
Contextual Snapshots:
Enriched Visualization with Interactive Spatial Annotations

Peter Mindek∗

Institute of Computer Graphics
and Algorithms

Vienna University of Technology

Stefan Bruckner†

Department of Informatics
University of Bergen

M. Eduard Gröller‡

Institute of Computer Graphics
and Algorithms

Vienna University of Technology

Abstract

Spatial selections are a ubiquitous concept in visualization. By lo-
calizing particular features, they can be analyzed and compared in
different views. However, the semantics of such selections are of-
ten dependent on other parameter settings and it can be difficult to
reconstruct them without additional information. In this paper, we
present the concept of contextual snapshots as an effective means
for managing spatial selections in visualized data. The selections
are automatically associated with the context in which they have
been created. Contextual snapshots can be also used as the basis
for interactive integrated and linked views, which enable in-place
investigation and comparison of multiple visual representations of
data. Our approach is implemented as a flexible toolkit with well-
defined interfaces for integration into existing systems. We demon-
strate the power and generality of our techniques by applying them
to several distinct scenarios such as the visualization of simulation
data and the analysis of historical documents.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

Keywords: spatial selections, annotations, linked views, prove-
nance

1 Introduction

For the purpose of visual analysis of large datasets, it is often nec-
essary to display various subsets of the examined data using dif-
ferent visualization techniques. Linked views and integrated views
are very helpful for the visual analysis in case the examined data
are multivariate or otherwise complex. In such cases, the inves-
tigation of the data may require a specification of spatial regions
which are to be examined individually using integrated or linked
views. Creating spatial selections, or brushing, is a widely used
method for specifying such regions. Brushing techniques are also
often employed to specify a degree of interest (DOI) function for
focus+context visualization as described by Furnas [Furnas 1986].
Smooth brushing is a term used to describe techniques allowing the
specification of a non-binary DOI function, which defines a contin-
uous transition between focus and context data.

∗mindek@cg.tuwien.ac.at
†stefan.bruckner@uib.no
‡groeller@cg.tuwien.ac.at

Another aspect of the visualization of complex datasets is a frequent
need for creating annotations in the rendered images. The annota-
tions can serve as a mechanism for assigning semantics to parts
of the visualization image, for providing additional insight into the
data, or for keeping provenance information. Usually, the anno-
tations are meaningful only if the data are displayed in the same
way as when the annotations have been created. For instance, if a
structure is annotated in a volume dataset, the annotation loses its
meaning when the transfer function or the viewing angle changes
in such a way that the structure in question is no longer visible. In
such cases, it is necessary to keep track of the visualization settings
together with the annotations.

In this paper, we propose a method for managing arbitrary spatial
selections in the image space of visualizations. We define several
terms for the purpose of describing the proposed method. A selec-
tion is a non-binary DOI function in image space. A visualization
snapshot is a set of parameter values describing the state of the
visualization system at a particular point in time. Finally, we intro-
duce the concept of contextual snapshots. A contextual snapshot
is an entity which holds multiple selections together with a visual-
ization snapshot. The visualization snapshot provides context for
the associated selections. By keeping the selections in contextual
snapshots, it is possible to reconstruct the states of the visualization
system in which the selections have been created.

Contextual snapshots manage selections in such a way that the al-
gorithm for transforming user input to the DOI function in image
space is independent from the underlying application. Just by re-
placing this algorithm, it is possible to handle different types of user
interactions in a common way using contextual snapshots.

To demonstrate the proposed concept, we implemented the contex-
tual snapshots in a volume visualization application. The appli-
cation displays a multivariate 4D hurricane dataset. The user can
create selections in image space by using a lasso metaphor. The se-
lected data can be further analysed using linked views. We use this
example to explain which parts contextual snapshots consist of and
how they work together.

The contributions of this work are: a concept of contextual snap-
shots for managing multiple spatial selections in different steps dur-
ing the visualization session; an implementation of contextual snap-
shots which provides means for linking additional views to individ-
ual selections; a technical evaluation of the implementation using
two distinct use cases. In applications such as 4D data visualiza-
tion, it is sometimes necessary to select and annotate the visualized
data multiple times while the visualization parameters are changing.
Contextual snapshots provide a basis for keeping track of these in-
teractions. In current systems, selections made in image space have
to be processed before the image changes, otherwise the selections
would become invalid in the new context. Contextual snapshots
record the description of the context together with the selection, so
that it can be processed even after the context has changed.



