FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Correction of Camera
Registration Errors through
Optical Flow

BACHELORARBEIT
zur Erlangung des akademischen Grades
Bachelor of Science
im Rahmen des Studiums
Software & Information Engineering
eingereicht von

Christian Hafner
Matrikelnummer 0925172

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Projektass. Dipl.-Ing. Murat Arikan

Wien, 03.09.2013

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Correction of Camera
Registration Errors through
Optical Flow

BACHELOR'’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science
in
Software & Information Engineering
by

Christian Hafner
Registration Number 0925172

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Dipl.-Ing. Murat Arikan

Vienna, 03.09.2013

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Abstract

In order to digitize artifacts of the real world, laser scanners with mounted cameras are being
used. Reliable strategies to capture the geometry are known, but the mapping of color informa-
tion onto the geometry still forms an obstacle. One reason for this is the misalignment between
the scanner and the camera, which results in an inaccurate reprojection of the images onto the
acquired mesh. Since different photographs are used to color different sections of the model,
discontinuities will be visible around the seams.

This thesis aims to provide a method to correct these discontinuities in an automated fashion.
The optical flow between two neighboring photographs is calculated and used to warp the image
space at the seams. The resulting algorithm is independent of geometric complexity and deals
well with heterogeneous lighting conditions.

Contents

(L Introduction| 1
2__Related Workl 5
2.1 Labeling| 5
... 6

3 Opfical Flow] 9
BI BruteForceMethod 10
3.2 Hierarchical Method| 12
[3.3 Floating Textures| 14

[4 Stitching Algorithm| 17
5 Results| 23
6 Conclusionl 27
29
[7.1 Brute force Optical flow shader] 29
7.2 Stitchingshader|. 31
Bibliographyj 33

ii

CHAPTER

Introduction

Digitization of excavation sites, architectural structures and artifacts has become an important
goal to cultural heritage preservation. To record the shape of an object, professional laser mea-
surement systems are employed. These scan all surfaces and create high-resolution point clouds.
To record the color of an object at each point, a camera shoots photographs from different an-
gles. In order to project a photograph onto the recorded geometry, the camera’s position and
orientation have to be registered in the coordinate system of the laser scanner. Additionally, the
intrinsic parameters of the camera are used to compensate for the radial and tangential distor-
tion of the photograph. In theory, this should enable us to map every photo to the geometry
accurately. In practice the mapping will be faulty for a variety of reasons:

* The recorded position and orientation of the camera in the scanner’s coordinate system
will be slightly defective. This happens because of registration errors that cannot be
avoided with currently available equipment. When the photograph is back-projected onto
the geometry, it will not be aligned perfectly. If the same section of a mesh is depicted on
two photographs, their projections will also not match up and create ghosting artifacts.

* Scanners are often employed in environments where lighting conditions cannot be con-
trolled very well. Therefore data sets can contain photographs that have been illuminated
under different lighting setups, resulting in highlights and varying degrees of brightness.

* Dense point clouds are simplified to afford real-time rendering. Details may be lost during
triangulation and the photographs might not perfectly conform to the geometry anymore,
especially around silhouettes of objects. As a consequence of this, the color information
of objects will be projected onto the background or vice versa.

Photographic data sets usually contain a high degree of redundancy which means that one
section of the model is visible in many photographs. This leads to the question of choosing an
appropriate integration strategy. Essentially there are two possibilities:

1. Partition-based: For each triangle in a mesh, we choose one photograph to color it. This
results in a labeling
Vi,...,V} = {P1,..., P},

where {V1,...,V,} denotes the set of triangles and {Pj,...,P;} denotes the set of pho-
tographs. The set of all triangles that are mapped to P; is called the label of P;. The main
disadvantage of this method is the existence of seams. If two neighboring triangles are
colored by different photographs, there will be a visible discontinuity in between due to
the reasons mentioned above. This effect is illustrated in Figure [I.1]

2. Blending-based: Each triangle can be colored by many photographs by combining their
color values to form a final value. This results in a map

{V],...,Vn}%p({Pl,...,Pk}).

By choosing weights for all contributing photos, seams can be avoided. Misaligned photos
will typically create ghosting artifacts instead (see Figure [[.2).

Figure 1.1: Example of discontinuity artifacts that appear on the edge between two labels with
misaligned photos. The white and gray lines in the painting do not match up at the seams. The
right photo is also visibly darker than the left, making the seam even more distinctive.

This work assumes that a partition-based strategy is used and provides a method to avoid dis-
continuities at the seams. Since a global alignment of all photographs is impossible to achieve in
practice, we will attempt to optimize it locally. We follow the approach described in [Dellepiane
et al., 2012f], who achieve a blending-based image-to-geometry registration. The main contribu-
tion of this thesis is to adapt and implement their algorithm in order to form a partition-based
algorithm.

