
GPU-based Video Processing in
the Context of TV Broadcasting

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Heinrich Fink
Matrikelnummer 0425503

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Dr. Anton Fuhrmann

Wien, 14.08.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

GPU-based Video Processing in
the Context of TV Broadcasting

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Heinrich Fink
Registration Number 0425503

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Dr. Anton Fuhrmann

Vienna, 14.08.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Heinrich Fink
Schwarzingergasse 1/7, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I thank my supervisor Michael Wimmer. I was working with him for many years at the Institute
of Computer Graphics, TU Vienna. His encouragement and exceptional support during this time
was invaluable. While working as his teaching assistant, he trusted me with the task to redesign
his practical course Introduction to computer graphics and helped me to publish this work as a
journal paper. He has been a great mentor and teacher.

This thesis was written while I was working as a researcher at VRVis, Vienna. I thank my
supervisor, Anton Fuhrmann. We had many inspiring conversations about the topics of this
thesis, and he provided me with a lot of good advice.

I would also like to thank Walter Kuntner, CEO of ToolsOnAir, for providing me with the
time and flexibility necessary to finish my thesis, and for his trust in my work. He made it
possible for me to attend the SigGraph 2013 conference, which influenced my work in many
aspects. Without him, this thesis would not have been possible.

I thank Thomas True at NVIDIA for taking time to discuss the results of this thesis with me,
and for sharing his expertise in the area of GPU-based broadcast engineering.

NVIDIA and AMD generously provided hardware devices that I was able to test with the
implementation of my thesis. I thank them for their support.

During the time of writing this thesis, I spent a lot of time at the Institute of Computer
Graphics. I would like to thank the head of this institute, Werner Purgathofer, and everyone
working there for their support. I have many great memories of my time studying there.

Finally, I would like to thank Lena and Lilja for being there.

iii

Abstract

This thesis investigates GPU-based video processing in the context of a graphics system for
live TV broadcasting. Upcoming TV standards like UHD-1 result in much higher data rates
than existing formats. Processing such data rates while satisfying the real-time requirement
of live TV poses a particular challenge for the implementation of a software-based broadcast
graphics system. In order to reach the required data rates, the software needs to process image
data concurrently on the central processing unit (CPU) and graphics processing unit (GPU)
of the machine. In particular, the transfers of image data between main and graphics memory
need to be overlapped with CPU-based and GPU-based executions in order to maximize data
throughput. In this thesis, we therefore investigate the following questions: Which methods are
available to a software implementation in order to reach this level of parallelism? Which data
rates can actually be reached using these methods?

In order to answer these questions, we implement a prototype of a software for rendering
TV graphics. To take advantage of the GPU’s ability to efficiently process image data, we use
the OpenGL application programming interface (API). We use advanced methods of OpenGL
programming to render high-quality video and increase the level of employed parallelism of the
GPU. We implement the transcoding between RGB and the professional video format V210,
which is more complex to process than conventional consumer-oriented image formats. In our
software, we apply the pipeline programming pattern in order to distribute stages of the video
processing algorithm to different threads. As a result, those stages execute concurrently on dif-
ferent hardware units of the system. Our prototype exposes the applied degree of concurrency
to the user as a collection of different optimization settings. In order to evaluate these optimiza-
tions, we integrate a profiling mechanism directly into the execution of the pipeline. This allows
us to automatically create performance profiles while running our prototype with various test
scenarios. The results of this thesis are based on the analysis of these traces.

Our prototype shows that the methods described in this thesis enable a software program to
process high-resolution video in high quality. The results of our evaluations also show that there
is no single best optimization setting for every GPU architecture. Different driver implemen-
tations and hardware features require our prototype to apply different optimization settings for
each device. The ability of our software structure to dynamically change the degree of concur-
rency is therefore an important feature. For broadcasting software that is expected to perform
well on a range of hardware devices, this is ultimately an essential feature.

v

Kurzfassung

Diese Arbeit beschäftigt sich mit GPU-basierter Verarbeitung von Video im Kontext des Grafik-
systems eines Live-TV Senders. Kommende TV Spezifikationen, wie UHD-1, haben eine beson-
ders hohe Datenrate an Bildinformationen zur Folge. Die Echtzeitverarbeitung solcher Daten-
raten stellt eine besondere Herausforderung für die Implementierung eines Software-basierten
TV-Grafiksystems dar. Um die erforderten Datenraten zu erreichen, muss das Programm seine
Berechnungen auf Haupt- und Grafikprozessor (CPU und GPU) parallel ausführen. Insbeson-
dere müssen die Übertragungen der Videobilder zwischen Haupt- und Grafikspeicher über den
PCIe-Bus mit den Berechnungen der CPU und GPU überlappt werden, um eine effiziente Aus-
führung zu garantieren. Diese Arbeit beschäftigt sich daher mit der Frage, welche Methoden für
die Implementierung eines solchen Grafikprogramms zur Verfügung stehen, und welche Daten-
raten damit effektiv erzielt werden können.

Um diese Fragen zu beantworten, implementieren wir den Prototypen einer Software für das
Rendering von TV-Grafiken. Dabei setzen wir die Programmierschnittstelle OpenGL ein, um
die Fähigkeiten des Grafikprozessors für die effiziente Verarbeitung von Bilddaten auszunützen.
Wir zeigen fortgeschrittene Methoden der OpenGL-Programmierung, welche die Bearbeitung
von professionellem Videomaterial erleichtern, und helfen, den maximalen Grad an Parallelität
in der Ausführung des Grafikprozessors zu erreichen. Insbesondere zeigen wir die GPU-basierte
Verarbeitung des Studioformates V210, das im Vergleich zu herkömmlichen Bildformaten be-
sondere Herausforderungen an die Implementierung stellt. Unser Prototyp basiert auf dem Soft-
waremodell einer Pipeline. Das Programm ist dadurch in der Lage, einzelne Schritte der Bild-
verarbeitung zu parallelisieren, und auf mehrere Prozessoren dynamisch zu verteilen. Dadurch
können wir verschiedene Optimierungsverfahren einsetzen, um den Datendurchsatz des Pro-
gramms zu maximieren. Um diese Verfahren und generell die Implementierung des Prototyps
zu analysieren, integrieren wir die Messung des Laufzeitverhaltens direkt in unsere Software.
Das ermöglicht die automatisierte Erstellung von Profilen verschiedener Testszenarios, deren
Analyse die Basis für die Resultate dieser Arbeit bilden.

Unser Prototyp zeigt, dass die in dieser Arbeit vorgestellten Methoden die Echtzeitverar-
beitung von hochauflösendem Videomaterial in hoher Qualität ermöglichen. Unsere Ergebnisse
zeigen auch, dass für verschiedene GPU-Architekturen unterschiedliche Optimierungsverfahren
eingesetzt werden müssen, um den optimalen Durchsatz zu erreichen. Die Fähigkeit unserer
Software, die Optimierung der Videopipeline dynamisch anzupassen, ist also eine besonders
wichtige Eigenschaft, und letztendlich Vorraussetzung für die Implementierung eines marktrei-
fen Grafikproduktes, das auf unterschiedlichen Hardware-Konfigurationen effizient laufen soll.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research question . 2
1.3 Contributions . 3
1.4 Overview . 4

2 Background 5
2.1 Video engineering . 5

2.1.1 Perceptual coding . 5
2.1.2 Image reproduction . 7
2.1.3 sRGB . 8
2.1.4 BT.709 Y’CbCr coding . 9
2.1.5 Chroma subsampling . 10
2.1.6 Converting between R’G’B’ and 10-bit BT.709 Y’CbCr 11
2.1.7 Mixing sRGB with BT.709 content 13

2.2 Hardware . 13
2.2.1 Graphics processing units . 13
2.2.2 Video interfaces . 14

2.3 OpenGL . 15
2.3.1 Version 3.3 . 16
2.3.2 Version 4.0 . 17
2.3.3 Version 4.1 . 17
2.3.4 Version 4.2 . 18
2.3.5 Version 4.3 . 18
2.3.6 Transferring texture data . 19
2.3.7 Vendor-specific optimizations . 20

2.4 Related software . 22

3 Design 23
3.1 Pipeline model . 23

3.1.1 Stage . 23
3.1.2 Simplified model of the video processing pipeline 25
3.1.3 Timing properties of the video processing pipeline 27

ix

3.1.4 Live playback constraints . 28
3.2 Targeted scenario . 32
3.3 FrameBender application . 34

4 Video Pipeline Implementation 37
4.1 C++ pipeline infrastructure . 37

4.1.1 CircularFifo implementation . 37
4.1.2 WaitingCircularFifo wrapper . 39
4.1.3 The Stage C++ template class . 40
4.1.4 Example of the execution of a simple video pipeline 42

4.2 OpenGL video render pipeline . 45
4.2.1 Stage definitions . 46
4.2.2 Data pools for queue elements . 50
4.2.3 Scheduling of the video processing pipeline execution 51

4.3 Concurrent hardware executions of the pipeline 54
4.3.1 Asynchronous host copies . 54
4.3.2 Multithreaded OpenGL for upload/render/download 57

4.4 The canonical render format . 60
4.5 Demo renderer . 61
4.6 Internal profiling . 62

4.6.1 Sampling timestamps of pipeline stage executions 62
4.6.2 Trace format . 63

4.7 Debugging features . 64
4.8 Testing . 65

5 V210 Y’CbCr to RGB Transcoder 67
5.1 V210 structure . 68
5.2 OpenGL V210 representation . 68
5.3 GLSL implementation . 69

5.3.1 Chroma filters . 69
5.3.2 GLSL shader inclusion system . 70
5.3.3 Transcoding algorithm . 70
5.3.4 GLSL 3.3 . 71
5.3.5 GLSL 4.2 . 74
5.3.6 GLSL 4.3 compute shaders . 75
5.3.7 Testing GLSL variations . 78

6 Results 79
6.1 Test setup . 79

6.1.1 Parameter space of benchmark configurations 79
6.1.2 Benchmarking scenario . 83
6.1.3 Visualization of traces . 85
6.1.4 Input sequences . 85
6.1.5 Test machine specification . 85

x

6.1.6 Limitations . 85
6.1.7 Statistical properties of traces . 88
6.1.8 Measuring image quality using PSNR 89

6.2 Performance . 90
6.2.1 Parallelization of pipeline executions 90
6.2.2 Varying resolution (HD vs. UHD-1) 96
6.2.3 Isolating pipeline stages . 96
6.2.4 V210 transcoder . 101
6.2.5 Overview of speed improvements . 109

6.3 Image quality . 109
6.3.1 Render formats . 109
6.3.2 Chroma filters . 109
6.3.3 CPU-based implementations . 109

7 Conclusion 115
7.1 Future work . 116

A GLSL 4.2 V210 decoder shader code 119

Bibliography 125

xi

CHAPTER 1
Introduction

This thesis implements and analyzes GPU-based video processing using the OpenGL API in the
context of TV broadcasting.

