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Abstract

The procedure of collecting 3D data via an input device and processing it to a virtual 3D model
is called 3D reconstruction. It is a widely used technique in visual computing, since modern
applications like games or visualizations tend to be more and more photo-realistic leading to high
costs in content creation. By using 3D reconstruction high quality geometry can be generated
out of real objects. However to obtain good reconstructions special hardware is needed which is
very expensive.

Since Microsoft released the Kinect camera, which has a depth sensor in addition to the
RGB-sensor, a quite cheap hardware is available that is able to extract 3D data of its surround-
ings. KinectFusion also developed by Microsoft is a technique that uses the Kinect camera for
3D reconstruction in real-time. In order to achieve real-time speed the algorithm is executed
almost exclusively on the graphics card.

Each frame the algorithm first gathers the information from the Kinect and processes it.
After that it measures the camera’s position in space and fills a 3D volume with surface data.
Finally a raycasting algorithm is used to extract isosurfaces out of the volume.

During the work on the thesis we implemented the KinectFusion algorithm inside the RE-
SHADE framework. The results and the implementation itself are presented as part of the thesis.
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CHAPTER 1
Introduction

1.1 General Information

3D reconstruction is a technique that is needed in many different areas. In industry very acu-
rate models are used for physical simulations or quality tests. In addition computer games or
visualizations are going to be more and more photo-realistic so the models have to look like real
objects which is easy and quickly done with a good reconstruction tool.

3D reconstruction tools are used for some time, but they need special hardware which is very
expensive and most often just viable for companies. Since Microsoft released the Kinect camera
which has a depth sensor in addition to the RGB-sensor at the end of 2010 a quite cheap camera
is available for everyone. So developers have the opporunity to use geometric input besides just
using color pictures that they get from a webcam for example. With this impact new methods
are developed for gesture control systems or 3D reconstruction.

1.2 About the Kinect-Camera

The Kinect camera has made a big influence not only concerning the gaming section but con-
cerning the whole IT environment. James L. McQuivey, Vice President, Principal Analyst, For-
rester, describes it as “Kinect is to the next decade what the operating system was to the 1980s,
what the mouse was to the 1990s, and what the Internet has been ever since. It is the thing that
will change everything” [11]. Although this statement is non-scientific and wants to predict the
future it somehow reflects the excitement for this device.

The Kinect camera was developed by Microsoft in cooperation with PrimeSense. It was first
introduced in June 2009 during the Electronic Entertainment Expo (E3) and finally published in
November 2010. The Kinect itself consists of three different systems which are working together
on PrimeSense’s Carmine chip (PS1080) as it is described in [12]:

• It has a standard CMOS color sensor, to retrieve an RGB picture.
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Figure 1.1: Kinect IR pattern from [2] Figure 1.2: PrimeSense Technology [12]

• To gather depth information it includes an infrared laser which shoots IR rays through the
whole scene (seen in Figure 1.1) and a CMOS sensor that records them. The distance to
the camera is then measured by the size and the position of the recorded IR dots. [8]

• In addition the camera has a built in 3D microphone to get audio information.

After all information is retrieved the on chip system produces a depth map with the resolution
of 640x480 pixels out of the raw distance values that are sampled at a resolution of 1600x1200.
The downsampling is important to fill holes and reduce noise. Then the depth map is aligned to
the RGB picture and they are combined to a single RGBD texture that is sent over the USB port.
More technical details are descibed in [8].
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CHAPTER 2
Related work

In paper [14] the authors descibe the algorithm for bilateral filtering which is discussed in Chap-
ter 2.1. In another paper [1] the authors introduce a volumetric method for building models out
of range images which is described in Chapter 2.2. Both methods are used in the KinectFusion
algorithm mentioned in the later sections.

2.1 Bilateral Filtering

The aim of bilateral filtering [14] is to reduce the noise together with preserving hard edges so
that the filtered image appears smooth but not blurry. Compared to a low-pass domain filter
like the gaussian filter the bilateral filter function does not only consider geometric closeness as
a criterion but also photometric similarity like a range filter. This exploits the assumption that
high frequent noise on smooth regions has only small variation in the color range whereas edges
have high variations.

