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Abstract

In recent years, points have seen increased use as a rendering primitive. This Bachelor Thesis
presents and compares a number of sorting algorithms used for sorting points in a preprocessing
step. This is done in order to decrease the time needed to create a point cloud model that can
be rendered by the GPU in real time. Points are compared either by their position along the
longest axis or by Morton order and sorted using heap sort or radix sort. An external merge sort
algorithm is used for large datasets that do not completely fit into memory. The speed of the
sorting process is furthermore increased by making use of parallel processing.
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Kurzfassung

In den letzten Jahren stieg die Verwendung von Punkten als Rendering-Primitiv stark an. Diese
Bachelorarbeit präsentiert und vergleicht einige Sortier-Algorithmen, die dazu genutzt werden,
die Punkte in einem Vorverarbeitungs-Schritt zu sortieren. Dadurch kann die Zeit verringert
werden, die benötigt wird, um ein Punktwolken-Model zu erstellen, das von der GPU in Echt-
zeit gerendert werden kann. Punkte werden entweder nach ihrer Position entlang der längsten
Achse oder per Morton Order verglichen und mithilfe von Heap Sort oder Radix Sort sortiert.
Ein externer Merge Sort-Algorithmus wird für Datensätze verwendet, die nicht komplett in den
Arbeitsspeicher passen. Die Geschwindigkeit des Sortier-Prozesses wird außerdem mithilfe von
paralleler Verarbeitung beschleunigt.
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CHAPTER 1
Introduction

A point cloud is a set of multiple points used for rendering. A point in the mathematical sense
is a zero-dimensional entity in space. Its only attribute is its location where it occupies an
infinitesimal amount of space and therefore it is not visible. When talking about a point as a
rendering primitive, we assume that its location is visualized as at least one pixel on screen
when visible. Points may also have a variety of additional attributes, like color, opacity and a
normal vector (if it is part of a surface). Point data can be acquired in a variety of ways. Levoy
and Whitted [9] have shown that all geometrical models can be converted to points.

The data can also be obtained directly, for example by means of a range scanner or scientific
datasets. A range scanner takes discrete distance measurement samples of a real-world envi-
ronment, resulting in a set of 3D coordinates. The scanner rotates in discrete angles around its
vertical axis and takes samples at each angle along a vertical line. A distance sample is taken by
measuring the time of flight of a laser pulse. Additionally, images can be taken from the envi-
ronment by using a camera mounted on top of the scanner. These images can later be applied to
the distance samples, resulting in a colored point cloud.

To scan a whole environment, multiple scans from various positions might be necessary, as
objects may occlude parts of the environment from one scan position. The samples that have
been obtained by one scan are all stored in a file. When using multiple scan positions, this results
in a number of files containing the point data that later need to be combined for rendering. As
each file contains all the samples from a single scanning position, combining the files results
in a rather arbitrary sorting of point samples. A simple example of a scanning environment is
illustrated in Figure 1.1: The small dark circles show the positions of the scanners, the larger
bright circles illustrate the range of each scanner and the black rectangles are objects that are
part of the environment. To capture each side of the objects, scans from multiple positions are
necessary (though only 3 are shown for simplicity).

To make rendering in real-time possible, the points must first be stored in a fitting data
structure. When working with datasets that are larger than main memory, this build up process
can take several hours, as parts of the data structure need to be written to and loaded from the
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Figure 1.1: A simple sketch of a scanning environment (top-down view). The small darker
circles show the positions of the scanners, the large brighter circles illustrate the range of each
scanner and the black rectangles are objects that are part of the environment.

hard disk dynamically. This is especially true when the input data is unsorted, as is often the
case with data obtained by a range scanner.

Taking Figure 1.1 as an example, the unsorted point data of the environment may be pro-
cessed in the order green-red-blue. If not all points can be stored in memory at the same time,
the part of the data structure containing the points of the first file needs to be written to the hard
disk when processing the second file, and needs to be loaded again when processing the third
file. To avoid this, the ideal situation would be if the points were sorted according to their spatial
proximity. This way, the point samples of the object on the left can be processed completely
before processing the point samples of the object on the right.