1.1 Motivation

The production and delivery of a modern TV program is a fully digital process. The images
we see on TV today are the result of a large chain of digital video processing components. In
broadcasting studios, the last stage of the production chain is the playout server. It produces the
final video frames of a TV program, just before they are sent on-air. The playout stage is usually
also responsible for adding real-time graphics to the signal (see Figure 1.1). This rendering of
broadcast graphics happens at a very critical time in the production chain. If it fails to deliver
video frames at the real-time rate of the carrier signal, the program that is on air is interrupted.
The playout server’s renderer therefore has to operate reliably in real time.

Broadcasting studios used to employ highly specialized and expensive hardware to inscribe
graphics into video material for live TV. As computers became more powerful and as file-based
workflows became widely adopted, these systems have been replaced by software systems that
run on commodity hardware. These systems are able to render video in real time when tak-
ing advantage of the graphics processing unit (GPU) of the machine. A GPU is optimized for
processing image data and therefore ideal for video rendering.

The increase in resolutions and frame rates of recent video standards like UHD-1 or
1080p50/60 requires the playout software to process much higher data rates than with previ-
ous formats. Modern graphics processors provide the compute throughput that is necessary to
render these new formats. However, in order to process video on the GPU, video frames first
have to be transferred over the machine’s PCI-Express (PCIe) bus to video memory. In a typical
playout application, video frames also have to be transferred back to main memory for playout
through the video output component. Because the PCIe bus is limited in bandwidth and shared
between multiple processes on the system, the transfer to and from video memory introduces a

1

Figure 1.1: Broadcast graphics are essential to the experience of a TV program. They are added
last in the production chain and have to be rendered reliably in the rate of the carrier signal. This
screenshot shows demo graphics of the ToolsOnAir just:out playout system.

significant latency to the pipeline of the software. This makes it difficult for the playout software
to process high-resolution video at the required real-time rates.

This problem can be addressed by parallelizing the pipeline of the playout process. Today’s
multi-core CPU systems enable the asynchronous handling of video I/O. Modern graphics cards
contain an additional DMA hardware unit besides the GPU, which allows for parallel video
memory transfer while executing the GPU for rendering. Such components are widely available
to commodity-hardware machines. However, in order to take advantage of these components, the
playout server’s implementation needs to use a software model for its video processing pipeline
that supports this highly parallelized execution model. The goal of this thesis is to describe such
a model, and to provide a proof-of-concept implementation which demonstrates the benefits of
a parallelized video processing engine that can be used within a playout software solution.

1.2 Research question

This thesis investigates the following questions:

• Which tasks of a video processing pipeline can be executed in parallel on different hard-
ware?

• Which software patterns are needed to support the concurrent execution of these tasks?

• How to use a graphics API like OpenGL to render and transfer video concurrently?

2

• What are the maximum data rates that can be reached using commodity-based hardware
and what are the limiting factors?

• Are these data rates high enough to process new high-resolution video formats in real time
on commodity hardware?

1.3 Contributions

The main contribution of this thesis is the design, implementation and practical analysis of a
software framework we call FrameBender. This framework provides a highly parallelized video
processing pipeline. It implements a software model that allows the concurrent execution of
CPU- and GPU-based processing tasks. In comparison to a conventional serialized solution, our
implementation uses less time for the transfer of frames and therefore enables video rendering
in real-time rates even for high resolutions like UHD-1.

Other contributions are:

• Profiling and visual analysis of the pipeline’s performance characteristics.

• A comparison of the pipeline’s runtime behavior on different GPU architectures using
different configurations.

• Best practices for optimizing data throughput for OpenGL video processing.

• Design and implementation of a doubly-linked pipeline pattern that enables asynchronous
two-way communication between individual stages of the pipeline.

• GPU-based algorithms to transcode between linearly coded RGB and the V210 video
format efficiently and in high quality using the GLSL OpenGL shading language.

• A comparison between various V210 transcoder implementations using different versions
of GLSL.

Our framework shows that it is possible for OpenGL-based software to process new high-
resolution video formats in real time with commodity hardware. As opposed to many other
benchmarking applications, where only isolated tasks are being tested, our framework performs
a complete video rendering task. The behavior and the optimizations of our program are there-
fore much more representative of what is required in a real-world video application than it is
when measuring only an isolated part of the problem (e.g., measuring only the bandwidth of
transfers between CPU and GPU). Through analysis of the captured and visualized runtime be-
havior, we were able to identify best practices for video processing in software design and the
use of OpenGL. Our prototype further allowed us to compare the benefits of different GPU
architectures in the context of real-time video processing. We also compared our GPU-based
solution to process V210 with an existing CPU-based algorithm and showed that ours performs
more efficiently while providing the same high level of image quality.

3

1.4 Overview

In Chapter 2, we provide background information on the theory and practices of video engi-
neering relevant to this thesis. This chapter also summarizes GPU hardware architectures and
provides an overview of the OpenGL features that were used in the implementation of the pro-
totype. Chapter 2 concludes with an overview of related research and existing playout software
systems. The general model and software design of our framework is described in Chapter 3.
It focuses on the algorithms and concepts of the video pipeline, which are independent of their
actual implementation. Chapter 4 then presents details about the prototype implementation of
the framework. It describes the C++ infrastructure that supports the pipeline execution, explains
how OpenGL has been used to implement the pipeline, and describes the optimization tech-
niques that were implemented. The V210 encoding and decoding process is described in Chapter
5. This chapter explains how recent versions of GLSL benefit the design and performance of the
GPU-based transcoding algorithm. Chapter 6 then discusses results in performance, quality and
stability of various configurations of the framework running on different GPU architectures. The
conclusion of these experiments is given in Chapter 7, which concludes the thesis and provides
an outlook to further work.

4

CHAPTER 2
Background

2.1 Video engineering

In this chapter, we explain common video coding and conversion techniques that are relevant to
the context of this thesis. We begin this chapter by describing the principal of perceptual coding,
which is fundamental to image coding of video. We then explain the process to reproduce images
of professionally captured video material and provide details of how to convert HD video to
computer-RGB space for processing. The concepts described in this chapter are largely based
on Poynton [26].

2.1.1 Perceptual coding

A picture element (pixel) of a digital image transports a property we intuitively call brightness,
i.e. a sensation of an area emitting more or less light. The correct technical terms for this
property are the following:

• Intensity: The physical quantity of radiant power into a particular direction.

• Radiance: Intensity per unit-projected area.

• Luminance: Radiance weighted by a sensitivity function that models the uneven response
of human vision to different wavelengths of light.

The coding of an image is said to be perceptually uniform if a small change in the coding
value is equally perceived across the full coding range. Human vision is only able to distinguish
two luminance values if their ratio exceeds 1.01, this is based on the Weber law.

Let us consider an 8-bit coding of image values with values ranging from 0 to 255. If each
code increment represented an increment in relative luminance, we would run into the so-called
code 100 problem (see Figure 2.1). This problem stems from the fact that at code 100, one
increment to 101 represents exactly the Weber fraction, i.e. the least-noticeable difference. That

5

LINEAR-LIGHT AND PERCEPTUAL UNIFORMITY CHAPTER 3 31

one sketched in Figure 3.2 in the margin; details will be
presented in Contrast sensitivity, on page 249. Ideally,
pixel values are placed at these just noticeable differ-
ence (JND) increments along the scale from reference
black to reference white.

The “code 100” problem and nonlinear image coding

Consider 8-bit pixel values proportional to luminance,
where code zero represents black, and the maximum
code value of 255 represents white, as in Figure 3.3
below. Code 100 lies at the point on the scale where
the ratio between adjacent luminance values is 1%:
Owing to the approximate 1% contrast threshold of
vision, the boundary between a region of code-100
samples and a region of code-101 samples is liable to
be visible.

As pixel value decreases below 100, the difference in
luminance between adjacent codes becomes increas-
ingly perceptible: At code 20, the ratio between adja-
cent luminance values is 5%. In a large area of smoothly

L L+∆L

LB

Figure 3.2 A contrast sensi-
tivity test pattern reveals
that a difference in lumi-
nance will be observed in
certain conditions when ∆L
exceeds about 1% of L. This
threshold is called a just-
noticeable difference (JND).

0

∆ = 1%100
101

20 ∆ = 5%21

∆ = 0.5%200
201

255

2.55 : 1

Figure 3.3 The “code 100”
problem with linear-light
coding is that for code levels
below 100 the steps between
code values have ratios larger
than the visual threshold: With
just 256 steps, some steps are
liable to be visible as banding.

0

∆ = 1%100
101

∆ = 0.025%4000
4001

4095

40.95 : 1

Figure 3.4 The “code 100”
problem is mitigated by using
more than 8 bits to represent
luminance. Here, 12 bits are
used, placing the top end of the
scale at 4095. However, the
majority of these 4096 codes
cannot be distinguished visually.

DIGITAL VIDEO AND HD ALGORITHMS AND INTERFACES 324

Figure 27.4 sketches the sRGB encoding function,
overlaid on the BT.709 encoding and CIE L* functions.

Transfer functions in SD

Historically, transfer functions for SD have been very
poorly specified. The FCC NTSC standard adopted in
1953 referred to a “transfer gradient (gamma expo-
nent) of 2.2.” It isn’t clear whether 2.2 was intended to
characterize the camera’s OECF or the display’s EOCF.
In any event, modern CRTs have power function laws
very close to 2.4! The FCC statement is widely inter-
preted to suggest that encoding should approximate
a power of 1⁄2.2; the reciprocal of 1⁄2.2, 0.45, appears in
modern standards such as BT.709. However, as I men-
tioned on page 321, BT.709’s effective overall curve is
very close to a square root. The FCC specification
should not be taken seriously: Use BT.709 for encoding.

