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Kurzfassung

Das Ziel dieser Bachelorarbeit ist es, Methoden und Wege aufzuzeigen, die es erlauben be-
stimmte Attribute und Eigenschaften eines Musikstiickes zu bestimmen und diese dann in Input-
Parameter zu transferieren, die verwendet werden konnen um eine eher physik-basierte und
natiirlicher wirkende Visualisierung des analysierten Musikstiickes zu generieren, als dies in
momentan giangigen Audioprogrammen der Fall ist.

Zu diesem Zweck werden Methoden prisentiert, die es erlauben solche Eigenschaften und
Charakteristika aus MIDI- und Audio-Dateien zu extrahieren, und wie diese anschlieBend zu
eben erwihnten Input-Parametern kombiniert werden kdnnen. Der Fokus liegt hierbei vor allem
auf MIDI.

Als Beispiel sei hier die Verwendung der Tonart des analysierten Songs genannt, die etwa
Einfluss auf die Farbwahl der erstellten Visualisierung haben sollte. Weiters wiren auch das
Tempo oder die Dynamik eines Lieds niitzliche Eigenschaften im gegebenen Kontext. Diese
Attribute als Input-Parameter einer Visualisierung zu generieren sollte schlussendlich in einer
qualitativ besseren Erfahrung fiir den Betrachter resultieren, da die Visualisierung mehr mit der
gehorten Musik korreliert.

Neben der Definition solcher Input-Parameter enthélt diese Bachelorarbeit auch eine kurze
Evaluierung von sogenannten Feature Extraction Libraries beziehungsweise Frameworks, die
unterstiitzend zur Erreichung des genannten Ziels fithren sollen. Weiters werden im Zuge der
Entwicklung eines Prototyps des soeben beschriebenen Ablaufs auch konkrete Implementierun-
gen von Algorithmen basierend auf dem jMusic API Framework présentiert, die zur Extrahie-
rung dieser Eigenschaften dienen.
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Abstract

The aim of this bachelor’s thesis is to point out ways on how to extract distinct bits of information
out of a song and how to combine them to create single parameters that reflect the currently
transported emotion of the song.

It presents approaches on how to extract certain information and data from MIDI and audio
files that can then be used to create a more physics-based and naturally feeling visualization than
the one that gets shipped with today’s common music player software, with a strong focus on
MIDI.

For example, the currently used scale should have an impact on the visualization’s color,
as well as the current tempo, dynamic or aggressivity. Representing these attributes as input
parameters that can be used by a visualization application should ultimately result in a better
visualization experience for the viewer, because it creates a feeling that the things seen on screen
match with the music currently playing.

Besides defining such input parameters for visualizations, this paper also provides a short
evaluation of music feature extraction libraries and frameworks that help in reaching the men-
tioned goal, as well as a few concrete implementations of algorithms that can be used to extract
such features based on the jMusic API framework.
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CHAPTER

Introduction

1.1 Motivation

Today most music players that are available already ship with some sort of tool or plugin that
allows the user to view automatically generated visuals when playing an audio file. Common
examples are Apple’s iTunes, Microsoft’s Windows Media Player or Nullsoft’s WinAmp.

Although the created visuals are somewhat impressive at a first glance due to their graphical
style, they seem to not really reflect the transported mood and emotion of the song. We thought
that a visualization tool that first analyzes a song and then builds a corresponding visualization
based on the yielded results would ultimately enhance the viewer’s experience when listening to
music.

1.2 Problem statement

A visualization as described in the previous chapter would not only adapt to the song’s tempo
and rhythm, but also to its tonality, the use of chords, breaks, and other musical structures that
are common in every piece of music. Taking these characteristics into account allows to make
concrete assumptions about the song’s mood and therefore also about the probable feeling a song
introduces at its listener. The speed, colors, intensity, movements and positions of the created
visual objects should all be influenced by the informations extracted during the analyzation
phase.

To be able to extract such rich information out of a song, a variety of algorithms that process
and analyze the audio file are needed. Transforming those informations into input parameters
a visualization component is able to understand requires some sort of mapping that describes
how a visualization has to react if certain characteristics apply to a song. Finally, the visualizer
needs to create the visuals based on the informations it obtained from the mapping and render
everything in time, so that the created visuals match with the currently playing music.




1.3 Aim of the work

The aim of this thesis is to create a prototype that reflects most of the functionalities described
above and creates simple, yet more physics-based and naturally feeling visualizations for audio
recordings. The prototype and the findings made during its creations should then be useable as
a base for further improvements and developments in the future, hopefully leading to an overall
better visual experience in software music players.

1.4 Methodological approach

This bachelor thesis is part of a collaborative work. Because of the overall topic’s complexity,
Physics-based music visualization, we split it into three parts: the analyzation and feature ex-
traction of audio recordings, the generation and processing of visual primitives, and the mapping
that translates the retrieved audio features into instructions for the visualization part.

These parts were covered by the following persons:

e Audio File Analyzation and Feature Extraction - Alexander Hauer (this thesis)
e Mapping - Jiirgen Giefing [9]]
e Visualization - Andreas Schmid [20]]

As a first step we first conducted a user study where we asked the probands to tell us their
emotions while they were listening to a fixed sample of songs. Each song was about 15 to 40
seconds long and played as a MIDI file, so the interpretation was decoupled from any emotions
that may have been triggered by a song’s lyrics.

The list of songs used in the study were the following:

e ACDC - T.N.T.

e Aerosmith - Cryin’

e Alcazar - Crying at the discotheque

e Alice Cooper - School’s out

e Annie Lenox - Rain

o Aretha Franklin - Respect

o Arrested Development - People Everyday
e Average White Band - Pick Up The Pieces
e Bee Gees - Stayin’ alive

e The Beatles - Eleanor Rigby



We tried to put together a list across several genres, including Rock, Pop, Jazz and Hip-Hop.
Based on the findings of this study we defined rules that describe how attributes of a song should
adjust the visualization. This in turn also lead us to the needed input parameters required to
influence the visualization, and what visuals should ultimately be generated.

After creating the prototype based on that knowledge, we conducted a second user study to
see whether or not our initial assumptions had any positive effect on our probands’ perception
of the visuals generated by our prototype, in comparison to visuals generated by current state-
of-the-art music players.