Before bilateral filtering there only existed iterative methods which were able to satisfy these
expectations by solving partial differential equations (e.g. anisotropic diffusion [10]). The dis-
advantage of iterative methods are that they might become unstable over many iterations and
that their efficiency is depending on the computational architecture. On the other hand bilateral
filtering is a noniterative and simple method which still preserves edges for both grayscale and
color images. Espacially when dealing with color images simple filters like the gaussian filter
fail because they can only operate on the three bands of a color image separately. This leads to
phantom colors due to the fact that the different bands does not have the same contrast levels.
Bilateral filters overcome this problem by working in the CIE-Lab color space in which nearby
values correspond to similar perception for the human eye.

Since the bilateral filter acts like both a domain filter and a range filter, it is also computed
similar to them. A low-pass domain filter is defined as follows:

h(x) = k−1
d (x)

∫ ∞
−∞

∫ ∞
−∞

f(ξ)c(ξ,x)dξ (2.1)
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Figure 2.1: Illustration of the result of a bilateral filter from [14]. (a) shows an edge with noise
applied to it and (b) shows the bilateral filtered result.

where f(ξ) is the function being filtered, k−1
d works as a normalisation factor and c(ξ,x)

measures the geometric closeness between the neighbourhod center x and a nearby point ξ. A
range filter is defined quite similar:

h(x) = k−1
r (x)

∫ ∞
−∞

∫ ∞
−∞

f(ξ)s(f(ξ), f(x))dξ (2.2)

with the difference that s(f(ξ), f(x)) refers to the photometric similarity between the center
pixel x and a nearby pixel ξ.

The bilateral filter is then defined as the combination of the definitions of domain and range
filters mentioned above:

h(x) = k−1(x)

∫ ∞
−∞

∫ ∞
−∞

f(ξ)c(ξ,x)s(f(ξ), f(x))dξ (2.3)

with the normalisation factor k(x) defined as:

k(x) =

∫ ∞
−∞

∫ ∞
−∞

c(ξ,x)s(f(ξ), f(x))dξ (2.4)

For smooth regions where all pixels inside a neighborhood are similar to each other the term
k−1 · s is close to 1 which makes the filter behave like a common low-pass domain filter. So
when a bilateral filter is applied to an image it replaces the pixel’s value at each position x with
an average of similar pixels in a neighborhood. A schematic illustration of the algorithm is
shown in Figure 2.1 and an example of a bilateral filtered image can be seen in Figure 2.2.

2.2 Volumetric Method for Building Models

The aim of this method [1] is to achieve smooth and detailed models out of range images given
by a range scanner. A range image is an image which stores distance values from the camera’s
point of view instead of colors. The complexity of this topic is that the representation has to be
updated incrementally, it has to be directional independent and robust in the presence of outliers.
The volumetric method is able to overcome all of these problems. It uses a three dimensional
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Figure 2.2: Comparison between a gaussian and a bilateral filter from [6].

Figure 2.3: Combination of different unweighted distance functions from [1]

voxel grid filled with a signed distance and a weight function for representing the isosurfaces.
For multiple range images the algorithm first measures the distance function of each range image
before they are added together inside the volume.

The distance function D(x) describes a continous function that is represented by discrete
samples inside the voxel grid and linear. A voxel’s distance value measures the distance to
the nearest surface along the line of sight to the sensor where the sign of the distance value
varies depending on whether the voxel lies in front of or behind the surface. If the method only
combined unweighted distance functions it would lead to a simple averaging at each step and
outliers would deteriorate the results dramatically (shown in Figure 2.3).