The aim of this Bachelor Thesis is to speed up the build up process by sorting the unpro-
cessed point data in a preprocessing step, either by axis or by Morton order. The sorting algo-
rithms were implemented as a Qt-Plugin for the C++ application Scanopy, a point cloud renderer
and editor developed by the Institute of Computer Graphics and Algorithms at the Vienna Uni-
versity of Technology. Since the application uses a Modifiable Nested Octree [15] as a data
structure, the following Chapter will give an explanation of the data structure and an overview
of the previous work it was based on. Chapter 3 gives a description of the sorting algorithms
that were used, while Chapter 4 contains the achieved results.
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CHAPTER 2
Previous Work

To make real-time rendering of point clouds possible, the points first need to be sorted into a
fitting data structure. Furthermore, point cloud models are often larger than the space available
in main memory, so certain techniques need to be employed to dynamically load parts of the
point cloud into memory during rendering. Subchapter 2.1 describes some data structures for
fast point cloud rendering, while Subchapter 2.2 deals with the out-of-core rendering problem.

2.1 Fast Point Cloud Rendering

Fast point rendering algorithms sacrifice visual quality in favor of rendering speed. Since the
GPU that is in charge of rendering needs quick access to the points, it is necessary to store the
points in a data structure that can be handled by the GPU. Examples of previous work in the
field include QSplat [13], where a hierarchy of bounding spheres is used, and ρ-Grids [4], a
hierarchy of recursively subdivided grids in which points are stored. The data structure that is
used in Scanopy is called Memory Optimized Sequential Point Tree [14], which is based on the
Sequential Point Tree [3] data structure.

Similarly to QSplat and ρ-Grids, Sequential Point Trees (SPT) use a hierarchical data struc-
ture in which points are stored. Points are first sorted into an octree. Each leaf node of the octree
stores one of the original points, a normal vector and a bounding sphere diameter. The inner
nodes of the octree contain the averaged position and normal values of their child nodes, as well
as the diameter of a bounding sphere that contains all bounding spheres of its children. During
rendering the octree is traversed depth-first. For each node, an image error is calculated, and if
the error is above a certain threshold, the algorithm steps down one level. Otherwise the node is
rendered.

The octree needs to be sequentialized so it can be processed by the GPU, therefore a dif-
ferent error metric is necessary. By using the calculated image error it is possible to calculate a
minimum and maximum distance for each node. When the distance between the node and the
viewpoint lies between the calculated minimum and maximum distance, the node is rendered,
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Figure 2.1: Hierarchical and sequential representation of a SPT.

otherwise it is skipped. By sorting the nodes according to their maximum distance, all nodes
whose maximum distance is too small to be rendered for the current viewpoint can be culled
before sending the sequential list of nodes to the GPU. After that, the GPU only needs to skip
the nodes whose minimum distance is too large to be rendered. Figure 2.1 shows examples of
both the hierarchical and sequential representation of SPTs.

The main idea behind Memory Optimized Sequential Point Trees (MOSPT) is to lessen the
memory requirements of SPTs. In contrast to the latter, MOSPTs only need positional informa-
tion for each point - normals and bounding sphere diameters are not required. This is especially
useful for data sets which do not contain additional information, for example data created by
range scanners.

For model build-up, points are first sorted into an octree. Then, for each inner node, one
of the points in the child nodes is pulled up (Figure 2.2). The point in question is chosen by
averaging the information of the child nodes and selecting the point that is closest to that value.
By using this approach, each inner node contains one of the original points, therefore saving
space because no additional points with averaged information are created.

To select a level of detail (LOD) for rendering, the bounding sphere diameter of the closest
vertex in the node’s bounding box is projected to the screen. If its length is above a certain
threshold, the next level in the MOSPT is examined. If it is below, then the appropriate LOD
has been found. One disadvantage of MOSPTs is that only one LOD can be selected for the
whole model because the bounding sphere diameter is not stored with the points. Therefore,
more points than necessary might be rendered.

Like SPTs, MOSPTs need to be sequentialized so they can be processed by the GPU. The
points are sorted breadth-first, so the root node is always first. Since only one LOD level is
rendered, only the nodes of the selected LOD and below need to be rendered.

2.2 Out-of-Core Point Cloud Rendering

Another problem that needs to be dealt with is large point clouds that do not fit into main
memory. A variety of suggested solutions already exist for this problem. With Layered Point
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Figure 2.2: In a MOSPT, instead of creating a new point with the averaged information of its
children, one of the child points is pulled up.

