study of eye-tracking data are also in active development. We 
see these alternatives as complementary sources of input. For instance, in-game 
events may be logged for the purpose of analysing the nature and frequency of 
events occurring during game-play (Nacke et al.  2008 ; Nacke et al.  2011 ; Sasse 
 2008  ) , although this approach does not take into account the physiological responses 
from the player. Nacke et al.  (  2011  )  present a logging and interaction framework 
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(LAIF) which enables those inexperienced with game design and programming to 
develop games and analyze them in a research environment. The work includes a 
user study based around a 2D gaze-interaction game which is playable with mouse 
input. Sasse  (  2008  )  gives an extensive overview of logging techniques for games as 
well as presents further information regarding the game used in the LAIF frame-
work (Nacke et al.  2011  ) . 

 Finally, questionnaires could be used to gather additional information, focussing 
on the emotional state of the player. Nacke et al.  (  2008  )  present a psychophysiologi-
cal logging framework (Stellmach  2007  )  and discuss how the input from such a 
system can be synchronized with automatic scoring of game events. Questionnaires 
are useful for assessing the extent of spatial presence as well as gameplay experi-
ence (Nacke et al.  2011  ) .  

    25.5   Overview of a Practical Pipeline to Measure Gaze 
Behavior in Games 

 Understanding what a game player is looking at during gameplay may help improve 
the design of a game. However, traditional tools and techniques, typically screen 
recording and playback, give very limited information. Matching  fi xation points to 
 pixel  data would allow us to understand game play in terms of low level features 
such as pixel color and contrast. To go beyond that, a number of different approaches 
that focus on mapping gaze to the underlying  objects  that give rise to the observed 
visuals have recently emerged (Sundstedt et al.  2008 ; Sennersten et al.  2008 ; 
Stellmach  2009  ) . This mapping can be performed at different levels using various 
algorithms, as discussed in Sect.  25.6 , but it does not reveal any information regard-
ing the semantics of game play. In this section, we will describe the principles of 
designing a pipeline that enables not just correlating gaze to geometric objects, but 
also going a step further, allowing to map gaze to semantic objects, thus affording 
the opportunity to learn how users interact with games. An overview of the generic 
pipeline described in this section is shown in Fig.  25.3 .  

    25.5.1   Adapting Games to Study Gaze Behaviour 

 To allow gaze data to be mapped to geometry, the game needs to be designed in a 
speci fi c manner. When designing games, it is standard practice to use structured and 
systematic methods of naming, categorizing and grouping content. For example, in 
an FPS game, a category of “enemies” may be used to group together different 
classes of enemy types. An enemy class may be “soldier” or “aircraft”. Furthermore, 
multiple individual instances of enemies belonging to the same class are common-
place in a game (e.g. “soldier_20” or “aircraft_12”). Similarly, game content can be 
enriched with other useful properties such as object color or shape features (e.g. 
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round,  fl at, etc.), status (e.g. a door may be open or closed, an enemy unit may be 
dead or “activated”). This wealth of information present in the game content itself 
provides a higher level description of the game and can be captured and processed 
to infer meaning of the user’s gaze behavior later. 

 Further, games should be modi fi ed to provide game recording and playback func-
tionality. Recording is responsible for capturing and storing the state and characteristics 
of the entire game for later of fl ine use. To implement recording functionality, the 
game’s scenegraph can be traversed and sampled at discrete time intervals. The best 
choice is to use the rendering loop of the game and capture the desired parameters 
whenever a new frame is rendered and dispatched to the screen. In turn, the playback 
functionality will then be able to use a recorded gaming session to load all the game 
state parameters necessary into the game engine and reconstruct the stimuli at a particu-
lar sample. As computing  fi xation points is an of fl ine process, this functionality will 
allow us to determine which objects were attended to.  

    25.5.2   Preparation 

 Preparing for an eye-tracked gaming session is similar in principle to standard eye 
tracking studies (Sundstedt et al.  2009  ) . However, games can be computationally 
demanding, thus requiring better hardware than that used when eye tracking simpler 

  Fig. 25.3    Overview of the generic pipeline described       
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applications such as web browsing or of fi ce applications. Most eye trackers can be 
operated remotely, allowing one workstation to be used exclusively for eye tracking, 
while a second computer is used for handling the game. Note however, that special 
attention must be paid when synchronizing the eye tracking data and the recorded 
stimuli, since clocks between two computers are unlikely to be in sync. Selecting a 
non-obtrusive (e.g. not worn by the player) eye tracker enables users to focus on the 
game itself, in contrast to head-mounted devices. 

 The higher the sampling rate an eye tracker can achieve the better, since fast 
eye movements can be more accurately recorded. It is wise to use an eye tracker 
that samples eye gaze at an equal or higher frequency than the display’s refresh 
rate. This allows us to have more than one gaze sample per frame, making gaze-
to-stimuli correlation more robust over temporal windows. Some commercial eye 
trackers currently offer sampling rates that exceed 100 Hz, while the majority of 
standard LCD displays operate at 60–75 Hz in native resolutions. Lighting condi-
tions of the viewing environment should remain constant. Eye tracking data qual-
ity can be improved by the use of a chin rest, used to stabilize the head, however 
in most game-related studies the use of a chin rest is discouraged, because this 
alters the natural behavior of game players, which usually involves changes in 
body posture and head position in relation to the screen. Any instructions should 
be provided to the player a priori. 

 Finally, it is important to test the eye tracking hardware and be aware of the limi-
tations it may have. For example, in some eye tracking devices, data quality degrades 
as the gaze moves away from the center of the screen and toward the corners. Also 
attention should be paid to participants wearing eye-correction glasses, occluding 
eye lashes and eye lids, lazy eyes, small and large pupils or pupils with low contrast. 
In addition, gaze behavior of participants may be affected if the setup does not 
resemble that of a natural gaming situation. When performing studies, care should 
be taken that participants may presume a certain task in computer games, even if 
none is provided, as this could alter their gaze patterns. Finally, participants should 
not partake in the same experiment more than once to avoid learning effects.  

