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Abstract

We present an efficient algorithm for determining an aesthetically pleasing shape boundary connecting all the
points in a given unorganised set of 2D points, with no other information than point coordinates. By posing shape
construction as a minimisation problem which follows the Gestalt laws, our desired shape By, is non-intersecting,
interpolates all points and minimises a criterion related to these laws. The basis for our algorithm is an initial
graph, an extension of the Euclidean minimum spanning tree but with no leaf nodes, called as the minimum
boundary complex BCyiy,. BCyin and By, can be expressed similarly by parametrising a topological constraint. A
close approximation of BCy,jp, termed BCy can be computed fast using a greedy algorithm. BC is then transformed
into a closed interpolating boundary Boys in two steps to satisfy Byin s topological and minimization requirements.
Computing By,in exactly is an NP-hard problem, whereas Bou is computed in linearithmic time. We present many
examples showing considerable improvement over previous techniques, especially for shapes with sharp corners.
Source code is available online.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Boundary representations 1.4.8 [Computer Graphics]: Scene Analysis—Surface Fitting

1. Introduction

The "connecting the dots" problem using only point coor-
dinates to find a closed, interpolating and non-intersecting
curve in 2D is known to be very difficult. We constrain this
general problem to point sets which are not randomly dis-

(a) Point set (b) Shape boundary

Figure 1: a) Unorganised point set P. b) A pleasing shape

connecting P, which is a closed, non-intersecting and inter-
polating curve.
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tributed or extremely non-uniformly spaced, i.e, point sets
in which human observers can "see" the desired shape.

As in [OM11] our approach derives its requirement of a
closed non-intersecting curve from the Gestalt law of Clo-
sure and minimises globally a property related to both the
laws of Proximity and Good continuity to define the desired
interpolating shape denoted as B, .

The problem of finding the interpolating polygon which
minimises a metric, globally, is known to be NP (Non
Polynomial)-hard. Since even humans cannot uniquely iden-
tify a shape in extreme point distributions, it is only reason-
able to expect that the algorithm also does not attempt to
solve this problem for point sets with highly non-uniform
spacing or extremely sparse distribution in 2D space. Fur-
ther, B,,;,, for such point sets is not robust with respect to mi-
nor point displacements, so we exclude such extreme point
distributions.

The main contribution of our algorithm is to provide an
efficient solution, which improves significantly on previous
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work for reconstructing closed curves interpolating sparsely
spaced points with sharp corners in the boundary shape (see
Figure 1).

An important claim is the linearithmic computational
complexity of our algorithm, given that we approximate an
NP-hard problem. The computational complexity is con-
tained by defining intuitive transforming steps that start from
a simple extension of the Euclidean Minimum Spanning
Tree (EMST) and lead us to find a shape boundary, Bou
which interpolates all points while trying to minimise the
defined metric. The starting graph is a greedy approxima-
tion of the EMST extension which we have called as mini-
mum boundary complex BC,,;;,. Our other contribution is the
way we relate EM ST, BC,,;,, and By, as minimum spanning
graphs differing only in topological constraints. We believe
that it is this which enables our method to find a closed shape
boundary from much sparser point sets than previous work.
Since, the transforming steps mentioned above basically try
to satisfy By, s topological constraint and at the same time
minimise the defined metric, we conjecture that resulting
Bour, though it is not By, is quite a close approximation.
We show many examples with different kinds of point data
sets to illustrate this.

2. Background Definitions

e R? is two-dimensional Euclidean space.

e ||n|| denotes the Euclidean norm in R? for a vector n.

e P in R? denotes the given unorganised Point set P for
which an aesthetic closed, non-intersecting and interpo-
lating piece-wise linear curve has to be constructed.

e DG(P) is the Delaunay graph of the point set P with all
its elements in R?. The letters v, e and ¢ denote vertices,
edges and triangles, respectively. We shall use G to denote
any subset of DG.

o FEuclidean minimum spanning tree EMST is the tree span-
ning all points in P such that the sum of its edge lengths
is the minimum. EMST C DG (Jaromczyk and Tous-
saint [JT92]).

e Bis anon-intersecting and closed piece-wise linear curve
interpolating all the points of P. The minimum boundary
Byin 1s the B with minimum boundary length. Finding
Bin exactly is NP-hard.

e Enclosing boundary Be is the sub-set of edges of a span-
ning graph G C DG(P) which can be traversed in a fixed
orientation such that edges of G which are not part of B,
are all contained on one side of B., denoted as its inside.
We denote the set of triangles contained at the inside of
Be as its inside triangulation. The orientation is assigned
such that every triangle that is inside B, is also inside the
convex hull of P.

o Manifold vertex v; in Be is visited exactly once when
traversing B. in a given orientation. A B, with only man-
ifold vertices is itself manifold.

3. Related Work

In the literature we find two major approaches. One is to
cast this problem as 2D shape reconstruction by consider-
ing the points as samples on a known 2D curve(s). This
then makes it possible for algorithms to work for point sets
satisfying specified sampling criteria. Usually these criteria
impose quite strict conditions with regard to point spacing
properties, requiring high density, uniformity and smooth-
ness. The second approach is to view this problem as a global
search through all possible solutions. Below, we briefly re-
view previous work using these two approaches.

3.1. Local Sampling Condition Approach

Algorithms based on the sampling-oriented approach con-
nect the points using edges in the Delaunay Graph (DG) and
results have shown that this is a very reasonable choice. The
DG has the property of maximizing its angles and minimiz-
ing its edge lengths, which conform to the Gestalt laws of
good continuity and proximity.

a-shapes [BB97, EKSB83], Figueiredo and
Gomes [FMGY94], B-skeleton [KR85], y-neighbourhood
graph [Vel93] and r-regular shapes [Att97] are among the
early methods which worked only on smooth and uni-
formly sampled point sets. For example, o-shapes requires
user-specification of a global constant which depends on
sampling. It does not work for non-uniformly sampled point
sets.