Figure 2.3: A point cloud model consisting of Layered Point Clouds. The points of the model
are colored based on the node they are stored in. (a) The whole model and its hierarchical
representation. (b) The model as rendered with a certain level of detail (indicated with a red line
in the hierarchical representation).

Clouds [6], only a subset of the total set of points is loaded when the user views the model from
far away. When the user zooms in on a certain part of the model, more points are loaded for
this part of the model, decreasing the average distance between the points. This can be achieved
by recursively subdividing the model into parts. The resulting hierarchy of the model can be
portrayed as a tree, as can be seen in Figure 2.3. For each node, starting with the root node, a
subset of points is chosen from the total set of points to create a point cloud representing the
corresponding part of the model. During rendering, the number of point clouds that is loaded
for a specific part of the model depends on the view distance. Thus, the details of the model are
further refined the closer the viewpoint is.

With XSplat [12], points are first sorted into an octree. The nodes of the tree then get
assigned a layer number, which corresponds to the longest path between the node and its leaf
nodes. A sequential representation is generated by sorting all nodes according to their layer
numbers, while those nodes whose layer number is the same are sorted breadth-first. Finally,
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Figure 2.4: A 2D example of the octree construction algorithm by Kontkanen et al.

the points in the nodes are divided into blocks of a certain size, starting with the first node that
is larger than the block size. Some additional information is stored with each block, such as the
bounding sphere radius or the averaged attributes of the block’s points. This information can
then be used during rendering to decide whether or not a block should be loaded and whether its
points should drawn on screen.

Wand et al. [17] also use an octree for their multi-resolution data structure. The space oc-
cupied by the inner nodes of the octree is divided with a quantization grid, where each grid
cell contains a representative point of the space it occupies. The rest of the points are stored in
the leaf nodes of the octree. During rendering, nodes of the octree can be loaded dynamically
depending on the level of detail that is necessary at any given time. One advantage of the data
structure is that it can be edited dynamically by inserting or deleting points. When inserting a
point causes a leaf node to exceed its capacity of points, the points stored in the node are moved
into newly created leaf nodes, while the original leaf node becomes a new inner node. When
deleting a point from a leaf, the points stored inside the leaf and its siblings can be merged and
moved to their parent node if the number of points is smaller than the maximum capacity of a
leaf node.

Kontkanen et al. [8] present an efficient out-of-core algorithm for sorting points into an
octree. Using an external merge sort algorithm (see Subchapter 3.5), points are first sorted
according to their Morton order values, which correspond to their position along a depth-first
traversal of an octree (see Subchapter 3.2). Also, it is necessary to decide on the maximum
number of points leaf_max that can be stored in a leaf node of the octree. Figure 2.4 shows
a 2D example of the construction process with leaf_max = 4. To begin, the first leaf_max+1
points are loaded and held in memory. Then the algorithm checks whether the current node of
the octree (starting with the root node) can store all of the loaded points that fall into the space
occupied by the node. If this is not the case, the algorithm steps down a level in the octree
hierarchy. Otherwise, the corresponding points are stored in the node and the node is finalized
by calculating the node’s attributes based on the attributes of the points stored inside the node.
Then more points are loaded so the number of points held in memory is always leaf_max+1
(unless there are no more points to load). Inner nodes are finalized once all of their child nodes
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Figure 2.5: Each node of the Nested Octree contains a MOSPT.

are finalized, resulting in a depth-first construction of the octree.
Marek [10] proposes a way to externally sort point clouds using AVL-Trees. An AVL-Tree is

a self-balancing binary search tree, which means that the ordering of nodes in the tree hierarchy
is adjusted any time a node is inserted or deleted, so that the heights of the subtrees of a node
differ by no more than 1. This ensures a worst and average case complexity of O(log n) for
search, insertion and deletion operations, with n being the number of nodes in the tree. To sort a
point cloud along an axis, the points are distributed into buckets corresponding to their position
on the axis. These buckets are stored in the leaf nodes of the AVL-Tree and have a maximum
number of points they can hold. If a point is inserted into a full bucket, the corresponding leaf
node is split into 2 new leaf nodes, each containing half of the points of the bucket. Since not
all points can be held in memory at the same time, a least-recently-used (LRU) cache is used.
When the cache is full, the bucket that has been used least recently is written to the hard disk and
is only retrieved when it is needed again. Once all points have been distributed into the buckets,
each bucket can be sorted individually using a non-external sorting algorithm.