The method makes use of information redundancy around the seam, i.e. the area around the
seam is visible on both of the neighboring photographs. By comparing these two photographs
we can estimate the alignment errors introduced by camera misregistration and correct them with

Figure 1.2: Example of ghosting artifacts that appear when misaligned photos are combined
using blending. Image taken from [Dellepiane et al., 2012]].

local warp fields. These warp fields consist of displacement vectors for each pixel of the two
images and can be found with optical flow methods. We explain and evaluate different methods
for calculating these warp fields in section 3]

Once the warp fields for the areas around all seams between neighboring labels have been
found, they can be applied to produce a warped texture for each label that minimizes disconti-
nuity artifacts. For each warp field that affects a label, we create a weight field to smooth the
effect of the warping. Directly at the seams, each of the two photographs will be warped to
compensate for 50% of the misalignment. The farther a pixel is away from the seam, the shorter
the displacement vector will be. The algorithm is detailed in section [4]

CHAPTER

Related Work

2.1 Labeling

After data acquisition, one is faced with an extensive amount of geometric and photographic
data, the latter of which contains a high degree of redundancy. Strategies to make efficient use
of this have been proposed in previous works.

Callieri et al. introduce a quality metric to create a grayscale mask for each photograph
in [|Callieri et al., 2008]]. To create these masks they use a combination of different metrics. The
authors propose penalizing steep viewing angles, high distances between camera and surface,
and silhouettes, since these sections of a photograph suffer from loss of detail. The values of
all metrics are multiplied to preserve zeroes. The final color value of a pixel is calculated by
blending the photographs with weights according to the masks.

As a result of this method, discontinuities are avoided due to the smooth nature of the image
masks. Although only high-quality sections of each photograph are chosen, the blending of
misaligned images leads to ghosting artifacts and blurry results.

[Dellepiane et al., 2012] uses this quality metric to create a labeling partition of the mesh,
where each surface point is assigned to the photograph with the highest quality value. One
problem of this method is the introduction of a great many of seams. Irregularities in the surface
of a mesh can lead to high-frequency variations in the mask produced by the angle metric. The
resulting partition possesses speckled regions where cells do not consist of a small amount of
connected components anymore. Instead they contain many loose faces and therefore many
seams.

A different approach is proposed by Lempitsky and Ivanov in [Lempitsky and Ivanov, 2007]].
The authors represent the question for a suitable labeling as a Markov Random Field energy
minimization problem. Each possible labeling can be assigned an energy term, which is sought
to be minimized. The energy value is defined as the sum of two terms:

1. The data cost, which is the sum of the weights calculated by the quality metric for every
face.

2. The smoothness cost, which penalizes adjacent faces with large color distances along their
shared edge.

This algorithm produces larger homogeneous patches and fewer seams.

To fight seam discontinuities, Gal et al. [|Gal et al., 2010] propose a method that uses MRF
labeling. They observe that errors resulting from camera misregistrations are usually transla-
tional in nature. To correct these, tuples (P;,s) are used as labels. P, is a photograph and s is
a shift vector in R%. Since the energy term in [Lempitsky and Ivanov, 2007]] penalizes large
color distances along edges, the shifted photographs provide more room for minimization. A
coarse-to-fine strategy is used to limit the number of resulting labels.

MRF labeling with and without shift vectors is explored by Birsak in [Birsak, 2012[. It
is shown that the labeling strategy with shift vectors produces undesirable results if the mis-
registration errors are overestimated. Moreover the computation for a complex model with 70
photographs can take up to many days.

2.2 Stitching

This section explores previous attempts to correct ghosting and discontinuity artifacts that result
from camera registration errors or varying lighting conditions. Two fundamental approaches can
be identified: finding a global registration of all images or using local optimization methods.

A global optimization strategy is proposed in [Lensch et al., 2000]. The algorithm finds a
view point for each image that minimizes the distance between the silhouette of the geometry
and the silhouette extracted from the image. A variant of the simplex algorithm with multiple
starting points is used to find a global minimum. In a second phase, the color information is used
to align the features between different images. Successively, the algorithm selects each image
and calculates the total color distance to all other images in overlapping areas. The simplex
method is used find an optimized view point that minimizes this term. This process is iterated
until the results do not change anymore. This method produces accurate results in controlled
environments but relies on several factors, like the accurateness of the 3D model and perfectly
perspective images. These may not always be given in real world applications.

To deal with imperfect 3D models and registration errors, Takai et al. provide a local opti-
mization strategy in [I. Takai and Matsuyama, 2010]. Textures are locally transformed around
the vertices of a simplified version of the 3D model. This is achieved by finding an image fea-
ture close to the projection of a vertex and tracking this feature in all contributing images. By
adjusting the texture coordinates appropriately, the textures are warped such that the image fea-
ture aligns in all images. The method described is view dependent and cannot be used to find a
globally valid image registration.

The paper’s method is based on the work of Dellepiane et al. [Dellepiane et al., 2012]]. Their
approach uses the quality metric from [|Callier1 et al., 2008|] in combination with an optical flow
strategy. The basic algorithm works as follows:

1. Calculate the face weights for each label according to [Callieri et al., 2008]].

2. Derive a “two best fragments” labeling from the weights, such that each triangle is mapped
onto the pair of images with the two highest weights. If a label L;; consists of the images
I and J, I is said to be the “dominant” image space for that region of the mesh.