Amenta et al. [ABE98] with their Crust algorithm intro-
duced the concept of local feature size which allows recon-
struction from non-uniformly sampled point sets with a min-
imum angle o between edges of the reconstructed piece-wise
boundary. The minimum angle o is derived from their e-
sampling condition. The stated sampling requirements of the
Crust method (€ < 0.252, requires o > 151.05°) and its suc-
cessors [DK99, DMR99] (¢ < 1, requires o > 141.62°) are
however quite restrictive in theory and difficult to ensure in
practice. The Gathan algorithm from Dey et al. [DWO01] han-
dles sharp corners and in its extension to GathanG proves a
combined sampling condition for smooth and corner parts
of the curve [DW02]. It does not take aesthetic aspects into
consideration. In spite of this, it provides in our opinion,
to date, the best sampling-oriented solution for this prob-
lem of 2D shape reconstruction from sparse point sets with
sharp corners. And this is also evident from the comparison
in [ZNYLO8].

Zeng et al. use the two properties of proximity and
smoothness derived from Gestalt laws but still require rather
dense sampling in sharp corners [ZNYLO8]. Some improve-
ments on these aspects have been made in [NZ08], but they
rely very much on user-tuned parameters.

The output produced by algorithms using a local sampling
criterion is a manifold which can be multiply connected and
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(a) Connected (b) Disconnected

Figure 2: Point set of two far circles. a) Requiring global
connectedness. b) Only requiring (local) closure.

possibly bounded. A specific requirement, say a manifold
which is closed and singly connected, can only be guaran-
teed for sufficiently dense sampling, imposing very restric-
tive criteria. Otherwise, the results are not predictable. This
can be seen later for example in Figure 13, which shows
a number of such cases. Of course, local sampling condi-
tions are designed specifically to make no assumptions on
the shape, but rather how the shape was sampled. In com-
parison, we have posed this problem as one requiring a shape
with a closed and singly connected manifold boundary. Fur-
ther, our observation from the many experiments conducted
is that enforcing the Gestalt law of Closure actually yields
more pleasing shapes. And if one indeed desires to get an
open shape, then an openness condition, such as large dis-
tance between points, very sharp turns or others, can be ap-
plied to the closed curve to make it open.

Also, if multiple connected components are required, then
these can be produced for a point set by dropping the global
condition of spanning tree enforcement and extracting the in-
terpolating manifold from each disjoint set separately. This
prefers Proximity while still fulfilling Closure as a local
property. The choice is then up to the user (see Figure 2).
However, we focus on the generic problem of producing a
single closed manifold shape.

3.2. Global Search Approach

A first attempt using a global search approach is the one
presented in [GB97]. They construct spanning Voronoi trees
and select the one with minimal length by integer program-
ming, with O(n? logn) complexity. It does not work well for
sharp angles and non-uniform sampling; obviously it prunes
good solutions too early.

Giesen shows in [Gie99] that the solution for the Eu-
clidean travelling salesman problem (ET SP), called a rour,
can reconstruct the shape for sufficiently dense sampling.
He presents two algorithms, but no results, and only an ex-
istence guarantee. Based on that, [AMOO] show that such
a tour reconstructs shapes also for non-uniform sampling
and that it solves the NP-hard problem in polynomial time,
if constrained with the sampling condition as presented
in [ABE98]. But the proof given is only for an extremely
restrictive € < %0, which requires o > 174.27°. For unre-
stricted sets Arora [Aro96] gives a (1 + 1/c¢)-approximation
to the optimal ETSP tour in O(n(logn)°)). These ap-
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proximations are however not optimal and our experiments
showed that non-optimal solutions are often poor from the
aesthetic shape perspecive.

In [AMNSOO0] the exact TSP based solution is compared
with Crust-type family of algorithms and six other TSP ap-
proximation solutions based on different heuristics. They
note that these TSP-heuristics all fail for certain curves con-
taining sparse sampling which the exact TSP method han-
dles well. They also mention that the exponential complexity
of the TSP decreases with denser sampling. With the excep-
tion of [Gie99], these methods do not require user-specified
parameters. Unfortunately, finding the exact solution using
a naive TSP solver takes unreasonable time O(2") even for
small P. The concorde exact TSP solver [ABCC11] scales
sub-exponentially and can take hundreds of CPU-years for
medium-sized point sets. Its complexity is discussed in de-
tail here [Hoo09]. While, in principle, a TSP solution con-
strained to DG would yield B,,;,, we consider the TSP as
too generic to be applicable for the problem we have stated.
Our focus is on an algorithm for efficient shape construction
to produce aesthetic shapes as seen by humans and it only
needs to work on point sets that are reasonable in their spac-

ing.

In [OM11] Ohrhallinger and Mudur show that for a cer-
tain class of point sets there exists a relation between mini-
mum perimeter polygon in DG and the Euclidean minimum
spanning tree (EMST) of P. This relation is characterised
by well-defined edge exchange operations. While their al-
gorithm gives very good results for sharp corners, it can-
not guarantee linearithmic complexity since in some cases a
global search of the solution space may be required. Their
main contribution is the approach to formulate curve recon-
struction as a minimisation problem, by relating to properties
of the Gestalt laws for aesthetic shape.

The algorithm presented in this paper on the other hand is
very different, even though it also minimises the same cri-
terion of length. In 2D, it turns out that length minimisation
relates very well to the above-mentioned Gestalt laws. We
base our algorithm on the observation that for point sets, ex-
cept in those which are random or extremely non-uniformly
spaced, the EMST graph characterises the boundary shape
rather well. However, there are leaf vertices in EMST and
there should be no leaf vertices in the interpolating, closed
manifold curve.

Based on this observation we formulate an extension to
the EMST by requiring that each vertex must have at least
two incident edges. Our experiments show that the enclosing
boundary of the resulting graph approximates much better
the shape boundary (see Figure 3c). This is so because the
extended graph shares a large sub-set of edges with By,
since it has the same minimization objective and differs only
in the topological constraint, which is slightly different. It
is not a tree. We name it the minimum boundary complex
(BCrin)-
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(a) BCy (b) BCinin

Figure 4: a) BCj reconstructed from a point set P by our
greedy Algorithm 1. b) BCyyin (P), which for this case is also
equal to Byin(P). BCy is transformed into By, by our algo-
rithm as described later on.