2 Related Work

We propose a method for managing spatial selections in image
space. There are various scenarios where multiple selections are
made in order to achieve a certain goal. The goal might be to
select subsets or features of a dataset. Furnas [Furnas 1986] pre-
sented DOI functions as a concept for the specification of focus
data. Doleisch and Hauser [Doleisch and Hauser 2001] used a DOI
function obtained by smooth brushing to modify the visualization
mapping in 3D flow visualization. Doleisch et al. [Doleisch et al.
2003] presented a framework for the specification of data features
visualized in several linked views. Ulinski et al. [Ulinski et al.
2007] proposed two-handed methods for creating selections in vol-
ume rendering. Unger et al. [Unger et al. 2008] used smooth brush-
ing in the visualization of statistical characteristics in subsets of
large datasets. Various methods for increasing the usefulness of 3D
scatterplots incorporating brushing have been developed [Kosara
et al. 2004][Piringer et al. 2004]. Streit et al. [Streit et al. 2012] pro-
posed a model-driven design process for exploring multiple linked
datasets. Yu et al. [Yu et al. 2012] proposed methods for selecting
data in large 3D point clouds by screen-space interaction. In visual-
ization applications which employ brushing or similar techniques,
the user interaction is usually limited to the common context. Con-
textual snapshots remove this limitation by providing means for
keeping the context for each individual interaction instance.

Direct user interaction with the visualization results can also be
used for other goals than specifying data subsets. Gerl et al. [Gerl
et al. 2012] incorporated brushing on renderings of data attributes
for the specification of semantics in volume visualization. Guo et al.
[Guo et al. 2011] introduced a sketch-based interface for direct vol-
ume rendering which replaces the traditional way of transfer func-
tion design. Wei et al. [Wei et al. 2010] proposed a sketch-based
interface for an interactive 3D vector field exploration. The con-
cept of contextual snapshots manages spatial selections as entities
created by user interaction in image space. However, the concept
is designed in such a way that the spatial selections could be em-
ployed as metaphors for the mentioned types of user interaction as
well. Contextual snapshots provide a potential to increase the scal-
ability of such interaction methods by allowing the management of
multiple interaction instances simultaneously, while each instance
can be meaningful in different contexts.

In addition to the concept of contextual snapshots, we propose a
method for combining them with various views of the visualized
data. The integration and linking of multiple views has been ex-
tensively explored [Balabanian 2010][Tory 2004]. Bier et al. [Bier
et al. 1993] proposed a see-through interface as a natural way of
displaying additional data. Balabanian et al. [Balabanian et al.
2008] introduced a framework for the specification of visualization
parameters for time-varying data. Using the framework, visualiza-
tions of several time steps integrated into one image can be created.

The concept of contextual snapshots can also be used for preserv-
ing user-created provenance information for a visualization. Vari-
ous techniques keeping provenance or describing the visualization
process have been developed. Bavoil et al. [Bavoil et al. 2005] pro-
posed VisTrails. It is a system for creating and maintaining visual-
ization pipelines with the possibility to execute them and to record
their provenance information. Our method differs form VisTrails
in that the user can create spatial selections of the explored data
in a specific context and annotate them to store the visualization
provenance information. This provides a strong link between the
provenance information and the underlying data. Heer et al. [Heer
et al. 2008] presented a design space analysis of history keeping
systems. Kreuseler et al. [Kreuseler et al. 2004] proposed an ap-
proach to include a history mechanism into a visual data mining

framework. Groth and Streefkerk [Groth and Streefkerk 2006] pre-
sented a method for capturing the history of the knowledge discov-
ery process using a visualization system with an ability to create an-
notations for provenance information. Ellkvist et al. [Ellkvist et al.
2009] presented an architecture for provenance interoperability be-
tween multiple sources. In contrast to these systems, contextual
snapshots provide means to insert annotations to particular spatial
data in a particular stage of the visualization session. As the anno-
tations are automatically linked with the current context, they store
provenance information besides their actual content.

Santos et al. [Santos et al. 2009] proposed VisMashup, a framework
for simplifying the creation of custom visualization applications.
The authors of VisMashup focused on the ability to combine vari-
ous visualization pipelines to create a new visualization application.
In our work, we aim at extending existing visualization pipelines
with interaction possibilities, such as creating selections or interac-
tive annotations.

3 Overview of Contextual Snapshots

Many visualization systems use brushing, selections, and linked
views to provide means for exploration of complex datasets. There
are various tools for specifying the selections and they usually serve
only one specific purpose. The idea of contextual snapshots is to
harness a single mechanism of 2D spatial selections for different
tasks, such as data selection and manipulation, data annotation,
or specification of DOI functions. In contextual snapshots, this
is achieved by the following concepts: multiple selections can be
stored and each of them can be created in a different context; an
algorithm of transforming the user input to the DOI functions of
the selections is interchangeable; each selection managed by con-
textual snapshots can be linked with a number of additional views
which we refer to as embedded visualizations. It is possible to dis-
play them directly in the visualization image, hence the name em-
bedded visualizations. Embedded visualizations are interactive and
they can display arbitrary GUI elements or visualize data specified
by a respective selection.

In the example application, the selections can specify a spatial re-
gion in image space. An embedded view which displays the his-
togram of the data in the specified region is linked with each selec-
tion. Contextual snapshots provide data affected by the selection to
the embedded visualization. It depends on the implementation of
individual embedded visualizations how these data are used. An-
other embedded visualization is a simple text field. It does not
display the selected data region, but it allows users to type in ar-
bitrary text-based annotations. Such an embedded visualization is
linked with every selection, thus providing a possibility to annotate
selected data subsets.