1.5 Structure of the work

Based on the findings from the first user study [T.4] we started with further research and began to
implement the mentioned prototype. We essentially split up the prototype into three main parts:
the analyzer, the mapping and finally the visualizer.

This thesis covers the analyzation part. It first describes a set of audio features (i.e., char-
acteristics and attributes of a song) considered as useful information for adjusting the visual
presentation, then an evaluation of a set of feature detection libraries that promised to help in ex-
tracting the information we wanted, and finally the concrete implementation of the analyzation
part of the visualizer.

The last part consists of a second user study where we showed our probands the created
results, to test if our assumptions and their implementation had any benefit on the visual experi-
ence.

1.6 Essential contributions

The key findings and developments I account for is the implementation of a chord, tonality
and breaks detection algorithm, all restricted to MIDI files. Additionally, also the evaluation
of certain feature extraction libraries regarding their benefit for the aim of this work can be a
valuable source of information for others who strive for a similar goal.

1.7 Terminology

Below are a few musical terms I am going to use throughout the entire thesis.

Note

A note is a single sound made by an instrument that lasts for an arbitrary amount of time. See

also chapter

Ornamental note

An ornamental note is a (very) short note played before the actual note, usually a semitone below
or above it.



Chord

A chord is a group of notes that start sounding at the same time. See also chapter[3.2]

Break

A short stop of all or most instruments within a song. See also chapter[3.2]



CHAPTER

Background

This chapter tries to give a little background on what audio features are and in what areas they
usually find use. Because of the complexity of extracting features from audio files, like .WAV or
.MP3 files, this section will just give a brief overview about such features and their use. A more
concrete approach will be introduced for MIDI files later on.

While global features, which describe attributes of a song as a whole, can be used to in-
fluence the general appearance or style of the visualization, discrete events and sequences are
needed to introduce or delete visualization objects, move them or let them interact with each
other. A tight coupling between events and punctual visualization changes is desirable when
trying to create a more physics-based and naturally-feeling visualization.

For example, the explosion of some object at the exact time a drummer hits his crash, in-
volves both global features and a discrete event. The event would be the drummer hitting the
crash (discrete event), which could trigger the creation or explosion of an object. Global features,
like the tonality of the song, could be used to define the object’s color or shape.

The next section introduces some common audio features to enhance the understanding of
what features are, followed by a short example where such features find applicable use.

2.1 Attributes of audio

Audio features can be seen as concrete properties of audio signals. Features can be very specific
properties of such a signal, like duration, loudness or pitch, but can also consist of a combination
of discrete values. How an audio feature looks like and of which properties it consists of really
lies in the hands of the person who develops it. The phase, where such a feature is created, is
called Audio Feature Design [2].

Audio Features and their extraction are common in various fields of audio analysis, like
Segmentation or Automatic speech recognition. This thesis focusses on the use of audio features
in music information retrieval [17]).




In the context of this thesis, audio signal usually refers to an audio track or song, as we’re
interested in visualizing concrete pieces of music rather than a single tone or noise. Using this
as a base, only certain audio features seem applicable for achieving this goal.

Besides using global features like duration or loudness, which apply to a certain song as a
whole, a visualization application is also going to need discrete events, like playing a single note,
the strumming of a chord or the hitting of a kick drum, or information about rhythmic sections,
like a bridge or break within the song.

Such a discrete event E is a 3-tupel that consists of a unique name N, a timestamp T and a
set with an arbitrary number of parameters P.

E=<N,T,P >

2.2 Common audio features

Audio features usually refer to what I introduced as global features earlier. Common audio fea-
tures that are widely known are brightness, tonality, loudness, pitch or harmonicity. Because
of the huge amount of features present in scientific literature, Mitrovic, Zeppelzauer and Breit-
eneder introduced a novel taxonomy for audio features in their paper Features for Content-based
audio retrieval [3|]. They defined seven categories features can be distinguished by:

1. Temporal Features

2. Physical Frequency Features

3. Perceptual Frequency Features
4. Cepstral Features

5. Modulation Frequency Features
6. Eigendomain Features

7. Phase Space Features

In the scope of this thesis, Perceptual Frequency and Modulation Frequency Features are of
particular interest, as they cover already addressed features like brightness, tonality, loudness,
pitch and harmonicity (all perceptual), and rhythm (modulation frequency).

Additionally, also Temporal Features, like the Zero Crossing Rate, are worth considering,
as they provide a good base for developing more sophisticated features due to their low-level
character.

2.3 Attributes of MIDI

Extracting data from MIDI naturally comes a lot easier than extracting audio features. MIDI
(short for Musical Instrument Digital Interface) is a technical standard that describes a protocol,
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digital interface and connectors and allows a wide variety of electronic musical instruments,
computers and other related devices to connect and communicate with one another. [21]]

In difference to audio, where the analyzation of the audio signal and its waveform only
yields a basis for further analyzation and extraction of audio features, MIDI files already contain
concrete events and informations that simply have to be retrieved from the corresponding file.

On the flipside, the features that can be created based upon the data stored in a MIDI file
usually are not as rich as the ones deducted from analyzing natural sounds.

Basic information that can be easily extracted from MIDI are the key, volume and length of
the played notes and when they’ve been played (time). Common globals are the track length,
beats per minute (see Chapter and time signature (see Chapter [3.2)). More sophisticated
globals, that require additional computation, are a song’s ronality (see Chapter [3.1) or har-
monicity (see Chapter [3.1)).






CHAPTER

Audio Features

Although titled Audio features, this chapter tries to describe a common correlation between
features extracted from a song and their possible influence on a visualization, regardless if the
analyzed song is an audio or MIDI file. The intention of this thesis is not to provide fixed
connections between features and their visual impact, but rather the definition of features as
input parameters that can then be used to modify a visualization in any possible way.

For this reason, the set IP of the mentioned input parameters is separated into two groups:
global features and discrete events. Each parameter of a group can be interchanged in any way
with each other parameter from that group. Global features describe certain characteristics of
the song as a whole, like its tonality or harmonicity. Discrete events give the visualizer control of
the correct timing regarding the visual output. Each of these events has a unique name assigned,
as well as a timestamp, that lets the visualizer identify what happened in the song at a discrete
point of time.