Computation of BCp;, and B, is NP-hard. However,
given the relaxed topological constraint of greater than two
incident edges per vertex, we are able to use a greedy al-
gorithm to compute an approximation to BCp,;,, which we
call as BCy. To this BCy, we then apply two steps derived
from the requirements of By,;,. The first is that we must have
exactly two edges per vertex and the second is minimisa-
tion of length. The output we get, which we shall denote as
Bout, 1s a closed, non-intersecting, manifold boundary. Ex-
periments show that the results we get are much better than
previous methods, especially for sparser point sets. We also
prove that like other Delaunay-based methods based on a
local-sampling condition, the complexity of our method is
O(nlogn), which is a major advantage over [OM11].

4. The Minimum Boundary Complex BC,,;,

Definition 1 Let BC = (V, E) be a connected graph with E C
DG(P) spanning the point set P such that each vertex v; € V
has > 2 incident edges e; € E. The criterion minimised is
len(BC) = Zg BC. Then the minimum BC must satisfy:

BCyin(P) = argmin(len(BC;),BC; C DG(P)) (1)

An approximation of BC;, can be constructed using a
greedy algorithm in O(nlogn) time, which we denote as BCy
(see Algorithm 1). BCy is used subsequently as the start-
ing graph and it may not be the same as BCp;, due to the
greedy algorithm terminating at a local minimum. In the
cases where BCy # BCy,i, (see Figure 4), it does not mat-
ter much since the post-processing steps anyway transform
it into another graph with topological constraints and mini-
mization objective, the same as for By,;y,.

Lemma 1 Given a point set P with n points and its Delaunay
graph DG(P), BCy can be constructed in O(nlogn) time.

Proof Creating PQ inserts at most the O(n) edges of DG into
a sorted list, therefore complexity is O(nlogn). The while
loop is executed at most for each edge in DG, O(n) times.
Testing for and keeping track of connectedness is done via a
disjoint set. Its operations are an amortised O(ou(n)), where
o(n) is the inverse of the Ackerman function (see Theorem 5
in [FS89]). The entire algorithm is therefore O(nlogn). []

Input: P,DG
Output: BC
BCo = {};
Insert all edges e; € DG into a priority-queue PQ sorted
by ascending ||e;||;
while BC is not a connected component or a vertex
vi € P has < 2 incident edges in BCy do
Remove first edge e; from PQ;
if (e; connects two connected components in BCy) V
(e; is incident to a leaf vertex in BCy) then
| Insert e; into BCo;
end
end

Algorithm 1: Construction of BCy

The algorithm for computing BCy relates directly to the
Gestalt law of Proximity. Closure is fulfilled as well by the
constraint of minimum two incident edges for every interpo-
lated point. Good continuity is not always strictly followed,
since it can conflict with closure (for an example see Fig-
ure 1 where the uppermost point of the tail and the rightmost
point of the wing are not connected as one would expect fol-
lowing good continuity). However it is fulfilled implicitly,
since restricting the edges to DG maximises angles between
edges and selects small edges, which in turn correlates well
to low curvature.

Algorithm 1 yields global closure by requiring connect-
edness. If we instead aim for local closure (as shown in Fig-
ure 2b), only the conditions requiring connectedness have to
be dropped from the algorithm. This does not affect its time
complexity. Note that the algorithm may not have a unique
result if the DG contains edges of equal length. However,
this is not a problem, as based on perception either result
will be equally valid.

5. The Main Algorithm
5.1. Overview

One major difference between BCy and B,y is that BCy has
non-manifold vertices (degree > 2) (see Figure 3c; for ex-
ample the three vertices in the lower part of the stem).

Hence the goal of subsequent steps of our method is to
transform BCy so that its vertices are each contained in ex-
actly 2 edges to yield By . For this, we start with B., the
enclosing boundary of BC and transform it. Let us note that
B. has both manifold and non-manifold vertices, and further
may have vertices in its interior. To better understand the
steps in this transformation process, we employ for B, the
metaphor of a yet partially inflated air mattress. This mat-
tress can be fully inflated by adding triangles from DG to the
inside triangulation of its B, until all its non-manifold ver-
tices have become manifold in the modified B.. We call this
first step in transforming BCy as the inflating operation and
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(a) Point set (b) EMST

T

(c) BCy (d) Binin

Figure 3: Comparison of spanning graphs with constraints on vertex degree c: a) Point set from [DWO1]. b) EMST (¢ > 1).¢)
BCy (c > 2) with the inside of its enclosing boundary shaded. d) B, (c = 2) with interior shaded.

T

(a) Figure 6 (b) Figure 1 (c) Figure 16
Figure 5: Sculpturing directly from the convex hull, as pro-
posed by Boissonnat [Boi84], often fails, as can be seen from
the results for some example point sets from this paper.

the result is denoted as inflated boundary complex BCj,f;.
Vertices in BC;,; therefore have degree of either O (infe-
rior) or 2 (on the B.). Since the addition of triangles is also
guided by the same minimization objective, and B, is closed
and manifold, BC;, s; provides a better approximation to By,
than BCy (see Figure 6¢)).

For the second step, we use the dual of the inflating opera-
tion, called sculpturing. Sculpturing removes triangles from
the triangulation inside B, until all interior vertices get ex-
posed on the boundary, i.e., become part of B,.

In Table 1 we compare the properties of the graphs de-
scribed so far (see also Figure 3).

Boissonnat [Boi84] first introduced the term sculpturing
as removing triangles with two vertices in the boundary
(starting with the convex hull) in order to expose all interior
vertices on that boundary. A criterion such as triangle cir-
cumradius was used to determine the order of removal. His
algorithm is guaranteed to expose all vertices if a combina-
torial search is used. However, with the convex hull as start
set and using only heuristic sorting, it ends up quickly in lo-
cal minima (see Figure 5). This is because there are points
interior to the convex hull which are not reachable using just
this heuristic.
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(a) Point set (b) BCy (¢) BCynp1 (d) Buin

Figure 6: Area inside B, always shaded: a) Point set. b) BCy.
¢) After inflating: BC;, s with manifold boundary. d) After
sculpturing: Interpolating boundary B, (same as the output
of TSP, as shown in [AMO0]).

Our contribution to sculpturing is to appropriately choose
the sorting criterion for shape characteristic minimisation,
and to apply it starting from an already very closely approx-
imated shape, namely the BCj, ;. Experiments have shown
that with this heuristic we do not get stuck into local min-
imum as frequently compared to starting with the convex
hull. This can be seen from a number of examples presented
in this paper (see Figure 5). An intuitive explanation for this
is that B, already includes some of those points that are in-
terior to the convex hull.

