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ABSTRACT
In this paper we compare the time and space complexity of editing operations on two data structures which are suit-
able for visualizing huge point clouds. The first data structure was introduced by Scheiblauer and Wimmer [SW11]
and uses only the original points from a source data set for building a level-of-detail hierarchy that can be used for
rendering points clouds. The second data structure introduced by Wand et al. [WBB+07] requires additional points
for the level-of-detail hierarchy and therefore needs more memory when stored on disk. Both data structures are
based on an octree hierarchy and allow for deleting and inserting points. Besides analyzing and comparing these
two data structures we also introduce an improvement to the points deleting algorithm for the data structure of
Wand et al. [WBB+07], which thus allows for a more efficient node loading strategy during rendering.
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1 INTRODUCTION

Within the last 10 years the generation of huge point
clouds with more than 109 points has become quite
common, due to the fact that distance measurement de-
vices like laser or triangulation scanners have increased
the scanning speed and density of their sampling mea-
surements. The latest generation of laser scanners is
capable of generating point data sets consisting of 109

points or more with a single scan [Rie13, FAR13]. Ren-
dering or processing point clouds of such huge sizes is
still a challenge, as they usually do not fit into the main
memory of normal computer workstations [WBB+07,
SW11]. Even though nowadays 16GB of main mem-
ory are not uncommon, it is still not enough to handle
those point clouds, as the data for the point positions
alone consumes 12GB, assuming that every point posi-
tion consists of three 32bit floating point numbers.

Although it is possible to split point clouds into smaller
parts and work only on these, the general view for the
complete data gets lost when only working with a part
of the complete point cloud. Another possibility would
be to downsample the original data, but then the editing
operations can only be performed on a coarser resolu-
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tion of the point cloud than would be available. There-
fore data structures that allow to render, process, and
search within huge point clouds are necessary if an
overview of the whole data set is advantageous, or if
tasks have to be accomplished on the original data set.

The contributions of this paper are:

• A complexity analysis and comparison of the
Modifiable Nested Octree (MNO) introduced
by Scheiblauer and Wimmer [SW11] and the
octree-based data structure introduced by Wand et
al. [WBB+07].

• An improvement to the points deleting algorithm for
the data structure of Wand et al. [WBB+07], which
thus allows for a more efficient node loading strat-
egy during rendering.

We show that editing and processing operations on the
points stored in these data structures are comparable in
complexity to editing and processing operations on spe-
cialized data structures. These operations can be per-
formed on out-of-core managed point clouds efficiently,
if the data is managed properly with a least-recently-
used (LRU) cache [Den68, Sam06].

2 PREVIOUS WORK
There exists a plethora of data structures that can be
used to store and process point data sets. A structured
overview of the most well known variants is given by
Samet [Sam06]. Deciding on which data structure to
use is dependent on the specific use case and task that



shall be accomplished. Each data structure is designed
for a set of use cases, and one data structure is usually
not the best choice for all tasks. Another distinction
between the variants of the data structures are the im-
plementation complexities of each.

A simple data structure for ordering and fast searching
of points in 2D is the point quadtree. A quadtree is a
hierarchical data structure where at each node the un-
derlying space is subdivided into 4 subnodes (children)
along axis-parallel lines that go through a given data
point. An octree is analogous to a quadtree, but in 3D.
Exactly one point is stored at each node of the hierar-
chy. Searching or inserting a point triggers a O(log(N))
complexity search from the root node to the required
node. N is the total number of points inserted. Delet-
ing a point is quite involved, as the hierarchy has to be
maintained also when points from interior nodes have
been deleted, and the simplest method to do this is to
rebuild the data structure from scratch.

While a point quadtree subdivides the data space of
the points, other variants like the point region quadtree
(PR quadtree) subdivide the space the data exists in.
Nodes of the PR quadtree are subdivided at arbitrary
axis-aligned lines, e.g., the ones through the center of
the node, not at lines that go through given data points
as in the ordinary quadtree. Another difference is that
data points are only stored at leaf nodes, while interior
nodes are used for searching the requested point in the
proper node. Complexities for inserting and searching
are dependent on the height of the PR quadtree, which
in turn is dependent on the minimum distance between
2 neighboring points. To alleviate this dependency, a
bucket PR quadtree can be used. In this variant of the
PR quadtree up to m points are allowed in a leaf node.