3.1 Concept of Contextual Snapshots

A visualization system may apply various parameters to modify the
visual mapping. In terms of contextual snapshots, the values of a
chosen subset of said parameters, the visualization snapshot, define
a state of the visualization system. For any state of the system, a
user can create several selections in the rendered images. A con-
textual snapshot stores a visualization snapshot together with all
selections created when the state of the visualization system corre-
sponded to this visualization snapshot. In the example application,
we use the position and the orientation of the virtual 3D camera as
the description of the visualization snapshot. Each image-space se-



(a) (b) (c)

Figure 1: Interactive anchors (white circles) representing individual
contextual snapshots. For better 3D orientation, the anchors are
connected with the coordinate origin by a thin line. (a) shows how
the thumbnail of an anchor can be displayed. (b) and (c) show the
anchors from different camera views.

lection is bound to one 3D camera view. The selection is valid only
if the volume is rendered using this camera view.

The idea of contextual snapshots is based on the fact that the se-
mantics of the user-made selections depends on what is currently
displayed. When the user selects a particular feature in the image,
the selection is meaningful only until the way how the feature is
displayed changes. Therefore, we extract a visualization snapshot
every time a new selection is created. The visualization snapshot is
linked to the selection to create a contextual snapshot. The contex-
tual snapshot then provides a reproducible spatial selection related
to what was displayed when the selection was made. It stores the
appropriate visualization context in the form of the values of the
visualization-system parameters.

The strength of contextual snapshots is that they can maintain mul-
tiple selections created during different steps of the visualization
session. Each contextual snapshot can potentially contain multiple
selections created in a common state of the visualization system.
The information stored within a contextual snapshot can be used to
restore this state, so that the selections can be displayed and actively
used. By restoring the state of the visualization system according
to the individual contextual snapshots, it is possible to browse all
selections created within a visualization session.

Contextual snapshots are represented by icons which we refer to as
anchors. The anchors are embedded in the original visualization as
interactive graphical annotations. The position of an anchor repre-
sents the visualization context stored within the respective contex-
tual snapshot. For instance, in a volume rendering application, the
anchor can be positioned in 3D space to represent the camera posi-
tion when the respective contextual snapshots has been taken. The
anchor can also display a thumbnail of how the visualization looked
like when the respective contextual snapshots has been created. In
addition to an informative purpose, the anchors are also interactive
and they can be used to restore the visualization-system state to the
respective contextual snapshot. They serve as a user interface for
browsing through the contextual snapshots created during the vi-
sualization session. Figure 1 shows the graphical representation of
anchors.

3.2 Embedded Visualizations as Linked Views

To broaden the possibilities of using context-aware selections, we
introduce a method for linking interactive embedded visualizations
for each selection. The additional visualizations can show differ-
ent aspects of the selected data, or they can display comparisons of
various selected areas. To demonstrate different ways how the se-

(a) (b)

Figure 2: (a) A selection (marked with the red circle). (b) An inte-
grated view of two variables using the selection after its activation.
Histograms are shown for both variables as embedded visualiza-
tions.

lections can be used, we implemented the following embedded vi-
sualizations for the hurricane visualization application: a histogram
of selected data values; a text-based annotation; a variable picker.

The embedded visualization displaying the histogram of selected
data values can be linked to multiple selections at once. In this
case, histograms for individual selections are displayed in overlays
so that they can be easily compared. The text-based annotation is
linked to each selection and it provides for the user the possibility to
type in a short description of the selected data subset. The variable
picker is a GUI element which displays a list of all variables present
in the dataset. The chosen variable is displayed in those parts of the
image, where the selection has been created. Figure 2 shows how
the picked variable is integrated with the rest of the visualization by
a smooth transition. The smooth transition is due to the non-binary
DOI function of the selection.

In our method, each spatial selection can be linked with multiple
embedded visualizations. Embedded visualizations are interactive
visualization pipelines with access to the data subsets specified by
selections with which they are linked. A single embedded visual-
ization can be reused to display aspects of different subsets of the
explored data by simply linking it with different spatial selections.

For the purpose of displaying the embedded visualizations, we pro-
pose a mechanism for activating individual selections. One or mul-
tiple selections can be activated by the user at once. In this case,
only those embedded visualizations are displayed which are linked
with every activated selection. The rationale for this mechanism
is that the embedded visualizations can show different aspects of
the data specified by multiple selections at once. This way, the se-
lections and their embedded visualizations can be used to compare
several data subsets.

A sketch-based interface is used for activating selections. The user
activates selections by making a stroke in image space. The selec-
tions which are crossed by the stroke are activated and subsequently
their linked embedded visualizations are displayed. The embedded
visualizations are grouped together in a sliding bar, which is dis-
played either on the top, the bottom, the left, or the right side of the
visualization image.