Graph Constraint
EMST c>1

BCrin c>2

BCiynfy c=0,0orc=2
Bunin c=2

Table 1: A comparison of the described graphs by their con-
straints of vertex degree c.

Given P, the entire algorithm consists of the following
steps (see Figure 6):

e Compute DG of P.
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Figure 7: Vertex classification. Dotted edges are in DG, solid
edges in BCy, here equal to its B.. Black dots are manifold
(gray dots: vq is interior, v, vp, v3 are non-conforming). v3
has two umbrellas (delimited by the arcs): ep-¢; bounds g,
e1-e> bounds the triangle fan {t,t,#3}.

e Construct BCy from DG.

e Apply inflating operation to transform BCy into BCjyy
consisting of a manifold boundary and interior vertices.

e Apply sculpturing operation to BC;,s; to expose interior
vertices onto the boundary to obtain Boy;.

For the exact minimum boundary, the number of combi-
nations of triangles which have to be considered in the pro-
cess of inflating and sculpturing can be very large, and this is
what makes our problem NP-hard. In our method, we use the
heuristic of sorting triangle candidates based on the change
in boundary length, A||B||, in line with our objective of min-
imising length. This process results in an acceptable solution
for the interpolating shape problem for a much larger class
of point sets compared to previous methods. This class is
defined later in section 6.2.

5.2. Inflating

We say an edge in BC is reachable from the convex hull of
the point set if:

1. itis an edge of the convex hull, or

2. it is an edge of a triangle in DG which has at least one
edge on the convex hull, or

3. starting from a triangle in DG with an edge on the convex
hull, it can be reached by traversing connected triangle
edges, without traversing any other edge in BCy.

All reachable edges of BCy make up B, (see Algorithm 2).

Let T(Be) denote all the triangles in DG(P) which are
inside Be.

Lemma 2 The enclosing boundary B, for BCy in DG con-
tains all vertices in P either in B, or in its interior.

Proof We start with B, as the convex hull of P. So, B, in-
cludes all p; € P either on its boundary or in its interior. Re-
moving a triangle from 7 (B.) never puts an edge ¢; € BCy
into the outside of B.. Since BCy spans all vertices in P, it
follows that no p; € P are outside of B,. [

Input: BCy
Output: B,
Initialise B, to convex hull of P;
while ¢; € B, ¢ BCj do
t; is triangle incident to e; in T'(Be);
Remove #; from 7' (Be)
end
Algorithm 2: Determine enclosing boundary B, for BCy

(a) BCO

(b) Detail

(c) Inflated

Figure 8: a) BCy with single non-conforming vertex vy in the
detail inside the frame. DG is shown as dotted and B, as solid
(interior shaded): b) 7o and #; are both candidates at vy. Since
Allto]| is the minimum, 7 is selected to add to T'(Be). ¢) vy is
now manifold in B, therefore #; is no longer a candidate.

Lemma 3 The enclosing boundary B. for BCy in DG is con-
structed in O(nlogn) time using algorithm 2.

Proof The loop is executed at most for the O(n) triangles
in DG, testing its condition is O(logn) complexity as a set
operation and therefore the complexity of the algorithm is
O(nlogn). [

We define an umbrella for a vertex v; in B, as its two in-
cident edges as traversed in the given orientation. Note that
a vertex may have more than one umbrella and in that case,
those can share edges (see Figure 7).

Any vertex v; € P can be classified by the number of um-
brellas u which are formed by its incident edges in B, (see
Figure 7) as follows: v; is interior to Be it u = 0, manifold
on B, if u = 1 and non-conforming otherwise.

We define an inflating-candidate triangle for a B, as a tri-
angle #; on its outside which is incident to a non-conforming
vertex v; in Be.

The operation "Add a triangle #; to T'(B.)" combines their
space inside the new enclosing boundary B, which is formed
by XORing the edges of #; in Be. Al|t;|| provides a measure
of the change in length to Be. It is the value calculated by
adding ||| for all its edges e; ¢ B, and subtracting it for
its edges e € Be (see Figure 8). If the triangle is already in
T (Be), then it leads to removal.
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To inflate B, we select and add a triangle from the current
set of inflating-candidate triangles. This helps to reduce the
number of its non-conforming vertices, since one is elimi-
nated where a triangle is added to two edges in B, with a
shared non-conforming vertex. We repeat this triangle addi-
tion process until B, becomes manifold. The selection crite-
rion used is the smallest A|¢;||, which helps to maximise the
reduction in length of B.. It gives priority to adding triangles
which have already two edges in in Be, as well as to those
triangles which are largest and have the most acute angle at
the non-conforming vertices.

Input: non-manifold B,
Output: manifold B, and BC;,, 7
Let V(¢) denote the set of three vertices of the triangle ¢
and V(DG) denote all vertices in DG;
Put all v; € V(DG) which are non-conforming in Vy;
Every vertex v; in Vj has candidate triangles. This is so
because of the following: if all its incident triangles
were in B, it would have to be either interior or on the
convex hull. Insert all candidate triangles ¢; into a
priority-queue PQ, sorted by ascending Al|t;
while PO # {} do
Remove first triangle #; from PQ;
Add ¢ to T(B.) and update B, accordingly;
forv; € V(1) do
| Update conforming state for v;
end
forv; € V(1) do
for ¢ incident to v; do
Determine candidate state of ; and Al|z;][;
Remove, update or insert ¢; in PQ
end

>

end

end

BCj, 51 = Be + (vertices in V(DG) and not in Be).
Algorithm 3: Inflating the enclosing boundary to a mani-
fold

Lemma 4 Applying the Inflating operation as defined in Al-
gorithm 3 to B, € DG will always result in a manifold B,.

Proof We first prove that the while loop is guaranteed to
terminate. Any triangle #; € DG which is on the outside of
B, is a candidate for addition to T'(B.), if it is incident to
a non-conforming vertex in B.. All triangles outside B. can
at most be added once, since there is no removal operation.
The while loop terminates if all vertices in B, are manifold
or in the limit all candidate triangles are added. In the latter
case, B, becomes identical to the convex hull of P, which is
a manifold boundary. []

Lemma S Given an enclosing boundary Be, the Inflating op-
eration constructs BC;y, s in O(nlogn) time.