3.1 Global features

Global features are characteristics that apply to a song as a whole.
Brightness, loudness or harmonicity are all features that can be deducted from an arbitrary
audio file.

Brightness

Brightness either refers to a single note or chord played at a certain time, or to a song as whole,
when the brightness of all notes/chords is summed up. In context of a note or chord, brightness
would be a discrete event, where as the brigthness of a song would be a global feature.

Brightness is usually defined by a note’s pitch, e.g., a C’ (played in the first octave) is con-
sidered less bright than a C” (played in the second octave). Although musically speaking that’s
the same note (same key), it has a different brightness. The same applies to chords.




Brightness is also somewhat connected to harmonicity - major chords are usually considered
to be ,,cheerful®, which in general also leads to a feeling of increased brightness, where as minor
chords are described as ,,sad” or ,,melancholic”, giving the listener the feeling of decreased
brightness.

Technically speaking, ,.brightness characterizes the spectral distribution of frequencies and
describes whether a signal is dominated by low or high frequencies, respectively. A sound
becomes brighter as the high-frequency content becomes more dominant and the low-frequency
content becomes less dominant.* [4]]

In terms of MIDI, the brightness is directly connected to the pitch of a note, which is a value
between 0 and 127.

Loudness

Loudness simply describes how loud a note has been played. Loudness creates characteristical
spikes in waveforms (audio), or affects the volume attribute of MIDI notes.

Over the past years, music producers have battled in a so called loudness war [22], trying to
create songs with a massive and intense sound. This lead to more dense and compact waveforms,
making it even harder to correctly analyze audio files.

In terms of visualization, loudness can be used to affect the intensity of colors or visual
events.

Harmonicity

I’d like to introduce a different meaning for Harmonicity than the usual meaning of the term in
the context of audio features. Mitrovic, Zeppelzauer and Breiteneder described harmonicity this
way:

,Harmonicity is a property that distinguishes periodic signals (harmonic sounds) from non-
periodic singals (inharmonic and noise-like sounds). [3]]

This definition helps in differentiating between harmonic instruments, like a guitar or pi-
ano, and percussive instruments, like drums, which consist mostly of noise-like sounds when
analyzing audio files.

This defintion is not really useful though when analyzing MIDI files. Although MIDI files
transport information about frequencies for each note, no differentiation between harmonic and
percussive instruments can be made this way. MIDI notes for a piano and drums are essentially
the same, and can be applied to whatever instrument the author of the MIDI file likes them to
play. For this reason, MIDI files also contain information about the used instruments. Each
channel inside a MIDI file is tied to a specified instrument, with channel 10 being reserved for
percussions. This way, identifying instruments of MIDI files is a simple task, because of the
existence of a concrete mapping of instruments to integer values.

As stated before, this renders the initial definition of harmonicity useless in terms of MIDI.
We therefore define harmonicity as how harmonic a sequence of notes or chords, or a chord
itself, sounds. Although this is quite similar to the information provided by fonality, it still gives
us more flexibility when designing physics-based input parameters for visualization.
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For example, a Jazz piece that is written in A minor, but contains a lot of notes not present
in that tonality, is considered less harmonic than a Pop song written in C major, which uses
only notes from that scale. This gap could result in maybe more weird but yet better fitting
visualizations for the Jazz piece, and simpler and more ,,friendly* ones for the Pop song, creating
a tighter coupling between the music and its visualization.

Tonality

The tonality or key describes which notes are used within a song. Although tonalities hold a
concrete set of notes, most notes are part of several tonalities. Additionally, due to compositional
freedom, the tonality can change at any time within the song, and it is not said that if a song is
written in a certain key, that it only contains notes from that particular scale. This is pretty
common especially in Jazz and Latin music, and makes it a lot harder to detect the correct
tonality when analyzing a song.

Similar to brightness and harmonicity, tonalities have a certain feeling attached, which can
be either cheerful or melancholic. This makes tonality detection an interesting task when trying
to visualize pieces of music.

Tempo / BPM

The tempo of a song is a good base for adjusting the general style of any musical visualization.
Faster songs transport a feeling of excitement or aggressivity, where as slower songs usually
induce a laid-back and subdued emotion (see also chapter [3.3).

BPM stands for beats per minute, which is a numerical value that describes how many quar-
ter notes per minute can be played during a song.

3.2 Local features

Local features can be seen as discrete events inside a song, e.g., a played note or chord at a
certain time within a song.

Notes

The most basic input parameter is a single note. Everytime a note is played, the visualization
should change, e.g., by displaying a new element or changing an already existing one. Of course,
when a note stops sounding, the visualization should react accordingly.

For this reason, each note event needs its start time as well as its duration as parameters
assigned to it. Additionally, also the key, pitch and frequency of the note are added as parameters
- this information could be used by the visualizer to adapt the color of certain elements, e.g.,
using brighter colors for higher notes. Although all of these parameters represent the same
information, it still seems to be useful to transport all three of them, giving the visual designer
the freedom to decide with what kind of data he’d like to work with.

Another important parameter is the volume (or, in terms of MIDI, velocity) a note gets played
with, higher volume could be used as an indicator for creating more intense visuals.

11



Also the pan of a note seems like valuable information, which could be used to manipulate
coordinates of certain elements. For example, notes that are panned fully to the left speaker
could result in visuals appearing only on the left side of the screen.

The last parameter of a note event is the instrument the note has been played, making it
possible to distinguish between percussive and harmonic instruments.

Chords

A chord is a combination of at least three notes that start sounding at the same time. Since not
all such combinations form a valid chord, and for the sake of gathering additional information,
it is necessary to detect the name of a chord regardless of the order its notes are played.

Breaks

Breaks are more of a thythmical part of a song instead of a harmonic attribute or event, which can
be described as follows: A break may be described as when the song takes a ,,breather, drops
down to some exciting percussion, and then comes storming back again* [|1]]. This definition
yields a good base for thinking about how to automatically detect breaks within a song. What
should be added is that a part of the song, where all instruments stop playing for a short time, is
also considered a break.