3. For each label L;;: find all other photographs that show a significantly large part of L;;
and transform them into L;;’s dominant image space.

4. Between each transformed image and the photograph L;;, calculate the optical flow to
create a warp field. This warp field will align the features of the two images and counter
any misregistration error.

5. The final color value for a fragment in label L;; is calculated as the weighted sum of the
photograph L;; and all other previously transformed labels. To ensure a smooth transition
between two neighboring labels with different dominant image spaces L;; and Ly, the
warp fields themselves are interpolated in the area around the seam.

By using color blending in combination with optical flow warp fields, ghosting artifacts and
brightness discontinuities can be avoided. Furthermore, the interpolation between warp fields
counters feature discontinuities.

This method suffers most from its labeling approach. As noted above, a “best fragment” la-
beling already yields inhomogeneous results. A “two best fragments” labeling further subdivides
every label and creates an even more disconnected set.

CHAPTER

Optical Flow

Optical flow attempts to describe the motion of objects with respect to the observer between a
sequence of images. An object is thought of as a set of surface points. These can move over time,
either when the object itself moves or when the observer moves. Thus each surface point follows
a path, and the projection of the point onto the image plane follows a path as well. Every pixel
of an image corresponds to a surface point and can be mapped onto its instantaneous velocity in
image space. This mapping is known as the 2D motion field and optical flow methods aim to
estimate it.

As a starting point, assumptions about the behavior of the observed objects have to be made.
One common constraint is the brightness constancy assumption. It says that one surface point
exhibits the same brightness during two consecutive frames. This means that the point will
produce a pixel of the same brightness on both frames:

I(x,y,t) =I(x+u,y+v,t+At)

I signifies the image intensity function, (x,y) is the pixel on the first frame, (u,v) is the 2D
motion vector, ¢ is the time of the first photo and At is a small timestep.

For estimating the optical flow between photographs of a large data set, whose images have

been taken with long time intervals in between and under different lighting conditions, the bright-
ness constancy assumption does not hold in this form. For the optical flow implementations that
are used in this paper, we modify the assumption.
Overall brightness varies from photograph to photograph. But it can be observed that small
sections in one photograph rarely suffer from high lighting variances. If the same section of an
object is depicted on two photographs under different lightning conditions, the difference be-
tween a pixel’s intensity and the averaged intensity of its surrounding area turns out to be more
robust than the absolute brightness of a pixel. An illustration can be seen in Figure 3.1]

Another constraint that suits our data sets is the smoothness constraint. It is derived from
the fact that we deal with photographs of rigid bodies. Two neighboring surface points on a
rigid body that is translated, rotated or scaled, move in a similar fashion. Therefore the motion

Color
distance

Source

Original E

Box blurred

Orlgmal
Box blurred

Figure 3.1: The first row shows the color distance between the absolute pixel values of source
and target image. The second row shows a convolution of source and target image with a box
filter kernel. The third row shows the difference between the original images and their box
filtered versions, and the color distance between those two images. It can be observed that
the color distance image in the lower right corner is more robust in terms of overall brightness
difference than its counterpart. It is still sensitive to high-frequency differences between the
original source and target images.

vectors of two neighboring pixels are similar and the motion field is smooth. The smoothness
constraint does not apply to edges of objects that move against a background and thus only
piecewise smoothness can be postulated in the general case. Since our labeling prohibits using
parts of photos that depict silhouettes or have steep viewing angles, the treatment of edges can
be neglected here and it suffices to find a motion field that is globally smooth.

The algorithm outlined in this paper has been tested with three optical flow approaches, as
proposed in [Dellepiane et al., 2012]. A naive brute force algorithm is discussed in section 3.1}
An accelerated hierarchical version of the algorithm is explained in section[3.2] The implemen-
tation of the Floating Textures library is explained in section 3.3]

3.1 Brute Force Method

For this and the hierarchical method we assume that the displacement in image space is between
-20 and 20 pixels both horizontally and vertically. This is the margin of error proposed in

[Dellepiane et al., 2012]]. The input to the algorithm is one target image and one source image
of equal sizes. The desired output is a warped version of the target image that is aligned with
the features of the source image. For each pixel of the output image we calculate a vector that
stores the relative position of the corresponding pixel in the target image.

It is important to keep in mind that the warping of the target image onto the source image
is not a function, because pixels might be duplicated. Instead we calculate displacement vectors
from the source to the target to ensure that every pixel in the output image has a target attached
to it. Therefore we apply template matching as described in [Dellepiane et al., 2012], but leaving
out the term f, that accounts for absolute brightness differences between the two images:

1. Around the currently evaluated pixel position p, we construct the source template of 15 x
15 pixels in the source image and calculate its mean value §.