Scanopy uses a Modifiable Nested Octree [15] for dealing with the out-of-core rendering
problem, which is based on the Nested Octree [14] data structure. Nested Octrees provide an
outer hierarchy where at each node a MOSPT is stored. This causes the MOSPTs to overlap
- for example, the points stored in the second level of the root node’s MOSPT share the same
space as the root node of the MOSPTs stored in the second level of the Nested Octree. This can
be seen in Figure 2.5. All MOSPTs have the same number of levels, which also corresponds
to the maximum number of points that share the same space. The number of levels must be
selected carefully - a too small number results in too many files on disk, while a too large number
may result in more points being rendered than necessary. Figure 2.6 shows a two-dimensional
example of the points stored at various levels of a Nested Quadtree. Nested Octrees also enable
an enhanced LOD selection and the possibilities of view-frustum culling.

A Nested Octree is constructed beginning with the creation of a MOSPT for the root node,
which shares the same space as the bounding box for the whole model. The points of the input
file for that particular node are inserted into the MOSPT. When a leaf node of the MOSPT
already contains a point, any points that would be inserted into the same leaf node are rejected
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Figure 2.6: The points stored at various levels of a Nested Quadtree.

and written into a rejection file with an identifier corresponding to the node. Once all points
of the input file have been processed, the points in the rejection files may be added back into
the corresponding leaf nodes, but only if their amount is below a certain threshold. Afterward,
points from the leaf nodes are pulled up into the parent nodes and the MOSPT is written to the
hard disk. Then, a new child node of the current node is created and if a rejection file exists for
this node, the whole process is repeated for this node. At the end, the Nested Octree itself is
written to the hard disk.

The Nested Octree is small enough to fit into main memory at all times during rendering.
The MOSPTs within can be loaded dynamically. If a node is not within the view-frustum it is
skipped. Nodes whose points are too far away so that their projection on screen is too small to
contribute to the appearance are skipped as well. LOD selection is also improved, because a
different LOD can be chosen for different MOSPTs.

The Modifiable Nested Octree (MNO) is an optimization of Nested Octrees. The inner
hierarchy of each node is abandoned and replaced with a regular grid that stores the points of
the lowest level of the MOSPT (Figure 2.7). In other words, only the leaf nodes of the MOSPT
remain, which simplifies the insertion of the points. When inserting a point, the bounding box of
the MNO’s root node is subdivided into a regular grid. Based on the point’s coordinates, it falls
into one of the grid’s cells. If the cell is empty, the point is stored there. Otherwise, it is inserted
into the correct child node, which is calculated using the point’s coordinates and the center of
the parent node. This process is repeated recursively until the point falls into an empty cell. To
prevent the creation of child nodes that end up mostly empty, an optimization is to hold back
points that would fall into a child node that does not exist yet and only create the child node once
there are multiple points that would fall into it.

To allow the build-up of models that are too large to fit into main memory, a LRU cache is
used to swap nodes in and out of memory. Nodes that have been created are held in the cache
to allow further points to be inserted. Once the cache is full and more nodes need to be created,
the nodes that were used least recently are written to disk. If a point needs to be inserted into
a node that has already been dropped, it is loaded into memory again. If this happens often,
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Figure 2.7: A comparison between a Nested Octree and a MNO.

the build-up process is slowed down considerably. As such, the main goal of this thesis is to
minimize the amount nodes that are swapped back to memory, by sorting the input set of points
in a preprocessing step.
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CHAPTER 3
External Sorting

In order to find the most efficient way of sorting unprocessed point clouds and increase the speed
of the model build up process as much as possible, a variety of algorithms were implemented
and tested. Points are sorted either by axis or by Morton order, using either heap sort or radix
sort. For large point clouds that do not fit into main memory, an external merge sort algorithm
is used. The speed of the sorting process can be increased further by making use of multi-core
CPU’s parallel processing capabilities.

3.1 Sorting By Axis

When sorting by axis, the points are simply sorted according to their position along one of the
three axes in Euclidean space. Early tests have shown that the best result is achieved when
sorting along the longest axis and also comparing the points by their other coordinates if their
position along the longest axis is the same. The length of each axis can easily be retrieved from
the bounding box of the point cloud.