Standards for 576i SD also have poorly specified
transfer functions. An “assumed display power func-
tion” of 2.8 is mentioned in EBUspecifications; some
people interpret this as suggesting an encoding expo-
nent of 1⁄2.8. However, the 2.8 value is unrealistically
high. In fact, European displays are comparable to
displays in other parts of the world, and encoding to
BT.709 is appropriate.

Surprisingly, no current standards specify viewing
conditions in the studio. Only in 2011 was a standard
adopted that specifies the transfer function of an ideal-

0

0.2

0

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
Tristimulus value, T (relative)

En
co

de
d

va
lu

e,
 V

’ (
no

rm
al

iz
ed

)

BT.709

sRGB

CIE L*

Figure 27.4 BT.709,
sRGB, and CIE L*
encoding functions
are compared. They
are all approximately
perceptually uniform;
however, they are not
sufficiently close to be
interchangeable.

Figure 2.1: On the left side we show a visualization of the code 100 problem. The ratio between
luminance values varies across the coding scale, which results in less coding efficiency and even
visual artifacts in darker regions. On the right side, we see the plotting of three image transfers
that relate to the human response curve of luminance. CIE L∗ denotes the colorimetric quantity
lightness, sRGB is largely used in computer imagery, and BT.709 is the standard for encoding
HD video. Both images are courtesy of Poynton [26].

means for all code values above, a single increment is not noticeable anymore, e.g. the increment
between 200 and 201 is 0.5

A solution to this problem is to apply a non-linear transfer on the original signal that is
adapted to the human response to luminance. This process is commonly called gamma correc-
tion.

The colorimetric model for the human response to luminance is defined by a quantity called
lightness, which is defined as the brightness of an area judged relative to the brightness of
a similarly illuminated area that appears to be white or highly transmitting [5]. Lightness is
denoted using the symbol L∗ and it is subject to a non-linear model that resembles the response
function of human vision, adapted to a certain lighting environment. However, most digital
imaging standards like sRGB or BT.709, use a power function to model this perceptual curve
(see Figure 2.1).

The conversion of image intensities to a perceptual scale allows a much more effective cod-
ing. In order to reproduce the original image values on a display, the perceptual coding has to
be reverted. The electron-gun of Cathode-ray-tube (CRT) monitors are subject to a response
function between input voltage and light intensity which coincidentally models the inverse of
the transfer function used for perceptual coding. Digital monitors do not use electron-guns and
therefore need to apply the decoding function using signal processors.

6

2.1.2 Image reproduction

While shooting a scene, a camera captures the scene luminance and encodes it to digital im-
ages using the opto-electrical-conversion-function (OECF). As discussed in the previous chap-
ter, gamma correction is performed by applying a power function using some fixed exponent in
order to efficiently store the captured luminance. At the reproduction of the captured scene, the
display applies an electro-optical-conversion-function (EOCF), which converts the image cod-
ing of the video into linear values used for displaying. We would intuitively expect the EOCF to
be the inverse of the OECF. In practice, however, this is not the case. There are two additional
factors that need to be weighted in:

• Scene tone alteration: The original scene is shot at surroundings of very high luminance
(e.g. a scene in daylight has a surround luminance of 30000 nits1). However, the display
on which the scene should be presented is usually located in a much dimmer environment,
e.g. in about 300 nits. Displaying the same spectra with less luminance results in the
so-called Hunt effect where the same colors look less colorful in a dimmer environment.
In order for the display to faithfully reproduce the impression of the originally shot scene,
the camera’s OECF is usually designed to apply a form of scene tone alteration, which
compensates for the Hunt effect. However, this results in a non-linear relationship of lumi-
nance captured at the scene and relative displayed luminance. E.g., the BT.709 standard
for HD video implies an end-to-end power function with an exponent of 1.2 (see Chapter
2.1.2.1). The EOCF is therefore not just the inverse of the OECF.

• Creative intent: In a real production, the camera’s OECF is usually tweaked to somehow
manipulate the captured colors as desired in the creative process. In addition to that,
post processing is performing color grading to achieve the desired look of a particular
production. The final approval of video is done on a studio reference display. In order for
any other display to faithfully reproduce the colors as approved by production, the EOCFs
involved in the process need to be known. In this scenario of content creation, the OECF is
therefore irrelevant, and we refer to our video data as being display-referred (as opposed
to scene-referred).

2.1.2.1 BT.709

The ITU recommendation BT.709 [16] is a standard that intends to define the parameters for the
HDTV display pipeline and programme exchange. It defines the transfer with an advertised ex-
ponent of 0.45 that is expected to be imposed at the camera (the OECF). Because the pure power
function would have a infinite slope at 0, which causes artifacts during encoding, the function
is split into a linear segment for low intensities and a power-segment for higher intensities (see
Figure 2.2). The BT.709 OECF transfer is defined as

OECF709 =

{
4.5T ; 0 ≤ T ≤ 0.018

1.099T 0.45 − 0.099; 0.018 ≤ T ≤ 1

1candela per square meter

7

GAMMA CHAPTER 27 321

slope of a pure power function (whose exponent is less
than unity) is infinite at zero. In a practical system such
as a video camera, in order to minimize noise in dark
regions of the picture it is necessary to limit the slope
(gain) of the function near black. BT.709 specifies
a slope of 4.5 below a tristimulus value of +0.018. The
pure power function segment of the curve is scaled and
offset to maintain function and tangent continuity at
the breakpoint.

The symbol T suggests tristimulus
value; the same equation applies to
R, G or B. The symbol V suggests
voltage, or video, or [code/pixel]
value. I write this unprimed.

Reference BT.709 encoding is as follows. The tristim-
ulus (linear light) component is denoted T, and the
resulting gamma-corrected video signal – one of R’, G’,
or B’ components – is denoted with a prime symbol,
V709. R, G, and B are processed through identical func-
tions to obtain R’, G’, and B’:

The reference BT.709 encoding equation includes an
exponent of 0.45. I call this the “advertised” exponent.
Some people describe BT.709 as having “gamma of
0.45”; broadcast video camera gamma controls are cali-
brated in terms comparable to this value. However, the
effect of the scale factor and offset terms make the
overall power function very similar to a square root
(γE≈0.5); the effective power function exponent – and
the value appropriate for picture rendering calcula-
tions – is 0.5.

0

0.2

0

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
Tristimulus value, T

V
id

eo
 s

ig
na

l,
V

Linear segment,
slope 4.5

Power function segment,
exponent 0.45

0.018

0.081

Figure 27.3 BT.709
OECF is standardized as
the reference mapping
from scene tristimulus to
video code in SD and
HD.

Eq 27.2V
T T

T T709 0 45

4 5 0 0 018

1 099 0 099 0 018 1
=

≤ <

− ≤ ≤

. ; .

. . ; ..

Figure 2.2: Image transfer function of BT.709-conforming video. For lower intensities, this
function uses a linear segment in order to avoid noise. Image courtesy of Poynton [26].

where T is the linear light quantity.

This linearized adaptation is effectively closer to a power function using an exponent of 0.5
than the advertised gamma of 0.45 (see Poynton [26]). Unfortunately, BT.709 did not define
the EOCF for the reference display that should be used when approving BT.709-conforming
material. As we have discussed in the previous chapter, this is important for display-referred
workflows in most of todays production scenarios. The recently approved BT.1886 standard [17]
fixes this problem, and defines the reference display to use a power exponent of 2.4. Using
BT.709’s effective OECF exponent of 0.5, we can now see, that the end-to-end power exponent,
from acquisition to display is 1.2. This is the implicitly defined rendering intent as we discussed
previously.

Besides the above transfer function, BT.709 also defines the components to calculate luma
(see Chapter 2.1.6). The color space of BT.709 is defined to use the same chromaticity primaries
as sRGB.

2.1.3 sRGB

The sRGB [13] transfer function (see Figure 2.1) assumes a much brighter displaying environ-
ment than BT.709 transfer, as would be the case for an average office environment. The sRGB
transfer is defined as

8

sRGB =

12.92T ; 0 ≤ T ≤ 0.0031308

1.055T

1

2.4 − 0.055; 0.0031308 ≤ T ≤ 1

The end-to-end power function is 1.1, i.e. much less than in BT.709. sRGB expects the
display to apply a 2.2 power function for decoding.

2.1.4 BT.709 Y’CbCr coding

Digital video is encoded using a single component for lightness (luma) and two other compo-
nents containing color information (chroma). One of the reasons for this type of coding is that
human vision is less sensitive to changes in color than in lightness. Chroma subsampling reduces
the spatial resolution of the chroma channels and takes advantage of this property (see Chapter
2.1.5).

The lightness component Y’ (luma) was often falsely referred to as luminance. However, as
opposed to luminance, the calculation of Y’CbCr is based on perceptually coded R’G’B’ triples,
i.e. gamma correction has already been applied 2. The reason for this is related to the historical
coincidence of the CRT display to naturally provide for the decoding function of the gamma-
corrected video signal. More details on this engineering practice is given by Poynton [26],
Chapter 10.

For BT.709-conforming video, luma is calculated as

709Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′ (2.1)

The CbCr channels are based on the the following differences:

Cb = B′ − Y ′ (2.2)

Cr = R′ = Y ′ (2.3)

Actual formulae for the calculation of Y’CbCr will be given in Chapter 2.1.6.

2.1.4.1 Studio swing

In consumer imaging, all available code values are used to represent valid colors, e.g. RGB
uses intensities from 0 to 255 in an 8-bit coding. This is called full swing coding. For pro-
fessional video content, reference black and white values are placed at offsets of the interface.
For example, in 8-bit coding, Y’ defines reference black at level 16 and reference white at level
235. In processing range, these values map to 0 and 1, respectively. These regions are called
foot- and headroom, the coding is referred to as studio swing coding. This extra coding space is
partly due to historical reasons of analog transmission. Today, with processing chains that are

2We refer to a perceptually coded quantity using the apostrophe ’ (e.g. R’G’B’), and to linearly coded values
without using the apostrophe (e.g. RGB).