Proof Determining the conforming state of a vertex, if a tri-
angle #; is a candidate, and calculating its A||5;|| are all O(1)
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complexity, since the computation is only dependent on the
k incident edges in DG. The O(n) triangles in DG are at
most inserted a constant 3k times in PQ. The inner-most loop
contains a constant number of 3k operations on sorted lists
or sets. The algorithm is therefore of complexity O(nlogn).

O

5.3. Sculpturing

Be of BCy, 7 is manifold, but BC;, s; may contain some points
of P as vertices interior to its B.. As mentioned eatlier,
in [Boi84] Boissonnat defines that triangles with two ver-
tices in the boundary may be removed. However, in order
to keep B. manifold, we have to apply the following condi-
tions (derived from his 3D algorithm). Exactly one edge of
the triangle must be in B, and the vertex opposing that edge
in the triangle must be interior. This guarantees that B, re-
mains manifold and all interior vertices can be exposed onto
the boundary to transform B, into any polygon in DT, which
is also contained in Be. It is easy to see that this holds even
when we replace the convex hull with any manifold enclos-
ing boundary, such as B. in DG. Removal of the triangle
exposes the interior vertex onto B since its incident edges
become part of it, and this permits us to obtain any contained
polygon in DG

Of course, the DG must contain a Hamiltonian cycle.
However we have not encountered any point sets with non-
Hamiltonian DG. Those have been observed to be extremely
rare [Gen90] (see [Dil87] for a contrived example), it is
therefore not a real concern in practice.

We define a sculpturing-candidate triangle for a B, as a
triangle #; on its inside with one edge in B, and its opposite
vertex as interior in Be.

Algorithm 4 exposes interior vertices efficiently to make
them part of the interpolating boundary (see Figure 9).

Lemma 6 Sculpturing triangles from a boundary B. using
Algorithm 4 is O(nlogn) complexity.

Proof Determining if a vertex is interior is O(1) complexity
and so are calculating A||¢;|| for a triangle #; and determining
if it is a candidate. The outer loop is executed at most for the
O(n) triangles in DG. The first inner loop is run for the con-
stant k incident edges in DG, the second one exactly twice.
The algorithm is therefore of complexity O(nlogn). [

To extract any contained polygon interpolating all points
from a given B, requires a combinatorial search. Since we
limit our algorithm to O(nlogn) complexity, sculpturing
may not expose all points on the boundary for highly non-
uniform point spacing. So the resulting boundary will still
be manifold, but may not interpolate the entire point set.
We have noted that such a case is limited to the local neigh-
bourhood of these highly non-uniformly spaced points. Let
C, denote the class of point sets which do not contain such
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(a) Initial

(b) Exposed vq

(c) Exposed v3

Figure 9: Point set with manifold enclosing boundary B. shown using thick lines, other edges in DG shown with thin lines,
interior vertices shaded gray and triangle candidates for sculpturing shown shaded yellow. a) Of the 10 candidates, Al|f|| is
minimal (7y is small and very thin). b) By removing fy from 7 (B), interior vy becomes interpolated by B.. At vy, two new
candidates have been added (71, t;) as they now share edges with B,. 3 is selected next to remove, exposing v;. ¢) t4 and #5 will

be removed subsequently to interpolate v, and v3 leading to Bour.

Input: BC;, 7

Output: Bour

Bout = Be of BCmﬂ;

Put all interior v; € BCiy gy in Vipy;

Insert all sculpturing-candidate triangles #; into

priority-queue PQ, sorted by ascending Al|z||;

while PQ # {} do

Remove first triangle #; from PQ;

vi € t; € Bour;

Remove t; from T (Bou) and update Bous

accordingly;

for ¢; incident to v; do

| Remove ¢; from PQ

end

for e; € t; incident to v; do
tj is triangle in T (Boyr) containing e j;
Determine candidate state of ¢; and Al|¢;][;
Insert ¢; in PQ

end

end
Algorithm 4: Sculpture to an interpolating boundary

highly non-uniformly spaced points. We shall discuss the re-
lationship of this class with the sampling condition in the
next section.

5.4. Performance

Theorem 1 The main algorithm in section 5.1 outputs a

closed and non-intersecting manifold boundary in expected
O(nlogn) time for a point set P, provided DG contains a
Hamiltonian cycle.

Proof The Delaunay triangulation step is of O(nlogn) ex-
pected complexity as shown in [GS85]. All the following
steps are also of O(nlogn) complexity as proved in lem-
mas 1, 3, 5 and 6. The total complexity is therefore linearith-
mic.

Lemma 2 proves that all vertices in P are contained on or
inside of B.. By lemma 4 it produces a manifold boundary
with interior points. Sculpturing rules maintain that manifold
property and include all interior points on the boundary. [

We have observed that in practice the performance is de-
termined to a large factor by the time for DG construction.

We note that for point sets in the class Cy, the resulting
boundary also interpolates all points in P, since we defined
it to guarantee interpolation in the last step, namely, sculp-
turing.

6. Results

The complete source-code for our technique has been made
available online [Ohr11]. We use existing implementations
for Delaunay triangulation [HS11] and disjoint sets [Stel1].

6.1. Comparison

We have tested our algorithm with a very large num-
ber of point data sets (some examples are shown in Fig-
ures 10, 11, 12 and 13). Many other algorithms also work for
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(a) Point set [AMO00] (b) GathanG (c) Our method
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(d) Point set [DW02] (e) GathanG (f) Our method
(g) Point set [ZNYLO8] (h) GathanG (i) Our method

Figure 10: Boundary construction of nicely sampled point sets: Left column: Point set. Center column: GathanG with default
parameters [DW02]. Right column: Our manifold result.
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(a) Runner point set (b) GathanG (c) Our method
8 . . L—P j
(d) Railjoint point set (e) GathanG (f) Our method

IX LM . ol
(g) Dragon point set (h) GathanG (i) Our method

Figure 11: Boundary construction of challenging point sets: Left column: Point set. Center column: GathanG with default
parameters [DWO02]. Right column: Our manifold result. a-c) Point set sub-sampled from a silhouette video image. d-f) Rail-
joint, an engineering part [OM11]. g-i) Dragon point set, with many sharp corners.
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(a) 10k points

r/_/\\ .,
,

(b) GathanG (c) Our method
Figure 12: 10000 points sampled from silhouette image. a) Point set. b) GathanG with default parameters [DW02]. Note the

false connections, disconnections and doubled boundaries. ¢) Our method constructs a closed manifold, even for the extremely
close boundaries.
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(a) Close curves (b) GathanG (c) Our method

De:

(d) 3 circles (e) GathanG (f) Our method

<

(g) Random, 10 (h) GathanG (i) Our method

lfise

(j) Concave, 5 (k) GathanG (1) Our method

Figure 13: Left column: Point set. Center column: GathanG with default parameters [DWO02]. Right column: Our manifold
result. a-c) Shape with extremely narrow portion. d-f) 10 random points. g-i) Three loops [OM11]. j-1) Concave polygon.
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Figure 14: Our method reconstructs Boys (= Bpin) for two
point sets from [AMNSO00], which all their TSP approxima-
tion algorithms fail to reconstruct.