    25.5.3   Data Acquisition 

 When studying gaze behavior in computer games, the data channels worth capturing 
are determined largely by the type of analysis to be performed later. Although there 
is no standard, there are four categories of data that one should consider recording:

    1.     Setup data : the characteristics of the environment and hardware used (e.g. eye 
tracker and screen), as well as its parameters (e.g. sampling rate and screen size), 
are important for later analysis. Parameters that belong to this category are static; 
that is, they remain the same throughout a study and across different subjects.  

    2.     User data : in this category belong data referring to or produced by the user. 
This Calibration data can be both static (age and gender) and dynamic.
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3.  Calibration data : the latter includes calibration data, eye gaze over time (e.g. time-
stamp, position gazed in 2D screen coordinates, blinks, etc.) User input via the 
game’s controlling interface, while technically acquired through the game engine, 
can also be conceptually classi fi ed as belonging to this category.  

    4.     Game data : this category encompasses data produced by the game. In the 
past, screen recordings have been the primary game data acquired, however, 
as explained in this chapter, this is very restrictive. Instead, in gaming envi-
ronments there is a wealth of information to our disposal, not only about the 
stimuli shown to the user, but also the parameters used to arrive at them, as 
well as temporal aspects and intrinsic parameters of the game’s state. The 
range of data types available via the game’s scenegraph is very wide, and 
game content can be further enriched by its designers to include properties 
and states. In most studies, the camera parameters, the game entities’ param-
eters (e.g. position, orientation, color, textures, etc.) and game-generated 
events are the best candidate data types for capturing. Apart from dynami-
cally changing data, games also have static data that can be recorded once, 
for instance the window size and position, which may differ from those of the 
screen, the hardware it runs on, etc.     

 The purpose of acquiring these data is to be able to reliably and accurately recon-
struct the stimuli that affected the user’s gaze behavior with the goal to study it. This 
decoupling of data acquisition and data analysis provides an ideal methodological 
partitioning that allows data reuse. The data captured from all these categories has 
very low storage requirements even for several minutes of data acquisition. Notably, 
game data consists only of parameters that allow the reconstruction of the game 
state at any given time, without the need of capturing thousands of images, as is the 
case for a screen recording. 

 Finally, it would be advantageous to debrief participants by means of a question-
naire. This could serve two purposes. First, a well-designed questionnaire would 
make it evident whether the participant understood the task that was being per-
formed. Testing this can be important, because participants that have either mis-
interpreted the instructions or have second-guessed the purpose of the experiment 
may yield unreliable or biased data. In essence, if an outlier is detected by analysis 
of the data, then the questionnaire may help explain why this has occurred, provid-
ing the justi fi cation for outlier removal. 

 Second, the questionnaire could contain questions that query the participant 
regarding their response to the experiment. For instance, it would be possible to 
ask how dif fi cult the different conditions were to the participant, or to what extent 
the task was enjoyable. Dependent on the primary aim of the experiment, answers 
to such questions may corroborate the data found in the main experiment. Nacke 
et al.  (  2009  )  studied navigation using gaze as input in a 3D  fi rst person shooter 
game. The purpose of the study was to investigate the gameplay experience using 
gaze interaction by the use of subjective questionnaires. Three questionnaires were 
used based on previous work which evaluated the self-reported game experience, 
 fl ow, and presence.  
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    25.5.4   Reconstruction and Pre-processing 

 The next step in this pipeline deals with the reconstruction of the stimuli and 
pre-processing of the recorded data for further analysis. With the recorded data in 
hand, a playback-like simulation of the game is performed by reconstructing all 
states the game has gone through during the gaming session on a frame-by-frame 
basis. The data is processed off-line without any performance constraints. Several 
tasks are carried out:

    • Fixation detection . Raw gaze data captured by the eye tracking hardware are 
fuzzy and should not be directly used to infer a subject’s gaze behavior. Instead, 
raw gaze data is processed using  fi xation detection algorithms that cluster raw 
gaze into  fi xations for subsequent use (Duchowski  2003  ) .  
   • Gaze-to-object mapping . Gaze is correlated with objects. Here, detected 
 fi xations are used to map gaze data back to scene objects, using a so-called gaze-
to-object mapping algorithm (see Sect.  25.6 ). In this process, each  fi xation is in 
turn correlated to one or more objects which are potentially the targets of that 
 fi xation.  
   • Property exporting . Game entities carry properties assigned to them at design 
time. These may be static or change in the course of the gaming session. They 
should be linked to the objects to determine the semantics of each object.    

 The output of the pre-processing can be stored in a single  fi le (e.g. in XML for-
mat) comprising an entry for each  fi xation. Each  fi xation entry contains the ID of 
the  fi xation target object(s) and a sequence of frame entries, encoding the states of 
the stimuli within the duration of a  fi xation. Each frame entry comprises a set of 
visible objects, a set of audible sounds, a set of user events and further attributes 
re fl ecting those properties of the game’s context which may be relevant for under-
standing the behavior of the player. The entry corresponding to each object, sound 
event etc., comprise an identi fi cation code (ID) and a set of properties which char-
acterize meaning and state of the respective entity. Correct alignment in the time 
domain between the recorded gaze points and game-states is achieved by comparing 
time-stamps of both sequences.  

    25.5.5   Analysis Tools 

 The  fi nal step of the pipeline is the analysis of gaze data, for which we describe our 
approach here. We  fi rst perform an explorative analysis by means of visual interpre-
tation of gaze density histograms. The main analysis will then map gaze data to 
objects with a set of pre-de fi ned semantic properties. The user has many degrees of 
freedom in the de fi nition of the semantic properties of interest, a task aided by a user 
interface that allows not only the selection of semantic properties, but also enables 
the de fi nition of clusters of semantic properties (e.g. assigning objects of a similar 
category to one super-class) or to de fi ne new semantic properties which depend on 
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dynamic events in the scene (e.g. an enemy is destroyed after a successful shot). To 
this end, a scripting language is used in the analysis software, where rules can be 
de fi ned to describe how certain properties should be interpreted prior to building 
gaze histograms (see Sect.  25.7 ). 