Amongst musicians, the length of a break is usually defined to be one or two bars, but to
respect compositional freedom we define an upper boundary of four bars when detecting breaks.
A bar defines a closed segment inside a song according to its time signature. Time signatures
are given as x/y, where y stands for any possible note length, and x for how many notes of that
length are needed to create a bar. For example, the summed up length of notes of a bar inside a
song with a time signature of 4/4 must not exceed the length of four quarter notes. These may
be four quarter notes, or eight eighth notes, or two quarter and four eigth notes, or any other
combination of notes which reach the length of four quarter notes if their lengths are summed

up.

3.3 Correlation between features and emotions

Since this thesis does not intend to focus on the correlation between music and corresponding
emotions, this chapter is only a brief abbreviation of this topic.

It is hard to argue about the fact that listening to music triggers certain emotions in human
beings. Bowling et al. described some of the factors that influence our reaction to musical pieces
like follows:

,»The affective impact of music depends on many factors including, but not limited to, in-
tensity, tempo, thythm, and the tonal intervals used. For most of these factors the way emotion
is conveyed seems intuitively clear. If, for instance, a composer wants to imbue a composition
with excitement, the intensity tends to be forte, the tempo fast, and the rhythm syncopated; con-
versely, if a more subdued effect is desired, the intensity is typically piano, the tempo slower,
and the rhythm more balanced.* [6]

12



As music and especially the combination of characteristics creates a certain emotion when
listening to it, the analyzation of music and fragmenting it down to its core elements yields a
good base for establishing a connection between a song and its visualization. Having detailed
information about a song’s structure, its scale and rhythm is sufficient to create matching visual
effects.

Concrete relations or rather a mapping between the extracted information and the visual
output can be found in Jiirgen Giefing’s bachelor thesis [9].
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CHAPTER

Evaluation of feature detection
libraries

4.1 Overview

Detection of the previously described audio features can be a hard task. Gladly there are a
number of frameworks and libraries that provide functions and methods to extract the desired
information from audio files. This (mostly low-level) information can be taken to construct the
input parameters described in the previous chapter.

The following libraries are subject to this evaluation:

e jMir (jAudio, jSymbolic)
e jMusic

Each section contains information about the programming language the library is available
for, the number and types of features it is able to extract, the quality of its documentation and its
practical use in the context of this paper.

JMir

jMIR is a project developed mainly by Cory McKay, who released the current jJMIR version as
a result of his PHD thesis ,,Automatic Music Classification with jMIR* at the McGill University
in Montreal. A full list of contributors can be found at the project’s website. [|16]]

JMIR is an open-source software suite implemented in Java for use in music information
retrieval (MIR) research. It can be used to study music in both audio and symbolic formats as
well as mine cultural information from the web and manage music collections. jMIR includes
software for extracting features, applying machine learning algorithms, mining metadata and
analyzing metadata. [[15]).
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Besides several other components, it contains two applications that are of particular interest
in the scope of this paper, namely jAudio and jSymbolic. The former aims to extract features
from standard audio recordings, like MP3, WAV or AIFF files, where as the latter does the same
for MIDI files. The goal of the author was to make music classification applicable for users with
and without a technical background - for this reason, both components can be used as stand-
alone applications using a GUI or the command line, or embedded into third-party applications
as a library. This evaluation takes a look at the use of the mentioned components as a library
embedded into the visualization prototype.

jAudio

jAudio was first introduced in 2005 by Daniel McEnnis, Cory McKay, Ichiro Fujinaga and
Philippe Depalle [7]] and is written in Java. The latest version was released 2010 and is able to
extract 28 bundled core-features [14]], like the Spectral Centroid, Spectral Rolloff Point, Root
Mean Square or the Zero Crossings Rate. Besides those core-features, jAudio also offers so-
called derived features, which are created by applying metafeatures to core-features. All of
these features include the name of the feature they are derived from. Examples are Derivative of
Spectral Centroid or Running Mean of Spectral Centroid.

Embedding the library is fairly easy thanks to Java: one has to simply add the delivered
JAR file to it’s project’s classpath. What is not so easy is to actually use the library to extract
features. Although jAudio comes with complete JavaDocs, i.e., all classes and their methods are
well commented, there is no documentation on how to use or rather combine those classes to get
the desired results.

Luckily, there exists a work-around to extract features without having to deal with the inner
structure of jAudio by using the JAudioCommandLine class. Originally intended to be used
through any command line or shell, we can make use of the class’s static execute() method. That
method simply needs the audio file the features should be extracted from and a settings.xml file
as parameters. The latter contains information about the desired features one wants to extract. A
sample settings.xml file can be created by using the jAudio GUI and then edited to one’s needs.

When calling the mentioned execute() method, jAudio creates two XML files as output -
one containing the feature keys, the other one the feature values. The first file only contains
metadata about the extracted features, such as their name and description, so no real use in terms
of analyzation can be made out of it. The second file contains the actual values for the extracted
features. After extraction, the visualization application has to read the created XML file to finally
elicit the desired information from it.

What jAudio can not do is to extract information about discrete events in a song, all of the
extracted features apply to an audio recording as a whole. Additionally, most of the features
it is able to extract are of low-level character and have to be interpreted by the visualization
application in a second step. Since our prototype deals only with MIDI files, jAudio was not
really of interest in the context of this thesis.
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jSymbolic

JjSymbolic is jMir’s counterpart to jAudio. Cory McKay describes jSymbolic in his PhD disser-
tation as follows:

,»An application for extracting features from MIDI files. jSymbolic is packaged with a very
large collection of 111 features, many of which are original. A further 42 features are proposed
for implementation in the jSymbolic feature library. These features all fall into the broad cate-
gories of instrumentation, texture, thythm, dynamics, pitch statistics, melody and chords.* [18§]]

jSymbolic states that it is able to extract the following characteristics from any MIDI file
(list taken from the already mentioned PhD dissertation [[19]]):

e Instrumentation: Which instruments are present, and which are emphasized relative to
others? Both pitched and non-pitched instruments are considered.

o Texture: How many independent voices are there and how do they interact (e.g., poly-
phonic or homophonic)? What is the relative importance of different voices?

e Rhythm: Features are calculated based on the time intervals between note attacks and
the durations of individual notes. What meter and what rhythmic patterns are present? Is
rubato used? How does rhythm vary from voice to voice?

e Dynamics: How loud are notes and what kinds of variations in dynamics occur?

e Pitch Statistics: How common are various pitches relative to one another, in terms of
both absolute pitches and pitch classes? How tonal is the piece? What is its range? How
much variety in pitch is there?

e Melody: What kinds of melodic intervals are present? How much melodic variation is
there? What can be observed from melodic contour measurements? What types of phrases
are used and how often are they repeated?

e Chords: What vertical intervals are present? What types of chords do they represent?
How much harmonic movement is there, and how fast is it?