2. We define a search space of 41 x 41 pixels around our current pixel in the target image.
For each pixel position x in the search space, we do the following:

a) We construct the target template of 15 x 15 pixels around x in the target image and
calculate its mean value 7. This region can mapped directly onto the source template.

b) We iterate over each pixel s; in the source template and its corresponding pixel ¢ in
the target template and calculate the sum S(x) = ¥,;[(s; =) — (t; —7)]%, where each
color channel is processed separately and the values added together. The result is a
measure for the color difference between the two template areas. Overall brightness
differences are thereby accounted for, as discussed in the previous section.

3. The displacement vector is the difference between p and the position x that minimizes the
value of S(x).

Formally, for each pixel at position p, we are looking for a displacement vector X in the
search space that minimizes the following term:

g(x)= Y Y g(p+tx); 3.1)

c=0,12 t

8(2,x). = (IS(Z)C _I_S(Z)C)

~(tr(z+x)c~Ir(2+x).) (3.2)

Is(p). denotes the intensity of the source image for color channel ¢ at position p. I7(p). denotes
the intensity of the target image for color channel ¢ at position p. t is the displacement vector
inside the template. It iterates through all vectors in {—tmax,...,tmax}z. I_,(p) is the average
intensity of the template area centered at p of image i.

Imax Was chosen as 7, resulting in a template area of 15 x 15. The size of the search space is
chosen as 41 x41. Therefore a displacement vector in {-20,...,20}? is calculated for each
pixel. If the camera registration errors are are likely to exceed this limit, a brute force approach
is not advised due to long computing time.

The algorithm is implemented in a GLSL fragment shader. For each pixel, the shader loops
over all possible displacement vectors X and chooses the one with a minimum value of g(x).
Each component of the displacement vector is encoded in a color channel of the output texture
by normalizing the range {-20,...,20} to {0,...,255}. Regions that do not contain information
in the input images are encoded as white.

Only minimizing ¢(x) does not take any smoothness constraints into account. The algorithm
performs well in high-frequency regions of an image, but flat regions produce a jagged displace-
ment vector field. In order to smooth the field, a median filter with a large kernel is applied to
the x- and y-components of the field separately. An example for a color-encoded vector field can
be seen in Figure [3.2] Warped versions of the target image are shown in Figure [3.3]

To calculate the optical flow between two images of size 2128 x 1416 pixels, the brute force
algorithm takes 3:40 to complete. The computing time increases linearly with the image area.

70

Figure 3.2: The top left and the top right images are target and source inputs. The bottom
left image is the displacement vector field as produced by the brute force optical flow algorithm.
The bottom right image is the displacement vector field after applying a median filter.

3.2 Hierarchical Method

The idea behind the hierarchical method is to calculate a displacement vector field between
downsampled versions of the images first to restrict the size of the search space and thus accel-
erate the computation of the vector field between the original images. This method is proposed
in [Namrata Vaswani, ndf]. For this application, the following 2-level approach is used:

1. Create a downsampled version T’ of the target T and a downsampled version S’ of the
source image S. The side length of the downsampled images is half the side length of the
original images.

10

Figure 3.3: The first row shows the target image, a detailed view of a problematic region, and
the color difference between the target and the source image to highlight the alignment errors.
The second row shows the target image after it has been warped with the brute force optical flow
algorithm. The color difference shows that the features have been aligned with the source image
but monotonous areas exhibit strong artifacts. The third row shows the target image after it has
been warped with the brute force optical flow + median algorithm. This avoids artifacts in flat
areas.

2. Calculate a displacement vector field R’ between T’ and S’ using the brute force approach
with a 15 x 15 search space and a 5 x 5 template.

3. Upsample R’, doubling its side length, to create a reference vector field R for the original
target and source image.

4. Calculate the displacement vector field O between T and S. Use a 15 x 15 search space
and a 5 x5 template. The search space is centered around p+2 *r. p is the position of the
pixel that is currently evaluated. r is the displacement vector at position p in R.

The resulting displacement vectors are in the range of {~21,...,21}%. This approach is
significantly faster that the brute force algorithm because smaller search spaces are used. To cal-
culate the optical flow between two images of size 2128 x 1416 pixels, the hierarchical algorithm
takes approximately 5 seconds to complete.

11

A direct comparison between a warped image created by the brute force and hierarchical
method can be seen in Figure [3.4] Both algorithms perform equally well in high-frequency
regions. In flat regions, the hierarchical method produces significantly weaker distortion effects.

Figure 3.4: Left: target image. Center: warped image using brute force + median. Right:
warped image using hierarchical + median. The center image has stronger distortions in low-
frequency areas than the right image.

3.3 Floating Textures

The Floating Textures library provides an implementation of the methods proposed in
let al., 2008]. The main focus is to create a dynamic mapping of multiple photographs onto a
mesh at an interactive frame rate while avoid ghosting artifacts. Part of the library is a GPU
implementation of the optical flow approach described in [Brox et al., 2004]. The following
assumptions are made and deviations minimized to compute the flow field:

* Intensity constancy assumption: The intensity of a surface point stays the same over time.