If a data set is too large to fit into main memory, n-
way trees can be used to access such a data set. A
well known data structure for this use case is the B-
tree [BM72]. Like the bucket PR quadtree it stores the
data in its leaf nodes and the keys for accessing the data
in its interior nodes. There are two main differences to
a bucket PR tree though, first the number of children
per node is not limited to 4, and second, the leaf nodes
are all at the same tree level. A B-tree has only 3 to 5
levels typically [Bay08], and therefore it is a very ef-
ficient data structure for accessing points on slow sec-
ondary storage devices, because the number of accesses
to the storage device is kept low. B-trees and its variants
like the B+ tree or the B* tree are also used by file sys-
tems, e.g., by NTFS, the Windows file system [Mic03],
to manage file accessess.

Other requirements for a data structure occure when
huge point sets have to be rendered to screen. In this
case the points have to be organized in a way that is
easy to handle for a graphics card, but also efficient
to load from disk. Ideally the points are available in

chunks that can be directly used for rendering. Another
requirement is that the data structure has to support a
level-of-detail (LOD) mechanism. Data structures have
been proposed [GM04, PSL05] which comply to these
requirements. They hold the tree access structure in
memory all the time, and only load the visible points
from disk, which is efficient for rendering. Editing op-
erations on these point data structures are inefficient for
different reasons. In [GM04] a uniform sampling den-
sity is assumed, and the original point set is subsampled
to get the points for each hierarchy node. Adding new
points, which invalidate the uniform sampling assump-
tion, is not supported. In [PSL05] a global indexing
scheme is applied to the point set which has to be up-
dated if some points were to be removed or added.
Data structures that allow for rendering but also for ef-
ficient editing operations on out-of-core managed point
clouds have been proposed [WBB+07, SW11]. We
compare the editing operations of these two data struc-
tures, where Wand et al. [WBB+07] use additionally
created points and Scheiblauer and Wimmer [SW11]
use original points for a LOD hierarchy.
Processing data sets out-of-core can be done efficiently
if the editing algorithms load chunks of data into mem-
ory before processing them, and only work on these
chunks [Vit08]. Samet [Sam06] mentions that holding
recently accessed chunks in a cache store could further
reduce the number of disk accesses when processing
data. Such cache stores are implemented in all before
mentioned point rendering and editing algorithms.

3 MICHAEL WAND OCTREE RECAP
Wand et al. [WBB+07] introduced a multiresolution
hierarchical data structure for rendering and manipu-
lating huge point clouds. It is based on a region oc-
tree [Sam06], which is a data structure where the chil-
dren of a node are congruent boxes regularly subdivid-
ing the space of the parent node. In the Michael Wand
Octree (MWO) each interior node has inscribed a grid,
and each cell of the grid can store one point. These
points are used for a LOD representation of the point
cloud. They are additionally created during build up of
the data structure. The original points are stored in the
leaf nodes. An example of a 2D MWO with 3 levels
can be seen in Figure 1.
For our tests we do not use the original implementation
of the point hierarchy in the XGRT system [WBB+09],
but re-implemented it according to [WBB+07] in our
point cloud rendering framework. Selecting points is
done with a Selection Octree [SW11], which is a sep-
arate data structure describing a space inside which all
points are selected.

3.1 Inserting points
Listing 1 shows how points are inserted into an MWO.
Leaf nodes can only hold up to a predefined threshold
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Figure 1: A source point cloud represented as MNO (left) and MWO (right). Both point hierarchies use a 2x2 grid
at the interior nodes. The MNO uses the grid also at the leaf nodes, while the MWO uses an array.

mlea f , e.g., 100.000 points. Each interior node holds a
grid, and at each grid cell a point is stored. Further-
more a 64bit integer is maintained to count the points
falling into a grid cell. For the grid we use a resolu-
tion of 27 cells on each of the 3 space axis, so in total a
maximum of (27)3 = 1283 points can be stored at one
interior node. Usually the number of points in an inte-
rior node is much lower for the data sets we tested.

foreach point P in source point data do // Main loop
root node R−>insert(P)

end

node:: insert (P): // Method
if node is leaf

insert P into array of points at node
iterate ()

else
insert P into grid
if grid cell GC containing P is empty

store a copy of P in GC
increment counter of GC by 1
appropriate child C−>insert(P)

end

node:: iterate () : // Method
if num points in array > m_leaf // m_leaf=max num points

create grid from points
foreach point P in array do

appropriate child C−>insert(P)
convert this node to inner node

end

Listing 1: Inserting points into an MWO.