This sounded very promising and exactly like what we needed. The returned results turned
out to be rather odd though. The values for the attributes we wanted to extract were always very
high or very low, and did not reflect the values we expected after inspecting the processed MIDI
files with various MIDI editors. This may have to deal with the fact that although all of the
features and their concrete meaning are documented well in McKay’s dissertation, the way how
to use the library is not, so we maybe have not used it the correct way.

Since we could not solve this issue in a reasonable amount of time, we discarded the use of
jSymbolic for our prototype.
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JMusic

According to its website [11]], jMusic is ,,a project designed to provide composers and soft-
ware developers with a library of compositional and audio processing tools. It provides a solid
framework for computer-assisted composition in Java, and is also used for generative music,
instrument building, interactive performance, and music analysis.*

While being basically a framework to compose music using Java, jMusic is also possible
to analyze MIDI files and automatically separates the file’s content into distinct data objects,
namely a score (an overall wrapper for the MIDI file), parts (one for each instrument/track),
phrases (grouped note events), and notes.

This data structure came in useful for the tasks we needed to accomplish, because it already
provides us with information about the internal structure of the analyzed MIDI file and some of
its key attributes:

e Tempo / BPM
e Time signature
e Number of instruments

e Existing notes

Also, jMusic provides a nice set of examples [[13[] and a full documentation [[12]], which both
came in handy when utilizing it for our needs.

For the reasons stated above, we used jMusic as the base for the analyzation part of our
prototype. The way jMusic creates its phrases (i.e., grouping of notes) did not match what we
needed though, so we changed the way notes were put into phrases. More on this can be found

in chapter [5.1]
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CHAPTER

Concrete prototype

5.1 Prototype implementation

This chapter describes the analyzation part of the prototype created in collaboration with Jiirgen
Giefing, who implemented the mapping between the song analyzation and visualization in his
bachelor’s thesis [9], and Andreas Schmid, who was responsible for the graphics output and
visualization algorithms as described in his bachelor’s thesis [20]].

For the sake of simplicity, the prototype is only able to handle MIDI files as argued before
in chapter [2.3] An implementation for standard audio recordings may be part of a future work.

Architecture

The analyzation process is triggered by the prototype’s main class, which takes the audio file
that should be analyzed as a parameter. The main class calls the track parser, which in return
calls an appropriate analyzer based on the audio file’s extension.

The analyzer then creates a track description XML file based on the provided audio file,
which contains elements for both global parameters and discrete events. The track description
is then used by the mapping part of the prototype to create instructions for the visualizer, which
ultimately creates the graphical output for the used audio file.

Feature extraction implementation

The prototype is able to extract the following features, divided into global parameters and dis-
crete events, as introduced in chapter

e Tonality
e Tempo / BPM

e Notes
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Figure 5.1: A MIDI file represented as a jMusic score

e Chords

e Breaks

The jMusic API framework was used as a base for the implementation.

Initializing jMusic

jMusic provides a convenient way to handle MIDI files. It interpretes the file as a score, which

- following the musical analogy - holds a number of parts that consist of phrases, with each

phrase containing an arbitrary number of notes, which leads to the following formal definition:
score 1 : nparts1 : nphrases1 : nnotes

See also Figure [5.1]for a visual representation.

One disadvantage here is the way jMusic stores notes inside a phrase. Being originally
intended as a framework to compose music directly in Java instead of analyzing it, the notes
inside a phrase are stored in a sequential order. For example, if one wants to compose music
inside a Java application using jMusic, he would instantiate a new score object, and add at least
one part to it (let’s say he wants to write a piano score and therefore adds a part called /left
hand). Any number of notes can then be added to that part, which are stored and later played
sequentially in the order they have been added. In a next step one may add another part to the
score (e.g., the right hand), and again add notes to it. When using jMusic for analyzation though,
this approach leads to a problem regarding chord detection.

When reading a MIDI file, jMusic creates a phrase for each ,,line* of notes in that file, and
ignores missing notes on higher level lines. For the sheet shown in Figure [5.2] jMusic would
create the following phrases:

e Phrase 1. E F# E, F

e Phrase2: C, D, C
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Figure 5.2: A simple example of chords (red rectangles) and a single note (green rectangle)
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Figure 5.3: The way jMusic groups notes into phrases by default

Phrase 3: G, A, A

Phrase 4: D, F

Phrase 5: A

Phrase 6: F

See also Figure [5.3|for a better understanding.
Those phrases do not reflect the original sheet anymore. For this reason, a method fixParts()
had to be implemented, which creates phrases that are identical to the note combinations of the

original sheet.
The fixed score then contains the following phrases:

e Phrase 1. E, C, G
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Figure 5.4: The way our prototype groups notes into phrases

e Phrase 2: F# D, A, D
e Phrase 3: FE

e Phrase4: F C, A, EA F

Figure [5.4]also demonstrates the fixed behavior.

This change in behavior essentially transforms the way notes are grouped inside a phrase
from a horizontal to a vertical scheme.

Although this leads away from the framework’s original intention of using musical analogies,
this keeps the note combinations intact and makes it possible to effectively detect chords inside
an audio file.

Global features

Brightness

Brightness is not processed as a global feature by the prototype because of its restriction to
MIDI, but added as a parameter to each note event (local feature, chapter [5.1)).

Loudness

Loudness is not covered here for the same reason as with brightness - MIDI files share the same
loudness, in contrast to standard audio recordings.