The position of the sliding bar is determined by the direction at the
end of the stroke which was used to activate the selections. The
interaction method of using a stroke was chosen so that an arbitrary
subset of the selections can be activated, which might be difficult
with various standard selection mechanisms such as draggable rect-
angles. By creating the stroke which activates the selections, the
users can also immediately point the system to where they would
like to have the embedded visualizations displayed.



Figure 3: Overview of the system. The black arrows represent the
data flow between the visualization system, the embedded visual-
izations and the Contextual Snapshot Library (CSL). The gray ar-
row denotes the transition from the original rendering to the render-
ing of the enhanced visualization.

The sliding bar is capable of showing several embedded visualiza-
tions at once. In case there are more embedded visualizations for
the activated selections than could actually fit on the screen, the
sliding bar enables scrolling of its content. The scrolling is ex-
ecuted by an animated transition, so that the users have a visual
feedback on the direction of the scrolling. The sliding bar fades
to the original visualization on both sides for better integration. A
gradual blurring filter was used on both sides of the sliding bar, so
that the attention of the users is guided to the embedded visualiza-
tions currently shown in the middle of the bar.

Showing more embedded visualizations at once provides users with
an overview of the additional data displayed for the activated selec-
tions. However, for the interaction it might be sometimes necessary
to enlarge individual embedded visualizations. For this purpose,
the embedded visualization displayed in the middle of the sliding
bar can be switched to a so called maximized view. If the view is
maximized, the embedded visualization is displayed on the whole
screen rather than just in the sliding bar.

3.3 Visualization System Enrichment

Contextual snapshots are a concept meant to be implemented in
an underlying visualization system. All interaction and feedback
related to the contextual snapshots is realized through the visual-
ization output of the underlying system. Contextual snapshots are
visually represented by the anchors which are placed in the visual-
ization result produced by the system. With the implementation of
the concept of contextual snapshots, various views of the data and
the interactive interface become integrated. This approach is par-
ticularly well-suited for the rapidly growing area of mobile devices
such as tablets where the display also serves as the input device.

We have implemented the contextual snapshots as a library which
can be included into an existing visualization system. We call it
Contextual Snapshot Library (CSL). The CSL is responsible for
rendering the anchors, the selections, and the embedded visualiza-
tions into the original visualization image. Additionally, it provides
an interface for the data transfer between the selections and the em-
bedded visualizations and it mediates user input so that the anchors
and embedded visualizations are interactive.

Figure 4: Architecture of the visualization system integrating the
CSL. The arrows denote the data flow.

Figure 3 shows the data flow between the visualization system, the
embedded visualizations, and the CSL. The visualization system
gathers user input and transmits it to the CSL. The CSL stores con-
textual snapshots generated from the user input and it renders the
selections, the anchors, and the embedded visualizations into the
original visualization image. The result is an enhanced visualiza-
tion system.

4 Architecture of the CSL

The goal of the CSL is to provide means for including the concept
of the contextual snapshots into existing visualization pipelines.
This integration is carried out on the source-code level through an
application programming interface (API).

The input to the CSL is an image of the visualization - the input
image. It is continuously provided in the standard rendering loop
of the system. The output is an image of the visualization, in which
the graphical annotations are included - the output image. The visu-
alization system can display the output image instead of the original
image of the visualization. The annotations inserted into the input
image are the anchors of the contextual snapshots, spatial selec-
tions, and the embedded visualizations, as illustrated in figures 1
and 2.

Figure 4 shows the overall architecture of an existing visualization
system using the CSL. The library itself is split into two parts. The
part responsible for managing the contextual snapshots, interaction,
and rendering of the annotations, is called Presentation (PRS). To
exploit capabilities of modern GPUs, it uses several shaders for ren-
dering of the annotations. These are: the selection mask shader,
which transforms user input into the DOI function of the selec-
tion; the selection display shader, which renders the selection on
the screen; the embedded visualizations display shader, which ren-
ders the sliding bar. Each of these shaders can be exchanged to
modify how selections are treated.

The functionality of the PRS can be extended by the Shader En-
hancer (SE). The SE is an auxiliary tool for the data transfer be-
tween individual modules of the visualization system. It stores
data specific to individual selections of the contextual snapshots in
the GPU memory so that it can be used in different visualization
pipelines of the system. The SE simplifies the utilization of the se-
lections in the visualization system by providing access to all data
subsets specified by their DOI functions. The motivation of stor-
ing the data in the GPU memory is that the GPU implementations



(a) (b)

Figure 5: Two different selection mask shaders. The red dots il-
lustrate the selection stroke, the blue area is the generated selection
mask. Blue color means fully selected, white color means not se-
lected at all. Notice the gradual change in the level of selection,
which enables smooth brushing.

of visualization algorithms can access the data without having to
transfer them to to CPU memory.

5 Implementation

The CSL is implemented in C++, using the Qt library. It uses
OpenGL for rendering of the annotations and for the data trans-
fer with the visualization system via textures. The input image is
provided as a framebuffer object (FBO). The CSL creates its own
OpenGL context and uses it to render the input FBO. Subsequently,
it renders all the annotations on top of it. The output is also an FBO,
which the CSL uses as a rendering target.