The points of the nodes are stored in one file per node.
Leaf nodes store only point data, while the interior
nodes store the point data and the counter for each point
in the file.

3.2 Deleting points
Listing 2 shows how points are deleted from an MWO.
The points which are going to be deleted have to be
selected beforehand, which is done using a Selection
Octree [SW11]. All leaf node points inside the Selec-
tion Octree are then removed from the MWO, and the
hierarchy is checked for consistency.

foreach leaf node N inside or intersecting SelOctree do
define array of deleted points D
if N is inside SelOctree

put all points into D
else

put only points inside SelOctree into D
if all points of N are in D

delete N from disk
foreach point P in D do

foreach parent node PN up to root node R do
decrease counter of grid cell containing P by 1

root node R−>validate()
end

node:: validate () : // Method
foreach child C that is an inner node do

C−>validate()
sum up points N in direct and indirect leaf node children
if N <= m_leaf // m_leaf=max num points

pull up all points from leaf nodes to this node
delete empty nodes from disk
convert this node to leaf node

end

Listing 2: Deleting points from an MWO.

Note that there is a subtlety involved when deleting the
points. When inserting new points into the hierarchy,
the representative points in the grid cells are chosen
from the points inserted into a node, e.g., a copy of
the first point that falls into a grid cell. When delet-
ing points it might happen that the representative point
is the copy of a point that has been deleted, therefore
the representative point is not covering the space the
remaining points are actually in. This can lead to prob-
lems during rendering when using certain types of hier-
archy traversals. See Section 4 how these can be solved.

3.3 Rendering
During rendering a depth-first traversal chooses the
nodes that will be rendered in the current frame. For
this the octree is traversed until the screen-projected
size of a node is below a user defined threshold. This
node and all of its siblings (inside the view frustum)
are then chosen for rendering. Note that the screen-
projected sizes of the siblings are not considered, as all
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Figure 2: Viewfrustum with an interior node of an
MWO and its children. The front of the node has passed
the threshold distance t, and the 2 green children have
to be rendered. The 2 red children need not be rendered.

siblings in the view frustum have to be chosen to com-
pletely replace the parent node (see also Section 4). The
loading of the nodes happens asynchronously in a sep-
arate thread, so the parent node is still rendered as a
coarser LOD level until the children are available.

4 MICHAEL WAND OCTREE OPTI-
MIZATION

The MWO uses representative points in the interior
nodes to enable a LOD mechanism for point clouds.
During rendering a depth-first traversal is used for
choosing the nodes to render (see Section 3.3). This
traversal tends to render more nodes than necessary
for the current viewpoint. An example can be seen
in Figure 2. The viewpoint is on the left, the orange
square represents an interior node of the hierarchy, and
the green and red squares represent the interior node’s
children. The threshold distance t is the distance at
which the projected size of the orange node becomes
larger than the allowed threshold (for the threshold we
use the projected side length of the node’s bounding
box). A child is thus rendered as soon as its projected
double size is larger than the threshold (which is the
size of the parent node at the child’s position), and its
projected size is still smaller than the threshold. In
Figure 2 only the front half of the orange node has
passed t, therefore only the 2 frontmost children of
the node fulfill the conditions to be rendered. The
back half of the parent node is still beyond t, so the
2 backmost children need not be rendered, but in a
depth-first traversal all children have to be rendered as
soon as one child is in front of t.

Instead of a depth-first traversal an importance driven
traversal can be used. The importance can be based
on different parameters, e.g., the distance to the view
point, or how centered the node is on the screen. The
importance driven traversal stops when no more nodes
can be found which fulfill the conditions to be rendered.
In such a traversal no nodes will be rendered whose
screen-projected size is too small. In Figure 2, only
the 2 frontmost children will be rendered together with