 The Graphical software tools we designed for studying gaze behavior are similar 
in look-and-feel to video editing suites and includes the following components:

    • Library . A library widget designed as a front-end to gaze and stimuli data which 
the user can load from disk. This is useful so that the operator can select collec-
tively which stimuli data and eye tracked subjects are relevant to his current 
analysis. The library holds pointers to data, but need not load the data.  
   • Timeline . A timeline widget with different stacked tracks allows the operator to 
instantiate stimuli and gaze data so that they can be played back in parallel. The 
timeline offers typical controls of temporal data (e.g. start, stop, etc.) and allows 
for seeking arbitrary frames within the datasets, enabling intuitive non-sequential 
access to them.  
   • Views . To visualize the data, viewing widgets use the timeline tracks to sequen-
tially overlay visual representations of the respective data at the time the time-
line’s head is positioned or a temporal window around it. For example,  fi xations 
can be easily overlaid and played back over the stimulus that produced it.  
   • Script editor . A scripting editor enables an operator to de fi ne, execute and debug 
scripts that transform low level extracted game entity properties into semantic 
properties.    

 The combination of these tools into a single graphical user interface enables an 
operator of the analysis software to potentially gain insight and assist him in script-
ing rules for transforming properties to semantics. This graphical user interface, 
shown in Fig.  25.4 , is effectively an Integrated Development Environment (IDE) for 
studying gaze behavior that not only offers the tools to setup and perform an analy-
sis task, but also provides visual feedback and can potentially leverage the experi-
ence and intuition of the operator.  

 The following section describes the various algorithms required to implement 
such a pipeline, including those that enable the analysis of data.   

  Fig. 25.4    Screenshots of the analysis software toolbox of the experimental pipeline       
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    25.6   Object-Based Gaze Analysis Algorithms 

 The input assumed for the processing pipeline is a gaze data set from the eye tracker 
and a reconstruction of the game states. The goal is now to process gaze data and 
obtain gaze statistics scoring the amount of attention deployed to particular objects, 
object categories or semantic properties. To achieve this goal, two basic steps are 
required: (a) gaze has to be  mapped  to objects, which can then be further abstracted 
by their category, other properties or their meaning to the user, and (b) a method has 
to be de fi ned to build gaze  statistics  with respect to the independent variables we are 
interested in (e.g. object IDs, properties or meaning; see Sect.  25.7 ). Initial solutions 
were prototyped in the work of Sundstedt et al.  (  2008  )  and Bernhard et al.  (  2010  ) . 
In the following sections, the ideas behind these approaches are presented. 

 First, an important step of the proposed methodology is to map gaze data to 
objects. This is done by a gaze-to-object mapping algorithm which speci fi es the 
potential target(s) of each  fi xation. Fixation targets are individual objects which 
are represented by an identi fi cation number (ID). In some cases, it might be inter-
esting to quantify how often an individual object was attended, but for realistic 
game levels we have to assume that each player has a unique game experience 
when navigating a spatially large environment containing many objects. Under 
these circumstances, gaze is distributed very sparsely and is not suited for a 
statistical analysis. Therefore, rather than focusing on particular object instances 
(e.g. “AlienMonster_57”) it is more promising to compute gaze statistics for 
object categories or semantics. 

 Overall, gaze analysis can be performed at different levels of abstraction. We 
distinguish four layers in which the stimulus can be represented in the analysis:

    • Screen space : Gaze points in 2D (e.g., position = [0.1,0.5])  
   • Object space : Object instances (e.g., ID = 2,933)  
   • Property space : An object’s category, state and behavior (e.g. category = “Alien 
Monster”, distance = 5 m, behavior = “approaching”, avatar health state = 10%, 
etc.)  
   • Semantics : An object’s meaning to the user according to game task (e.g. 
“attacker”, “close”, “dangerous”, “high risk”)    

 In Fig.  25.5 , we illustrated the levels of abstraction with an example of a game 
where a user has to move a pedestrian across the street: In the  fi rst abstraction layer 
(top), we see pixels as seen by the player of the game. The next abstraction is the 
object level, where we have particular instances, such as cars and trees, with unique 
IDs. In the third layer, individual objects are abstracted in terms of their properties 
including the object category (e.g., “car”) and spatial properties (e.g. velocity or 
position). In the semantic layer (bottom), the scene is abstracted according to the 
meaning of the objects to the user and the task at hand. In this example, the user has 
to move the avatar across the street, the avatar hence becoming a pedestrian. For a 
pedestrian, objects which are most task relevant are the oncoming car and the car 
currently passing, whereas the car which has already passed by is not important. On 
the other hand, details of objects behind the street (e.g., houses, trees and sky) are of 
low relevance and can be abstracted as background.  
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 Most commercial gaze analysis tools operate only with screen space data which 
is readily available: the images rendered to the screen and the gaze data which 
is output by the eye tracker in screen space. But for computer games, we can 

  Fig. 25.5    Example for layers of abstraction in a pedestrian road crossing task       
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fortunately assume that an object space representation is available, which can be 
obtained when the internals of the game engine can be accessed. 

 However, for gaze analysis in object space we also need a representation of gaze 
data in object space (e.g., the ID of a  fi xated object). This can be obtained by map-
ping gaze to objects, as described in Sect.  25.6.1 . Some additional modi fi cations of 
the game engine are also needed to derive properties from object space. These will 
be discussed in Sect.  25.6.2 . Semantics are then derived from the properties of a 
scene. Since inferring semantics from properties is a cognitive process, this requires 
the assistance of a human operator who provides an ontology which de fi nes the 
mapping from properties to semantics (Sect.  25.6.3 ). 

    25.6.1   Mapping Gaze to Object Space 

 A common way to pre-process gaze data is to  fi lter for  fi xations, since a user’s 
attention correlates with  fi xation locations only and not the saccades in between 
(Duchowski  2003  ) . Thus, the input of gaze-to-object mapping is assumed to be  
 fi xations and the reconstructed states of the game during the start and end time of 
each  fi xation. 