The CSL utilizes Qt’s signal/slot mechanism. If the visualization
system hosting the CSL uses Qt as well, it can implement actions
reacting to various events of the CSL employing this mechanism.
The signal/slot mechanism together with the API are the means of
transferring data between the visualization system and the CSL.

The contextual snapshots can be stored on the hard drive in the
XML format. The anchor screenshots and the selection masks are
stored in PNG files. CSL also provides functionality to load this
information and recreate all the annotations for the currently visu-
alized data.

5.1 Contextual Snapshots

The anchor is an interactive element meant for changing the cur-
rent state of the visualization system to what is represented by the
respective contextual snapshot. Anchors can be perceived as click-
able bookmarks for the contextual snapshots. The location of an
anchor is an important visual cue. It can be positioned with respect
to a feature of the visualization to potentially reveal the semantics
or content of the contextual snapshot.

The underlying visualization system can make a request to select an
anchor displayed on a certain position in image space. The contex-
tual snapshot represented by the selected anchor becomes active.
The state of the visualization system is changed so that it corre-
sponds to the active contextual snapshot. All selections belonging
to this contextual snapshot can now be displayed.

The activation of the contextual snapshot is accompanied by a time-
varying interpolation between the values of the parameters it stores
and the current values in the present state of the visualization sys-
tem. For individual parameters, different interpolation functions
can be used in order to achieve an appropriate interpolation for a

(a) (b)

Figure 6: Two different selection display shaders. Both shaders
are able to show fuzziness of the selection. Each of them might be
suitable for different applications.

specific data type (e.g., Slerp for rotation matrices). This enables
smooth transitions between system states while switching between
them. In our example application, the state of the visualization sys-
tem is defined by the camera position and orientation. Therefore,
the activation of a contextual snapshot causes the visualization sys-
tem to smoothly change the 3D camera to the view in which the
contextual snapshot was recorded.

The position of the anchor in image space can be set manually
through the API of the CSL. We also provide the possibility to as-
sign a transformation matrix to every contextual snapshot. The an-
chor is then automatically positioned in the image using this trans-
formation. In case of a 3D visualization, the anchor can be as-
signed the same transformation matrix as the visualized object. In
this case, the relative position of the anchor to the visualized object
would be constant even if the camera view changes. This gives the
user an idea from which angle the contextual snapshot represented
by the anchor was taken.

5.2 Selections

Selections are created by calling functions of the CSL’s API. If a
contextual snapshot is active, the created selection is automatically
assigned to it. Otherwise a new contextual snapshot is created from
the current values of the visualization-system parameters and the
selection is assigned to it. This mechanism enables multiple selec-
tions to be assigned to a single contextual snapshot.

The process of creating a selection consists of three steps: recording
of the user input, transforming the input to a DOI function in image
space, displaying the DOI function on the screen as the selection.
In our approach, we made a clear separation between these steps.
Each of them is implemented as a stand alone shader program with
clearly defined input and output. Because of this separation, it is
possible to customize the process of creating selections for various
applications, such as selections using the lasso metaphor or rectan-
gular selections. In both cases, the only component of the CSL that
is exchanged is the shader realizing the transformation of the user
input to the DOI function.

Internally, a selection is composed of a series of points in the im-
age space of the visualization. We refer to this series as a selection
stroke. The selection stroke can be sketched by the users employing
mouse, tablet, or a similar input device. The visualization system
can continuously provide the coordinates of input points until the
creation of the selection is finished. The CSL then generates an
image of a grey-scale mask representing the non-binary DOI func-
tion, where the pixel luminosity encodes the degree of interest in the
point. We refer to this image as selection mask. The selection mask
is generated by a selection mask shader. The input of the shader



program is the selection stroke encoded in a one-dimensional tex-
ture. The output of the shader program is the image of the selection
mask.

Depending on the shader program used to generate the selection
masks, the selections can enable the visualization system to realize
smooth brushing abilities. We provide two different shader pro-
grams for generating the selection masks. Figure 5 shows how the
selection mask generated by these two shaders would look like for
the same selection stroke. The shader illustrated in Figure 5(a) cre-
ates a simple rectangle based on the first and the last point of the
stroke. This constitutes a common way how the user input is trans-
formed into a rectangular spatial selection. The shader shown in
Figure 5(b) uses so called lasso metaphor. The points of the stroke
define a closed polygon whose interior is filled. We enhance the
lasso metaphor to account for the selection uncertainty by introduc-
ing smoothing of the edges. The smoothing between the first and
the last point of the stroke is stronger if these two points are further
away. The rest of the edges is smoothed by a constant factor. This
enables users to control the amount of smoothing as well as its spa-
tial location. The smoothing corresponds to the uncertainty in the
specification of the area of interest.