the parent node, as its LOD representation still suffices
to appropriately represent the point model in the back
area. This often reduces the number of nodes that have
to be loaded during rendering, as can be seen in the re-
sults (Section 8).
The importance driven traversal requires to render
nodes and their children at the same time. Therefore
it is important that the points in the interior nodes
of the octree actually represent the geometry of the
point model, otherwise artifacts as shown in Figure 3
might occur. The center image is rendered with an
importance driven traversal, and the points in the
interior nodes do not represent the actual geometry of
the point model. This can happen if the positions of
the points in the interior nodes are not updated after
deleting points from the leaf nodes. The image on
the right shows no artifacts, and this can be achieved
in two different ways, either by using a depth-first
traversal, or by using an importance driven traversal
and updating the position of the points in the interior
nodes during deleting. The pixel overdraw on screen
due to the additionally rendered parent nodes for the
importance driven traversal is neglectable, as usually
less nodes have to be rendered, and nodes that have all
children available are not rendered.
This means, depending on the effort spent when delet-
ing points, different rendering traversals can (or have
to) be used. Since an important driven traversal is of-
ten favorable, after deleting points we are replacing the
points in the interor nodes with points still available in
the leaf nodes. For every grid cell of an interior node
whose representative point is inside the Selection Oc-
tree (and the point’s copy in the leaf node has therefore
been deleted), we search for a leaf node in the hierar-
chy that intersects this grid cell, and take a random point
(that is also inside the grid cell’s bounding box) of this
leaf cell as new representative point. This step can be
done in a separate traversal, after deleting points from
the leaf nodes. The overhead due to this traversal is very
low (see results in Section 8).

5 MODIFIABLE NESTED OCTREE
RECAP

The MNO is a data structure designed for fast render-
ing, inserting, and deleting of points in an out-of-core
setting [SW11]. This is achieved by a hierarchy of grids
which are actually nodes in a region octree [Sam06].
Figure 1 depicts 3 levels of a 2D version of an MNO.
Each level further down the hierarchy refines the point
cloud representation of the upper levels.

5.1 Inserting points
Listing 3 shows how points are inserted into an MNO.
We use a resolution of 27 cells on each of the 3 space
axis for the grids in the nodes, so up to 1283 points can
be stored at one node.



Figure 3: From the original point cloud (left image) a spherical volume is deleted. The center image shows the
artifacts that remain when the interior nodes are not updated after deleting points. In the right image the points in
the interior nodes have been updated according to the deleted volume.

foreach point P in source point data do // Main loop
root node R−>insert(P)

end

node:: insert (P): // Method
insert P into grid
if grid cell GC containing P is empty

store P in GC
else

store P in array of points for child C
if num points in array for child C >= m_min

if num points in node without points for C >= m_min
foreach point PC in array for child C do

C−>insert(PC)
delete array for child C

end

Listing 3: Inserting points into an MNO.

5.2 Deleting points
root node R−>delete()
root node R−>validate()
end

node:: delete () : // Method
foreach child C inside or intersecting SelOctree do

C−>delete()
if node is inside SelOctree

delete node from disk
else

if node is leaf
delete points inside SelOctree

else
foreach point P inside SelOctree do

intersect grid cell GC containing P with direct and
indirect child nodes

delete P
if at any child node exists a point PC inside GC

insert PC into GC
end

node:: validate () : // Method
foreach child C that is an inner node do

C−>validate()
foreach child C do

if num points in C < m_min
insert all points from C into this node
delete C from disk

end

Listing 4: Deleting points from an MNO.

Listing 4 shows how points are deleted from an MNO.
The points to be deleted are first selected with a Se-
lection Octree [SW11] (see also Section 3). Points are
deleted from leaf and interior nodes. Afterwards the
hierarchy is checked for consistency.

5.3 Rendering
Rendering of an MNO is done with an importance
driven traversal of the hierarchy nodes. Nodes that are
in the center of the viewport and close to the viewpoint
are most important. Nodes are chosen for rendering
until a given maximum number of rendering points is
reached, or until further nodes cannot be considered be-
cause their screen-projected size is below a pre-defined
threshold. Nodes required for rendering but not avail-
able in memory are then requested to be loaded from
disk. This is done asynchronously, so rendering does
not stop while waiting for the points to be loaded.

6 COMPLEXITY ANALYSIS FOR IN-
CORE PROCESSING

The MNO [SW11] as well as the MWO [WBB+07] are
designed for rendering and accessing large amounts of
point data in short time. Search operations on the other
hand are not as efficient compared to search operations
in specialized data structures. The largest bottleneck is
loading points from disk to memory, which can be al-
leviated to some degree by using an LRU cache. We
will first analyze the behavior of the data structures as-
suming infinite memory to exclude the effects of disk
access.