 Note that the position of a  fi xation is fuzzy, as it corresponds to a cluster of jittered 
gaze points sampled by the eye tracker during the time the  fi xation occurred. On the 
other hand, we have objects of a 3D scene which are rendered to a 2D image by a per-
spective projection from the camera viewpoint. Mapping  fi xations to objects is there-
fore done by computing the degree of intersection between  fi xations and scene objects. 
Different ways to achieve this have been proposed, reaching from straight-forward 
solutions to more sophisticated methods. The methods along with their advantages and 
disadvantages are brie fl y described in the following (see also Fig.  25.6 ).  

      25.6.1.1 Point-Based Methods 

 The simplest way to map  fi xations back to objects in a scene is to use the center of 
a  fi xation (e.g. the mean position of raw gaze samples). With this simpli fi cation, one 
has to  fi nd only the object which was projected to one pixel position. This can be 
carried out directly in object space by casting a ray through the  fi xation center into 
the scene and computing the nearest object intersected by that ray. 

 Another solution would be to solve the problem in screen space. Each scene 
object is rendered using a unique color ID and stored in an image buffer, referred 
to in the literature as an  item buffer  (Sundstedt et al.  2008  )  or  id buffer  (Saito and 
Takahashi  1990  ) . This operation can be performed directly on the GPU with 
minimal computational effort. The color of the pixel which corresponds to the 
 fi xation position is then queried in the item buffer and decoded to obtain the 
respective object ID. 

 Using only one point to map a  fi xation to an object is a reasonably simple and 
ef fi cient solution, which may be advantageous for real-time applications. It should 
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work well as long the scene is simple, that is if there are only few, relatively big and 
well separated objects. But in many cases, the  fi xation center might not necessarily 
intersect the object a user is actually attending. 

  Fig. 25.6    Gaze to object mapping methods: to identify the object underneath each pixel, the scene 
( top left ) is rendered to an item buffer ( top right ). Fixations can be mapped to objects by simply 
picking the pixel at the center of a  fi xation ( middle left ) or integrating the energy spread by a 2D 
Gaussian kernel (illustrated with  dashed rings ), which models the foveal acuity (Eriksen and 
St James  1986  )  ( middle right ) or the distribution of gaze points (Bernhard et al.  2011  )  ( bottom ), 
over the area of the respective objects       
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 There are two factors that may play an important role when mapping gaze to 
objects:  fi rst, the fovea resolves all objects in sharp resolution in a frustum of about 
2° of visual angle (Palmer  1999  ) , and second, a  fi xation is a cluster of a fuzzy cloud 
of gaze-points distributed over space and time being sampled in discrete time inter-
vals from an actually continuous motion path of two eyes. It is, therefore, not always 
appropriate to evaluate the intersection of a  fi xation and scene objects at a single 
point. Rather, it may be advantageous to account for the region spanning the poten-
tial focus of attention, thus leading to area-based methods.  

      25.6.1.2 Area-Based Methods 

 An area-based approach was  fi rst proposed by Sundstedt et al.  (  2008  ) . They render 
the scene into an item buffer and intersect a kernel      fixK   with the objects contained 
in the buffer. The kernel is centered at the fixation’s mean position      ( , )fix fixx y
  and for each visible object  o , an integral is computed which accumulates the 
energy contributed by that kernel over the area      ( , )A o t   covered by this object in 
the item buffer at time  t . To account for possible changes in the item buffer, 
integration is also done over time between start time stamp      ,s fixt    and end time 
stamp      ,e fixt   . We de fi ne this integral as the correlation      ( )fixC o    between a  fi xation 
     fix   and an object  o :
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 Note that this implies that the  fi xation duration      fixt   is given by      , ,e fix s fixt t−   . Two 
variants of the kernel have been proposed so far: Sundstedt et al.  (  2008  )  proposed a 
kernel which simulates the visual acuity of the human retina, whereas Bernhard 
et al.  (  2010  )  proposed to use a kernel to model the distribution of the gaze points 
corresponding to the  fi xation.  

      25.6.1.3 Foveal Sensor Density Model 

 Sundstedt’s foveal sensor density model begins by approximating the fall-off of 
spatial acuity from the fovea to the periphery using a normal distribution  N  (Sundstedt 
et al.  2008  ) :

      
2 2( , ) ( )fixK x y N x yΔ Δ = Δ + Δ

   (25.2)   

 The Euclidean distance      2 2x yΔ +Δ    between any pixel position and the center 
of a  fi xation point is inserted into the univariate Gaussian density distribution:
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 Taking into account that the foveal region of human vision spans approximately 
2° of visual angle, the area over which a  fi xation point bears relevance corresponds 
to a circle which is determined by an intersection of the cone of foveal vision and 
the screen plane. The size of this circle, which we denote as      foveas   , is then used to 
de fi ne the standard deviation of the Gaussian kernel. Assuming that the distance 
between eyes and the display is      d,    we can compute      foveas :   

      
= tan( )fovea ds a

   (25.4)   

 Note there is a subtle but reasonable simpli fi cation in the computation      foveas
  as the intersection of the foveal cone and the screen plane actually depends on the 
eye’s viewing angle and would vary with gaze position if computed accurately. 
However, it is more important to account for the limited accuracy of the eye-tracker. 
Thus, we add to this the eye-tracker error      errors   :

      
= +2 2

fovea errors s s
   (25.5)   

 Using Eq. ( 25.1 ), we compute a weight      fixC   for each object, which serves as an 
estimate for the likelihood for it to be attended by the user. This model assumes 
that the a priori probability for a  fi xation increases with the number of pixels cov-
ered by the object. Hence, if the size of scene objects varies too much, this may 
result in a bias toward large objects, as the amount of attention received does not 
necessarily correlate linearly with size. To control large variations in size, it may be 
necessary to perform a subdivision of objects (as done in Sundstedt et al.  2008  ) . 