The weight functionW (x) also describes a continous function that is represented by discrete
samples inside the voxel grid but it is not linear like the distance function because it tapers
of behind range points to prevent surfaces on opposite sides of the object interfere with each
other. Although there is a trade-off involved in choosing the best fitting point where the weight
function falls off because it should be far enough so that near distance values stay robust, but to
the contrary it should also be as narrow as possible to tolerate thin objects. This problem can
be solved by aligning the weight fall-off to the sensor’s margin of error but this needs a precise
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sensor calibration.
When dealing with multiple range images the voxel grid has to be updated for each single

image. To measure a voxel’s data of the i + 1 iteration the two interpolation formulas are
described in the following equations:

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) + wi+1(x)
(2.5)

Wi+1(x) = Wi(x) + wi+1(x) (2.6)

where D(x) and W (x) represent the voxel’s data and d(x) and w(x) the measured values
from the range image.

After all range images are processed the isosurfaces can be extracted out of the volume by
finding the zero crossings of the distance function and a mesh can be formed. This mesh is then
tesselated and holes are filled. One result of the method can be seen in Figure 2.4.

Figure 2.4: The result of the volumetric method from [1]. (a) shows the original statuette, (b)
the result of the method with only 1 range image and (c) the result after processing 48 range
images.
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CHAPTER 3
Kinect Fusion

KinectFusion is a 3D reconstruction technique that uses Microsoft’s Kinect camera as input
device to reconstruct arbitrary indoor scenes with subcentimeter accuracy although the final ac-
curacy depends on the maximum dimension of the reconstruction. The larger the space in the
real world is defined for the reconstruction, the less detail can be reconstructed due to numerical
limits. Three papers [4,5,9] explaining this technique were published in autumn 2011 by the de-
velopers Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges and Andrew Fitzgibbon,
who are employed either by the Microsoft Research coorporation or by an academic institu-
tion. The aim of KinectFusion is to create a 3D reconstruction system which is fast enough and
easy to handle to become an enabler for many AR and interaction scenarios, like Microsoft’s
latest Project called IllumiRoom [7], where the gaming boundaries shall be able to extend the
hardware monitor. As stated in [9] the reconstruction method consists of 4 steps:

• In the surface measurement step 3D surface positions and normals are calculated (see
Section 3.2).

• During the sensor pose estimation the position and orientation of the camera is estimated
(see Section 3.3).

• Afterwards the surface reconstruction update step fills a 3D volume with surface infor-
mation (see Section 3.4).

• In the end the surface prediction step goes through the volume and calculates surface
positions that are used for the rendering (see Section 3.5).

How those steps interact with each other is illustrated in Figure 3.1.
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Figure 3.1: KinectFusion system workflow from [9]

3.1 Technical environment

The Kinect camera creates a 10-bit depth map with a resolution of 640x480 at 30Hz and sends it
to the application. To attain real-time performance every reconstruction step is executed on the
graphics card using highly parallel GPGPU techniques, so that they reach a framerate at least
equal to Kinect’s frequency.

As mentioned in the previous section the KinectFusion algorithm reconstructs the geometry
inside a 3D volume. The volume is filled with truncated signed distance function (TSDF) values
and is updated every single frame. The TSDF calculates for each voxel the distance to the nearest
surface along the viewing direction. If a voxel is located in front of a surface the TSDF value’s
sign is positive, otherwise it is negative. Then the distances are clamped by a user defined value
µ on both the positive and the negative side.

3.2 Surface measurement

First of all the noisy raw input depth map has to be pre-processed by applying a bilateral filter
[14] (see Section 2.1) onto it so that the noise is reduced and small holes are closed while the
rest of the details stay preserved. After that the depth values are converted to 3D coordinates in
camera space to obtain a vertex map. By using the vertex map the corresponding normal map is
generated by calculating the cross product between neighbouring vertices. Based on these two
maps a multi scale surface measurement pyramid of height L = 3 is being built by subsampling
both the vertex and normal map using an average smoothing filter with a threshold.