9

purely digital, head- and footroom is for example used to conserve transients of digital filters
(e.g. undershoot and overshoot). The outermost interface values (0 and 255 in 8-bit coding)
are reserved, they must not be used for storing image data. The other values within the head-
and footroom regions, however, are allowed to be used as well. Values in the headroom are
sometimes referred to as superwhite and basically provides for extended dynamic range. It is
common practice in productions to use the headroom coding space for very bright highlights
of a scene. Unfortunately, some video processing tools always clip the head and footroom, and
thereby compromise the original material. Poynton therefore recommends to always keep values
in the head and footroom [36].

BT.709 Y’CbCr coding always uses studio swing. In an 8-bit coding system, Y’CbCr has
the following extent:

Y ′ = [1, 254] (2.4)

Reference black is at level 16, reference white at level 235. In 8-bit coding, CbCr values
have the extent of:

Cb,Cr = [16, 240] (2.5)

Chroma values are stored with an offset of 128, i.e. they are actually represented by the
range [−112, 112].

For 10-bit coding, the same interface levels of 8-bit coding are used with the two extra bits
appended as the least-significant bits, which provides for the extra precision.

2.1.5 Chroma subsampling

Because the visual acuity of human vision is less for color than for lightness, the chroma values
of the Y’CbCr coding are commonly resampled to a lower resolution in order to save bandwidth
during transmission. Figure 2.3 shows the 4:2:2 subsampling scheme for BT.601 (which is also
often applied to BT.709 video). Here, the vertical resolution is the same for luma and chroma, but
the horizontal resolution is half. The 4:2:2 subsampling schema is therefore a lossy compression
with a compression rate of 1.5:1. For this particular scheme, the chroma samples are sampled at
the same spatial location as the luma samples, they are cosited.

2.1.5.1 Reconstruction and decimation filters

The conversion from Y’CbCr 4:4:4 to 4:2:2 is a downsampling process of the chroma values to
to half of their horizontal sampling frequency. According to the sampling theorem, at a sam-
pling frequency of fs signals in the range of [DC, 0.5fs] can be reconstructed. Therefore, when
downsampling to half the resolution, only signals of frequencies in the range of [DC, 0.25fs]
can be reconstructed. Low-end systems simply drop alternating chroma samples when down-
sampling to 4:2:2. For signal between 0.25fs and 0.5fs this will cause aliasing, because the new
sampling is not able to represent these frequencies. Therefore, the aliasing frequencies need

10

DIGITAL VIDEO AND HD ALGORITHMS AND INTERFACES 124

Chroma subsampling

4:4:4 In Figure 12.1, the left-hand column sketches a 2×2
array of R’G’B’ pixels. (Think of these 2×2 arrays as
being overlaid on the display surface.) Prior to subsam-
pling, this sampling is denoted R’G’B’ 4:4:4. With 8 bits
per sample, this 2×2 array of R’G’B’ would consume
12 bytes. Each R’G’B’ triplet (pixel) can be losslessly
transformed (“matrixed”) into Y’CBCR, as shown in the
second column; this is denoted Y’CBCR 4:4:4.

In component digital video, data capacity is reduced
by subsampling CB and CR using one of three schemes.

4:2:2 Y’CBCR studio digital video according to BT.601 uses
4:2:2 sampling: CB and CR components are each
subsampled by a factor of 2 horizontally. CB and CR are
sampled together, coincident (cosited) with even-
numbered luma samples. The 12 bytes of R’G’B’ are
reduced to 8, effecting 1.5:1 lossy compression.

4:1:1 Certain digital video systems, such as 480i29.97
DV25, use 4:1:1 sampling, whereby CB and CR compo-
nents are each subsampled by a factor of 4 horizon-
tally, and cosited with every fourth luma sample. The
12 bytes of R’G’B’ are reduced to 6, effecting 2:1 lossy
compression.

Figure 12.1 Chroma subsampling. A 2×2 array of R’G’B’ pixels is matrixed into a luma component
Y’ and two colour difference components CB and CR. Colour detail is reduced by subsampling CB
and CR; providing full luma detail is maintained, no degradation is perceptible. In this sketch,
samples are shaded to indicate their spatial position and extent. In 4:2:2, in 4:1:1, and in 4:2:0
used in MPEG-2, CB and CR are cosited (positioned horizontally coincident with a luma sample).
In 4:2:0 used in JPEG/JFIF, H.261, and MPEG-1, CB and CR are sited interstitially (midway between
luma samples). In the 4:2:0 variant used in consumer 576i DV (not sketched here), CB and CR are
vertically sited in line-alternate fashion in each field (starting with a CR sample sited over the top
left luma sample.)

Y’0 Y’1
Y’2 Y’3

Y’0 Y’1
Y’2

CB0–1

CB2–3

CR0–1 CR0–3CR2–3

CB0–3

CR0–3

Y’3

Y’0 Y’1
Y’2 Y’3

CB0–3

CR0–3

Y’0 Y’1
Y’2 Y’3

Y’0 Y’1 Y’2 Y’3

CB0CB1

CB2CB3

CR0CR1

CR2CR3

CB4–7

CR4–7

Y’4 Y’5 Y’6 Y’7

CB0–3

R’0 R’1
R’2 R’3

G’0 G’1
G’2 G’3

B’0 B’1
B’2 B’3

 4:4:4 4:2:2
(BT.601)

4:2:0
(MPEG-2 fr)

4:1:1
(480i DV25; D-7)

4:2:0 (JPEG/JFIF,
H.261, MPEG-1)

 4:4:4 Y’CBCRR’G’B’

Figure 2.3: Y’CbCr 4:2:2 uses cosited chroma subsampling, i.e. the spatial location of the
chroma samples is the same as the location of the luma sample. Image courtesy of Poynton [26].

to be removed using a low-pass filter on the original chroma values. This is usually achieved
by applying a finite-impulse-response (FIR) filter on the original chroma values with a corner
frequency of about one quarter of the original sampling frequency. A very basic approach would
be a FIR filter with the components [0.25, 0.5, 0.25] (triangle filter), which results in a cosited
downsampling.

The upsampling from 4:2:2 subsampling to 4:4:4 also requires a reconstruction filter to be
applied. Similar to above, a simple duplication of neighboring pixels (nearest neighbor or box
filter) will cause aliasing. A better, although not optimal, approach is to average neighboring
chroma values (this is also a triangle filter, or linear interpolation).

The theoretical optimal filter for downsampling and reconstruction would be the sinc fil-
ter, which in the frequency domain is a box filter, i.e. providing the perfect frequency cut-off.
However, the unmodified sinc filter has an infinite frequency response, and can therefore not
be applied in reality. There are several methods to window the sinc filter in order to limit its
frequency response. Even then it is common to further manually tweak the filter coefficients for
better performance. However, this discussion is beyond the scope of this thesis. Poynton [26]
provides a very good overview of the theory of filtering and sampling in the context professional
video. Further reading is provided by Mitra and Kaiser [23], and Rorabaugh [27].

2.1.6 Converting between R’G’B’ and 10-bit BT.709 Y’CbCr

In the following, we summarize the formulas for converting back and forth between perceptually
coded R’G’B’, stored in floating point, and 10-bit Integer-encoded Y’CbCr. The source for these
calculation is described by Poynton [26].

11

For a perceptually coded R’G’B’ representation with its values in the unit range of [0, 1], we
can calculate the luma and chroma differences according to BT.709 as follows:

 709Y ′

B′ − 709Y ′

R′ − 709Y ′

 = 709M •

R′G′
B′

 (2.6)

where

709M =

 0.2126 0.7152 0.0722
−0.2126 −0.7152 0.9278
0.7874 −0.7152 −0.0722

 (2.7)

In order to limit the excursion of the resulting chroma values to unit extent in the range of
[−0.5, 0.5], we further scale the rows of matrix 709M by multiplying a scaling matrix:

S′ =

1 0 0

0
0.5

0.9278
0

0 0
0.5

0.7874

 (2.8)

709M ′ = S′ • 709M (2.9)

The resulting matrix 709M ′ now converts R’G’B’ to Y’CbCr in the range of
(Y ′, Cb, Cr) = [[0, 1]; [−0.5, 0.5]; [−0.5, 0.5]]. In order to map this range into the extent of
[0, 876]; [0, 896]; [0, 896] for 10-bit unsigned integer coding, we add another scaling matrix:

876S =

876 0 0
0 896 0
0 0 896

 (2.10)

709
876M

′ = 876S • 709M ′ (2.11)

We now need to apply the interface offset for luma and chroma values, and finally calculate
the 10-bit Y’CbCr coding as follows:

709
876Y

′

Cb
Cr

 =

 64
512
512

+ 709
876M

′ •

R′G′
B′

 (2.12)

In order to reconstruct R’G’B’ from BT.709 video, we apply the inverse of the above func-
tion:

12

R′G′
B′

 = 709
876M

′−1 ∗

709
876Y

′

Cb
Cr

−
 64
512
512

 (2.13)

R’G’B’ values that are reconstructed from an Y’CbCr encoding can contain values outside
the unit range. While negative R’G’B’ values are not representing any real colors, a later con-
version back to Y’CbCr is improved in quality if those values are kept during the process, e.g.
by using a floating-point format for storing R’G’B’.

2.1.7 Mixing sRGB with BT.709 content

A typical scenario of rendering broadcast graphics is to overlay sRGB images on top of BT.709
video. In the previous chapter, we showed how to convert 10-bit BT.709 to R’G’B’. We now have
to decide on a common coding space in which we can blend the sRGB and BT.709-originating
materials. BT.709 and sRGB are defined to use the same chromaticity primaries, but their trans-
fer function (gamma value) is defined differently.

A lot of video processing applications simply blend in perceptual R’G’B’ space, ignoring
the fact that this space is non-linear and that linear operations like blending can result in different
results than expected.

BT.709/BT.1886 defines that the EOCF is a power function with an exponent of 2.4. As pre-
sented by Poynton, this function, however, assumes a dimly lit reference viewing environment
of about 100 nits [36]. Under brighter viewing conditions, BT.709 should be displayed using
a power function of 2.2, like sRGB. When mixing sRGB with BT.709, it is therefore sensible
to apply the 2.2 power function of sRGB to both media. This is common in high-quality video
rendering applications, and the recommended practice for this situation [36].