 Another assumption of this approach is that several objects may be attended 
during one  fi xation, as the output is a value for each object scoring its potential 
attentional relevance in the current  fi xation. This corresponds to spatial models for 
attention such as the spotlight (LaBerge  1983  )  or zoom-lens models (Eriksen and St 
James  1986 ; Castiello and Umiltà  1990  ) , which assume that attention is enhanced 
for all objects within the focus region. However, some experimental results suggest 
that human cognition is better at attending only one object at a time (Duncan  1984 ; 
Baylis and Driver  1993 ; Behrmann et al.  1998  ) . Especially, during execution of a 
task, unexpected objects or events may go unnoticed even if they appear within the 
foveal focus of a viewer (Simons and Chabris  1999  ) . 

 Under these assumptions, it is not necessarily appropriate for a single  fi xation to 
compute an attention weight for several objects. Hence, Bernhard et al. proposed to 
assume that during a  fi xation, attention is focused on one object only and may not be 
directly related to the foveal sensor density (Bernhard et al.  2010  ) . Instead of approx-
imating foveal sensor density distributions, they account for the fact that a  fi xation is 
made up of a cluster of spatially distributed gaze points, as discussed next.  

      25.6.1.4 Gaze-Point Distribution Model 

 As the eye-tracker has limited precision, and the human oculomotor system cannot 
hold gaze stable on a  fi xed position, we have to account for the fact that the gaze 
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points, which are sampled at discrete points in time, are distributed within a known 
uncertainty region (Bernhard et al.  2010  ) . The density distribution of the continuous 
gaze paths during a  fi xation can be approximated, for instance with a bivariate 
Gaussian kernel. The parameters of the kernel are derived from the constant uncer-
tainty of the eye-tracker and the spatial distribution of gaze points clustered within 
the  fi xation. A bivariate kernel provides a better  fi t to unidirectional drifts of gaze, 
which were frequently observed in the gaze data:
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 In this case, the parameters of the kernel depend on the distribution of gaze-
points clustered with the current  fi xation      fix.    The parameters      

x
fixs   and      y

fixs   denote 
the standard deviations of the  fi xation’s uncertainty region in both dimensions, and 
     r    is their correlation in      ( , )x y   . After evaluating Eq. ( 25.1 ) with this kernel for each 
object, the object which is most likely the target of the  fi xation is determined by 
selecting the object with the maximum value correlation weight      fixC   :

      
( )fix fix

o
o arg max C o=

   (25.7)   

 It should be noted that current gaze-to-object mapping techniques are still in a 
premature state and their accuracy could be improved considerably, as discussed in 
the following section.  

      25.6.1.5 Limitations 

 First of all, the most important concern is that though these techniques provide rea-
sonable results in proof-of-concept studies, their accuracy has not been evaluated 
yet. Unfortunately, evaluating accuracy for general scenes is a dif fi cult problem, as 
it requires us to compare the result of the gaze-to-object mapping algorithm with the 
actual focus of a user. Such a comparison would require an experiment which uses 
other methods than eye-tracking to reliably determine which object is attended by 
the user. 

 We expect that the current algorithms fail particularly in situations where objects 
or the camera are moving fast. The algorithm’s accuracy is also limited when objects 
are relatively small, consist of thin parts, are placed very close to each other or even 
occlude each other partially. Another problem arises when a user tends to scan the 
silhouette of an object, as this provides more information about its shape. In this case, 
unattended objects in the background may be incorrectly marked as  fi xated upon. 

 In current methods,  fi xations are treated as static. To account for fast motion in the 
scene or a moving view port of the camera, algorithms may need to incorporate the 
temporal dimension in the distribution of gaze samples clustered in one  fi xation. 
Therefore, appropriate gaze-to-object mapping methods should be developed for smooth 
pursuits, which are drifting  fi xations occurring when the eyes track a moving object.   
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    25.6.2   From Object-Space to Properties 

 The so-called property space describes the properties of a scene or even the entire 
state of the current application. Ideally, such a description is generated for the entire 
scene, or at least for all visible objects. The reason why it is useful to consider, apart 
from the  fi xated object, other objects in the scene is that we should account for the 
context under which a  fi xation occur red. If the scene and the viewpoint changes, 
this is important to identify or note, because we need to track how many other 
objects could be concurring alternative targets for the  fi xations being issued. 

 There are several properties which could be of interest. Overall those can be 
divided into properties of objects and properties re fl ecting the current behavior of 
the user and the avatar being controlled. 

      25.6.2.1 Object Properties 

     • Visibility : all objects which were visible in the camera’s  fi eld-of-view had a 
potential in fl uence on a users’s behavior and could be potential  fi xation targets. 
Visibility can be determined directly from the item buffer, as only visible objects 
may cover any pixels.  
   • Object category : the most important property is the category of an object, which 
allows us to link an object to semantics. As we reasonably assume that the cate-
gory of an object is a static property, we just need a look-up-table where each 
object ID is mapped to the respective category of an object.  
   • Spatial properties : spatial properties, like size, motion or position in the screen 
space could also be of some interest in the analysis.     

      25.6.2.2 Player Related Properties 

     • Game/player state : the current state of the game and the player may also affect 
user behavior. For instance, a low health state could cause the player to focus on 
searching health items.  
   • Interaction : it might also be interesting to analyze gaze behavior with respect to 
the way the user is interacting with the application. Hence it is useful to include the 
actions of the avatar (e.g., “running” or “shooting”) or input events from mouse, 
keyboard or joypad.     

      25.6.2.3 Logging Tool 

 To extract scene properties, a light-weight interface to the game-engine is de fi ned, 
which is used to notify a logging tool about changes in the game’s internal param-
eters, such as the view-matrix of the player camera or variables of scene entities 
(e.g., objects and other relevant of the game state). Having access to those very basic 
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parameters, the logging tool then computes properties which might be useful for the 
analysis or the inference of semantics. For example, the tool infers screen space 
positions, bounding windows or motion vectors from camera parameters and object 
world-space bounding boxes.  

      25.6.2.4 Log Format 

 Though many of the properties are static throughout the game (e.g., category), we 
have to assume changes in many other properties (e.g., visibility or user input 
events), which hence have to be logged for each frame. If only  fi xations are consid-
ered in the analysis, it is useful to de fi ne a format where for each  fi xation the  fi xated 
object and a description for all frames between the begin and end time of that 
 fi xation are logged. For each frame description, one should log the time-stamp, the 
IDs of the visible objects, their dynamic properties and a description of the current 
game state and user input events. 