3.3 Pose estimation

The aim of this step is to localise the current camera position in world space by calculating
the 6 degrees-of-freedom (6DOF) camera pose. This is done by using all available data from
the last and current frame for an “iterative closest point” based pose estimation method [13].
The algorithm takes the surface measurement data consisting of a vertex map and a normal map
from the current frame (Vk, Nk) (described in Section 3.2) and the result of the surface prediction
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Figure 3.2: One slice of the 3D volume showing the TSDF with a given µ from [9]

from the previous frame (V̂k−1, N̂k−1) (described in Section 3.5). Assuming only small frame-
to-frame motion the two measurements are compared with each other and corresponding points
are selected to calculate an estimated frame-to-frame transform which is applied to the previous
frame’s data. This step is iterated by a linearised solver that tries to minimize the error value
formed by the Equation 3.1, where Tg,k is the estimated transformation and Vk(u), V̂k−1(u)
are the corresponding points:

E(Tg,k) =
∑
u∈U

∥∥∥∥(Tg,kVk(u)− V̂g
k−1(û)

)T
N̂g

k−1(û)

∥∥∥∥
2

(3.1)

As result a six-dimensional feature vector is found which describes the 6 degrees-of-freedom
(3 rotation angle values and 3 translation values, see Equation 3.2) of the camera motion between
the last and the current frame. This feature vector can be added to the previous frame’s camera
pose to calculate the camera pose of the current frame.

x = (β, γ, α, tx, ty, tz)
T ∈ R6 (3.2)

3.4 Update reconstruction

The reconstruction step uses the raw depth map to fill a 3D volume with surface data. The
reason why the raw depth map is used instead of using the bilateral filtered one like in the steps
before is that the reconstruction shall also include details with high frequencies which are lost
during filtering. At first the depth values are converted to 3D world space positions using the
current camera pose which was calculated during the previous step. Then for each voxel of the
3D volume a signed distance is calculated and truncated at µ which forms a truncated signed
distance function (TSDF) over the volume so that every voxel shows its distance to the next
surface point in view direction of the camera. In addition every voxel saves a weight value
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which is accumulated over each frame a voxel is in µ-range of a surface and is used to blend the
new TSDF values over the old ones to reduce noise errors.

Fk(p) =
Wk−1(p) · Fk−1(p) +WRk

(p) · FRk
(p)

Wk−1(p) +WRk
(p)

(3.3)

Wk(p) = min (Wk−1(p) +WRk
(p),Wmax ) (3.4)

The formula above 3.3 describes the blending between the old and the new TSDF value
where at frame k for each voxel p a new TSDF value Fk is calculated by averaging between
the old value Fk−1 and the measured one FRk

with their weights Wk−1 and WRk
. The second

formula 3.4 describes how the weights are incremented where at step k for each voxel p the new
weightWk is calculated by adding a valueWRk

to the oldWk−1 until it reaches some maximum
value Wmax . In practice WRk

= 1 leeds to a casual averaging between the values, it is simple
and still provides good results.

Every voxel with a distance greater µ is not changed during this step. After each voxel is
processed one slice of the volume might look like the example in Figure 3.2.

3.5 Surface prediction

In the last step the actual rendering of the scene is executed. From the position of the camera
calculated in step 2 (see Section 3.3) for each pixel of the final image a ray is shot through the
TSDF volume which has already been filled in step 3 (see Section 3.4). The calculation starts at
a minimum depth from the camera’s point of view to simulate the near clipping plane and ends
if a surface is hit or if the ray exits the volume. A surface hit is found when the TSDF performs a
zero crossing: A positive to negative zero crossing indicates a front facing surface and a negative
to positive zero crossing indicated a back facing surface. In case of leaving the volume or hitting
a back face no surface is assumed for the current pixel. The surface normal at a surface point p
can be measured directly by the TSDF values using the numerical derivatives:

∇F =

[
∂F

∂x
,
∂F

∂y
,
∂F

∂z

]T
(3.5)

In dealing with ray marching a common issue is how empty space is skipped. One approach
might be min/max blocks that define spaces with no information but since the volume is updated
all the time this would lead to a pre-processing overhead. Since the volume filling algorithm uses
a TSDF instead of a non-truncated signed distance function (SDF) the volume has to be sampled
only at a stepsize < 2 · µ because then empty spaces can be passed faster and zero crossings are
still found properly. In addition it can be assumed that a TSDF value near F (p) = 0 is also
a good enough approximation to speed up the ray calculation even more. For higher quality
surface prediction a more accurate zero crossing has to be found. This can be obtained by
solving a ray/trilinear cell intersection but that costs too much time to be processed for every ray
in real-time. Still a simple approximation of this algorithm is used by measuring two trilinear
interpolated TSDF values at either side of the zero crossing F+

t and F+
t+∆t which are at the ray

distances t and t+ ∆t to calculate a distance t∗ that indicates the zero crossing point.
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t∗ = t− ∆t · F+
t

F+
t+∆t − F

+
t

(3.6)

The improvement of the Equation 3.6 over the faster approximation can be seen in Figure
3.3.