Harmonicity

Harmonicity follows the definition presented in chapter [3.1] and can therefore be found as part
of the local feature Chords as described at the end of chapter [5.1]

Tonality

When detecting the tonality of a song, several things have to be considered:
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e Usually not all notes of a tonality are used within a song
o In addition, notes that do not belong to the tonality can occur

e Most notes belong to more than one tonality

Keeping this things in mind it becomes clear that there is no way to establish distinct rela-
tionships between notes and the corresponding tonality. Therefore, an algorithm can only guess
to which tonality a group of notes belong.

The prototype uses a punish/reward procedure to detect tonalities within a song. For each
detected note, each tonality gets punished or rewarded based on whether or not it contains the
note and how important that note is for the tonality.

Take the C major scale as an example. It consists of the following notes:

C,D EFEGAB.

Since C is the scale’s root note, it is considered to be very important for this particular scale.
E is a bit less, but still rather important, because it’s the tonality’s triad and responsible whether
the tonality is considered major or minor. D, F, G, A and B are less important but still should
add to the scale’s score when rewarding it. The absence of a tonality’s root or triad within a song
should result in a punishment for the tonality.

All other notes should punish the scale if they are present within a song, since those notes
do not appear within the scale.

We can therefore define a 3-tupel R that defines the relation between a note type and a scale,
including the importance of that type.

R =<T,P, R >, where T stands for the type of a note, P for the punishment and R for the
reward value.

The tonality detection algorithm now needs to iterate over all notes of a song, and punish
or reward each tonality accordingly. For the prototype we used a sample of ten different MIDI
files, each with a different tonality, and played around with different punish/reward values until
we got satisfactory results.

Example:

= <ROOT, 50, 12>

= <TRIAD, 30, 8>

= <OTHER, 0, 5>

= <NOT_PRESENT, 5, 0>

o x™ m™xm

The returned tonalities for our sample songs can be found in table[5.1]
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Song

Song’s notes

Returned
tonality

Tonality’s
notes

Tonality’s
score

Comment

AC/DC -
T.N.T.

E: 97, A: 42,
G: 40, B: 10,
D:

oo

E-Minor

E-F#-G-
A-B-C-D
-E

3639

E is the most
prominent  note.
Since no third to
E is present, the
tonality’s  gender
cannot be decided
and E-Minor as a
choice is totally
fine

Aerosmith
- Cryin’

E: 39, A: 28,
C#: 23, B: 20,
F#: 12, Ab:
11,D:9,G: 5

A-Major

A-B-Ci#-
D-E-F#-
G#-A

1600

Although E ap-
pears more often
than A, C# in
addition with A
outnumbers E, and
C# is the third
of A-Major. All
other notes fine
the tonality as
well with G being
the exception,
but those may be
only  ornamental
notes or badly
programmed MIDI
events

Alcazar -
Crying at
the dis-
cotheque

A: 132, E: 83,
D: 62, G: 50,
F:16,B: 9, C:
7,C#: 1

A-Minor

A-B-C-D
“E-F-G-

4785

A is the
prominent
A-Minor’s
C is not really
present though.
Still, all the other
notes match the
tonality’s scale
well, so the choice
is OK

most
note,
third
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Song Song’s notes | Returned | Tonality’s Tonality’s| Comment
tonality notes score
Alice E: 97, B: 70, | E-Minor | E - F# - G - | 3435 E 1is the most
Cooper - | D: 20, A: 20, A-B-C-D prominent  note,
School’s G: 17, C#: 10, -E and because there
out F#: 2 are a number of
Gs but no G#,
E-Minor wins over
E-Major
Annie B: 184, C:| G-Major | G-A-B-C | 7906 The presence of
Lenox - | 163, F#: 128, -D-E-F#- 36 Fs together
Rain G: 102, A: 78, G with 128 F#s is
F: 36, E: 35 a little weird, but
those Fs probably
are ornamental
notes.  All other
notes are present in
the chosen tonal-
ity, and the most
prominent note
B is the G-Major
third, so the choice
is fine
Aretha C: 92, G: 75, | C-Major | C-D-E-F | 3784 This is hard to
Franklin F: 65, A: 41, -G-A-H- detect because of
- Respect | D: 36, B: 26, C the many differ-
Eb: 17, E: 15, ent notes played.
Bb: 15, F#: 4, Since C 1is the
C#: 1 most  prominent
one and E as C-
Major’s  third is
also present, the
choice is not too
bad though
Arrested | G: 144, A: 56, | G-Major | G-A-B-C | 5300 Good choice, G is
Develop- | C: 40, E: 40, -D-E-F#- by far the most
ment - | B: 34, D: 16, G prominent note, it’s
Everyday | F#: 8 third (B) is also
People present, all other

notes also fit into
the scale
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Song Song’s notes | Returned | Tonality’s Tonality’s| Comment
tonality notes score
Average Eb: 70, F: 68, | F-Minor F-G-Ab- | 3507 Good choice, F is
White Ab: 62, C: 49, B-C-Db- almost as promi-
Band G:9,D: 8, E: Eb-F nent as the most
- Pick | 5,Bb: 4 prominent one
Up The (Ab), which is
Pieces F-Minor’s third
The E: 130, B: 87, | E-Minor | E - F# - G - | 5337 E is by far the most
Beatles - | C: 60, G: 49, A-B-C-D prominent note, E-
Eleanor A: 23, D: 14, -E Minor’s third G is
Rigby F#: 10,C#: 5 also present, all the
other notes fit the
tonality well
Bee Gees | F: 190, Bb: | F-Minor | F- G- Ab- | 6674 F is the most
- Stayin’ | 152, Ab: 108, Bb - C -Db prominent note,
alive C: 83, D: 70, —Eb-F and F-Minor’s
Eb: 46, G: 14, third Ab is also
A:l highly present.