 In XML    an example for the log format could look like this: 

 < fi xation> 
  <duration>0.532</duration> 
  < fi xated object> 
   <id>12423</id> 
   <con fi dence>0.9</con fi dence> 
  </ fi xated object> 
  <frame> 
    <timestamp>54.334</timestamp> 
   <object> 
     <id>12423</id> 
     <visibility>1.0</visibility> 
     <category>Tree</category> 
     <screen_bounding_window> 
      <min_x>0.1 </min_x> 
      <min_y>0.6 </min_y> 
      … 
     </screen_bounding_window> 
     … 
   </object> 
   <object> 
   … 
   </object> 
   … 
   <player> 
     <health_state>0.7</health_state> 
     <action>“running”</action> 
     … 
   </player> 
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  </frame> 
  … 
 </ fi xation>   

    25.6.3   From Properties to Semantics 

 Having a full description of the stimulus for each frame, it is now possible to ana-
lyze various aspects of human behavior, for instance by focussing on speci fi c 
semantically meaningful object properties. Assuming top-down attention is mainly 
in fl uenced by high-level processes, the most appropriate way to represent the stimu-
lus is a description accounting for the meaning of objects according to the current 
task a user is performing. However, inferring meaning from object properties is a 
complex problem and requires introducing knowledge into the analysis pipeline. 
At this stage, the user of the analysis software has to specify a set of rules on how 
raw object properties should be translated into meaning. Therefore, Bernhard et al. 
proposed a simple scripting interface, which is integrated into the user interface of 
the analysis software. 

 A user may write rules de fi ning relations, such as for instance “palmtree  is a  
tree” or conditional statements, such as “ if  car.position.x  <  center.x  and  car.
motion.x  >  0  then  car  is  approaching.” The transformation from object properties to 
semantics is then carried out by an interpretation unit which applies the rules 
speci fi ed by the user. 

      25.6.3.1 Keeping Degrees of Freedom Low 

 To avoid problems of sample size, it is important to keep the degrees of freedom 
low, i.e. avoid many dimensions and use a small number of semantic properties in 
the analysis. If there are too many semantic categories, one can reduce this number 
by clustering similar categories or de fi ning semantic super-classes. The degrees of 
freedom can be reduced in an additional selection pass proposed in Bernhard et al.’s 
work (Bernhard et al.  2010  ) . This selection pass is speci fi ed by the user of the analy-
sis software and projects the output of the semantic transformation to those values 
in which the user is interested most.    

    25.7   Collecting Fixation Statistics 

 Let us assume that we have mapped each object to one semantic property to be fur-
ther denoted as      x.   Of course, it is possible that an object has more than one semantic 
property, but, for simplicity, we will only assume a single property case (see 
Bernhard et al.  2010  for a multidimensional example). The next step is to derive a 
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statistic which scores the amount of attention given to each semantic property as an 
importance value. This statistic will be denoted as importance map      (x)I   , which 
links each semantic property x to an importance value. The importance ideally cor-
responds to the probability that an object holding x is  fi xated by the user. 

 To derive the importance map, Sundstedt et al.  (  2008  )  proposed to accumulate 
 fi xation times for each semantic property. However, in their study the viewpoint was 
 fi xed and the set of observable objects remained constant. For the general case, we 
have to assume a viewpoint which is not  fi xed and the set of objects in the camera’s 
 fi eld-of-view may vary considerably from one frame to another. Thus, Bernhard 
et al.  (  2010  )  proposed a heuristic normalization strategy accounting for the different 
amounts of time certain objects are visible to the user. 

 To calculate      (x)I   , the time      fixt   that objects with that      x   were  fi xated is  fi rst accu-
mulated and than normalized by the accumulated time      vist   that objects with that      x
  were visible during a  fi xation (i.e. the number of frames they were potential  fi xation 
targets):
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(25.8)

   

 The normalization factor      (x)vist   corrects for variations in the visibility of different 
semantic properties. If an object is visible in many frames but it is  fi xated only 
in a few of them, the importance value should be low, and if an object is  fi xated 
most of the time it is visible, the importance value should be high. The maximum 
importance value is 1 and occurs if a semantic property is  fi xated in every frame it 
is visible. 

 This model takes into account changes due to the visibility of objects. However, 
generalizing the solution to contextual dependencies is a dif fi cult problem, as it 
would increase the dimensionality of the statistic to the size of all possible combina-
tions of semantic properties, and a suf fi cient density of gaze samples would be 
dif fi cult to acquire. 

    25.7.1   Limitations 

 Practically, it is not possible to de fi ne a normalization strategy which perfectly cor-
rects for all latent effects resulting by the variation of the viewpoint and changes in 
the scene. Hence, this heuristic involves many simpli fi cations, such as the assump-
tion that each semantic property is perceived as one unit of attention. De fi ning the 
units of attention, which make up the number of alternative targets a user can  fi xate 
in a given view of the scene is a hard problem. For future work, it could be useful to 
investigate strategies which are inspired by models for pre-attentive object detection 
from vision research. Those could potentially allow to better quantify the amount of 
visual information a user perceives within the  fi eld-of-view. 

 Another important factor arising from the uniqueness of the game experience of 
each user is the variation of the contexts in which a particular object may be seen, 
which may also signi fi cantly in fl uence attention. One strategy to reduce the varia-
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tion is to divide large game levels into sections where a similar context can be 
expected and perform the analysis for those sections separately.   

    25.8   Results 

 The pipeline described in this chapter is a  fl exible framework that offers the techni-
cal means of setting up an experiment to study gaze behavior in a game, discusses 
what data may be useful to capture, how to achieve this, and how to analyze them. 
The pipeline has been presented in a manner that can be adapted to various studies 
to enable researchers and practitioners to tailor it to their own needs. We will 
describe two sample experiments here to offer  fi rst hand examples of how the pipe-
line and algorithms have been put into use by the authors. 