’ ; % X
b 0

Figure 15: a) Goose point set from Amenta et al. [ABE98].
It does not represent a solid. b) The B, constructed by our
method is not B,;,. ¢) After two Steiner points have been
added to the point set (indicated by arrows), B(out) = Buuin
is constructed correctly.

typical large point sets such as Figure 12 which are usually
uniformly and densely spaced. Hence, we focus on showing
critical details of point sets which sampling-oriented recon-
struction algorithms have not been able to handle correctly
and efficiently (see Figure 13). We compare our results for a
number of difficult point sets with GathanG from [DW02],
which yields the best results of all earlier algorithms for such
point sets (see Figure 10). [ZNYLO08] has already compared
their results with many of the other methods mentioned ear-
lier. These results demonstrate that arbitrarily closely spaced
boundary parts and very sharp corners as artifacts of sparsely
and non-uniformly spaced points are all handled very well
by our algorithm.

Figure 14 shows two point sets from [AMNSO00] for which
all of the six TSP-approximations algorithms listed in that
paper fail. However, our method correctly constructs By
for these point sets as well.

We discuss two point sets for which Boy is not the desired
output. In the first case (see Figure 15) this is due to rather
non-uniform point spacing in certain places. It is easy to see
this, because after insertion of just two Steiner points, in the
places where points are poorly spaced, our algorithm pro-
duces the desired result. In the second case (see Figure 16)
our algorithm gets stuck in a local minimum. In both exam-
ples, the global minimum can be constructed by using an
algorithm which does some combinatorial searching, such
as in [OM11]. Since that algorithm tries to recover the exact
Bin using a sequence of edge-swap operations, it exhibits

submitted to COMPUTER GRAPHICS Forum (3/2013).

b) c)

Figure 16: a) Crocodile point set from [OM11]. b) Byys con-
struction by our method (has got stuck in a local minimum,
see arrow). ¢) Exhaustive non-linearithmic search [OM11]
yields Bin.

e

NG

(b) Our method

(a) Mehra et al.

Figure 17: Constructing the shape boundary from a noisy set
of points. a) Figure presented in Mehra et al. [MTSM10]: It
eliminates outliers rather arbitrarily, and does not fulfill its
aim of producing a closed shape. b) Result of our method:
Bour interpolates all the points as would be expected by hu-
mans.

linearithmic time only if there is a single such sequence. Un-
der this strict constraint, it does work better for some highly
non-uniform point sets. Yet, when this constraint is not met,
it fails for many cases which this method reconstructs well
(see for example Figure 10d). Further, the greater concern is
that algorithm [OM11] can deteriorate quickly into combi-
natorial complexity.

6.1.1. Noisy Point Sets

Note that in this paper we only consider the problem of in-
terpolating all the given points. For noisy point sets, any ap-
proximating technique which fits a curve close to the points
may be considered a more appropriate choice. Fitting tech-
niques however make implicit assumptions on an underlying
curve, which especially for sparse sampling is not justified.
Further these methods tend to perform low-pass filtering and
may thus lose some essential information.

Noisy point sets represent measures taken of a shape at
varying distance to its boundary. Features smaller than the
noise threshold are invariably lost. On the other hand, if we
consider the noisy point set as is, our method reconstructs
the topology more robustly as compared to related work (see
Figure 17).

De-noising can then be done based on a noise model as
a post-processing step. This noise model can be constructed
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on known measurement characteristics, or could simply be a
probability distance function normal to an estimated bound-
ary as a Gaussian distribution. The de-noised boundary can
then be produced by fitting that model with the known con-
nectivity of the reconstructed boundary with the original
noisy data.

6.2. Sampling Condition

In order to construct a sampling condition for our algorithm,
we first need to give some definitions:

The medial axis M for a smooth curve C is the closure of
all points in R? with > 2 closest points in C [Blu67]. The
local feature size LFS(x) for a point x € C is the Euclidean
distance of x to its closest point m € M [Rup93]. LFS(x) is
1-Lipschitz continuous, which allows us to bound LFS(x) in
terms of a sample p close to x, since |[LFS(x) — LFS(p)| <
I, .

Definition 2 refers to the widely used sampling condition
given in [ABE98]:

Definition 2 A smooth curve C is said to be e-sampled by a
point set P if for each point x € C there exists a p € P such
that ||x, p|| < eLFS(x).

In the discussion which follows let the ordered set Q =
{40,91,92,---} denote the correct polygonal reconstruction
of C using P, where ¢; € P.

Observation 1 Our experiments showed that the starting
graph in our method, BCy, already reconstructs a closed
smooth e-sampled curve C with € < 1 for a large class of
point sets P (see Figures 18 and 19 for some examples), even
if P is locally non-uniformly sampled on C. Where By re-
constructs C correctly, but BCy fails, is in the following situ-
ations:

e when parts of C with high curvature are close to each
other and at the same time € approaches 1, or

e ( is sampled too locally non-uniform (as in all of Fig-
ures 10 and 13), such that points which are not adjacent
on C are closer than their adjacent points.

Our method is able to reconstruct much more sparse point
sets than others. It also works for a less restrictive €e-sampling
with some constraint on local non-uniformity.

In order to be able to discuss these situations in a more
formal way, we define a measure for local non-uniformity u
as €jonger/ eshorter Tr two adjacent edges in Q. With this we
can define a sampling condition for which BC itself results
in the desired output B,,;,. Point sets fulfilling this sampling
condition are therefore contained in the above-mentioned
class Cy. It is important to note that C;, contains many more
point sets outside of the above sampling condition for which
applying the operations of inflating and sculpturing to BCy
results in correct reconstruction.