2.2 Hardware

2.2.1 Graphics processing units

The graphics processing unit (GPU) is a processor that is optimized to process data-parallel
tasks using a large number of concurrently running cores. In most applications, a GPU is used
to render graphics and to process image-like data. Rendering is achieved by the hardware-based
graphics pipeline of a GPU. In several parallelized stages, this pipeline performs the conversion
of abstract geometry data like triangles into actual pixel values on screen. Certain stages are
programmable using so-called shader programs. These allow a software program to influence
the overall algorithm of the pipeline. For example, a vertex shader can be used to define where
input geometry is located in space, and a fragment shader can be used to calculate lighting
equations for the pixels that are covered by the rendered geometry. A complete background on
the graphics pipeline and the applied algorithms is given by Shirley and Marschner [30].

Today, GPUs contain a large number of streaming multiprocessors that are usually based
on a wide SIMD architecture (single-instruction-multiple-data) architecture. These processors
can be used to process other data-parallel computing problems than rendering graphics. There

13

is a strong trend towards solving generic computing problems on such streaming processors.
Programming environments like CUDA [33] or OpenCL [24] exploit the architecture of a GPU
for generic programming tasks. A tutorial and review of CUDA programming is given by Kirk
[19]. An overview of OpenCL programming is given by Gaster [7].

In most currently available systems, high-performance GPUs are contained on a discrete
graphics board, using dedicated video memory. In order for the GPU to process data, a DMA
controller copies the data from main memory to the GPU’s video memory over the PCI-Express
(PCIe) bus. This bus is divided into lanes which can transfer data between two endpoints si-
multaneously (full-duplex). A PCIe slot is able to use multiple lanes at the same time, e.g. for
graphics devices that require high-speed data transfers, 16 lanes are usually used. The band-
width of a lane is calculated using transactions per second. Each transaction physically transfer
10 bits for one byte (8 bits) of actual data (encoding overhead). The PCIe 2.0 standard allows
5 Gigatransactions per seconds (GT/s) per lane. This results in a theoretical bandwidth of 500
MB/s for a single lane, full-duplex. A graphics device that is connected using a PCIe 2 slot
using 16 lanes is therefore able to reach a theoretical bandwidth of 8 GB/s. In practice, a peak
bandwidth of about 6.5 GB/s can be reached.

Another current trend in GPU hardware design is to engineer GPUs on the same silicon
package as the CPU. For example, the Intel Haswell generation of CPUs provides a configuration
with an accompanied GPU that uses on-chip embedded DRAM of 128 MB. This memory can
be accessed by both the CPU and GPU, which eliminates the need to transfer data from main
memory to video memory for GPGPU-based processing. This also allows for simpler programs
using stream-processing languages like OpenCL. AMD offers similar hardware using their APU-
line of products.

2.2.2 Video interfaces

The majority of professional video equipment transports video streams over the serial digital
interface (SDI). SDI uses a coaxial cable and is widely used in existing broadcast studio in-
frastructure. The newest ratified standard of this interface, 3G-SDI [31] provides data rates of
2.970 Gbit/s (~370 MB/s). This relatively little bandwidth requires to link together multiple SDI
channels in order to operate at recent 4K-like resolutions. Blackmagic Design introduced a new
version, 6G-SDI that allows to transport 4K in a single cable. This version yet has to be ratified
by the SMPTE organization.

In order for a software program to access SDI-based equipment, several hardware vendors
provide PCIe-connected devices that decode/encode SDI and provide the application with raw
frame buffers. Most vendor SDKs of such devices provide frames in main memory, which
could then be uploaded to the GPU for graphics rendering. In the same way, video frames
have to be downloaded in order to be played out by the SDI-connecting device. The efficient
implementation of such transfer is difficult. This thesis describes one solution to this problem.
AMD and NVIDIA both cooperated with SDI-device manufacturers like AJA or Blackmagic
Design to simplify this problem for software application programmers. Instead of the software
having to explicitly manage the up- and download of video frames to the GPU, the video card’s
driver employs low-level operations of the graphics driver to transfer the video frame to the GPU

14

on behalf of the software application. NVIDIA calls their solution GPUDirect for Video [34],
AMD provides a similar solution with the SDI Link3 line of products.

SDI requires one or more dedicated cables per video stream. For large broadcasting studios,
this results in high maintenance and complex logistics of cabling in order to connect routers,
mixers, monitors, and so forth. A recent trend in video technology is to replace these legacy
interface with networking-based technologies. For example, Audio-video bridging4 is a standard
in development that uses small extensions to layer 2 of the OSI networking stack in order to
enable guaranteed latency for transfers of uncompressed video.

2.3 OpenGL

OpenGL provides software programs with an application programming interface (API) to graph-
ics hardware in order to perform graphics-oriented tasks. The development of the OpenGL API
is closely tied to the evolution of GPUs. GPUs evolved from specialized, purely graphics-
oriented hardware to highly-programmable streaming processors. Over the last few years, the
OpenGL API has similarly abandoned its original fixed-function programming model and re-
placed it with a shader-centric approach. Shaders are written in the GL shading language
(GLSL) [18]. They are programs which are executed by the GPU’s programmable hardware
stages. They define how to process the data that is transferred through the graphics pipeline
of the device. A typical OpenGL program uploads geometry data to the GPU, defines the ge-
ometry’s position and orientation in space using a vertex shader, and defines the lighting and
appearance of the geometry’s visible surface in the fragment shader. These shaders are called
by the GPUs rasterizer. The rasterizer processes the geometry and calculates which pixels on the
screen are covered by the rendered geometry. A large part of the rasterizer is still implemented
as fixed-function stages on the GPU. The viewport defines a rectangular portion of the screen
which is backed by a framebuffer. By default, this area is the target of the drawing operation,
and the state defining the viewport and framebuffer influences the execution of the rasterizer.

GLSL shaders are able to sample image data from textures and use these samples for further
calculation. GPUs provide powerful sampling units that filter image data on behalf of the ren-
dering application. These texturing units are usually also implemented by dedicated hardware
units on the GPU.

In order to draw into an image rather than the screen itself, OpenGL allows to use an off-
screen framebuffer which has a texture attached. The drawing operation is then writing into this
texture. Shaders of following drawing operations able to read from this texture again.

A significant change in the evolution of OpenGL was to support the highly-programmable
graphics pipeline of modern GPUs. This trend continued, and today in OpenGL 4 we have four
programmable domains of the graphics pipeline: vertex, geometry, tesselation and fragment
shaders. All of these stages are part of a graphics pipeline that somehow calculates pixel colors
from more or less complex geometry. With the recent push to GPGPU-oriented programming
environments, OpenGL also provided simpler interoperation with the OpenCL language. For

3http://www.amd.com/sdi-link
4http://www.ieee802.org/1/pages/avbridges.html

15

instance, OpenGL could be used to render a geometric scene into a texture. This texture is then
read by an OpenCL kernel for applying advanced image-processing effects.

However, the OpenCL API is complex and interoperability with OpenCL-based executions
also involves a certain cost in performance when synchronizing access to shared resources. In
order to simplify the execution of generic computations related to graphics, OpenGL version
4.3 recently added a completely new shading stage, called compute shaders. This stage is com-
pletely independent of any pre-defined graphics-oriented semantics. However, compute shaders
are able to read and modify OpenGL buffers and images. They are therefore able to modify data
which are the input or output of the graphics pipeline execution. In comparison to OpenCL,
compute shaders have the advantage of being written in GLSL. GLSL provides for more built-in
functions, and existing GLSL sources (e.g. utility functions) can be re-used in compute shaders.

In the following, we are briefly summarizing the OpenGL features that are particularly rel-
evant to our context of video processing. These features are going to be used in the implemen-
tation of our prototype video processing framework. We start with OpenGL 3.3 and then move
onwards to OpenGL 4.3. A lot of features are not mentioned in this summary. For details about
the OpenGL API we refer the reader to the official OpenGL and GLSL specifications [18, 29].
We always refer to the core profile of a specification, i.e. no legacy features are used.

2.3.1 Version 3.3

• Framebuffer objects (FBOs) for off-screen rendering are supported by default. Image
processing algorithms can be executed by rendering a quad into an FBO having a tex-
ture attached. The fragment shader that is active during this rendering defines the image
processing algorithm.

• Blitting operations enable fast copying between subregions of framebuffers. This is useful
when an FBO is used for rendering into a texture, and when the result of this operation
should be made visible on the screen’s framebuffer.

• Floating-point textures are supported as a core feature. This is useful when high-precision
video is processed and to avoid the clipping and quantization of integer rendering formats.
Besides full-precision 32-bit floating-point, half-precision 16-bit floating-point formats
are supported as well.

• Timer queries allow to measure the GPU-side execution times for executing commands
originating from OpenGL. This can be used, for example, to accurately measure the over-
all execution time of a single render pass, without having to rely on external profiling
tools. A good tutorial for this feature and an example use case is provided by Lux and
Fuentes [6, 22].

• Fence sync objects are provided by OpenGL in order to synchronize the execution of
OpenGL commands. This can be used to synchronize data access for OpenGL commands
that are executed on multiple OpenGL contexts.

• Integer textures allow a shader to fetch the original integer coding of a texture, instead of
the normalized range of [0, 1]. For video processing applications, this is useful when the

16

original Y’CbCr coding needs to be manually converted to RGB. This is often necessary,
because video-related encoding standards like BT.709 (see Chapter 2.1.4) are not natively
supported by OpenGL (as opposed to 8-bit sRGB-encoded images). OpenGL 3.3 also
provides the RGB10_A2UI integer format which allocates 10 bits for three components
packed into a single 32-bit word. This can be useful for representing 10-bit coded BT.709
video.

• Non-power-of-two-textures: This allows the user to define common 2D textures with
dimensions that are not a power of two. Previously, this required the use of a specialized
texture variant called rectangle textures. As GLSL 330 (the GLSL version defined by the
OpenGL 3.3 specification) allows for texel-accurate fetching of any texture using integer
coordinates with the command texelFetch, we can now use textures in the native
dimensions of the video data without having to rely on specialized rectangular textures.

2.3.2 Version 4.0

• GLSL 4.0 introduces built-in operations for integer bitfield-manipulations. It is common
for 10-bit video coding, to store several 10-bit components in a single 32-bit word. New
GLSL commands like bitfieldInsert and bitfieldExtract allow us to to ex-
tract these components directly in the shader from a sample of a R32_UI texture. This
approach can be more efficient than using the format RGB10_A2UI to let OpenGL handle
the extraction of the 10-bit words.