Figure 3.3: A scene reconstructed with a fast approximation (left) and with a more precise
approximation (right) for the surface position calculation from [9]
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CHAPTER 4
Implementation

The KinectFusion algorithm was integrated into the RESHADE framework, which is a rendering
engine for visually plausible mixed reality.

Section 4.1 describes the initialization steps that have to be done before the algorithm is
ready to start. The next Sections 4.2,4.3,4.4 will cover the 3 steps in which the volume is filled,
the camera position is calculated and the final image is processed. Afterwards some technical
limitations that had to be overcome are also mentioned in Section 4.5.

4.1 Setup

In the first step the TSDF volume must be set up. It consists of a Texture2DArray which is ini-
tialised using a resolution that is passed to the volume. Together with the resolution the volume
gets a dimension value which shall indicate the covered size of the volume in the real world,
for example if the dimension is 5.0 then the program can reconstruct everything in 2.5m range
along each axis from the starting camera position. The ratio between resolution and dimension
determines the accuracy of the algorithm.

In fact not only one volume is needed but two. This is due to the fact that DirectX can not
read and write to a single texture simultaneously (see Section 4.5).

For retrieving the data from the Kinect camera, I use the KinectCapture class that is built in
the framework. Also for rendering purpose I use the built in deferred renderer, for which I set
up a texture for the surface positions and one for the surface normals.

4.2 Tracking

At first the camera’s position in space is tracked. For this the Studierstube marker tracker [3] is
used instead of the ICP tracker mentioned in Section 3.3. During the setup some BCH markers
(e.g. Figure 4.1) of a given dimension are registered together with a pose which they are referring
to. In this case only one marker is registered and bound to the camera pose. Then every frame the
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Figure 4.1: Example of a BCH marker that can be tracked by the Studierstube tracker from [3]

tracker receives a monochrome picture from the camera and searches for the registered markers.
When a marker is found its corresponding pose can be calculated.

4.3 Volume data filling

In the first step of the scene reconstruction the TSDF volume needs to be filled which is executed
completely on the graphics card. In order to do that some data have to be acquired:

• The camera’s view matrix is retrieved from the tracking system (described in Section 4.2)
and with it the view vector is calculated.

• The depth map of the Kinect device is gathered by the KinectCapture class.

Then all the data and textures are transferred onto the graphics card. To fill the volume the
shader program has to draw a screen spanning quad for each slice of the volume. In order to
reduce drawing calls I use the geometry shader to create additional quads, so that one draw call
can fill several slices.

In the shader stage the vertex shader remains passive by just passing through the input posi-
tion and texture coordinates. The geometry shader determines which slice is currently processed
by setting the SV_RENDERTARGETARRAYINDEX value to the index of the current slice. In
addition it calculates for each slice the texture lookup coordinates in the Kinect’s depth map
coordinate space by converting the three dimensional texture coordinates of the volume to world
position coordinates and applies then the camera’s combined view and projection matrix (see in
Listing 4.1).

One important thing to note from Listing 4.1 is that a three dimensional vector is returned
by the method rather than just a two dimensional since the depth map has only two dimensions.
The third dimension indicates if the voxel lies in front of the camera (in viewing direction) or
behind. This is important because I only want to process voxels that are seen by the camera.