Figure 18: Two segments of BCy (thick black line) recon-
structing the e-sampled smooth curve C (shaded red) with €
just below 1, separated by its medial axis M. The circles rep-
resent local feature size as the distance between medial axis
and the intersections at the half-sector of the curve segments
between samples (length of the vertical lines).

4\
Zav;

(b) 4 samples

(a) 3 samples

Figure 19: Red shaded smooth curve C (a circle) sampled
with different number of points. Thick lines are edges in
BCy, M is the medial axis (here a point). g is the point on
the segment pg, p1 of C with the largest distance from BCj.
|Po,ql| divided by the local feature size LFS (=||q,M||) de-
notes € for the e-sampled C. a) 3 equi-distant point sample C
with € = 1. b) 4 equi-distant point sample C with € < 1.

Figure 20: Illustration for deriving minimum conditions for
samples ¢;_1_j+» to be arranged such that d < c, thus avoid-
ing folding back in BCy as it happens in the example shown
in Figure 21.
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Theorem 2 BCj reconstructs a smooth e-sampled curve C
from the set of sample points P with € < 0.5 and a local non-
uniformity u < 1.609.

Proof We need to show that under the above sampling con-
dition (i) BCy = Q(= Bowr) and (ii) BCy = Bin.

) BC =0

If p is a point in P which is not adjacent to ¢; in Q, then we
shall call (g;, p) a chord of Q.

Let us recall that the greedy construction of BCj takes up
edges in order of length. If for every ¢;, all chords (g;,p)
are longer than the two edges incident at g;, then we are
guaranteed that BCy equals Q. This is because the algorithm
for constructing BCy will encounter the shortest two incident
edges at every point before any chord and the algorithm ter-
minates when every point has at least two incident edges. We
prove next that under the given sampling condition, (g;, p)
is always longer than the two incident edges at g;, namely
(gi—1,9i) and (gi, gi+1)-

Case 1) (gi, p) does not intersect M: First we will show that
in this case, chord length increases monotonically as we go
forward along Q from (g;,qi+2), (gi,qi+3), and so on. We
shall prove this by contradiction. Let (g;,¢;.x) for some k be
shorter or equal than (g;,¢;+¢—1). Let x be the point in the 1-
disk D C C between g; and g, with maximum length chord
(¢i,x). Then the disk tangent to C at x with radius LF S(x) has
its center, which is in M, in that chord (g;,x). Hence, either
the chord (g;,q;. ) intersects M, contradicting our assump-
tion, or it is part of the monotonically increasing sequence
of chords in the other direction from ¢; along C. (In the spe-
cial case of a circle, for example, in which M is a single
point, the chord length increases monotonically until it be-
comes the diameter and intersects M, and if it crosses over
M, then it is part of the monotonically increasing sequence
in the other direction.) Similar arguments can be made for
monotonic increase in chord length along the other direction
from g; along Q, namely, (¢i,qi—2), (¢i,qi—3), and so on.
What remains to be shown is that (g;,g;12) and (g;,qi—2)
are always longer than (g;_1,¢;) and (g;,g;+1). Then by the
above monotonicity property, all chords will be longer than
the 2 incident edges. We will only prove it for (g;,q;12) as
the proof for (g;,q;—») is similar.

Lemma 10 in [ABE9S8] states that for an e-sampling,
the minimum angle spanned by three adjacent samples
qi,qi+1,4i+2 in Cis .=t —4arcsin % For € < 0.5 this trans-
lates to o ~ 122°. By triangle inequality, the chord g;,q; 2
cannot be shorter than the edge (g;,gi+1)-

Next we will prove that the chord (g;,g;+2) cannot be shorter
than the edge (g;—1,¢;) under the above sampling condition.
Assume a 1-disk D C C between ¢; and a point x such that
no chord (g;, p € D) intersects M, but the chord (g;,x) does.
Let sample g;—| € D and gj1,49i+2 € D, or otherwise we
are done. Let @ = |gi 1,942, b = |9i,qiv1], ¢ = |4i,qiv2],
d =qi,qi—1| (see Figure 20) and therefore we want to prove
thatd < c.

5 is smallest when 2, % and their shared angle o become
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minimal. o is smallest if g; ;15 are lying on the circle tan-
gent to g; with radius LFS(g;) = 1 without loss of generality
(Lemma 7 in [ABE98] constrains the samples from being
inside that circle) and angle § between the chord (g;,gi12)
and the normal to C at g; is minimal. That is the case for
¢ =¢(Lemma9 in [ABE98]). Because of the non-uniformity
threshold u between adjacent edges, % > % and § > % and
it follows that d < w?a. Hence we would like ¢ > wla.
gi.i+2 form a triangle with lengths a,b,c. gj1o lies at the
intersection of a circle of radius € with the circle containing
the vertices. Since we have expressed a,b,c in terms of u,
we can substitute these inequalities in the circle intersection
equation and get u < 1.60921 for € = 0.5.

Case 2) (gi, p) intersects M: Let x be the point on the closed
1-disk of C between g; and ¢, that has maximum distance
to both. We assume without loss of generality that LFS(g;) <
LFS(p). Since (g;, p) crosses M, ||(gi, p)|| > 2LFS(g;). For
the Euclidean distance d between ¢; and g1, applying the
triangle inequality results in d < ||g;,x|| + ||x,gi1]]- We
plug in € = ||g;,x||/LFS(x) from the above definition for €-
sampling and get d < 2eLFS(x). Since LFS is 1-Lipschitz

continuous, |LFS(x) — LFS(g;)| < ||x — g;i||. The distance
from x to ¢; is ELFS(x), so it follows that LFS (x) < %(gq").
We express LFS(x) through d and getd < lz—feLFS(qi). This
yields d < ||g;, p|| if 155 < 1, which in turn is fulfilled for
£<0.5.

(i1) Proof for BCy = Bin

Any other ordering of the points in Q, to obtain a closed
interpolating curve, would require exchange of chords with
incident edges. Since under the stated sampling condition,
all chords are longer than incident edges, this would result
in an increase in length. Hence BCy = B,,;;, under the above
sampling condition.