As we described in Chapters 2.1.4 and 2.1.6, the conversion between Y’CbCr-encoded video
and RGB requires processing of the actual code words, e.g. applying the offset of the coding
interface to accommodate head- and footroom. The ability of GLSL shaders (and therefore
the ability of the GPU) to handle high-precision integer types natively is therefore crucial for
accurate processing of video data.

2.3.3 Version 4.1

• OpenGL debug output: Instead of polling the GL for errors manually (using
glGetError), this extension allows the host program to setup a callback that is noti-
fied when an error occurred. The user of OpenGL is able to specify whether this callback
should happen asynchronously to the OpenGL API or synchronously. The latter allows
to set a breakpoint directly in the callback function which then shows the stack trace into
the program that caused the OpenGL error notification. The debug output extension also
allows OpenGL drivers to provide performance hints, e.g. inefficient use of buffers, etc.
This feature is crucial for modern OpenGL development and has been used extensively
during the development of our prototype.

• Improved interoperability with OpenCL: While not used by our prototype, it is worth
mentioning, that OpenGL 4.1 now allows to create an OpenGL sync object from an
OpenCL sync object for efficient sharing of buffers.

17

2.3.4 Version 4.2

• Image load/store operations enable shaders to randomly read and write textures. This
is a major change in the programming patterns for image processing shaders. They are
not dependent anymore on the fragment shader’s output to be written to an FBO-attached
texture, but they can directly modify a texture’s content. Most importantly, a single shader
invocation is now able to write to multiple texture locations at the same time. This feature
is also a step into the direction of compute shaders, which will be available in later versions
of OpenGL. Image load and store operations require the shaders and host programs to
explicitly synchronize read and write access, i.e. barriers need to be insert appropriately
in order to make memory operations visible to other shader invocations and to synchronize
with the client execution of OpenGL.

• Immutable texture storage allows the host program to specify that a texture’s layout and
type will not change during its lifetime (the actual content might change, though). For
such textures, the OpenGL driver is able to improve their performance, because complete-
ness checks are not necessary anymore.

• Map-buffer alignment ensures that a host-mapped pointer to OpenGL buffers is appro-
priately aligned to the specified multiples of bytes. This is required by certain instruction-
sets of CPUs to operate efficiently (e.g. Intel’s AVX instruction set).

2.3.5 Version 4.3

• Compute shaders provide a new independent processing stage to the OpenGL pipeline.
This stage works independently of the rasterization pipeline, i.e. it is the only shader that
is executed individually. Compute shaders are written using GLSL and like other shaders
they are able to sample textures and randomly read/write texture layers via the previously
described image load/store feature of OpenGL 4.2. While this already enables a large
amount of image processing scenarios, OpenGL 4.3 also added a new block-buffer type
called storage buffer, which allows a shader to modify a large amount of data which are
not textures.

• New internal format queries enable the host program to assert whether the parameters
of the format for OpenGL texture upload and download commands are the ones that are
optimal for the the currently used OpenGL driver. For example, for some OpenGL internal
RGBA formats, the preferred data layout could be BGRA, i.e. if this format is used by
the host program to upload data to a texture, no format conversion needs to be done on
the side of the driver before uploading. Before using this extension, this information was
communicated informally, and often had to be guessed.

• Framebuffer objects without attachment: For any OpenGL drawing operation, a frame-
buffer has to be present. When rendering off screen, the use of a framebuffer object is
mandatory. In GL 4.2, it was mandatory for a framebuffer to have a color buffer attached
as the target of a drawing operation. However, because the image-store feature of GL 4.2
could result in fragment shaders that only write into images directly and do not return any

18

actual fragment output, the allocation and writing to an FBO’s color attachment would be
a waste of bandwidth and texture memory. Therefore, OpenGL 4.3 allows to use an FBO
without any attached color buffer, which saves bandwidth and texture memory.

2.3.6 Transferring texture data

OpenGL uses the model of a client-server architecture. The client issues commands which are
executed by the server. The server is able to use a different processor, memory space, or even a
different machine for executing these commands. In most OpenGL applications, the client-side
maps to the software program issuing OpenGL commands, i.e. client-memory is interpreted as
CPU-accessible main memory, and the server-side maps to the GPU and GPU-accessible video
memory.

In video processing applications, image data need to be transferred repeatedly from main
memory to the GPU’s video memory, and vice-versa. In the OpenGL model, this requires a con-
stant streaming between the client’s memory space and the server’s memory space. A simplistic
approach would be to constantly update the image data of texture objects with the pointer of a
newly acquired frame:

1. Acquire new image from video stream.

2. For an existing OpenGL texture, command the OpenGL to update its content using the
client-side memory location of the new image using glTexSubImage2D.

However, this method is not very efficient, because of the following reasons:

1. The update of the texture stalls the program execution, because a direct data update of a
texture is a time-consuming task.

2. OpenGL drivers usually implement a pipeline model between client and server exe-
cutions, i.e., when the client issues OpenGL commands, they are buffered internally
and executed at a later time in larger batches on the GPU. The above version of using
glTexSubImage2D stalls the internal pipeline, because the server-side upload needs to
be finished when the client-side call returns, i.e. no OpenGL commands can be buffered
in between.

The performance of the above scenario does not meet the requirements of high-performance
video processing scenario.

A better way is to take advantage of OpenGL buffers. Such buffers represent a server-side
data store that can be allocated, destroyed, read and modified by the client. In order for the client
to read and write to this storage, the buffer first needs to map its server-storage to a client-side
memory location. Once the client is done with its reading or writing of this memory region, it has
to unmap the buffer again. The actual transfer of client-side memory to server-side memory is
transparent to the user of OpenGL. The OpenGL implementation decides on how to map/unmap
the buffers and when to actually transfer the data between client and server.

19

In order to transfer pixel data of images (i.e. video frames), we use pixel buffer object
(PBOs). These buffers can be used as the input to a texture update. For example, in order to
upload a frame we can now do the following:

1. Acquire new image from video stream.

2. Map an existing pixel buffer object (this buffer has at least the size of a single video
frame).

3. Copy the video image into the mapped pixel buffer object.

4. Unmap the buffer.

5. Command the OpenGL to update the content of an existing texture using the server-side
memory of the previously used PBO.

This approach is much more efficient, because the data source for the texture update is now
managed by OpenGL. In the previous version, OpenGL had to make sure that the texture update
is finished when glTexSubImage2D returns, because the host-side memory might be gone
soon. In this version, the update is based on OpenGL-managed memory, therefore the call
to update the texture can return immediately and the actual texture update can be done in the
background.

For texture download, a similar approach can be used. We command the transfer of a tex-
ture’s content into a PBO, map the PBO to client memory and copy this memory to our destina-
tion image.

In order for this approach to be really efficient, the software program needs to exploit the
client-asynchronous texture updates. I.e., if a texture is used in a rendering operation directly
after commanding the texture update on the basis of a PBO, the OpenGL execution again has
to wait for this update to be finished. Instead, the program could use two PBOs to interleave
updates with rendering operations. For example, while the current frame’s PBO is used for a
texture update, the previous frame’s texture (which is already updated) is used for rendering.

The above description is only a brief summary of the basic principles of PBOs. In practice,
there are a lot of other details to consider in order to reach optimal performance. These con-
siderations also vary across different OpenGL implementations, which makes efficient buffer
transfers a very difficult part of the OpenGL API. A good overview on this topic is given by the
official OpenGL wiki article on pixel transfers 5. A thorough review of OpenGL buffer transfer
techniques is given by Hrabacek and Massermann [11].

2.3.7 Vendor-specific optimizations

2.3.7.1 NVIDIA asynchronous textures transfers

By default, PBO-based pixel transfer are only asynchronous to client-execution of their OpenGL
commands. When the transfer to and from video memory is actually executed, the GPU (server-
side) is not able to execute any other commands. NVIDIA graphics boards are equipped with

5http://www.opengl.org/wiki/Pixel_Transfer

20

additional DMA controllers, which can perform the GPU-side transfer asynchronously to other
rendering operations. This allows for an overlap of transfer and rendering. The NVIDIA pro-
fessional line of products is equipped with an additional DMA unit, hence upload, render and
download can be overlapped. This thesis implements this approach and summarize the actual
performance benefits in Chapter 6.

The asynchronous transfers with NVIDIA’s DMA controllers is not enabled by a conven-
tional OpenGL approach. For the driver to enable the overlapped transfers, the OpenGL appli-
cation needs to use multiple OpenGL contexts which are executed on multiple threads. OpenGL
commands between multiple contexts need to be synchronized explicitly. This is done by using
the previously mentioned OpenGL fence sync objects.

Asynchronous texture transfers, as enabled by NVIDIA hardware, are described by
Venkataraman [35].

2.3.7.2 AMD pinned memory

When data is transferred from main memory to video memory over the PCIe bus, it needs to
reside in a so-called pinned region of memory. The term pinned refers to the property of memory
residing in actual physical memory space as opposed to pageable memory regions which are
allowed to be swapped in and out of the operating systems memory page-file on disk. Efficient
PCIe transfers need to operate on pinned memory.

PBOs are either in a mapped or unmapped state. The client is only able to use a PBO when
it is mapped, the server is only able to use PBOs in an unmapped state. A client-mapping is
likely to point to pinned memory, but there is no guarantee. If it is not, the OpenGL driver needs
to internally copy the client-mapped memory to pinned memory before transfering the data over
the PCIe bus. Between multiple mappings of a buffer, the OpenGL implementation can also
decide to use different client-side memory regions.

AMD provides an OpenGL extension which alleviates this problem by allowing the client to
declare a memory region as pinned, and by allowing the client to use this memory as the backing
storage for an OpenGL PBO. This has the following consequences:

• Mapping/Unmapping of a PBO using pinned memory as backing storage is not necessary
anymore, because the client-side pointer is persistent.

• The driver does not need to internally copy data to pinned memory regions, because the
used memory location is already pinned.

• The client program needs to manually synchronize the OpenGL driver when reading/writ-
ing to the pinned-memory backing of a pixel buffer object.

2.3.7.3 OpenGL 4.4 buffer storage

The recent release of OpenGL 4.4 introduced new approaches to dealing with buffer objects.
First, a persistent client-side mapping, similar to AMD’s pinned memory extension, is now
available to any application using OpenGL 4.4. Second, it is now possible to explicitly specify
whether a buffer’s storage should favor client-side memory, or server-side memory. This, in

21

combination with other flags during creation, enables the use of memory regions which are
accessible to both CPU and GPU. AMD’s APU-line of processors, for example, provide for
such shared memory, which eliminates the need for client-to-server transfers over the PCIe bus.