3.2 Morton Order

By using Morton order [11] it is possible to map multidimensional data to one dimension, while
preserving locality between data points. Sorting points by Morton order yields the same result
as a depth-first traversal of an octree, which would suggest that using Morton order for sorting
point clouds prior to storing the points in an octree might produce good results. Connecting
the ordered points yields a Z-order curve, a type of space-filling curve which is named after its
shape, as can be seen in Figure 3.1.

Points are sorted according to their Z-order curve value (Z-value). When using integers,
the Z-value can be calculated by bit-interleaving the coordinates of the point, as can be seen in
Figure 3.2. As bit-interleaving can be a very time-consuming operation, especially for large and
high-dimensional data sets, a faster way to compare two points by Morton order was presented
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Figure 3.1: Four iterations of a Z-order curve.

by Chan [1]. For each dimension, the bit-representation of the coordinates of the two points are
compared with the XOR bit-operation. By identifying the dimension with the most significant
differing bit (MSDB), the points need only be compared by this coordinate with the less-than-
operator . Algorithm 3.1 shows the pseudo-code for this operation.

It is not possible however to directly apply this algorithm when using floating point values.
C++ floating-point numbers use the IEEE Standard for Floating-Point Arithmetic format [5].

The first bit is the sign bit. If it is set, the value is negative, otherwise it is positive. The
following 8 bits store the exponent (which is biased by 127, so the actual range of the exponent
is -127 to 128) and the remaining 23 bits store the mantissa so that the floating point value can
be computed with (−1)sign ∗ 2exponent−bias ∗ (1 + 2−23 ∗mantissa).

A possible algorithm supporting floating point numbers was presented by Connor and Kumar
[2] and can be seen in Algorithm 3.2. In order to find the dimension by which the two points
have to be compared, the exponents of the coordinates are examined first. If the two exponents
are different for every dimension, the points are compared by the dimension in which either
point has the highest exponent, as the exponent can be considered the equivalent of the MSDB
when comparing points with integer value coordinates.

When the exponents are equal for a dimension, the mantissas have to be factored in. This
is done by first XORing the mantissas, then converting the result to a floating point value and
adding its exponent (which is always negative) to the original exponent.

The only thing that remains is dealing with negative numbers. When treating the whole 3-
dimensional space as the root node of an octree, every octant is one of its child nodes. Therefore,
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Algorithm 3.1: Integer Morton Order Algorithm
Data: n-dimensional points p and q
Result: true if p < q in Morton order

1 procedure COMPARE (point p, point q)
2 x← 0; dim← 0;
3 for i = 0 to n do
4 y ← p(i) XOR q(i);
5 if LESSMSB(x, y) then
6 dim← i;x← y;
7 end
8 end
9 return p(dim) − q(dim)

10 end
11 procedure LESSMSB (int x, int y)
12 return x < y AND x < (x XOR y)
13 end

Algorithm 3.2: Floating Point Morton Order Algorithm
Data: n-dimensional points p and q
Result: true if p < q in Morton order

1 procedure COMPARE (point p, point q)
2 x← 0; dim← 0;
3 for i = 0 to n do
4 y ← XORMSB(p(i), q(i));
5 if x < y then
6 x← y; dim← j;
7 end
8 end
9 end

10 procedure XORMSB (double a, double b)
11 x← EXPONENT (a); y ← EXPONENT (b);
12 if x = y then
13 z ←MSDB(MANTISSA(a),MANTISSA(b));
14 x← x− z;
15 return x
16 end
17 if y < x then return x;
18 else return y;
19 end
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Figure 3.2: Creating a Morton order by bit-interleaving the point coordinates.

when the signs of the two point coordinates are different for at least one dimension, there is no
need to examine the exponents. If the signs are the same for every dimension, they can simply
be ignored when examining the exponents.

3.3 Heap Sort

As its name suggests, heap sort uses a heap data structure for sorting. A heap (Figure 3.3) is a
tree with the special property that the value of every node is always larger (or smaller, if it is
a min-heap) than the value of its child nodes. To construct a heap, each node is inserted at the
bottom level and then compared to its parent node. If the parent node’s value is smaller, then the
two nodes are swapped. This process is repeated until the parent node’s value is bigger or when
the inserted node becomes the root node.