    25.8.1   Example 1 

 The  fi rst example consists of an eye-tracking experiment that was carried out to 
generate an importance map based on high-level properties in a computer game 
(Sundstedt et al.  2008  ) . The task of the game was to navigate a small ball through a 
maze, which was in 3D, but rendered from a  fi xed bird’s-eye view. All items in the 
maze were tagged with high-level properties, such as the correct and incorrect path, 
to encode the relevance of certain parts of the maze in relation to the task of  fi nding 
the exit of the maze. These items were also referred to as  object classes  and can be 
seen in Fig.  25.7  along with a more detailed description. Accumulating  fi xations 
over different object classes provides a fruitful approach in understanding where 
game players focus their attention. Such information cannot currently be extracted 
from an analysis of low-level salient features alone.  

 The analysis process depends on three main steps. In the  fi rst pass, the player 
plays the game while being recorded using an eye tracker. All game states are logged 
so that it is possible to reconstruct each frame later. The novelty of this approach is 
that it also allows playback of the game in real-time, which can be used for another 
condition or another group of players watching the same game stimuli passively, for 
example. After the  fi rst pass, each frame can be reconstructed and the additional 
data, such as the item buffer, frame buffer and object data, can be generated. 
Fixations can then be mapped to object types using the item buffer in order to  fi nd 
out which of them are the most signi fi cant with respect to the gameplay. The item 
buffer for the maze can be seen in Fig.  25.8 . Finally the analysis tool can be used to 
get useful information from the stored game and gaze data to generate an impor-
tance for each object class. The distribution of  fi xations directly relates to the impor-
tance each object type carries for executing the game’s tasks.  

 The area-based approach (Sect.  25.6.1.2 ) is used, which renders the scene into an 
item buffer and convolves with a kernel simulating the visual acuity of the human 
retina, with the objects contained in the buffer. The Foveal Sensor Density Model is 
used to map  fi xation points back to semantic object classes in the game. After 
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  Fig. 25.7     Maze Object Classes : the image shows the different object classes used in the experi-
ment (Eriksen and St James  1986  )  as well as their con fi guration. Below this, the description of the 
object classes       

classi fi cation, each participant produces a normalized distribution of  fi xations 
per object class. This set of distributions is then subjected to further analysis using 
traditional statistical tests, such as a one-way ANOVA (Cunningham and Wallraven 
 2011  ) , to reveal statistical differences in  fi xation behavior of participants in differ-
ent conditions (for example actively playing a game versus passively watching a 
game) (Sundstedt  2008  ) . 
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  Fig. 25.8     Maze Item 
Buffer : showing all  color 
coded  objects which enable 
us to relate  fi xation points to 
objects and object classes       

 To check the validity of the experimental design,  fi xation distributions are matched 
to projected object sizes. The hypothesis is that if  fi xations are randomly distributed, 
they would fall on large objects more often than on smaller objects. It was found, how-
ever, that the  fi xation distributions are markedly different from the distribution one 
would obtain by counting the number of pixels that are covered by each object type. 
This indicates that none of the results can be explained by random  fi xation behavior. 

 The experimental design allows a comparison between  fi xation behavior while 
the game is played against  fi xation behavior while observing a recording of a previ-
ously played game. The hypothesis is that passive viewing would lead to different 
behavior than active gameplay. Further, if this is the case then the concept of saliency 
could be applied to predicting gaze behavior in the absence of a task, while simple 
saliency measures would not predict  fi xation behavior in the presence of a task. 

 However, this experiment led to a surprising result in that even passive user 
behavior is task dominated and cannot be statistically distinguished from active 
gameplay behavior. In this particular game design, saliency is therefore a very poor 
predictor for task relevance. This observation may extend to other game designs. 
However, it should be noted that in this study, the camera was locked so that each 
user had access to similar visual content at all times. This improves the rigor of the 
experimental design, leading to better control of the experimental set-up, and 
thereby fewer risks of introducing bias. 

 On the other hand, this study reduces the problem of inferring gaze distributions 
to a very limited case by assuming a  fi xed camera and a constant set of objects. In 
the second example, the approach is generalized to a representative 3D scenario 
with a dynamic viewpoint and a  fi eld-of-view with variable content.  

    25.8.2   Example 2 

 The second example is from Bernhard et al.  (  2010  ) , who implemented an early 
prototype of the entire pipeline described in this chapter. A 3D First Person 
Shooter game was used to perform a proof-of-concept study of their system. 
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The actual goal of this work was to derive a gaze prediction heuristic which is 
learned from gaze data recorded from several participants of an eye-tracking study. 
Learning is regarded as the process of inferring an importance map (essentially a 
statistical model of the data) by utilizing the gaze analysis pipeline. The importance 
map is then used to estimate the likelihood for each object to be attended in a par-
ticular frame. Figure  25.9  shows an example frame of the FPS game, the corre-
sponding importance map learned and the respective saliency map for comparison.  

 The following sections will give a very brief description of this work. For readers 
who prefer a more detailed description, we recommend to read the original article 
by Bernhard et al. ( 2010  ) . 

      25.8.2.1 Inferring Importance Maps 

 The pipeline can be adapted, as shown in Fig.  25.10 , to enable deriving impor-
tance maps for gaze prediction, which is structurally similar to the methodol-
ogy described in Sects.  25.6  and  25.7 . The input of this pipeline is a gaze  fi le 
and a replay  fi le recorded during an eye-tracking study. This information is 
then used twofold. First, an abstraction of the stimulus in terms of high-level 
semantic properties is derived. Second, the object which was  fi xated in that 
stimulus can be determined. The information as to which object is  fi xated and 
the abstraction of the corresponding stimulus then forms the input of an algo-
rithm which learns an importance map. A straightforward estimate of the importance 
map can be obtained by accumulating  fi xation times for all semantic properties 
as described in Sect.  25.7 .   

      25.8.2.2 Gaze Prediction at Runtime 

 At runtime, the importance map forms the basis for a per-object estimate of the 
probability of being attended. This probability is computed for those objects 
located within the  fi eld-of-view of the current frame, as illustrated in Fig.  25.11 . 