* Gradient constancy assumption: Since intensity constancy is easily violated under chang-
ing lighting conditions, it is assumed that the spatial gradient of the intensity stays the
same between two frames.

* Piecewise smoothness assumption: To deal with areas with a vanishing gradient, it is
useful to assume that the flow field is smooth. Since silhouettes of moving objects against
a background will result in discontinuities, only piecewise smoothness is postulated.

An advantage of this implementation is its high speed and accuracy under certain conditions.
But the algorithm produces undesirable results if one photograph is slightly darker than the other.
An illustration for this can be seen in Figure 3.5 If the source image is color-matched to the
target image, the algorithm performs well in regions with high intensity gradients. The lower
part of the image in Figure [3.5]is warped correctly. In flat regions with few discontinuities
however, like the yellow stripes in Figure [3.5] the displacement vectors vanish and translation
errors are not corrected.

For two input images with a resolution of 2128 x 1416 pixels, the algorithm takes less than
1 second to complete.

12

Target Source Color-matched source

l@

Figure 3.5: Left: target image. Center: original source image at the top, warped target at
the bottom. Right: color-matched source image at the top, warped target at the bottom. The
brightness difference between target and original source causes strong artifacts in the warped
image. Color-matching between the target and the source avoids these artifacts.

13

CHAPTER

Stitching Algorithm

The stitching algorithm that is described in this section aims to correct discontinuity artifacts
that appear along the edges between labels on a mesh. The findings of section [3] are used to
create optical flow fields between neighboring labels. All examples in this section have been
produced using the hierarchical approach.

The basis for our algorithm is the technique found in [Dellepiane et al., 2012]]. The goal
of their work is a stitching algorithm that blends suitable images while avoiding ghosting arti-

facts,

which has been summarized in section [2.2] The key differences of our algorithm are the

following:

Our algorithm uses a partitioning where each label is assigned one photograph, rather than
two. This leads to a strongly reduced number of labels and thus to fewer optical flow fields
and shorter computing times.

As input data, we use a partition with a small number of connected components and a
short color distance between neighboring fragments along the seams. The implementation
of the partitioning system is described in [Birsak, 2012]] and has been provided by the
courtesy of the author.

We are not interested in blending different images while reducing ghosting artifacts, but
warping them to minimize discontinuity artifacts.

The warping function Gli’j from the paper calculates the contribution of a fragment from
image k to the color information in the label defined by images i and j. Since we do
not require the computation of color contribution across label borders, we simplify the
warping function by using a weighted sum of displacement vectors, as detailed below.

The following data are needed as inputs to the algorithm:

1.

A mesh consisting of triangular faces

14

2. A set of photographs along with view and projection matrices
3. A labeling that maps each face onto one photograph

Preferably each label should contain large connected regions and few edges. If this is not the
case, discontinuity artifacts are still eliminated but the photographs are distorted more than nec-
essary in the process. The output of the algorithm is a new set of photographs that can be used
with the same labeling and produces fewer artifacts. The algorithm could easily be adjusted to
work on different geometry data like point clouds, but in this implementation triangular meshes
are being used.

The first step is to analyze the labeling and find all ordered pairs {(L,N) | L and N are labels
and share a common edge}. This relation is symmetric and all neighboring labels A and B
will occur as (A,B) and (B,A). For every pair (L,N) the common edge Ef v, a set of 3D line
segments, is found.

The list of label pairs serves as the input to the next step. For each pair (L,N) we create
an additional image Ny, that shows the label N as seen from the perspective of L. This is done
by rendering the mesh and transforming the vertices with the view and projection matrix of L.
The photo of N is used as a projective texture, using the view and projection matrix of N to find
the texture coordinates. Fragments whose texture coordinates are outside of [0, 1]* are colored
black. An illustration can be seen in Figure To avoid coloring faces that are occluded by
other faces, we use shadow volumes. The meshes that result from triangulating point clouds are
usually not two-manifold, thus the traditional shadow volume generation approach is unusable.
Instead, we employ the robust shadow volumes technique described in [Nguyen, 2007]. The
image features of Ny overlap those of L, except for camera registration errors. Typically, Ny will
look like a slightly translated version of L.

The next stage aims to correct these registration errors by calculating the optical flow field
between every image pair (L,Ny). L serves as the target and N, as the source image. The
resulting displacement vector field O can be used to warp image L. The result matches the
features of Ny, perfectly. An example can be seen in Figure 4.2

In order to apply the warp field only to the regions around the edges in a smooth way, these
regions have to be defined. The goal is to adjust the length of the displacement vectors as seen in
Figure[d.3] At the pixels that form the inside edge between two labels L and N, the displacement
vectors are multiplied by 0.5. At a certain distance from the edge the vectors are multiplied by
0. In the space between, the multiplier of the vectors is linearly interpolated between 0 and 0.5.