6.1 Building Up Modifiable Nested Octree
In 2D space, building up a Modifiable Nested Quadtree
is similar to building up a point quadtree [FB74], as
both data structures store points in interior nodes as
well as leaf nodes. While the point quadtree subdi-
vides space at given data points, the Modifiable Nested
Quadtree creates a hierarchy of congruent squares and
each hierarchy level subdivides the space at the center
of the previous hierarchy level. A point quadtree stores
at each node exactly one point. The average build up



Build up Delete
Hierarchy Time Space Leaf Node Inner Node

MNO O(N) to O(Nlog(N)) O(N) O(log(N)) O(log(N))
MWO O(N) to O(Nlog(N)) O(NC) O(M+ log(N)) O(M+ log(N))

Table 1: The time and space complexities for building MNO and MWO hierarchies, and for deleting points from
leaf and inner nodes.

Search
Hierarchy Single Point Sphere Cuboid

MNO O(log(N)) O(F +2nM) O(F +4nM)
MWO O(M+ log(N)) O(F +2nM) O(F +4nM)

Table 2: The time complexities for searching points in MNO and MWO hierarchies.
Build up Time Delete

Hierarchy Worst Case Average Single Point Average
MNO O(CN +CN log(N)) O(kC+N log(N)) O(C+C log(N)) O(kC+N log(N))
MWO O(CN +CN log(N)) O(kC+N log(N)) O(C+M+C log(N)) O(kC+NM+N log(N))

Table 3: The time complexities for the out-of-core build up and deleting points from MNO and MWO hierarchies.
Search

Hierarchy Single Point Sphere Sphere Avg.
MNO O(C log(N)) O(CF +2n(M+C)) O(kC+F +2nM)
MWO O(M+C log(N)) O(CF +2n(M+C)) O(kC+F +2nM)

Table 4: The time complexities for searching points in MNO and MWO hierarchies.

time for a point quadtree is proportional to N log4(N)
where N is the total number of points used for building
the quadtree[FB74].
In 3D it becomes a point octree. For a complete point
octree the average build up time becomes roughly
N log8(N). This estimation can be derived by cal-
culating the total path length (TPL) [WN73] for a
completely filled point octree. The TPL is defined to be
the summed up path length when searching all nodes in
a tree, and starting the search always at the root node.
The path length of a node and one of its direct children
is 1.
Like a point octree an MNO stores points at interior
nodes as well as leaf nodes. In an MNO though up
to m (e.g., 1283) points can be stored at each node.
When using a hash table for storing the points, insert-
ing a point into a node takes constant time on the av-
erage [CLRS09]. The possible reduction is therefore
dependent on the ratio m/N. If this ratio is ≥ 1, then
complexity becomes O(N). For ratios approaching 0,
the complexity again approaches O(N log8(N)), which
is equivalent to O(N log(N)) (see Table 1).
For point clouds from laser scanners the number of
points that are stored at each node is much smaller than
m, since the points are distributed highly nonuniform
in space. Therefore m � N/k, where k is the num-
ber of nodes in an MNO. Huge point clouds where
N � N/k show a complexity of roughly O(N log(N)),
while smaller point clouds tend to show a O(N) com-
plexity. The space requirements for storing an MNO
on disk are O(N), since no additional points have to be
saved.

6.2 Building Up Michael Wand Octree
In 2D space a Michael Wand Quadtree can be com-
pared to a bucket point region quadtree (bucket PR
quadtree) [Sam06]. This is a quadtree where the chil-
dren of a node subdivide the node’s space into four
congruent squares. The data points are only stored in
leaf nodes, and the interor nodes are used to direct the
traversal of the quadtree. Each leaf node stores up to
mlea f points. The Michael Wand Quadree stores for the
level-of-detail mechanism (see Section 3) additionally
up to minterior points in the interior nodes.
In an octree where the points are only stored at
the leaf nodes, the time complexity for build up is
O(N log8(N)) ⇒ O(N log(N)), according to the total
path length (see also Section 6.1). Using buckets
at interior nodes and leaf nodes the complexity for
building up an MWO changes dependeing on the ratio
mlea f /N. For ratios ≥ 1 the time complexity becomes
O(N), and for ratios approaching 0 the time complexity
approaches O(N log(N)) (see Table 1).
The distribution of the samples in the point cloud deter-
mines the fan out of the hierarchy nodes as well as the
fill rate of the grids at the interior nodes. If the point
cloud represents a line, i.e., an object with dimension-
ality d = 1, the fan out of the interior nodes will be
similar to a binary tree, i.e., each node will have about
2 child nodes. Similar for d = 2 or d = 3 the interior
nodes will have about 4 or 8 children. Assuming a grid
with G cells per axis, then the grid has approximately
Gd cells filled. Note that since the MWO uses point
buckets at the nodes, their fan out will rather represent
the global characteristic of the data set. The granularity