The selections are displayed on the screen using the selection dis-
play shader. The way how the selections are displayed is impor-
tant for specific applications. Figure 6 shows two different ways
how the selections can be displayed. In Figure 6(a), an example
of outline drawing is shown. The red color marks borders between
selected and unselected areas. The thickness of the border denotes
the fuzziness of the selection in that particular area. In Figure 6(b),
the selection is displayed using an overlay texture. This method
shows the selected area in a clear way, but it also partially occludes
displayed data underneath.

5.3 Data transfer

The selection masks are stored in the GPU memory as a texture
array so that the visualization system can access them at all times
and employ them in the visual mapping. We used this ability in
the hurricane visualization example to create a smooth transition
between the two visualized variables.

The SE can be used to further increase possibilities of the selec-
tions. It allows the visualization algorithm to extract processed data
samples to the GPU memory. Every extracted data sample is au-
tomatically weighted by the degree of interest specified by the ac-
tivated selections. The extracted data can be then accessed in the
embedded visualizations.

Currently, we provide an implementation of the SE for GLSL
shaders. The SE inserts GLSL code for the extraction of data
samples and their weighting by the selections’ DOI functions in
the visualization shader before it is compiled. The inserted code
uses atomic operations and the GL EXT shader image load store
extension to output desired data. After the extraction, the data are
available to the embedded visualizations as a texture stored in the
GPU memory. We plan to extend the SE for other languages in the
future.

6 Application Example - Historical Docu-
ment Analysis

In addition to the example application introduced in section 1, we
present another use case for contextual snapshots. The visualization

system taken in this use case is a simple book reader application. A
page spread consisting of two pages of a manuscript is displayed. A
bar showing the current page within the whole manuscript is located
below the pages. For a better user experience, a simple page turning
animation is realized whenever the current page changes.

We combine our method with the described book reader application
in order to add functionality enabling the users to employ it as an
advanced manuscript analysis tool. We used the CSL to implement
spatial selections on the displayed pages. The CSL automatically
binds every new selection with the current page, so many selections
on different pages can be created.

6.1 Manuscript Visualization

The dataset taken in this example consists of 723 high resolu-
tion photographs of pages of the Venetus A, a tenth century (AD)
manuscript of the Iliad catalogued as Marcianus Graecus Z. 454,
now 822. In addition to natural light photographs, some of the
pages were recorded using UV photography as well. The UV
light photographs were taken in order to reveal some details of the
manuscript which were hardly visible with natural light. Together
with the photographs, the transcript of the Iliad in ancient Greek
was available as well.

For demonstration purposes, we manually preprocessed the ac-
quired data. Few of the UV photographs were registered with the
natural light photographs so that they could be easily used in the ap-
plication. Additionally, appropriate passages of the transcript were
matched with some of the photographed pages.

The described book reader application is only capable of display-
ing the natural light photographs. The book reader shows an icon
for those pages where the UV data is available. The goal in this
example is to implement the ability to display parts of the UV pho-
tographs on selected regions of interest. The regions of interest are
rectangular areas selected for the pages with the available UV data.
For this purpose, we integrated the CSL into the book reader appli-
cation. In this way, the desired functionality can be realized by the
possibilities offered by the CSL.

6.2 Manuscript Visualization Enhancement

Figure 7(a) shows the book reading application without the en-
hancements. Figure 7(b) shows the application enhanced using the
CSL. The contextual snapshots were used to manage the selections.
The selections are employed to show parts of the UV photograph of
the page. The transcript of the page as well as color histograms of
the selected parts of the natural light and UV photographs are dis-
played on the left side of the image. These additional visualizations
are linked with the activated selections. The activated selections are
concurrently used to display parts of the registered UV photograph
of the selected page. Any of the additional visualizations can be
maximized, as shown in figure 7(c).

The only parameter with an impact on the manuscript visualization
is the index of the current page. This parameter determines which
pages of the manuscript are displayed. As the turning of the pages
is animated, we allow the current page index to be a real number.
The fractional part of the index is used for the animation of the page
turning.

Parts of the displayed pages can be selected. The selection is mean-
ingful only for the page in which it was created. The current page
index constitutes the visualization snapshot for this application, be-
cause it alone fully describes the context for the selections. The



(a) (b) (c)

Figure 7: (a) The book reader application displaying the Venetus A manuscript. The icon on the top right corner indicates the availability
of UV light data for this particular page. (b) The book reader application enhanced with the CSL to show additional data. An anchor of a
contextual snapshot, selections, and embedded visualizations are displayed. (c) The transcript of the displayed pages with the tag cloud in the
maximized view. A word selected in the tag cloud is highlighted in yellow.

current page index is visualized by the book reader as a slider dis-
played below the pages. The anchor of each contextual snapshot is
placed on the slider according to the current page index. The an-
chor therefore visually represents the position of the displayed page
spread and can be used as a bookmark.