Let us make this step more concrete. For each pair (L,N) we want to produce an image that
contains the displacement vector multiplier for each pixel. This value should be 0.5 at the pixels
on the edge and O at the pixels that are farther away than a certain distance d,,,,. The region in
between, where the multiplier is not 0, is henceforth called the border of the seam. Therefore
the set of line segments E; y is rendered in black onto a white background in the image space of
L. To the resulting binary image, a distance transform is applied. This process is illustrated in
4.4

It is important to note that the photographs for both labels L and N must fully contain the
border, otherwise the optical flow field does not contain sensible displacement vectors in that
region. This constraint has to be taken into account during the labeling process and can be met

15

Figure 4.1: The label N is projected onto the mesh and transformed into the image space of L.
The white frame contains the image Ny.

Figure 4.2: Left: Label L in its own image space. Center: Neighboring label N projected onto
the mesh and inversely projected into L’s image space, yielding Ny. Right: Optical flow field
from L to N;.

with a simple modification. Depending on the size of the border, the width and height of the
view frustums are reduced before passing them to the labeling algorithm. For our test data, the
frustum size was reduced by 10 percent in every direction. The effect is that the outer 10 percent
of every photograph are not used for labeling. Therefore there is always an overlap between
photographs of two neighboring labels.

The distances for each pixel are only valid in the image space of L. This means that the
width of the border in model coordinates would depend on the pixel density of the photograph.
To avoid this, the distance transform is corrected with respect to the depth of the pixels in the
view space of L. We define d,,,x as the desired width of the border in pixels, if the camera’s
distance to the photographed surface is 1. This way the multipliers can be corrected according
to the depth of the pixels.

To warp the texture for a label L, the corrected distance transform and the optical flow field

16

Figure 4.3: Left: A seam between two labels. The warp field maps the image features of L
onto N. Center: The length of the displacement vectors is reduced the further a pixel is away
from the seam. Right: The warp field is applied to L and the same procedure is used for N.

Figure 4.4: Left: Labels L and N in the image space of L. Center: The edge E; in black on
white. Right: Distance transform of the (L,N).

must be produced for every neighboring label N;, i = 1,...,k. Then the resulting displacement
vector for every pixel can be calculated as the weighted sum of each neighbor’s displacement
vector. The following algorithm is used:

// INPUT
P : position of the current pixel
DT[k] : corrected distance transforms

Olk] : optical flow fields
T : texture of L

// PROCEDURE
sumWarps := vec2(0,0)
sumWeights := 0
FOR(1i from 1 to k)

distance := 1.0 - sample(DT[i] at p)

17

ofvector := sample(O[i] at p)

weight := distance
warp := ofvector x distance x 0.5

sumiWarps += warp x= weight;
sumWeights += weight;
END

IF (sumWeights > 0)
p := p + sumWarps / sumWeights;

END

outColor := sample(T at p)

A GLSL implementation of the stitching algorithm is printed in Section[7.2]

18

CHAPTER

Results

The algorithm was tested on four data sets, obtained with two different laser scanner systems
and mounted cameras.

* Centcelles. This data set was recorded with a RIEGL Laser Measurement System with a
mounted digital single-lens reflex camera. The geometry consists of a triangulated model
of the dome in the Mausoleum of Centcelles, that has been reduced to 300000 faces. The
color information is provided by a set of photographs with 2128 x 1416 pixels each. The
camera registration errors are clearly visible but do not exceed 20 pixels in any direction
and therefore no problems are encountered when running the algorithm. Results in Figure

* Good Shepherd. Acquired with a scanner from Adam Technology, the geometry consists
of a triangulated model with 300000 faces of the Good Shepherd Dome. The photographs
have a size of 4064 x 2704 pixels each. The misalignment errors in this data set are very
small and often barely visible. Thus the main concern is that filtering errors introduced by
the optical flow process must not be larger than the registration errors that are corrected.
By using median filtering of the flow fields, this criterion is met. Results for this data set
can be seen in Figure[5.2]

* Terrace House 2. The Terrace House 2 in Ephesus was scanned using a RIEGL scanner
and produced a mesh of more than 15 million faces after triangulation. The photographs
have a resolution of 4256 x 2832 pixels and contain only small registration errors. To
test whether the algorithm works well with imprecise meshes, the model was reduced to
500000 faces, yielding a very coarse approximation of the original. Similar to the Good
Shepherd results, the registration errors do not exceed a few pixels but these errors are
successfully corrected. Results in Figure[5.3]

* Seven Sleepers cave. The Seven Sleepers cave in Ephesus was scanned using a RIEGL
scanner and reduced to 500000 faces. The photographs are 4256 x 2832 pixels large,

19

Centcelles Good Shepherd Terrace House 2 Seven Sleepers cave

Number of labels 6 6 6 12
Number of pairs 20 16 12 56
Number of faces 300k 300k 500k 500k
Image dimensions 2128 x 1416 4064 x 2704 4256 x 2832 4256 x 2832
Label generation 1m 10s 1m 15s 2m 10s 4m 40s
Model processing 10s 15s 45s 30s
Flow field generation (H) 1m 15s 3m Os 2m 25s 10m 25s

