
Implementing Camera Artefacts into RESHADE

The Goal:
Simulate camera artefacts for virtual objects as if they would have been captured by a low cost
camera. Steps to reproduce the effects.

• lens distortion
• motion blur
• gaussian blur
• desaturation and color mixing
• noise
• chroma split and squash

A more detailed description of the steps can be found in [Klein et al.].

The main problem to implement was that RESHADE is based on the idea of DIFFERENTIAL
RENDERING [Knecht et al.], so the process of combining virtual and real images was more
complicated than just adding them together.
In essence, three bufferes are used, a virtual image, a real image and a mask. So to make all the
effects possible and display them correctly after computation, they had to be applied to all three
buffers during their combination stage in the pipeline.

The effects were implemented as a post-processing step after the buffers were rendered, so
everything could be done in the fragment program stage using hlsl shaders.

Lens distortion:
Lens distortion was implemented using a cartesion-to-polar-coordinate conversion and adjusting the
radius.

Desaturation
When photons arrive at a sensor cell energy can flow two the neighbouring cells which leads to
color aberrations and desaturated colors. To simulate this one step involved taking a percentage of
two color channels and adding them to the destination channel. So, i.e., the resulting red channel
had also portions of the blue and green channels.

Motion Blur:
To make the virtual object look like they have been captured by a real camera, one important step is
to introduce motion blur. This was implemented by leveraging temporal coherence between two
consecutive frames. The directed screenspace velocity of the frame since the last frame had already
been computed during a prior stage so the implementation was straight forward.

Downsampling / Gaussian Blur:
Low-cost cameras don't have a high resolution so to make virtual objects look "captured" the image
of them had to be down sampled. This was accomplished by rendering the image into a smaller
render target.

Gaussian Blur was implemented using a two-step algorithm which involves first filtering the image
horizontally and then filtering the result vertically, but it can also be done vice versa. This leads to a
fewer computation calls than filtering two-dimensionally.

Bayer masking
To simulate a physical camera, the sensor had to be imitated. The bayer mask of the resulting image
was recreated splitting the color channels. Every channel got its own noise function aplied to and
was horizontally gaussian blurred.

Chroma split and squash
To decrease the resolution of the chromaticity information the so far computed image had to be
converted to Yuv space. The illumination information was kept at full resolution and the chroma
information downsampled horizontally to one forth.

Controls:
motion blur can be adjusted by pressing SPACE + M and SPACE + N keys top increase or decrease
the velocity factor.

Gaussian blur kernel width can be increased and decreased using SPACE + K and SPACE + J keys.

Radial distortion can be steered using SPACE + I and SPACE + U keys.

Literature

KLEIN, G., AND MURRAY, D. W. 2010. Simulating low-cost cameras for augmented reality
compositing. IEEE Transactions on Visualization and Computer Graphics 16, 369–380.

KNECHT, M., TRAXLER, C., MATTAUSCH, O., PURGATHOFER, W., AND WIMMER, M.
2010. Differential instant radiosity for mixed reality. In Proceedings of the 2010 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR 2010), 99–107.