In the pixel shader several steps have to be processed. At first the texture lookup coordinates
have to be normalised and checked if they are inside the view frustum by identifying if they are
in between the [0,1]-interval. If they are positioned outside the frustum or behind the camera this
voxel will not be processed anymore and the value of the previous frame is assigned. Otherwise
the depth map is sampled and its value is converted into world-space coordinates. After that
the voxel’s position is also converted into world-space coordinates and the distance between
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� �
1 float3 getCameraUVFromSliceUVW(float2 slice_uv, uint slice_w) {
2 float3 sliceWP = getVolumeWP(slice_uv, slice_w);
3 float4 camUV = mul(float4(sliceWP,1.0f),viewProjectionMatrix);
4
5 return camUV.xyz;
6 }
7
8 float3 getVolumeWP(float2 slice_uv, uint slice_w) {
9 float z = ((float) slice_w) / volume_resolution.z;
10 float3 worldPosition = float3(slive_uv, z) - 0.5f;
11 worldPosition = worldPosition * volume_dimension.xyz;
12
13 return worldPosition;
14 }� �

Listing 4.1: Converting texture coordinates from volume space to view space.

both positions is calculated. The sign of the distance in viewing direction is retrieved by the
dot product of the camera’s view vector and the direction vector between the two world space
positions. With a given µ it is checked whether the distance is inside the relevant range. If that
is the case the weight is incremented and the distance value is blended over the old TSDF value
sampled linearly by Listing 4.2 (this special method is needed since a Texture2DArray is used
instead of a Texture3D) using Equation 3.3 otherwise the previous’ frame value stays current.
The process of the volume filling is shown in Algorithm 4.1.� �

1 float4 sampleVolume(float3 uvw) {
2 float sliceId = floor(uvw.z);
3 float factor = frac(uvw.z);
4
5 float4 sample0 = volume.SampleLevel(VolumeSampler, float3(uvw.xy,

sliceId), 0);
6 float4 sample1 = volume.SampleLevel(VolumeSampler, float3(uvw.xy,

sliceId+1), 0);
7
8 return lerp(sample0, sample1, factor);
9 }� �

Listing 4.2: Method to retrieve linearly interpolated volume values

4.4 Raycasting pass

In the next step the 3D data needs to be measured, which is also executed exclusively on the
graphics card. The shader program for calculating the 3D surface positions needs only the TSDF
volume and the inverted view and projection matrix of the camera which are transmitted to the
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Data: uvCamera;← inhomogenious texture coordinates for depth map
uvV olume;← 3D texture coordinates for TSDF volume
viewV ector;← camera’s view vector in world-space
µ;← given value for truncation of the distance values
max_weight;← given maximum weight

Result: TSDFdata;← TSDF value and weight of a specific voxel

1 depthLookup = uvCamera.xy / uvCamera.z;
2 depthLookup = depthLookup · 0.5 + 0.5;
3 if depthLookup inside [0,1] ∨ uvCamera.z ≤ 0.0 then
4 return sampleVolume(uvV olume);
5 else
6 depthSample = sampleDepthMap(uvCamera);
7 if depthSample == 0.0 then
8 discard;
9 end

10 wsPos = calculateWorldSpacePositionFromDepth(depthSample);
11 volumeSample = sampleVolume(uvV olume);
12 slicePos = calculatePositionInVolume(uvV olume);
13 distance = distance(wsPos,slicePos);
14 sign = sign(dot(slicePos - wsPos, viewV ector));
15 if abs(distance > µ) then
16 return volumeSample;
17 else
18 oldWeight = volumeSample.y;
19 oldDistance = volumeSample.x;
20 weightIncrease = 1;
21 weight = min(oldWeight + weightIncrease,max_weight);
22 distance = (oldDistance · oldWeight + distance · weightIncrease) /

(oldWeight + weightIncrease);
23 return distance,weight;
24 end
25 end

Algorithm 4.1: Volume filling step (see Section 4.3)

GPU by the application. In the vertex shader step the position is passed through normally and
in addition the begin and exit point of the ray is calculated by multiplying the two dimensional
near and far plane point with the inverted view and projection matrix (shown in Listing 4.3).