When deleting the root node from the heap, the last element in the heap takes its place. The
new root node is then compared to its children - if they are in the correct order, the process is
finished, otherwise the root node is swapped with the larger child in a max-heap, or the smaller
child in a min-heap, until the order is correct.

To sort a set of values using heap sort, a heap containing all values is constructed. Then the
root node is deleted from the heap and its value is inserted into the array containing the sorted
values. After restoring the heap property, the process is repeated until all values have been
sorted. Heap sort is a comparison-based algorithm, so it works both when comparing points by
axis and Morton order, as the Morton order comparison algorithm directly compares two float
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Figure 3.3: Example of a max-heap. The value of each node is larger than the value of its child
nodes.

values. The worst and average case complexity of heap sort is O(N*log(N)), where N is the
number of elements that have to be sorted.

3.4 Radix Sort

Radix sort is a non-comparative sorting algorithm that is primarily used for integers. In each
pass, values are grouped according to a single individual digit, starting with either the least
significant or the most significant digit. The result of the pass is then sorted according to the
next digit and so on. An example can be seen in Figure 3.4. This can also be applied to the
binary representation of types other than integer, making sorting of floating point values with
radix sort possible, as described by Terdiman [16] - because both the exponent and the mantissa
of floating point values are always positive, and a value with a larger exponent is always larger
regardless of the mantissa, floating point values can be sorted according to their individual bytes,
or even multiple bytes at once. In our case, the points are grouped according to 2 bytes at once.

The only problem remaining is the sign bit. When it is set, the binary representation of a
negative value would always be larger than that of a positive value. An efficient way of dealing
with negative numbers was presented by Herf [7]. Flipping the sign bit for every value results
in positive values being larger than negative values. However, that alone is not enough, as the
numbers are signed-magnitude, which means that the binary representation of a negative value
will be larger the ’more negative’ it is. The solution is to not only flip the sign bit, but all other
bits as well for negative numbers, which can be done at low cost by XORing the value with a
mask where every bit is set.

At the beginning of the sorting process, the offsets for a temporary array (which is of the
same size as the array in which the original values are stored) are calculated by counting the
number of floating point numbers with the same byte values. These offsets correspond to the
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Figure 3.4: An example of radix sort. The values are first grouped according to the last digit,
then the middle digit, and finally the first digit.

size of the buckets into which the floats are sorted according to their byte values. Each floating
point number gets inserted into the temporary array at the offset pertaining to its value of the
bytes currently examined. Once all numbers have been inserted, the process is repeated with the
next 2 bytes and the numbers are swapped back to the original array. In the case that all values
of a single byte position are the same for every number, the sorting pass is skipped to save time,
as the sorting pass would be useless.

Since radix sort is a non-comparative sorting algorithm, it cannot be used with our Morton
order comparison. As mention earlier, for sorting points by axis, it is necessary to sort along
more than one axis. Since radix sort is temporally coherent, it is possible to use the algorithm
on the point cloud once for each axis, beginning with the shortest.

The worst and average case complexity of radix sort is O(N*k), where N is the number of
elements and k the number of passes. One pass is needed to calculate the offsets and 2 passes are
needed to sort the points according to their byte values. This is done once for each axis, so the
total complexity is O(9N), which is significantly lower than the complexity of heap sort which
is O(N*log(N)). The biggest disadvantage of radix sort is that it needs a temporary array to store
the sorted values, therefore it needs more memory than heap sort.

3.5 External Merge Sort

In order to deal with large data sets that do not completely fit into main memory, an out-of-core
sorting algorithm has to be used. External merge sort is a comparative sorting algorithm with
2 steps. In the first step, the data is split into multiple chunks that each fit into main memory.
These chunks are sorted one by one (for example by using heap sort or radix sort as previously
described) and then saved to the hard drive.

In the second step, the chunks are merged. The first element of each chunk is read and then
they are compared to each other. The smallest element is stored in the sorted array and the next
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element of the chunk is read and compared to the others. Since all chunks have already been
sorted, the end result will have all points in the correct order.

When there are only 2 chunks, the merge process is simple, as it is easy to compare 2
elements and determine from which chunk the next element has to be read. Once all points of
one chunk have been stored in the sorted array, the rest of the points in the other chunk can be
stored in the array as they are, since they are already sorted.