2.4 Related software

Several commercial broadcasting products provide integrated playout and broadcasting graphics
using commodity hardware. Examples are ToolsOnAir’s just:live6, Softron’s OnTheAir prod-
ucts7 or Playbox’s playout products8. CasparCG9 is a popular open-source playout solution,
providing graphics as well.

There are several open-source media processing frameworks. One of the most-used media
libraries is libav10, which allows to build complex media graphs with generic processing facil-
ities. While most processing is based on CPU-based algorithms, OpenCL support has recently
been added as well. A recent library, called upipe11, provides a pipelined software model to
process media data asynchronously on a computer. This library builds partly on libav for some
transcoding and processing modules.

6http://www.toolsonair.com
7http://www.softron.tv
8https://playbox.tv
9http://www.casparcg.com

10http://libav.org
11http://upipe.org

22

CHAPTER 3
Design

This chapter describes the design of the FrameBender video processing framework. The goal
of the framework is to implement a highly parallelized video processing pipeline. Developing
concurrent programs that are both efficient and safe is a difficult task. In Chapter 3.1, we describe
a software model that helps to address this problem in the context of a video processing pipeline.
This model is based on the pipeline pattern, which enables our prototype to split the overall task
of video processing into several stages, which can be executed concurrently. In Chapter 3.2,
we then describe a specific video-processing algorithm that we use as our target scenario. It is
implemented using the previously described software model. We finally describe the high-level
application FrameBender in Chapter 3.3, which allows a user to execute the pipeline on actual
video sequences and to collect data of its execution.

3.1 Pipeline model

In order to efficiently execute video processing, different hardware units in our system need to
perform tasks of this algorithm in parallel. This can be done by letting the CPU, DMA controllers
and GPU execute these tasks concurrently (see Figure 3.1). The pipeline pattern is a commonly
used software model that allows parallelizing subsequent tasks of a larger processing algorithm
like ours. Even though existing hardware architectures only allow parallelizing certain stages
(see Chapter 4.3), it is beneficial to use a software model that in theory enables the parallel
execution of any processing step. In the following we are going to describe the pipeline model
that has been used for the implementation of our framework.

3.1.1 Stage

In our framework, a stage represents a single element of a generalized pipeline (see Figure 3.2).
A stage executes an individual task, and several stages can be executed in parallel. The flow
of video frames between stages is handled by FIFO queues. The pipeline processes data in
order, which is necessary to keep the ordering of the frames for the processed video. Depending

23

Playout software

Main memory Video memory

Video input

CPU

PCI bus

GPU

Video output

DMA controller

1. Acquire

2. Upload
3. Render

4. Download

5. Deliver

Figure 3.1: This diagram shows the components of a typical playout process using commodity
hardware. The playout software first acquires a video frame from the video input module, which
is stored in main memory and processed by the CPU. The DMA controller then uploads the video
frame to the GPU’s video memory via the PCI bus. The GPU then renders broadcast graphics on
top of the original image. After rendering, the DMA controller downloads the frame from video
memory to main memory. Finally, the CPU delivers the video frame to video output component.
In order to optimize this process, the hardware units involved need to execute concurrently.

ThreadThread Thread

ProducerStage ProcessingStage ConsumerStage

FIFO FIFO

Frame token

Figure 3.2: High-level concept of pipeline stages.

on whether input data, output data or both are required by a stage, we distinguish between
ProducerStages, ConsumerStages and ProcessingStages.

In order to keep the stage executions thread-safe, the execution of a stage’s task should
not have any side-effects other than an input token to be consumed from the input queue, and
an output token to be added to the output queue. If this can be ensured, then thread-safety
of the stage executions can be guaranteed by making the FIFO queues themselves thread-safe.
Otherwise, explicit locking would have to be performed by the task implementation. This is not
only prone to errors, but can also result in worse performance when one execution has to wait
for a lock to be released by another execution. Chapter 4.1.1 describes a lockless thread-safe
FIFO implementation as it is used in the FrameBender framework.

The basic design shown in Figure 3.2 already allows us to parallelize tasks for a data flow
into a single direction. However, for the tokens of the queues, we would like to cycle over a fixed

24

set of elements. Tokens of the same type should be sent back and forth between stage executions.
This allows the stages to re-use data tokens of limited resources (e.g., regions of video memory).
We model this feature by adding another FIFO which transports tokens from a stage back to the
previous stage (see Figure 3.3). We now distinguish between data flow that goes downstream
(from left to right in Fig. 3.3) and data flow that goes upstream (from right to left in Fig. 3.3).
Tokens can now be passed in both directions and re-used between stage executions. While this
semantic of a pool of re-usable tokens could be modeled by the tokens themselves, e.g., using a
hypothetical BufferToken class, there are specific reasons why we chose to model this explicitly
by adding upstream data flow semantics:

• The upstream model allows us to be more generic about the data type that is transferred
via the queue. A hypothetical BufferToken class would already assume certain semantics
(e.g., allocation/deallocation, locking/unlocking, etc). Our generic two-way communica-
tion pattern allows us to use any type of token. For example, if a stage fails to execute
a task, it is able to attach an error state to the upstream token which is sent back to its
previous stage. This would not really fit into the model of a strictly buffer-related token
type.

• Tokens that flow upstream are able to have different state than those that flow downstream.
This will be necessary, for example, when performing a complex two-way synchronization
as it is shown in Figure 4.7 of Chapter 4.3.

• For some stages of our implementation, it will be necessary not only to cycle tokens
between two stages, but over a range of stages where each execution changes the down-
stream and upstream state (see Figure 4.3 of Chapter 4.2). This requires the functionality
of explicitly passing these tokens to the previous stage.

• A separate queue-based backwards communication path allows us to more strictly adhere
to the rule of not performing any other state changes than addition and removal of queue
tokens during stage execution. Downstream tokens can be thought of as the input param-
eter to the execution of a stage’s task. Upstream tokens can be considered as the return
value to this execution, which is being processed in a lazy way by the originating stage,
i.e. the caller.

3.1.2 Simplified model of the video processing pipeline

To understand the benefits of our pipeline stage design, let us look at the execution of a sim-
plified version of this framework’s video processing application (see Figure 3.4). In this simple
case, we have one producer stage (In) that acquires a video frame (e.g. from a video card), one
processing stage (Render) that performs rendering from one source frame into one destination
frame, and finally we have a consumer stage (Out) that outputs the result of the rendering op-
eration (e.g. back to a video card). Data tokens represent video frames. Let us assume that
memory resources are limited and that allocation and deallocation of such frame tokens should
be avoided during execution of the rendering operations. We pre-allocate a limited set of tokens

25

Input Output

Downstream

Upstream

Task

ProducerStage

Task Task

ConsumerStageProcessingStage

A

B C

D

Figure 3.3: Using two bounded queues per stream direction for two-way communication. In
order for the ProcessingStage to execute its task, an output token has to be fetched from the
upstream output queue (A) and an input token has to be fetched from its downstream input queue
(B). After execution, the output token holds the result and is added to the downstream output
queue (C). The input token is not needed anymore and is added back to the upstream input queue
(D). If processing had failed, this token could carry an error state, which is eventually read by
the ProducerStage when it is fetched from the ProducerStage’s upstream output queue (D).

before the execution of the algorithm. In our example shown in Figure 3.4, we pre-allocate data
tokens 1, 2 to be used by stage In as output and by stage Render as input, and we pre-allocate
data tokens A, B to be used by stage Render as output and by stage Out as input tokens.

In this example, each stage runs its own thread and all three stages can execute in parallel.
Figure 3.4 shows the data flow of rendering three consecutive frames. Before start, at t = 0, no
stage is executing, both upstream queues contain two frame tokens. After starting the pipeline
at t = 1, stage In acquires the first video frame and writes it into token 1, the other stages are
still waiting for a frame to arrive. Once the input stage is done, it puts frame token 1, which
now contains the first actual video frame, onto the input stages’ output downstream queue. This
is shown at t = 1.5 in Figure 3.4. However, stage Render executes as soon as an input token
is available to it, so the state shown at t = 1.5 only exists for a very short time. At t = 2, the
render stage reads token 1 from its input downstream queue and reads token A from its upstream
output queue. This stage is now rendering into frame token A using token 1 as the input frame.
At the same time, the next frame is acquired by stage In and written into token 2. Once the
rendering operation and the second frame input operation are finished at t = 2.5, In and Render
put their output tokens onto their respective downstream output queues. At this time, the render
stage also puts its previous input token 1 onto its upstream input queue, so the next execution
of stage In can use it as its again. In the next step, at t = 3, the first finished frame is now
available to stage Out: Token A is fetched from stage Out’s downstream input queue and will be
written to the output. At the same time, the second frame, now held by token 2 is rendered by
stage Render into frame token B, and the third frame is acquired by stage In, now again written
to token 1. At this time, the pipeline is fully-loaded, i.e. stage Out outputs frame n at the same

26

time as stage Render renders frame n − 1 while stage In acquires frame n − 2 from input. In
the example given in Figure 3.4, the third frame is our last frame, so from t = 4 onwards, the
input stage has nothing to do anymore, and finally, at t = 6, all three frames were processed and
written to the output.

Figure 3.5 shows the runtime chart of this example’s parallelized execution compared with
serial execution of the same algorithm. It is obvious that the parallel execution of the three
stages results in a much shorter time of execution. The example that was given here only shows
a very simplified model of the implemented pipeline, but it demonstrates the overall design of
the pipeline stages and how the data-flow between stages is established in principle. Chapter
4.1 provides a complete graph of the pipeline stages that are implemented by the FrameBender
video processing application.

3.1.3 Timing properties of the video processing pipeline

Figure 3.6 shows a generic pipeline with N stages executed in parallel. Let us assume that
stage s1 represent frame input, and that the final stage sn represents frame output, everything
in-between is a generic video-processing task.