of the nodes is too big to capture the true dimension-
ality. For a better estimation of the dimensionality, the
points within the nodes have to be used.

We are not making any assumptions about the point
data, therefore an initial estimate for d, without hav-
ing previously built MWOs of similar data sets, is very
difficult. Instead we use the average number of points
in the interior nodes, X , of a previously built MWO as
parameter for the approximation of the dimensionality.
With X and G given, then d = logG(X). From this an
estimation for the fan out F can be derived as F = 2d .

When given the total number of points N in a data
set and having an estimation for F and the related di-
mensionality d, the space requirements for the interior
nodes of a new MWO of a similar data set can be eval-
uated using the following 3 equations.

The total number of leaf nodes L can be estimated by
using F as an approximation to the number of new leaf
nodes that are created when a leaf node has to be split
during build up. The maximum number of leaf nodes is
then bound by

L =
N ∗F
mlea f

(1)

and on the average each of the new leaf nodes will hold
at least mlea f /F points. Having an estimation for L, the
total number of interior nodes Inodes can be estimated
with

Inodes =
L−1
F−1

(2)

which is the number of interior nodes for any tree with
an average fan out F . By using the dimensionality d
together with G, the number of grid cells on one axis,
the total number of points in the interior nodes Ipoints
can be evaluted by

Ipoints = Inodes ∗Gd (3)

The space complexity can be written as O(NC), where
C is a constant depending on the estimated parameters
d and F as well as on the given parameters G and mlea f .
For L � 1 the term L− 1 can be replaced by L and
Equation (2) can thus be approximated by L/(F − 1).
With this simplification C can be written as

C = 1+
F ∗Gd

(F−1)∗mlea f
(4)

For example a 2D object with d = 2 and F = 4 has a
value of C = 1+(4/3)∗ (G2/mlea f ).

When using the parameters suggested by [WBB+07],
G = 128 and mlea f = 100.000, then C = 1.218 for a

two-dimensional object and C = 24.97 for a complete
3D volume. This means that for point clouds represent-
ing a single 2D area the number of additional points
Ipoints is estimated to be 21% of the number of original
points, while for a point cloud representing a complete
3D volume it is 24 times the number of original points.
For the point clouds we tested with these parameters
the number of additional points was 40% of the orig-
inal points, suggesting the dimensionality of the data
sets is almost totally 2D.

6.3 Searching
Searching for a single point in one of the two hierar-
chies means first searching for the node that holds the
point and then searching for the point within this node.
The complexities are listed in Table 2. The search for
a point within an MNO node is of constant complex-
ity O(1), since the points in the nodes are stored in-
side grids (which are built once with an O(N) complex-
ity). For an MWO the search for a point inside the leaf
node is of O(M), if no search data structure (like a kd-
tree [Ben75]) for the points in the leaf nodes has been
created.

6.3.1 Modifiable Nested Octree
A range search in an MNO is similar to the range
search in a PR quadtree, only in 3 dimensions. A
PR quadtree subdivides the space hierarchically into
congruent squares. All points are stored in its leaf
nodes, one point per leaf node. A range search in a PR
quadtree, where the range is a rectangular area limited
by axis aligned lines, has a complexity of O(F + 2n),
where F is the number of reported points and n is the
maximum depth of the PR quadtree [Sam06]. The 2n

term is derived from the maximum number of nodes
that one line of the rectangle can intersect with. A PR
quadtree in the 3D case becomes a PR octree. Search-
ing all points in a PR octree that are inside an axis
aligned rectangular cuboid is proportional to O(F+4n),
where 4n accounts for the lateral surfaces of the cuboid
intersecting the octree nodes.

A range search in an MNO has to take interior nodes as
well as leaf nodes into account. This means all levels
of the MNO contribute to the search algorithm com-
plexity. This results in a performance proportional to
O(F + ∑

n
i=0 4i) ⇒ O(F + 4n). The complexity does

therefore not increase for an MNO.