If there are more than 2 chunks, the merge algorithm uses a priority queue, like a heap. The
first element of each chunk is inserted into a heap. The root node is then removed and stored in
the sorted array. To read the next element, it is necessary to know which chunk the point came
from, so this information has to be stored, for example as an additional attribute of the point. The
complexity of a merge with priority queue is O(N*log(k)), where N is the number of elements
to be merged and k is the number of chunks these elements are stored in.

3.6 Parallel Sorting

In order to increase the speed of the sorting process, the external merge sort algorithm can be
adapted for use with multiple and multi-core CPUs. In the first step of the external merge sort,
the data is split into chunks that fit into main memory and then those chunks are sorted one by
one. Since the complexity of heap sort is O(N*log(N)), it makes sense to decrease the size of
each chunk and sort multiple chunks simultaneously by using several threads. Of course this
results in a slight decrease in speed during the merge process, since there are more chunks that
need to be merged. However, given the difference in size between the huge number of elements
that need to be sorted when dealing with point clouds and the relatively small number of chunks,
the tradeoff pays off as can be seen in the results (Chapter 4).

Parallel processing can also be applied to the merge itself using a divide-and-conquer ap-
proach. By using threads to perform multiple smaller merges simultaneously, and continuing
to merge the results until only one file containing the complete sorted data remains, a further
increase in speed can be accomplished when using Morton order (see Chapter 4).
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CHAPTER 4
Results

For testing we used a machine with a 2,40GHz Q6600 Intel Core 2 Quad Processor, 8GB RAM
and a 3TB Seagate Barracuda hard drive with 7200RPM. The tests were performed on a model
depicting the Vienna Stephansdom, consisting of many smaller point clouds that were scanned
with a range scanner at various positions. The model contains a total of 675.344.552 points,
which corresponds to roughly 10GB of data . The point cloud as rendered by Scanopy is depicted
in Figure 4.1.

The size of the chunks was limited to a maximum of 50% of the memory size, so a total of
4GB of memory was available for sorting. The size of the LRU cache used during the build up
of the model also has a huge impact on performance. All tests were performed twice - once with
a small cache that can hold a maximum of 10 million Points (160MB) and once with a large
cache whose size is 30% of the computers memory (2,4GB). When using a small cache, only
few nodes of the MNO can be held in memory at the same time. Depending on how the points
are sorted, this may lead to nodes being written to and loaded from the hard disk frequently, as
points may need to be stored in a node that has already been written to the hard disk. These
frequent disk accesses increase the time it takes to build up the model, which is also reflected in
our results, the entirety of which can be seen in Table 4.1.

4.1 Build-Up Times

Using points sorted by Morton order results in a significant decrease in build-up time, regardless
of the size of the LRU cache. As mentioned in the previous Chapter, Morton order is the same
order one would get from a depth-first traversal of an octree. Therefore, inserting points sorted
by Morton order into an MNO results in filling up the MNO depth-first. Because of this, nodes
in the lowest levels of the MNO never need to be swapped back to memory because they are
filled first and only written to disk once they have been filled with all points that would fall into
these particular nodes. The depth-first order has another advantage - because it is ensured that
all children of a node are recursively filled with points before another node of the same level is
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Figure 4.1: A point cloud model of the Vienna Stephansdom.

created, less nodes need to be held in memory, which further reduces the amount of nodes that
need to be swapped back to memory. This makes using an input set of points sorted by Morton
order very efficient during build-up even with a small cache.

The efficiency of sorting points by axis largely depends on the size of the model and cache.
Because each ’slice’ of points along the longest axis may contain points in up to 4 octants of
space, the amount of nodes that need to be held in memory is larger than when using Morton
order. If the cache is large enough, this is not a problem - because the nodes that have already
been filled with all points belonging to those particular nodes are written to disk first, this results
in very few nodes that have to be swapped back to memory, making the build-up process much
more efficient than when using unsorted points. If the cache cannot hold enough nodes simulta-
neously however, this variant may become even worse than using unsorted points, as nodes need
to be written to and read from the hard disk frequently.