At the beginning of the pixel shader step the interpolated ray start and endpoints are nor-
malized by dividing by their homogenous coordinates. The reason why the normalization is
executed in the pixel shader rather than in the vertex shader is that the rays obtain perspective
correctness if they are interpolated first and then normalized as the other way round. With the
two ray points the ray direction can be calculated and the step width between the sample points
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� �
1 ...
2 float4 ptNear = float4(input.position.xy, 0.0f, 1.0f);
3 float4 ptFar = float4(input.position.xy, 1.0f, 0.0f);
4
5 ptNear = mul(ptNear, invViewProjectionMatrix);
6 ptFar = mul(ptFar, invViewProjectionMatrix);
7 ...� �

Listing 4.3: Calculation of the near and far plane point of the ray in the vertex shader

is set to a fraction of µ. In the implementation µ · 0.9 is used if the ray is in empty space
(weight < max_weight ·0.1) and µ ·0.1 otherwise which led to the best results in performance
and accuracy. Another approach is to adjust the step width to the sampled TSDF values. If the
weight is higher a specific value (e.g. weight > max_weight · 0.9) the step width is set to
sample · 0.7 + µ · 0.001. This leads to finer steps the nearer the ray comes to the surface. This
approach gives more precise results but the performance gets worse since more steps are needed.
After that the raycasting loop starts where at each iteration the current ray position inside the
volume is converted to texture coordinates, the volume is sampled with these coordinates using
linear sampling (using Listing 4.2) and it is checked whether there was a zero crossing between
the old and the new sample points. When the loop is finished and a zero crossing is found two
positions with referring samples remain, one before the zero crossing and the other one behind it.
To calculate the approximate position of the zero crossing I linearly interpolate between the two
positions by their sample’s distance to zero. The interpolation factor is calculated as follows:

d1 > 0← TSDF value before zero crossing

d2 < 0← TSDF value after zero crossing (4.1)

fac =
d1

d1 + |d2|

If no zero crossing is found until the ray leaves the volume no surface position is measured
for this pixel. The structure of this algorithm is shown in Algorithm 4.2.

4.5 Limitations

During the implementation some limitations in contrast to the implementation of the original
KinectFusion paper have been found. Since DirectX is used instead of a GPGPU technique (like
CUDA or OpenCL) a double buffering system for the TSDF volume has to be implemented be-
cause it’s data is needed for read and write purpose which is not possible with DirectX textures.
On the contrary GPGPU techniques work with buffer objects which allow parallel read and write
access. As a result twice the memory space is needed for the double buffered volume texture
which leads to a bit rougher reconstruction. In addition DirectX is not as parallelized as GPGPU
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Data: rayPosition;← current position of the ray
stepSize;← step size to the next iteration
sample;← volume sample at current position

Result: surfacePosition;← found 3D surface position

1 oldPosition = rayPosition;
2 oldSample = sampleVolume(rayPosition);
3 rayPosition = rayPosition + stepSize;
4 while rayPosition is inside the volume and no zero crossing is found do
5 sample = sampleVolume(rayPosition);
6 if zero crossing is found then
7 break;
8 else
9 oldSample = sample;

10 oldPosition = rayPosition;
11 rayPosition = rayPosition + stepSize;
12 end
13 end
14 if zero crossing found then
15 return lerp(oldPosition, rayPosition, oldSample / (oldSample + abs(sample)));
16 else
17 discard;
18 end

Algorithm 4.2: Raycasting algorithm (see Section 4.4)

techniques since it is mainly optimized for rendering purpose than for calculation purpose like
filling a volume.

As TSDF volume a Texture2DArray is used instead of a Texture3D because three dimen-
sional textures were not accessible in the framework the way I needed them. Although a
Texture2DArray works similar to a Texture3D there are some limitations following it. First
the SV_RENDERTARGETARRAYINDEX has to be passed by the geometry shader which has
a limited output size what results in less slices that can be processed each draw call. In addition
the linear interpolation between neighbouring slices is not done automatically by the graphics
card so the interpolation has to be executed in the shader programm (see Listing 4.2).