O

With the above proof, our method guarantees reconstruc-
tion for much sparser point sets (¢ < 0.5) as compared to
other methods such as [ABE98] (¢ < 0.252) and [DK99]
(e < 1/3). Since a higher € permits sharper angles and closer
points across the medial axis, this guarantee requires an ad-
ditional restriction on local non-uniformity.

Let us recall that BCj is only our starting graph. The sub-
sequent steps in our method which transform a non-manifold
BCj into a manifold By, enable handling of point sets be-
yond the above sampling condition. By enforcing the Gestalt
law of closedness in obtaining By, our method is able to
succeed with the reconstruction of much sparser sampling,
like the cases in Figures 10 and 13 all of which go beyond
the above sampling condition. This is because we believe
that B, reconstructs a smooth curve with far less stringent
sampling requirements.

There are point sets which satisfy the €-sampling condi-
tion but not the local non-uniformity requirement, and for
which our transformation process may get trapped in a local
minimum (see Figure 21 for a contrived example).
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(a) BC() (b) Bout

Figure 21: a) BC for a point set (noisy circle with hole at
top) which samples a smooth curve with € < 0.5 and in-
between angle > 122°, but violates the local non-uniformity
condition u < 1.75. The dotted line is in B,;,. b) Instead,
inflating gets stuck in the local minimum Bou:.

o000

o000 o

o000 ®

[ I BN BN J *—o—0—9
(a) Points (b) Short Byy; (c) Long Bour

Figure 22: a) Point set sampling a smooth curve with € > 1.
b) Biin- ¢) Another possible Boy.

For € > 1, Amenta et al. [ABE98] have observed (Obser-
vation 6) that there may not be a unique polygonal recon-
struction of a smooth curve. Our method will choose one
that is B, (see Figure 22), following Gestalt laws.

Conjecture 1 B, reconstructs a smooth €-sampled curve C
for a set of points P with € < 1.

Supporting arguments:

Theorem 12 in [ABE98] states that for such a curve C
sampled by P, DG(P) contains the edges which are adjacent
on C. This would mean that our requirement that B,,;, be
contained in DG is sufficient.

With € < 1, from their Lemma 10 the minimum angle
spanned by three adjacent samples on C is at least 60°.

Next, we have to show that Q is the minimum length
closed interpolating curve with edges in DG(P). Let Py,
denote the set of points belonging to a sub-sequence of
edges in Q. Consider another non-intersecting sub-sequence
of edges made up using all of Py, to replace the original
sub-sequence. Once again, we have two cases - the new sub-
sequence either crosses the medial axis or it does not. If it
does not, then under the condition that the angle between

(a) Sparse (b) Too sparse
Figure 23: The smooth curve C is shaded red. The thin curve
is its medial axis (arrows imply continuing into infinity).
Samples are connected by BCy (thick edges). a) C is sam-
pled with € > 1, but By still reconstructs C. b) C is sam-
pled differently with € > 1, but this time too sparsely for
our method to reconstruct C with B,,;. Note that there exist
vertices whose incident edges intersect more than one con-
nected component of the medial axis.

(7
d
1.609
C
1
0.252 3 0.5 1 e

Figure 24: Comparing algorithms based on sampling cri-
teria and guaranteed reconstruction: a) Crust [ABE98].
b) [DK99]. ¢) BCy = Bpin- d) Byin (Our conjecture).

adjacent edges at every point in both the old and the new
sub-sequence is at least 60°, it is clear that the replacement
sub-sequence can only be longer than the original.

Since with € < 1, the edge crossing the medial axis can be
shorter than the original edge, we would require that the re-
placement subsequence is not shorter. We do not yet have the
proof for this case. However, we have not been able to cre-
ate a counter-example which shows that under this sampling
condition, there exists a replacement sub-sequence which in-
tersects the medial axis and is shorter in length. Hence this
conjecture.

In Figure 24 we show how other sampling criteria guaran-
teeing reconstruction of smooth curves compare with ours.
It illustrates that in order to reconstruct from less densely
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spaced samples, some local uniformity has to be enforced.
Note that we do not show the bound of Gathan [DWO02]
(e < 0.5) for smooth parts of the curve, since it is not based
on the same sampling criterion. It depends on the distance to
both adjacent samples instead of just one and therefore the
values for the sampling condition do not correlate to ours. In
fact they prove in their Lemma 3 only a minimum angle of
o = 150° between incident edges to a sample, much larger
than our o0 &~ 122°.

We also give an intuition for the limitations with which
our method can reconstruct sparse sampling. In the exam-
ples we have worked with, we have noted that the inflating
step can correctly reconstruct the curve locally where BCy is
such that incident edges at a vertex intersect the medial axis
only once (see Figure 23). In this situation, it can be seen
well in Figure 13b that our method handles arbitrarily sparse
sampling. How this relates to the sampling condition is not
yet clear to us and will require more investigation.

7. Conclusion and Future Work

We propose a straight-forward and intuitive algorithm to ex-
tract the interpolating shape boundary present in an unor-
ganised set of points. It handles more sparse point sets than
earlier methods by formulating the boundary construction
as a minimisation problem. A number of examples indicate
that our method works better, particularly for sparse point
sets with sharp corners in the shape. This has been shown
by comparison with sampling-oriented methods, while guar-
anteeing competitive computational complexity. Experimen-
tal evidence shows that it may be sufficient to approximate
the minimum total boundary length to yield an aesthetically
pleasing curve (see Figure 16).

To guarantee a more relaxed point spacing criterion, in our
future work, we will analyse the topology of BCj in order to
segment it into components on which we can then determine
where a different heuristic or a full search is required to find
Biin-

Our work raises several interesting questions:

e Does there exist only a single By, for a smooth
€ < l-sampled curve, and in that case, can the twice-
differentiable 1-manifold be reconstructed faithfully?

e Can a sampling condition formulated using the two-
dimensional parameter space of € and u provide better
guarantees with regard to sparsely sampled point sets?

e [s it possible to formalise the explicit condition under
which sparse sampling is permitted, and under this con-
dition also does there exist a single Bous?

More formal extensions to open and disconnected curves
is also of interest.

Furthermore, based on some experimentation and promis-
ing initial results, we believe that our method will ex-
tend well to 3D point sets (see our overview presented
in [OM12]).
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