The high number
of Ds which are
not present in the
tonality are odd
though, but due to
the dominance of
the F and Ab notes
the choice can still
be considered OK

Tie resolution If two or more tonalities share the same score, some sort of tie resolution has

Table 5.1: Tonality detection algorithm results

to be used to resolve the conflict. Some basic rules to resolve such ties could be the following:

e Number of appearances of the tonality’s root note

e Previously chosen tonalities

e Chord progression

When resolving by the number of appearances of the tonality’s root note, the tonality which

root note is present the most within the song’s notes wins.
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Previously chosen tonalities takes into account which tonality has been returned the most up
to this point, assuming that tonalities do not change too often within a song, especially when
they contain similar notes.

Chord progression defines which chord is the natural successor of a given chord. For ex-
ample, E major follows after C major, G major follows after E major, etc. When using chord
progression to resolve a tie between two tonalities, the tonality who is considered to be the
natural successor to the current tonality wins.

We can now define tonality as a global parameter, that holds information about in which
tonality the song is written, and as how harmonic the tonality is considered. Each tonality is able
to reach a maximum score (based on the number of notes present in the song). The difference
between the maximum score and the actual score a tonality reaches, describes how harmonic the
song sounds (notes present in the song but not in the tonality punish it and therefore decrease
the score it is able to reach). The closer to zero the harmonicity value for a tonality is, the more
harmonic that tonality can be considered in context of the analyzed song. A fully harmonic
tonality has a harmonic value of zero, because its score would reach the maximum possible
score.

<global name="tonality">
<globalParam paramName="tonalityName" paramValue="1" />
<globalParam paramName="maxScore" paramValue="1464" />
<globalParam paramName="score" paramValue="1200" />
</global>

Tempo / BPM

The tempo of a song is written as beats per minute to the track description file. The jMusic API
framework already provides a method to extract this information, so no further implementation
work was needed:

String tempo = score.getTempo () ;

Local features
Notes

The prototype reads notes from a song by iterating over its parts and phrases as introduced in
[5.1] Each note of a phrase gets stored inside a HashMap, with the milliseconds it appears at as
the entry’s key. After collecting all notes of the song, the application checks if there are multiple
notes stored at a certain milliseconds timestamp. If that is the case, a chord detection algorithm
is called. If only a single note is present, the note gets added as an input parameter to the track
description file.

Such a note event contains the note’s key, volume, length, frequency, pan, pitch, and instru-
ment, as introduced in [3.2] All of these parameters can be retrieved from either the note or its
corresponding part object by the jMusic API framework.

By adding the note’s pitch, also its brightness (as defined in chapter [3.1)) can be deducted.
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<event time="0" name="note">
<eventParam paramName="key" paramValue="F#" />
<eventParam paramName="volume" paramValue="95" />
<eventParam paramName="length" paramValue="0.5" />
<eventParam paramName="frequency" paramValue="92.4986056779"
<eventParam paramName="pan" paramValue="0.5" />
<eventParam paramName="pitch" paramvValue="42.0" />
<eventParam paramName="instrument" paramValue="0" />
</event>

Chords

As stated in [3.2] a chord consists of at least three notes that start sounding at the same time.

For example, a C major triad consists of the notes C E G. It does not matter in which order
those notes are played, all permutations of C E G are valid. Additionally, also the pitch of the
notes is irrelevant, e. g., C’ E G and C” E G are both considered to be a C major triad.

This necessitates an algorithm that is able to resolve any kind of combination of notes into a
corresponding chord, if such a chord exists.

The approach used in the prototype is to span a graph GG containing all notes within an octave
(the graph’s nodes), and then trying to find a path P in G that contains all notes within a given
set IV, with the path length being equal to the number of notes provided.

The graph’s edges represent relationships between notes that could possibly form a chord.
The set NV holds all notes that start sounding at the same time.

This is a rather naive approach though. The algorithm is not able to detect chords that contain
notes that basically do not belong to the chord, although this is common practice in, for example,
Jazz music. Detecting such chords is much harder because the algorithm would need to do some
sort of ,,best fit* guessing, returning the chord he thinks matches the best for a set of provided
notes. An approach for this use case in a slightly different context can be found in chapter [5.1]

Figure [5.5]shows a simplified version of the previously mentioned graph, containing the
chords C major (C, E, G, C, E), C major triad (C, E, G), C minor triad (C, D Sharp, G) and F
major triad (F, A, C).

C and F are marked as root notes, making them the only possible start points when trying to
find a path. This is necessary to ensure that the first note in a path always matches the root note
of the corresponding chord.

Note that there is a loop going from C to E to G to C. Taking into account that the path length
has to match the number of notes of the chord, we can prevent infinite loops, and detect both the
C major and C major triad chord within the same graph.

Having each note present only once in the graph results in less used up memory. This way
it is not necessary to introduce a new C node in the graph everytime a C chord is added, it is
sufficient to simply define a new edge going from C to the next node that represents the following
note inside the chord that should be added.

Once we identified the chord correctly, we can try to add some more attributes to it, like if
it’s a major or minor chord. Major chords are usually sounding more cheerful, where as minor
chords tend to sound more melancholic.
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Figure 5.5: Simplified graph of chords the application ,,knows*

To detect whether a chord is a major or minor one, we have to inspect if it contains a major
or minor third. Since we already identified the chord and therefore know its root, this check
is trivial. A major third lies four semitones above the chord’s root, and a minor third is three

semitones above the root.

Obviously there are more chord types than just the two mentioned. Ferkovd, Zdimal and
Sidlik [8]] introduced a clearly arranged table[5.2]that gives an overview of chords and the semi-
tone values needed to form a certain chord.

] Structure of the chord (in number of semitones from the root note) \ Type of the chord

4-3 Major triad

3-4 Minor triad

4-4 Augmented triad

3-3 Diminished triad

4-3-3 Dominant seventh chord
3-3-3 Diminished seventh chord
3-3-4 Diminished/minor seventh chord
4-3-4 Major seventh chord
3-4-3 Minor seventh chord
4-4-3 Augmented seventh chord
3-4-4 Minor/major seventh chord

Table 5.2: Chord type table by Ferkova, Zdimal and Sidlik

Besides its name and type, a chord should also contain information about its volume, dura-
tion, pan and instrument. Additionally, also a chord’s harmonicity can be taken into account,
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which is a higher value for major, and a lower value for minor chords. If a more complex chord
detection algorithm then the one described in this thesis is used, harmonicity can also be calcu-
lated based on the notes that do not fit into the chord, but are still played at the same time. In
this case, the value 1 would indicate a fully harmonic chord, which consists only of notes that
belong to it.