Another limitation is that a marker tracker is used instead of a SLAM based tracker or the
proposed method from KinectFusion using iterative closest point algorithms for pose estimation
(see Section 3.3). Since there always has to be the marker inside the camera’s visible field of
view it is hard to reach the back side of objects. The reason why a marker tracker is used though
is that they have a good performance and their tracking accuracy is quite high.
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CHAPTER 5
Results

In the following sections the results of the implementation are shown. At first some performance
evaluations are presented in Section 5.1 and afterwards several example images are shown in
Section 5.2.

The implementation was tested on a notebook with a Windows 7 64-Bit system, an Intel
Core i7 quad-core CPU running at about 2.7GHz, 8GB of RAM and a NVIDIA GeForce GTX
460M with the latest drivers (18.01.2012) installed. The engine is written in C# with DirectX10
and runs at a resolution of 640x480 pixel.

5.1 Performance

The performance of the implementation is measured by the DirectX10 query object using
Timestamp as QueryType to evaluate the amount GPU ticks and TimestampDisjoint to
get the frequency (indicates how many ticks can be processed in a second) and to check whether

Volume filling pass
Elapsed time (s) Average ticks Average time (ms) Full runs per second

5 22,164,571 22.16 45
10 22,457,217 22.46 44
15 22,264,450 22.26 44
20 22,233,696 22.23 44
25 22,570,280 22.57 44
30 22,264,149 22.26 44
35 22,480,539 22.48 44
40 22,089,310 22.09 45

Table 5.1: Performance measurements of the volume filling GPU pass.
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Raycasting pass
Elapsed time (s) Average ticks Average time (ms) Full runs per second

5 4,801,168 4.80 208
10 4,919,667 4.92 203
15 4,754,768 4.75 210
20 6,283,410 6.28 159
25 8,706,719 8.71 114
30 8,271,567 8.27 120
35 6,162,428 6.16 162
40 3,276,874 3.28 305

Table 5.2: Performance measurements of the raycasting GPU pass.

the result is reliable. The following tables show the average measurements of the volume filling
GPU pass (Table 5.1) and of the raycasting GPU pass (Table 5.2).

5.2 Reconstruction examples

In this section some result images are shown. On the left side there is the Kinect’s RGB image
and on the right side the 3D reconstruction is shown.

Figure 5.1 shows a simple scene with a backpack, a ballpen and an USB flash drive lying on
the floor.

Figure 5.2 displays some very small objects each with a height≤ 1cm. For better perception
the objects are marked in both images.

Figure 5.3 shows more complex objects (stuffed animals) placed on a work desk. The sun-
glasses can not be fully reconstructed because their glasses let the infrared light through.

The last Figure 5.4 pictures a person sitting on a desk chair. The creation of this scene was
the hardest because if an object moves it becomes blurry in the 3D reconstruction but if the
marker moves just slightly the whole 3D reconstruction gets worse.
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Figure 5.1: Result of the KinectFusion implementation showing a simple scene. On the left side
there is the Kinect’s RGB image and the right side shows the reconstruction of the scene.

Figure 5.2: Result of the KinectFusion implementation showing very small objects with height
≤ 1cm. On the left side there is the Kinect’s RGB image and the right side shows the recon-
struction of the scene.
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Figure 5.3: Result of the KinectFusion implementation showing more complex objects (stuffed
animals) and sunglasses on a work desk. On the left side there is the Kinect’s RGB image and
the right side shows the reconstruction of the scene.

Figure 5.4: Result of the KinectFusion implementation showing a person sitting on a desk chair.
On the left side there is the Kinect’s RGB image and the right side shows the reconstruction of
the scene.
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CHAPTER 6
Conclusion

3D reconstruction is a very useful technique for content creation in a photo-realistic way. Before
Microsoft released the Kinect camera only some professional tools existed which needed special
and expensive hardware. With the release of the Kinect a quite cheap depth camera is available
for everyone. KinectFusion is a technique that uses the Kinect camera to reconstruct complete
rooms in real-time although the dimension of the reconstruction is in conflict with the precision
of the reconstructed geometry.

During the work on the thesis the KinectFusion method was integrated into the RESHADE
framework. Although some limitations had to be overcome the implementation works at rea-
sonable frame rates. In constant lighting the application is very robust and is able to compute a
detailed reconstruction within a short time.
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