When using a sphere as the search range, it has to
be discretized for counting the nodes intersecting the
sphere. The number of nodes intersecting a discretized
sphere is the solution to the diophantine inequation
(R−1/2)2 ≤ x2+y2+z2 < (R+1/2)2 [And94], where
R∈N is the radius of the discrete sphere, and x,y,z∈Z.
For increasing R it converges to 4πR2. The worst case
complexity of the range search is found when using



R = 2n/2. This is the radius of the inscribing sphere
for the axis aligned bounding box of the root node, ex-
pressed in number of nodes at depth n. The complex-
ity of this range search is thus proportional to O(F +

∑
n
i=0 4π22i/22)⇒ O(F +∑

n
i=0 22iπ)⇒ O(F +2n).

After identifying the nodes intersecting with the search
range, all points within the intersecting nodes have to
be tested if they are inside or outside the search range.
This is of linear complexity O(M) per node, where M
is the maximum number of points in a node. In total the
range search complexity for a cuboid inside an MNO is
O(F +4nM) and for a sphere it is O(F +2nM).

6.3.2 Michael Wand Octree
During a range search in an MWO points only have to
be searched for in the leaf nodes, contrary to an MNO,
but since the upper levels of the MNO do not con-
tribute to the search complexity, both hierarchies have
the same complexities (see Table 2).

6.4 Deleting
Deleting a point from a leaf node means basically
searching for it, and on the average this has a time
complexity of O(log(N)) (see Table 2). In an MWO
points are always deleted from the leaf nodes and the
interor nodes are updated later. In an MNO points are
directly deleted from leaf nodes and interior nodes.

6.4.1 Modifiable Nested Octree
In a node the search for the grid cell a point falls into
can be done in O(1). When a point is deleted from a leaf
node, the LOD structure remains intact. When a point
is deleted from an interior node, two more steps are re-
quired, i.e., finding a replacement point and pulling it
up to the node where the other point has been deleted
from.

A replacement point is searched for in a leaf node that
encompasses (or is inside of) the bounds of the node’s
grid cell the other point was deleted from (O(log(N))
complexity). This replacement point is then deleted
from the leaf node and inserted into the node the other
point was deleted from (O(1) complexity). Therefore
the total complexity of deleting a point from an interior
node is O(2 log(N))⇒ O(log(N)).

6.4.2 Michael Wand Octree
The search for a point in a leaf node is done in lin-
ear time O(M), where M = mlea f . After deleting the
point from the leaf node, the interior nodes on the
path from the leaf node to the root node have to up-
date the counters of the grid cells into which the point
falls (O(log(N)) complexity). The total complexity for
deleting a point is O(M+2 log(N)).

When using the optimization of Section 4 the points of
the interior nodes inside the Selection Octree have to be

updated. They have to look for a replacement point in
an existing leaf node. With this additional step the total
complexity for deleting a point is O(M + 3 log(N))⇒
O(M+ log(N)).

7 COMPLEXITY ANALYSIS FOR
OUT-OF-CORE PROCESSING

Having only a limited amount of main memory, the
point data can become larger than the available main
memory and an out-of-core management for the data
becomes necessary. This way the points of the hierar-
chy nodes are streamed from disk during processing.
Accessing the disk has a large overhead compared to
memory access, therefore reducing the number of disk
accesses is important for the efficiency of the out-of-
core data management. In the worst case, e.g., if the
locality of an operation on the point cloud is bad, each
access to a hierarchy node is preceded by a disk access.

One strategy to reduce the number of disk accesses is
to use an LRU cache, which manages nodes accord-
ing to the time they were last used. If points for a
new node have to be loaded from disk, the points of the
node which has been accessed the longest time ago are
swapped out of memory. Generally, using a memory
caching method can increase performance a lot. The
parameters influencing the efficiency of a LRU cache
are the size of the cache and the access pattern of the
operations to the nodes of the point-cloud hierarchy.

7.1 Building up and Inserting
The complexities for building up a point-cloud hierar-
chy are given in Table 3. C is a huge constant repre-
senting disk access. The term NC accounts for writing
every point to disk, and CN log(N) for loading the nec-
essary nodes. In the average case, when using an LRU
cache, nodes can often be accessed in the cache. Pa-
rameter k is the total number of nodes in the hierarchy.
To reduce disk access time a solid state drive (SSD) can
be used.