<event time="8000" name="chord">
<eventParam paramName="chordName" paramValue="2" />
<eventParam paramName="chordType" paramValue="1" />
<eventParam paramName="instrument" paramValue="25" />
<eventParam paramName="volume" paramValue="95" />
<eventParam paramName="length" paramValue="0.5" />
<eventParam paramName="pan" paramValue="0.5" />
<eventParam paramName="harmonicity" paramValue="0.8" />

</event>

Breaks

To detect breaks as defined in [3.2] we have to keep track of how many instruments are playing
at each point of a song. We can consider it as a strong indicator for a break if only one (or no)
instrument is playing at a certain time. However, we also have to check how long that instrument
plays on its own, so we do not confuse breaks with solos (especially drum or percussion solos,
since harmonic solos are usually accompanied by other instruments).

For MIDI this task is rather simple, as MIDI already provides us with information about the
used instruments of a song and the notes played with each instrument. For standard audio files,
the original harmonicity definition comes in handy - if we detect a short part with a noise-like
(flat) frequency spectrum, we can assume that only percussive sounds are present in that part. A
pause of all instruments results in a gap within a song’s waveform.

We can now specify a break as an event with a single parameter that is used to indicate the
end of the break:

<event time="17500" name="break">

<eventParam paramName="endTime" paramValue="21500" />
</event>
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CHAPTER

Results

The main results of the final user study and their interpretation, as well as their impact on the
mapping, can be found in Jiirgen Giefing’s bachelor thesis in chapter 6.

6.1 Methodology

To evaluate the correctness of our hypothesis we deducted from our first user study, we con-
ducted a second one after finishing our prototype, showing the probands generated visuals by
several players, including our own. Since our prototype only creates basic graphic primitives,
we asked the probands to rate each visualization according to their aesthetics and accordance
separately. This way we hoped to mitigate side effects that may have occured due to the more
impressive graphical style the state-of-the-art players ship with, and to limit the results really to
the accordance of the shown visualization in terms of chosen colors, movements and tempo.
The players and songs in question were the following:

Players

e iTunes

Windows Media Player

WinAmp

Our Prototype using the deducted mapping from the first user study

Our Protoype using the control mapping (purely random values)

Songs
e AC/DC-T.N.T.
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Figure 6.1: The results from our final user study (n=28) on a scale from 1 (worst) to 5 (best)

e Aerosmith - Cryin’

e Alcazar - Crying At The Discotheque

e Alice Cooper - School’s out

e Annie Lenox - Rain

e Aretha Franklin - Respect

e Arrested Development - Everyday People
e Average White Band - Pick Up The Pieces
e The Beatles - Eleanor Rigby

e Bee Gees - Stayin’ alive
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CHAPTER

Conclusion

The results were surprising. Not only received all other music players a higher rating, even
our own control mapping, which included only random connections between the retrieved audio
features and the created visuals, beat the mapping we derived from our first user study (see
Figure [6.1).

One minor cause for these results may be that the state-of-the-art players still impress users
by their graphical style, regardless whether they truely fit the music or not.

Another one may be that the retrieved audio features that we extracted are too simple and
provide not enough information to correctly map them to emotions, or that we used the gathered
information in an insufficient way.

While we extracted the tonality for a song as a global feature, it could possibly change within
the song, which is not reflected in the graphical output of the current prototype. Additionally,
so far only the tonality’s type - major or minor - is used by the mapping, although the analyzer
already provides concrete information about the found tonality.

The same holds for notes and chords - while the analyzer differentiates between both of them,
the mapping does not and treats them the same, resulting in less alternations in the generated
visuals.

We are still positive about the idea of mapping sound to emotion and emotion to visuals, but
the mapping maybe needs to be done in a different way [[10]]. It should not simply map single
attributes of a song to certain input parameters for the visualization, but rather a (weighted)
combination of values to guidelines for the visualization.

The current mapping and visualization approach also only allows for very basic and simple
visualizations, which could be improved by

e A more complex mapping as described above,

e More commands provided by the visualization part that allow for more complex visual-
izations, and

e Richer audio features that feed those mechanisms
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Such richer audio features could be the detection of recurring structures, like the correct
recognition of verses and choruses. Also, the distinct events we are already extracting do not
correlate with each other once they are extracted, and do not take their current context into
account. For example, more abstract features like ,,A note has been played, and it is one semitone
above the previous note* or ,,The current tonality has been changed by the current note* could
lead to more reactive visualizations that reflect even minor changes in the song.

One last reason might be that people’s reaction to music can differ from day to day. We do
not like to listen to the same piece of music again and again, and the same song might introduce
a certain feeling on one day, and a different one on another. There may be different results for
the questions asked in the first user study when the same study is conducted again a few days
later, so repeating the study might also reveal additional insights how certain characteristics of a
song have an impact on people’s moods.

7.1 Future work

Changes that help to improve our prototype’s performance can be made in all parts of the appli-
cation.

Analyzation part

Due to it’s modular architecture, an analyzer for standard audio recordings like WAVE or MP3
files can be easily hooked into the prototype once it is implemented. That implementation is not
trivial though, but seeing how the implemented mapping works with standard audio recordings
would be an exciting task.

Also, the detection of repeating sections like a chorus or verse is desirable. If the analyzer is
able to correctly define boundaries of such sections and recognizes if and when they are repeated,
the visuals for each section could be repeated as well.

Mapping part

Second, there is also room for improvement for the mapping itself. It maybe should be based
more on discrete events than on global features. Also, the results deducted from the first user
study should maybe evaluated a second time by conducting the study again, to check if the
results still are the same. See Jiirgen Giefing’s bachelor thesis [9] for more information on this
topic.

Visualization part

The visualization part could be expanded by creating more complex graphics than standard
primitives. Andreas Schmid covered additional aspects on this topic in his bachelor thesis [20].
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Appendix

Prototype

The prototype and its source can be downloaded via the following URL.: https://bitbucket.org/juergen.giefing/physics-
based-music-visualization
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