  Fig. 25.9    Predicting visual attention from  fi xation statistics: ( a ) An example reconstructed 
framebuffer of the game is overlaid with the visualization of a  fi xation in the current frame. 
In Figure ( b ),  fi xation statistics were used to predict the importance for each object in the scene 
which is visualized by the brightness of the objects (brighter objects are more important than 
darker ones). Figure ( c ) shows the corresponding saliency map. Since  fi xation statistics account for 
semantics, they can predict better the high importance of doors or objects in the center, while 
saliency maps are less selective and predict the importance of pixels rather than objects       
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  Fig. 25.10    An overview of the complete pipeline used by Bernhard et al.  (  2011  )  to derive 
importance maps       

  Fig. 25.11    The process of assigning importance values to objects in the player’s  fi eld of view       
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First, a visibility algorithm determines the set of visible objects. For each of 
these objects, their properties are extracted from the scenegraph (Sect.  25.6.2 ), 
which are then transformed to high-level properties with a user speci fi ed func-
tion (discussed in Sect.  25.6.3 ). Boolean values are used to encode whether an 
object exhibits a certain high-level property or not. Therefore, the output of this 
mapping is a vector of boolean values which are then used as keys to perform a 
look-up into the importance map. With this process, a normalized importance 
value is determined for each visible object in the scene.   

      25.8.2.3 Discussion 

 Bernhard et al.  (  2010  )  evaluated their importance maps in the context of a  fi rst per-
son shooter game. Included in their experiments are both a navigation task as well 
as a  fi ghting task. Their importance maps are task dependent, for instance assigning 
lower importance to pictures on a wall when a player is engaged in opposing an 
enemy than when a player is navigating the virtual environment. 

 They found that the predictions of this importance map are of moderate quality 
during tasks where the player is less focused on a task, for instance when the 
player is navigating the environment. During periods when the player is very 
focused, i.e. during  fi ghting against attacking enemies, up to 80% of the  fi xation 
time is deployed to enemies and explosions. This experiment reveals that under 
such conditions, objects representing enemies and explosions attract an excep-
tional amount of attention. 

 Since the game is a  fi rst person shooter, it can be expected that there is a strong 
bias toward  fi xating the center of the screen. This tendency can be exploited by 
encoding a measure of the degree of eccentricity from the spatial location of the 
objects. Bernhard’s experiments show that this measure outperforms importance 
maps which rely on semantics, particularly in periods when there is less action in 
the game (e.g., during pure navigation tasks). 

 However, the highest predictive power is obtained when semantic and spatial 
information is combined. To keep the degrees of freedom low, object categories can, 
therefore, be clustered according to their importance values and then combined with 
eccentricity as an additional property.    

    25.9   Limitations 

 The work described in this chapter has opened a new avenue of gaze analysis meth-
odology. Due to the fact that the authors were doing the very  fi rst steps into this 
 fi eld, many research efforts and technical investigations are required to bring their 
ideas forward to generally applicable tools. 

 One important technical limitation is the limited accuracy of the gaze-to-object 
mapping methods, which is discussed in Sect.  25.6.1.5 . Another serious technical 
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problem is the collection and analysis of  fi xation statistics under the circumstance 
that each user has a unique game experience. As discussed in Sect.  25.7.1 , there are 
no optimal strategies to fully compensate the latent effects caused by strong varia-
tions of the set of visible objects in the stimuli from one frame to another. 

 Moreover, the overall approach assumes a simpli fi ed world for games, which is 
composed of a set of objects with a clear semantic category and a clear geometrical 
outline. Though for many game objects this assumption holds true, commercial 
games frequently comprise more dif fi cult content, e.g., large environment models 
or vegetations. Novel solutions need to be investigated, which allow decomposing 
all elements of a scene adequately, so that gaze can be analyzed according to the 
key features of major impact. Particular extensions to be considered are hierar-
chical decompositions of dif fi cult objects, like trees or houses, and screen-space 
approaches to subdivide large models or background into regions in such a manner 
that features with a different response on visual attention can be spatially 
separated. 

 Finally, it is also important to further investigate the practical value of these 
tools. This includes evaluating their performance and value for a variety of different 
game types and examining in particular how these tools can be used to improve 
games.  

    25.10   Conclusion and Outlook 

 As this book discusses, evaluation of computer games is becoming increasingly 
important. While many chapters of the book focus on telemetry and game log data 
analysis, this chapter investigates eye tracking, which can be integrated with telem-
etry analysis and be used as one of the many tools at the disposal of the game user 
researcher. In addition to eye tracking and telemetry, there are also other tech-
niques for gathering information from the player and to evaluate the gameplay 
experience, as discussed in several chapters in this book. Nacke et al.  (  2009  )  evalu-
ated the experience of gaze-based interaction for example using different types of 
questionnaires; Chapter   24     in this book also reviews the use of questionnaires more 
extensively. More recently, eye tracking has been used in conjunction with psycho-
physiological data and game telemetry to evaluate the player experience. One way 
of evaluating the player experience is to gather quantitative data including biomet-
ric information from an electro encephalography (EEG), electromyography (EMG), 
galvanic skin response (GSR), heart rate (EKG), blood volume pulse (BVP), and 
breathing (Zammitto et al.  2010  ) . This is also a subject discussed by Nacke et al. 
and McAllister et al. in Chaps.   26     and   27     of this book. Using additional input tech-
niques in addition to gaze could give even further information regarding the state 
of the player. 

 The main focus of this chapter, however, is on the mapping of  fi xation points 
obtained with an eye tracker to semantic objects as de fi ned by game designers. The 
methods employed are necessarily more involved than recording screen shots, but 
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the opportunities for understanding game players’ behavior are numerous. The work 
presented here only begins to scratch the surface. We see this approach as a viable 
technique for game designers to test their designs prior to bringing their products to 
market. At the same time, our enhanced and extended mapping techniques could 
form the basis for further research, for instance in understanding driver behavior in 
driving simulators.      
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