7.2 Searching
The complexities for searching are given in Table 4. We
give only the complexities for the spherical search, as
the cuboid search can be derived analogously. In the
average case the parameter kC accounts for loading and
reporting the found points.

7.3 Deleting
The complexities for deleting are given in Table 3. C ac-
counts for writing the changed nodes to disk. In the av-
erage case parameter kC accounts for loading and sav-
ing the nodes. The dominating terms are dependent on
the distribution of the deleted points. If only few points
per node are deleted, kC will be the dominating term,
otherwise N log(N) will be dominating.



Figure 4: In the top row the Domitilla model together with some overdraw heat-map visualizations is shown, from
2nd image left to right this are the MNO, the MWO with 30k leaf nodes and priority-based traversal, and the MWO
with 30k leaf nodes and depth first traversal. In the bottom row the Hanghaus and Stephansdom models are shown,
and the MNO is used for heat-map visualization. All traversals use a maximum projected grid cell size of 1 pixel
and are rendered with 1 pixel per point.
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8 RESULTS

We implemented the MNO and the MWO data struc-
tures in our point rendering and editing framework, to
be able to compare both data structures directly. Our
test computer has an Intel Core i7-2600 quad core CPU,
16 GB RAM, two 10.000 rpm hard disks in a RAID 0,
and 4 solid state drives (SSDs) in a RAID 0. All opera-
tions with the data structures use an LRU cache of 100
million points. Rendering is done in OpenGL.

For the tests we use 3 point data sets, the Domitilla
catacomb with 1.92 ∗ 109 points (courtesy of the FWF
START project "The Domitilla-Catacomb in Rome."),
the Stephansdom with 460 ∗ 106 points, and the Hang-
haus with 14.7 ∗ 106 points. In Figure 4 the data sets
(together with some overdraw heat maps) are shown.
From each data set we build 4 models, one MNO with
minimum 1000 points per node, and 3 MWOs with 30k,
65k, and 100k maximum points per leaf node. The
space requirements for an MWO increase with smaller
leaf node size, e.g., for the Domitilla model the MWO
with 30k leaf nodes is about 2.2 times larger than the
original data. This leads to higher build up times as
can be seen in Figure 5. Build up times for all Hang-
haus models are 30 seconds or less. Furthermore we
measured the total number of fragments written to the
800x600 pixels viewport in 21 different settings per
model. For each model we tested a maximum pro-
jected grid cell size of 1, 2, and 3 pixels, and the models
were then rendered with screen aligned OpenGL points
of the according size. For each grid cell size we ren-
dered the MNO model and the 3 MWO variants. Each
MWO was rendered once with a priority-based traver-
sal, and once with a depth first traversal. All renderings
were done from one viewpoint per model. The results
are given in Figure 6, and except for the Stephansdom
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Figure 7: Timings for deleting differently sized selec-
tions from the Domitilla model.

MWOs rendered with 3 pixels and the Hanghaus 30k
MWO rendered with 2 pixels projected grid size, the
priority-based traversal causes less overdraw. Editing
operations were tested by deleting different sized selec-
tions from the largest point cloud, the Domitilla model.
The results in Figure 7 show that the usage of an SSD
and also a smaller selection size do not speed up the
operation for the MNO as for the MWO models. This
is caused by a more expensive pull up operation in the
MNO, which uses nodes in the LRU cache. The time
overhead for updating the interior nodes after deleting
is about 1% for the largest, 4% for the medium, and
about 10% for the smallest selection.

9 CONCLUSION
We have presented a complexity analysis for the MNO
and the MWO, two data structures which can be used
for editing and rendering huge point clouds. The data
structures show similar complexities for build up and
editing operations. The memory requirements and thus
processing times for the MWO are dependent on the
leaf node size, while the memory requirements for the
MNO are the same as for the original data set. The
MNO is better suited for large editing operations, as
less nodes have to be processed. The MWO (especially
with 30k leaf nodes) is better suited for rendering, as
often less points are required to render a point cloud
from a certain viewpoint, resulting in higher frame
rates. We also introduced a lightweight extension to the
points deleting algorithm for the MWO, which allows
to use efficient node selection strategies during render-
ing, leading to less pixel overdraw.
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