Table 5.1: Results for the labeling, optical flow field generation and stitching process.

exhibit high brightness differences and many are underexposed or blurry. Results are
shown in Figure [5.4]

A labeling was produced for each data set using the MRF implementation without shift
vectors from [Birsak, 2012[]. Computing times for the steps of the algorithms are provided in
Table [5.1] For the optical flow field calculation, we used NVIDIA GeForce 570 GTX hardware.
The generation of N, for a pair (L,N) and the stitching of a label by using the flow fields can be
done with one shader call each. The stitched textures may be generated once and then reused,
but the stitching algorithm is also quick enough to operate on the original textures and the flow
fields in real-time.

20

Figure 5.1: Comparison between labeled data sets with and without seam stitching. Images
from the Centcelles data set.

Figure 5.2: Comparison between labeled data sets with and without seam stitching. Detail
view of seams in the Good Shepherd data set.

21

Figure 5.3: Comparison between labeled data sets with and without seam stitching. Images
from the Terrace House 2 data set. The contrast of the photos has been adjusted to make the

improvement visible.

»
4
\ Al i .

Figure 5.4: Comparison between labeled data sets with and without seam stitching. Images
from the Seven Sleepers data set. The contrast of the upper left photos has been adjusted to make
the improvement visible.

22

CHAPTER

Conclusion

This thesis presents a fully automatic approach to effectively reduce discontinuity artifacts in
an image-to-geometry setting. We evaluate existing labeling and optical flow strategies and
combine suitable methods to form a stitching algorithm that is based on local optimization.
Our algorithm takes a labeled triangle mesh as input data to find neighboring labels. Each
label is projected into the image space of its neighbor and an optical flow field between them is
estimated. These fields are applied at the border between labels to remove discontinuity artifacts.

The algorithm has been shown to be computationally feasible and to generate high-quality
results with no manual parameterization required. It scales linearly with the number of neigh-
boring photographs and is robust in terms of lighting conditions and image quality. The labeling
and optical flow stages can easily be substituted with with other procedures that are suitable to
the particular application. Future works could explore the compatibility of the results with lev-
eling approaches in order to reduce remaining brightness discontinuities. Also the optical flow
estimation could be combined with the stitching stage such that displacement vectors are only
calculated in the border region between photographs, thus speeding up the process.

23

CHAPTER
Listings

7.1 Brute force Optical flow shader

#version 330 core

uniform sampler2D target; // search space

uniform sampler2D source; // template

uniform vec2 imageSize; // in pixels (width, height)

uniform int lod; // mipmap of target and source image, O for original
in vec2 vf_texCoords;

out vec3 colorCode;

void main(void)

{
/] early out if no image information
if (textureLod (target, vf_texCoords, lod).xyz == vec3(0.0,0.0,0.0))
{
colorCode = vec3(l.f,1.£,1.f);
return ;
}
/] size of one pixel
vec2 invImageSize = vec2(1.0/imageSize.x, 1.0/imageSize.y);

vec2 currentTexCoords;

// calculate mean color intensities of template in source
vec3 meanSource = vec3(0.0,0.0,0.0);

int runningIndex = 0;

for (int y = =7; vy <= 7; y++)

{
for (int x = -7; x <= 7; x++)
{

currentTexCoords = vf_texCoords + vec2(invImageSize.x * x, invImageSize.y #* y);
meanSource += texturelLod (source, currentTexCoords, lod).xyz;

}

24

meanSource /= 225.0;

vec2 bestPos;
float minDif = 9999999999.0;

// Traverse through search space
for (int y = -20; y <= 20; y++)
{
for (int x = -20; x <= 20; x++)
{
// calculate fit value between template in source
// and template in search space
float curDif = 0;

// calculate mean color intensities of current
// area in search space
vec3 meanTarget = vec3(0.0,0.0,0.0);
for (int pY = -7; pY <= 7; pY++)
{
for (int pX = -7; pX <= 7; pX++)
{
currentTexCoords = vf_texCoords + vec2(invImageSize.x * (x+pX), <
invIimageSize.y #* (y+pY));
meanTarget += textureLod (target, currentTexCoords, lod).xyz;
}
}

meanTarget /= 225.0;

/] calculate value of q(x)

for (int pY = -7; pY <= 7; pY++)

{
for (int pX = -7; pX <= 7; pX++)
{

currentTexCoords = vf_texCoords + vec2(invImageSize.x % pX, invImageSize.y <

* pY);
vec3 sourcePick = textureLod (source, currentTexCoords, lod).xyz;
currentTexCoords = vf_texCoords + vec2(invImageSize.x * (x+pX), <
invIimageSize.y #* (y+pY));
vec3 targetPick = textureLod(target, currentTexCoords, lod).xyz;
vec3 dif2 = (sourcePick — meanSource) - (targetPick — meanTarget);
curDif += dot(dif2,dif2);

