Façade Reconstruction
An Interactive Image-Based Approach

Przemyslaw Musialski
Institute of Computer Graphics and Algorithms
Vienna University of Technology
What is Façade Reconstruction?

• Part of Urban Reconstruction

• Creating digital models of real cities

• Cities are large collections of man-made objects at many LODs
Possible Applications

- Cyber-Tourism
- Computer Games
- Movie-Industry and Entertainment Industry
- Digital Maps and Routing
- City-Planers and Architects
- Archeological Research
- More Sciences (Sociology, ...)

6/6/2013 Facade Reconstruction
Challenges

• **Quality**
 – Demand of realistic quality and high LOD

• **Scalability**
 – There are many buildings out there...

• **Ease of Creation**
 – Non-experts should be able to create content

• **Full Automation**
 – Chicken or Egg problem
 (e.g. Top-Down vs. Bottom Up)
Overview

• A Survey of Urban Reconstruction [MWA*2013]
In EG2012 STAR Proceedings & CGF Journal 2013
Why Image-Based?

• Easy to acquire (cheap)

• Imagery is essential in Urban Reconstruction
 – For a realistic look
 – As source for reconstruction
Why Interactive Modeling?

• High-Quality
 – Interactive: yes
 – Automatic: no

• Scalability
 – Interactive: no
 – Automatic: yes

• Ease of Creation
 – Interactive: somewhat
 – Automatic: somewhat

• Full Automation
 – Interactive: no
 – Automatic: yes?
Multi-View Façade Image Editing
Motivation

- Texturing of urban scenes:
 - near orthographic projection
 - from typical photos
 - high quality
Multi-View Façade Image Processing

- Multiview Projective Texturing
 - Musialski et al. [MLS*10]
Input: Typical, perspective Photographs
Sparse Reconstruction

Structure-From-Motion

Facade Reconstruction
Sparse Reconstruction

Plane Fitting
Interactive Boundary Adjustment
Multi-View Projection

Accumulate in an “Image-Stack”
For each photo (per target pixel)

1. evaluate projection quality q
2. generate occlusion weight o
3. insert to sorted image stack with oq
For each photo (per target pixel)

1. evaluate projection quality \(q \)
2. generate occlusion weight \(o \)
3. insert to sorted image stack with \(oq \)
Image Stack

For each photo (per target pixel)

1. evaluate projection quality q
2. generate occlusion weight o
3. insert to sorted image stack with oq
Multi-View Stitching
Gradient Domain Stitching

- Color space stitched image
Gradient Domain Stitching

• Stitched gradients
Gradient Domain Stitching

- Reconstructed image
Gradient Domain Stitching
Interactive Brushing
Interactive Brushing Video
Point Occlusion

- points in front of buildings not part of the facade
- project points to target
- occlusion weight per photo
Occlusion
Summary

• fast high-quality façade textures
• interactive texture cleanup
• part of complex urban reconstruction pipeline
Interactive Coherence-Based Façade Modeling

[MWW12] Eurographics 2012
Goal

- Reconstruction of Façade Models

Input: Ordinary Photo ⇔ Output: Computer Model
Our Approach

• Interactive modeling process
 – Input: Single rectified image
 – Incorporates the user from the beginning

• Utilizes symmetries across the image
 – Coherence-Based Modeling

• Two crucial operations
 – Automatic Façade Split Operator
 – Synchronized Group Operator
Coherence-Based Modeling
Two Crucial Operations

- **Automatic Façade Split Operator**
 - Also allows automatic selection of similar elements

- **Synchronized Group Editing Operator**
 - Propagates splits to all instances in a group
Two Crucial Operations

• Synchronized Group Editing Operator

Syncronized Group Editing
Two Crucial Operations

• Automatic Façade Split Operator

Automatic Split

Horizontal Auto Split

Vertical Auto Split
Idea: handle the pixel rows as row vectors!

Input ➞ Data Points
Automatic Façade Split

- perform **clustering** on rows of the image
- we use agglomerative bottom-up clustering
- number of clusters chosen by the user
- no connection in the spatial domain

![Diagram of data points and agglomerative clustering](image)
Automatic Façade Split

- perform a regularization process to the clustering result
 → minimize the boundary between the clusters
- we use **dynamic programming (DP)**
 → finds minimal energy path between cluster in spatial domain
– it delivers spatial segmentation
– and, since pixel-rows have cluster IDs
 → also grouping of similar objects
Automatic Façade Split

– can be performed for x and y separately
Synchronized Group Editing

- elements with the same cluster-id provide candidates for groups
- groups can be edited in a synchronized manner
Synchronized Group Editing

– Simply propagate the relative split positions to all members in a group
– Works only if the topology of all shapes is the same
– Other splits possible, but release the grouping
Synchronized Group Editing

– each element is still a separate instance
Complex Shapes

- Polygonal shapes at the lowest hierarchy level

- Can also be edited in a synchronized manner
Evaluation

- 7 Test Façades edited to the same LOD
- 5 Modeling Modes:
 - Manual Modeling
 - Edge-Based Interactive
 - (CGA-Grammar-Based)
 - (Coherence-Based Manual)
 - Coherence-Based Interactive
- Metric:
 - Split Ops Count
 - Modeling Time
 - (Select Ops Count)
Evaluation: Split Operations

960 Shapes

4351 Shapes
Evaluation: Split Operations

Split Operations Count

Modeling Time in Minutes
Conclusions

• Problems of automatic segmentation:
 – Splitting heuristics are not robust enough
 – Post-processing of automatic segmentation is time consuming, since errors have to be:
 • localized
 • fixed

• Advantages of the incorporation of the user:
 – Much better high-level structure
 – Less time consuming than fixing
 – Higher LOD and quality

• Advantages of coherence-based modeling:
 – More flexibility to combine partial symmetries
 – More stable splitting results
• Yes, the presentation is over.

• No, there is still plenty to do in the future!
Future Work

- Other Façade Modeling Approaches
 - Façade Parsing
 - Teboul et al. [TKS*11]
 - Grammar + Machine Learning
 - Inverse Procedural Modeling
 - Aliaga et al. [ARB07]
 - Interactive + Grammar Rules

- Explore further, integrated methods for
 - Scalable and easy user interaction (e.g. sketching)
 - As automatic as possible methods
The End

Thank you! Questions?