For this use case, we employed rectangular selections which are
displayed as boundaries of the selection masks. A simple edge de-
tection filter was used as the selection display shader for this pur-
pose. The selections can be taken to visually analyse interesting
parts of the photographs. By clicking the UV icon, displaying of
the UV light photographs in the selections can be enabled or dis-
abled. As the UV and natural light photographs are co-registered,
the selections create a comprehensible integrated view.

We have used three web-views displaying web pages as embed-
ded visualizations. By using web pages, we demonstrate that the
embedded visualizations managed by the CSL are interactive and
they can contain arbitrary content. The first web-view shows color
histograms from the selections. As multiple selections can be acti-
vated, we used a JavaScript library D3 [Bostock et al. 2011] capa-
ble of showing multiple histograms at once. For each selection, a
color histogram is displayed. For the pages where the UV data are
available, the histograms from the UV photographs are displayed
as well. As all of the histograms are depicted in one view, they can
be easily compared.

The second web-view shows the Greek transcript of the displayed
pages. Contextual information of the selections, the current page
index, is used to load appropriate pages from the transcript. A tag
cloud of the most frequent words generated by the JavaScript is
displayed below the text.

The third web-view shows the web page of the Perseus Word Study
Tool [Mahoney 2001]. This web application provides an English
translation of a specified Greek word, as well as further informa-
tion. We have connected this view with the Greek transcript of
the displayed pages. The user can double-click on any word in the
transcript to automatically show its definition in the Perseus Word
Study Tool.

The application of the CSL in the book reader example shows var-
ious ways how the contextual snapshots can be used to integrate
different views of the visualized data. This use case demonstrates
several types of annotations which can be helpful in analysing the
historical manuscript. It shows that the integration of vastly distinct
visualization techniques including online content and GPU-based
rendering is easily possible with our approach.

7 Discussion

The goal of our work is to introduce a general concept for handling
spatial selections created in different contexts during a visualization
session. Instead of realizing a new standalone system, we have de-
cided to implement this concept as a flexible toolkit that can be used
in existing systems. We support this decision by showing how the
proposed concept of the contextual snapshots can be implemented
using the CSL in visualization systems from different areas.

In section 6 we show an example how the concept of contextual
snapshots can be employed. State-of-the-art visualization systems
usually treat selections in such a way that it is necessary to use sev-
eral linked views to work with multiple selections simultaneously.
To use selections as interactive annotations, each selection would
have to be assigned a separate view, possibly in a separate win-
dow. Contextual snapshots allow to use multiple selections in the
same view while the changes of the visualization are automatically
tracked.

The selections can be displayed only if the parameter values of the
visualization system are the same as when the particular selection
was created. Even a small change to a parameter value can result in
a substantial change of the visualization. In the future, ways how
to treat parameter changes resulting in very small changes of the
visualization could be explored. It is possible that such changes do
not deactivate an active contextual snapshot.

By using the CSL to render the selections, the anchors, and the em-
bedded visualizations, the performance of the rendering dropped
from 60 FPS to 30 FPS. The performance drop of the whole sys-
tem mainly depends on the temporal requirements of the embedded
visualizations. This aspect can be improved in the future by paral-
lelizing the rendering of individual embedded visualizations.

8 Conclusion

We proposed a method for enhancing existing visualization systems
with interactive annotations. We have given examples to create in-
teractive annotations which can aid users with various tasks, such
as analysing a historical manuscript or multivariate weather simula-
tion data. We introduced the novel concept of contextual snapshots,
which provide a comprehensive means to manage spatial selections,
to highlight interesting regions in visualizations, to display addi-
tional views for selected data, or to compare different regions.



Our method is meant to be applied to visualization systems where
the state changes over the period of the visualization session. Most
of the interactive systems meet this description. In our method, the
user-made selections in image space are linked with all necessary
contextual information so that they remain meaningful during the
whole visualization session. The contribution of our method is that
it can be used to implement a variety of interactions involving spa-
tial selections of the visualized data.

Acknowledgments

The work presented in this paper has been partially supported by
the ViMaL project (FWF - Austrian Research Fund, no. P21695)
and by the Aktion OE/CZ grant number 64p11. The Venetus A
dataset is courtesy of The Homer Multitext Project. The hurricane
Isabel dataset is produced by the Weather Research and Forecast
(WRF) model, courtesy of NCAR and the U.S. National Science
Foundation (NSF).

References

BALABANIAN, J.-P., VIOLA, I., MÖLLER, T., AND GRÖLLER, E.
2008. Temporal styles for time-varying volume data. In Proceed-
ings of 3DPVT’08 - the Fourth International Symposium on 3D
Data Processing, Visualization and Transmission, S. Gumhold,
J. Kosecka, and O. Staadt, Eds., 81–89.

BALABANIAN, J.-P. 2010. Multi-Aspect Visualization: Going from
Linked Views to Integrated Views. PhD thesis, Dept. of Informat-
ics, Univ. of Bergen, Norway.

BAVOIL, L., CALLAHAN, S. P., CROSSNO, P. J., FREIRE, J., AND
VO, H. T. 2005. Vistrails: Enabling interactive multiple-view
visualizations. In IEEE Visualization 2005, 135–142.

BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND
DEROSE, T. D. 1993. Toolglass and magic lenses: the see-
through interface. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’93, 73–80.

BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. 2011. D3:
Data-driven documents. IEEE Transactions on Visualization and
Computer Graphics 17, 12, 2301–2309.

DOLEISCH, H., AND HAUSER, H. 2001. Smooth brushing for
focus+context visualization of simulation data in 3d. In Journal
of WSCG, 147–154.

DOLEISCH, H., GASSER, M., AND HAUSER, H. 2003. Inter-
active feature specification for focus+context visualization of
complex simulation data. In Proceedings of the symposium
on Data visualisation 2003, Eurographics Association, Aire-la-
Ville, Switzerland, VISSYM ’03, 239–248.

ELLKVIST, T., KOOP, D., FREIRE, J., SILVA, C., AND
STRÖMBÄCK, L. 2009. Using mediation to achieve provenance
interoperability. In Proceedings of the 2009 Congress on Ser-
vices - I, IEEE Computer Society, Washington, DC, USA, SER-
VICES ’09, 291–298.

FURNAS, G. W. 1986. Generalized fisheye views. In Proceed-
ings of the SIGCHI conference on Human factors in computing
systems, ACM, New York, NY, USA, CHI ’86, 16–23.

GERL, M., RAUTEK, P., ISENBERG, T., AND GRÖLLER, E. 2012.
Semantics by analogy for illustrative volume visualization. Com-
puters & Graphics 36, 3, 201–213.

GROTH, D. P., AND STREEFKERK, K. 2006. Provenance and
annotation for visual exploration systems. IEEE Transactions on
Visualization and Computer Graphics 12, 6 (Nov.), 1500–1510.

GUO, H., MAO, N., AND YUAN, X. 2011. Wysiwyg (what you
see is what you get) volume visualization. IEEE Transactions on
Visualization and Computer Graphics 17, 2106–2114.

HEER, J., MACKINLAY, J., STOLTE, C., AND AGRAWALA, M.
2008. Graphical histories for visualization: Supporting analysis,
communication, and evaluation. IEEE Transactions on Visual-
ization and Computer Graphics 14, 6 (Nov.), 1189–1196.

KOSARA, R., SAHLING, G. N., AND HAUSER, H. 2004. Linking
scientific and information visualization with interactive 3d scat-
terplots. In Proceedings of the 12th International Conference in
Central Europe on Computer Graphics, Visualization and Com-
puter Vision (WSCG), 133–140.

KREUSELER, M., NOCKE, T., AND SCHUMANN, H. 2004. A
history mechanism for visual data mining. In Proceedings of the
IEEE Symposium on Information Visualization, IEEE Computer
Society, Washington, DC, USA, INFOVIS ’04, 49–56.

MAHONEY, A. 2001. Studying the word study tool. New England
Classical Journal 28, 3, 181–183.

PIRINGER, H., KOSARA, R., AND HAUSER, H. 2004. Interac-
tive focus+context visualization with linked 2d/3d scatterplots.
In Proceedings of the Second International Conference on Co-
ordinated & Multiple Views in Exploratory Visualization, IEEE
Computer Society, Washington, DC, USA, CMV ’04, 49–60.

SANTOS, E., LINS, L., AHRENS, J., FREIRE, J., AND SILVA, C.
2009. Vismashup: Streamlining the creation of custom visu-
alization applications. IEEE Transactions on Visualization and
Computer Graphics 15, 1539–1546.

STREIT, M., SCHULZ, H.-J., LEX, A., SCHMALSTIEG, D., AND
SCHUMANN, H. 2012. Model-driven design for the visual anal-
ysis of heterogeneous data. IEEE Transactions on Visualization
and Computer Graphics 18, 998–1010.

TORY, M. 2004. Combining two-dimensional and three-
dimensional views for visualization of spatial data. PhD thesis,
Burnaby, BC, Canada.

ULINSKI, A. C., ZANBAKA, C. A., WARTELL, Z., GOOLKA-
SIAN, P., AND HODGES, L. F. 2007. Two handed selection
techniques for volumetric data. In IEEE Symposium on 3D User
Interfaces, 26.

UNGER, A., MUIGG, P., DOLEISCH, H., AND SCHUMANN, H.
2008. Visualizing statistical properties of smoothly brushed data
subsets. Proceedings of the 12th Intern. Conference Information
Visualization (IV 2008), 233–239.

WEI, J., WANG, C., YU, H., AND MA, K.-L. 2010. A sketch-
based interface for classifying and visualizing vector fields. In
PacificVis, IEEE, 129–136.

YU, L., EFSTATHIOU, K., ISENBERG, P., AND ISENBERG, T.
2012. Efficient Structure-Aware Selection Techniques for 3D
Point Cloud Visualizations with 2DOF Input. IEEE Transactions
on Visualization and Computer Graphics 18, 12, 2245–2254.