}

/! choose displacement vector with minimal q(x)
if (curDif <= minDif)
{

minDif = curDif;

bestPos = vec2(x, v);

}

/! encode best displacement vector
colorCode = vec3 ((bestPos.x+20)/40.0, (bestPos.y+20.0)/40.0, 0.0);

25

7.2 Stitching shader

uniform sampler2D diffuseTexture; // photo for the label

uniform sampler2D distanceTransform[6]; // distance transforms for all edges
uniform sampler2D warpField[6]; // optical flow fields for all neighbors
uniform int numNeighbors; // number of neighbors

uniform vec2 imageSize; // image size in pixels

uniform int maxTranslation; // maximum value of displacement vector components

in vec2 vf_texCoords; // texture coordinate of current fragment
out vec3 outColor;

void main(void)
{

vec2 invImageSize = vec2 (1.0 / imageSize.x, 1.0 / imageSize.y);

// will contain weighted blending of displacement vectors
vec2 sumWarps = vec2(0.0,0.0);
float sumWeights = 0.0;

for (int i1=0; i<numNeighbors; i++)
{
// color—-coded displacement vector
vec3 of3 = texture (warpField[i], vf_texCoords).rgb;

// white means that the photo is not overlapping with its
// neighbor on this pixel

if (of3 == vec3(1.0,1.0,1.0))

{

}

continue ;

/! calculate displacement vector
vec2 of = of3.rg;
of = of %« 2.0 % float(maxTranslation) — vec2(maxTranslation,maxTranslation);

/! adjust weight based on the distance between the pixel and the edge
float correctDistance = 1.0 - texture (distanceTransform[i], vf_texCoords).r;

// add weight adjusted displacement vector to total
float weight = correctDistance;

sumWarps += weight#ofsinvImageSizexcorrectDistance=0.5;
sumWeights += weight;

}

if (sumWeights > 0)

{
/! new texture coordinate after adding total displacement vector
vec2 newTexCoords = vf_texCoords+(sumWarps/sumWeights);

outColor = texture (diffuseTexture, newTexCoords).xyz;
}
else
{

outColor = texture (diffuseTexture, vf_texCoords).xyz;
}

}

26

Bibliography

[Birsak, 2012] Birsak, M. (2012). Coloring meshes of archaeological datasets. Master thesis,
Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoriten-
strasse 9-11/186, A-1040 Vienna, Austria.

[Brox et al., 2004] Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy
optical flow estimation based on a theory for warping. In European Conference on Computer
Vision (ECCV), volume 3024 of Lecture Notes in Computer Science, pages 25-36. Springer.

[Callieri et al., 2008] Callieri, M., Cignoni, P., Corsini, M., and Scopigno, R. (2008).
Masked photo blending: mapping dense photographic dataset on high-resolution
3d models. Computer & Graphics, 32(4):464-473. for the online version:
http://dx.doi.org/10.1016/j.cag.2008.05.004.

[Dellepiane et al., 2012] Dellepiane, M., Marroquim, R., Callieri, M., Cignoni, P., and
Scopigno, R. (2012). Flow-based local optimization for image-to-geometry projection. Visu-
alization and Computer Graphics, IEEE Transactions on, 18(3):463-474.

[Eisemann et al., 2008] Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., de Aguiar, E.,
Ahmed, N., Theobalt, C., and Sellent, A. (2008). Floating textures. Computer Graphics
Forum (Proc. of Eurographics), 27(2):409-418. Received the Best Student Paper Award at
Eurographics 2008.

[Gal et al., 2010] Gal, R., Wexler, Y., Ofek, E., Hoppe, H., and Cohen-Or, D. (2010). Seamless
montage for texturing models. Comput. Graph. Forum, pages 479-486.

[Lempitsky and Ivanov, 2007] Lempitsky, V. and Ivanov, D. (2007). Seamless mosaicing of
image-based texture maps. In Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1 —6.

[Lensch et al., 2000] Lensch, H. P. A., Heidrich, W., and peter Seidel, H. (2000). Automated
texture registration and stitching for real world models. In in Pacific Graphics, pages 317—
326.

[Namrata Vaswani, nd] Namrata Vaswani (n.d.). http://home.engineering.iastate.edu/ nam-
rata/ee520/opticalflow.pdf. Accessed: 2013-05-01.

[Nguyen, 2007] Nguyen, H. (2007). Gpu gems 3. Addison-Wesley Professional, first edition.

27

[T. Takai and Matsuyama, 2010] T. Takai, A. H. and Matsuyama, T. (2010). Harmonised texture
mapping. In Proc. 3D Data Processing Visualization and Transmission (3DPVT ’10).

28

	Introduction
	Related Work
	Labeling
	Stitching

	Optical Flow
	Brute Force Method
	Hierarchical Method
	Floating Textures

	Stitching Algorithm
	Results
	Conclusion
	Listings
	Brute force Optical flow shader
	Stitching shader

	Bibliography