4.2 Sorting Times

While using sorted points for building up the model is more efficient than using unsorted points
in most cases, the time it takes to sort the points needs to be factored in to decide which method
is the best. A variety of combinations was tested. Sorting the individual chunks by axis can be
done either with heap sort or radix sort, and testing has shown that radix sort performs faster than
heap sort even though the radix sort is performed once for each axis. Since radix sort produces
more chunks as it needs more memory for sorting, the merge process will take longer compared
to using heap sort. This is especially true for smaller models because the amount of chunks
may decide whether a priority queue is needed for merging. For large models however, the gain
when sorting the individual chunks is greater than the loss when merging. Parallel processing
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can be used to sort multiple chunks in parallel. For both heap sort and radix sort this results in a
better overall time, because more time is gained during sorting the chunks than is lost during the
merge. Using a parallel merge however results in a much slower merge process because the hard
disk proves to be a bottleneck - the short comparison operation leads to frequent disk accesses
when multiple threads are loading the next point from disk.

The Morton order comparison operation for floating point values takes significantly longer
than simply comparing them by their position along the axis. Without using multi-threading,
sorting by Morton order takes more than 10 times as long as sorting by axis using heap sort.
The sorting time can be reduced by a large margin using parallel processing however - since the
comparison operation is so costly, too frequent disk accesses are not a problem. Using parallel
sorting of chunks and parallel merge results in a sorting time decrease of 68%, which is still
slower than both radix or heap sorting by axis however.

4.3 Overall Performance

In most cases, both sorting by axis and sorting by Morton order before building up the model
results in a significant speed up when compared to using unsorted points. Sorting by axis when
using a small cache during the model build-up is the only exception - if the amount of data is
large and the density of points high, the build-up process might take even longer than when
using unsorted points. If this is the case, sorting by Morton order has a clear advantage over
sorting by axis, because even though the sorting process takes longer, the overall time is the
shortest compared to using unsorted points or points sorted by axis. If the cache is large enough
however, sorting by axis is the fastest way, as the speed gain during the build-up process is about
the same as when using Morton order, but the sorting process is significantly faster.
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Large Build-Up Cache (2,4GB)
Sorting Type Sorting Time Build-Up Time Total Time
Unsorted - 34h 15m 28s 34h 15m 28s

Axis

HSS: 21m 01s

38m 43s

59m 44s
HPS: 17m 05s 55m 48s
HSP: 24m 59s 1h 03m 42s
HPP: 22m 13s 1h 00m 56s
RSS: 14m 53s 53m 36s
RPS: 13m 23s 52m 06s
RSP: 19m 48s 58m 31s
RPP: 22m 39s 1h 01m 22s

Morton Order

HSS: 4h 46m 12s

39m 45s

5h 25m 57s
HPS: 2h 10m 45s 2h 50m 30s
HSP: 4h 35m 21s 5h 15m 06s
HPP: 1h 31m 20s 2h 11m 05s

Small Build-Up Cache (160MB)
Sorting Type Sorting Time Build-Up Time Total Time
Unsorted - 50h 35m 08s 50h 35m 08s

Axis

HSS: 21m 01s

60h 39m 45s

61h 00m 46s
HPS: 17m 05s 60h 56m 50s
HSP: 24m 59s 61h 04m 44s
HPP: 22m 13s 61h 01m 58s
RSS: 14m 53s 60h 54m 38s
RPS: 13m 23s 60h 53m 08s
RSP: 19m 48s 60h 59m 33s
RPP: 22m 39s 61h 02m 24s

Morton Order

HSS: 4h 46m 12s

40m 17s

5h 26m 29s
HPS: 2h 10m 45s 2h 51m 02s
HSP: 4h 35m 21s 5h 15m 38s
HPP: 1h 31m 20s 2h 11m 37s

Legend
H...Heap Sort S...Serial Sort S...Serial Merge
R...Radix Sort P...Parallel Sort P...Parallel Merge

Table 4.1: Sorting and Build-Up times for the Vienna Stephansdom model.
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CHAPTER 5
Conclusion

We presented a variety of sorting algorithms to sort point data used for rendering point clouds
in order to speed up the model build-up process that is necessary to allow rendering in real time.
In order to be able to sort data sets that are larger than main memory, an external merge sort
algorithm is used. Sorting points by axis yields the best performance as long as the cache used
during the model build-up is large enough, otherwise Morton order yields a better result. Radix
sort performs better than heap sort, but can only be used when sorting by axis. With parallel
processing, it is possible to increase the speed of the sorting process, especially when sorting
by Morton order, as the corresponding comparison operation takes significantly longer than the
comparison by axis coordinates.
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