Let ti be the time required to execute the stage si, and let M be the total number of frames
to process. Executing the stages serially would result in a total execution time Ts of

Ts =M ∗
N∑
i=1

ti (3.1)

Let us assume that the number of frames M to process is much larger than the number of
stagesN of the pipeline, which is usually the case. Then the ramp-up and ramp-down phases for
parallel execution as shown in Figure 3.6 represent only a negligible amount of time. Therefore,
if all stages si are executed in parallel, we can define the amortized total execution time Tp of
processing M frames as

Tp ≈M ∗ max
1≤i≤N

ti | N �M (3.2)

It is important to note that because of the data dependencies between the stages, the longest
executing stage will dominate the overall execution time. For example, if s1 has an execution
time of t1 then the overall execution will be at least M ∗ t1, even if other stages take a shorter
amount of time to execute.

If the execution time for each stage is the same, i.e.

ti = d | i = 1..N (3.3)

then the serialized execution time Ts of the pipeline is about N times larger than the paral-
lelized execution time Tp:

27

Tp ≈
Ts
N

(3.4)

In other words, the theoretical best-case performance improvement of parallelizing the exe-
cution of pipeline stages is N .

3.1.4 Live playback constraints

Until now, we have assumed that each stage si has a constant execution time of ti. In reality, the
execution time is likely to vary between executions. We therefore define the following function:

S(i, j) (3.5)

represents the execution time of stage i when processing the jth frame. Let δ be the interval
in seconds of subsequent frames of a video system, then δ is defined as

δ = v−1r (3.6)

where vr is the video frame rate in Hz (e.g. 25 Hz for HDTV in Europe). The live playback
criterium of our video processing, i.e. the ability of the output video rate of the pipeline to be at
least as high as the input video rate, can now be defined as follows:

S(i, j)
i=1..N, j=1..M

< δ (3.7)

No stage execution of any of the processed frames can take longer than the duration δ of a
video frame. It is important to point out that the overall processing time tj of a single frame j,
which is

tj =
N∑
i=1

S(i, j) (3.8)

can take longer than the playback video duration δ, without breaking the playback criterium,
because stage execution can be hidden behind stage executions of previous frames. However,
longer frame processing times will contribute to the latency of a video system, which is defined
as the difference of time between frame input and frame output (see Figure 3.6).

28

1

In OutRender

2 A B

t = 0

In OutRender

2 A B

t = 1 1

In OutRender

2 A B

t = 1.5

1

In OutRender2 A

B

t = 2 1

In OutRender

2 A

B

t = 2.5

1

In OutRender2 ABt = 3 1

In OutRender

2

A Bt = 4 1

In OutRender

2

A

B

t = 5

1

In OutRender

2 AB

t = 6

1

Figure 3.4: Example of data flow. The originating frames have different colors in the diagram.

29

t

In

Out

Render

0 1 2 3 4 5

2 11

1 A 2 B A1

A B A

6

t

In

Out

Render

0 1 2 3 4 5

2 11

1 A 2 B A1

A B A

6 7 8 9

Concurrent pipeline execution

Serialized pipeline execution

Figure 3.5: Runtime charts of the example run shown in Figure 3.4. The concurrent execution
times show the best case scenario where all stages fully overlap each other.

30

s1

sn�1

sn

s2

1 2

1

1

1

2

2 M-1 M

M-1 M

M-1

M-1

M

M2

la
te

ncy

output rate

ramp-up full load ramp-down

pipeline
depth

Figure 3.6: Timing properties of a generic processing pipeline with N stages processing M
frames. The colored area of the pipeline diagram shows the executions which operate under a
fully-loaded pipeline.

31

3.2 Targeted scenario

This framework is aimed at rendering sRGB graphics on top of a 10-bit Y’CbCr-encoded video
sequence. We first acquire a frame from the Y’CbCr video sequence and then convert the frame
to an RGB-format which is suitable for rendering. After overlaying graphics, we convert the
frame back to Y’CbCr and write the to the output sequence.

The video format V210 has been chosen as the 10-bit Y’CbCr format. It is used both as the
input and output pixel format (see Chapter 5). This format is commonly used as the native pixel
format by professional video capture cards. In order to render on top of the V210 frames, the
Y’CbCr encoding first has to be converted to a linearly coded RGB pixel format. Typically, this
conversion is done on the CPU before it is transferred to the GPU. The FrameBender framework
directly transfers V210 to video memory, and performs the conversion from 10-bit Y’CbCr to
RGB on the GPU. This has the following benefits:

• The GPU is considerably faster than the CPU in performing image processing tasks that
can be executed in parallel. Chapter 6 provides a comparison with a state-of-the-art CPU-
based conversion.

• V210 is a 4:2:2 chroma-subsampled format. It requires less data to represent a frame
than its RGB representation and therefore reduces the amount of data that needs to be
transferred over the PCIe bus.

• Converting the pixel format on the GPU allows the fusion of pixel format conversion with
other necessary preprocessing steps, such as gamma correction or color-space conver-
sions. While this could be done on the CPU as well, a faithful representation of gamma-
corrected 10-bit video requires a high-precision intermediate representation which even-
tually needs to be transferred to the GPU for rendering. For example, a 1080p frame with
32-bit floating-point RGB components requires 24.9 MB of data, while the original V210
representation amounts to only 5.5 MB. For HD resolutions this is an unfortunate waste
of bandwidth, but for UHD-1 where one 32-bit floating-point frame amounts to approxi-
mately 100 MB, this situation quickly becomes unfeasible.

Rendering in a linearly coded color space improves the quality of the rendered results (see
Chapter 2.1.1). While this is common practice in the field of computer graphics, where lighting
equations of the rendering algorithm assume a linear space, this is not always the case for video.
Today it is considered as the recommended practice when rendering high-quality video1.

Figure 3.7 shows a diagram of our framework’s targeted image processing algorithm. The
processing steps are:

A Upload an image of the input sequence from main memory to the GPU’s video memory.
The image format that is used for transfer should be as close as possible to the original
uncompressed format in order to avoid too much processing on the CPU side. Latency

1This statement was supported by Charles Poynton during a personal conversation. Charles Poynton is the author
of Digital Video and HD, Morgan Kaufmann, 2012, [26].

32

C
o

nv
er

t
V

21
0

to
 R

G
B

R
en

d
er

C
o

nv
er

t
R

G
B

 t
o

 V
21

0

Y
'C

b
C

r
4:

4:
4

R
'G

'B
'

[D
]

O
ffs

et
 &

3x

3
Tr

an
sf

or
m

[A
]

U
p

lo
a
d

 fr
om

 h
os

t

R
G

B

[E
]

G
am

m
a

d
ec

od
e

x
�

sR
G

B

Y
'C

b
C

r
4:

4:
4

[L
]

D
o

w
n
lo

a
d

 t
o

ho
st

[I
]

3x
3

Tr
an

sf
or

m

&
 o

ffs
et

[G
]

B
lit

 t
o

p
re

vi
ew

[C
] C

hr
om

a
In

te
rp

ol
at

io
n

[F
]

O
ve

rla
y

im
ag

es

R
G

B

V
21

0

Y
'C

b
C

r
4:

2:
2

[B
]

E
xt

ra
ct

 Y
'C

b
C

r
4:

2:
2

fr
om

 V
21

0
gr

ou
p

s

R
'G

'B
'

Y
'C

b
C

r
4:

2:
2

V
21

0

[K
] I

ns
er

t
Y

'C
b

C
r

4:
2:

2
to

 V
21

0
gr

ou
p

s
[J

] C
hr

om
a

su
b

sa
m

p
lin

g

[H
]

G
am

m
a

en
co

d
e

x
1

�
sR

G
B

Fi
gu

re
3.

7:
A

n
ov

er
vi

ew
of

th
e

im
ag

e
pr

oc
es

si
ng

al
go

ri
th

m
.A

ll
pr

oc
es

si
ng

is
do

ne
by

th
e

G
PU

.

33

hiding should be implemented to improve throughput and to avoid stalls for the following
stages when waiting for input data.

B Extract Y’CbCr values from the V210-encoded frames (see Chapter 5). These values are
still encoded in a 4:2:2 subsampled format.

C Reconstruct 4:4:4 Y’CbCr sampling from the subsampled chroma values. During recon-
struction, high-quality filters should be used (see Chapter 2.1.5).

D Until this step, we are still processing in the domain of interface values, i.e., for 10-bit Y’
components, reference black is at integer value 64, and reference white is at integer value
940. In order to convert to R’G’B’ in unit range, we first offset the interface values and
then multiply with a 3x3 matrix (see Equation 2.13). In Chapter 2.1.6, we explained how
this matrix is derived for decoding BT.709-conforming video.

E Apply the sRGB transfer function in order to reconstruct linear RGB values from percep-
tually coded R’G’B’ values. We apply sRGB transfer to both the video and the overlay
images in order to convert to a common linearized space for mixing BT.709/BT.1886
video with sRGB graphics. Chapter 2.1.7 describes more details about mixing sRGB
material with BT.709-conforming video.

F Overlay several sRGB images on top of the input video stream. The rendering algorithm
should be swappable with any other video rendering algorithm (see Chapter 4.2.1.6 and
4.5).

G Display the rendered frame in real time for preview and monitoring purposes.

H Apply the inverse of step E, i.e. convert back into the original perceptual coding space.

I Convert R’G’B’ to Y’CbCr using the inverse of step D (see Equation 2.12).

J Perform 4:2:2 chroma subsampling. Use high-quality filters for when applying the deci-
mation chroma filter.

K Insert the Y’CbCr 10-bit values into 32-bit V210 words.

L Download the resulting V210 frame from video memory back to main memory.

3.3 FrameBender application

The C++ library libFrameBender is the center-piece of the framework. It contains the imple-
mentation of the video processing pipeline, shaders for format conversions and rendering, and
general supporting data structures. The FrameBender application is built on top of the library. It
configures the framework’s input and output settings and its optimization parameters. The appli-
cation can be used for collecting performance traces and for writing out the rendered output of
the framework (see Chapter 4.6 and 6.1.3). The FrameBender application also provides a player
window that allows the user to monitor the rendered video in real time.

34

FrameBender
Tests

Output data

libFrameBender Log file

Performance
metrics

Rendered
sequence

Input data

User settings

Input sequence

Real-time
monitoring

FrameBender
application

Figure 3.8: Overview of the FrameBender video processing framework. libFrameBender con-
tains the video pipeline and implements the format conversion algorithms. The FrameBender
application uses the library to render an input sequence of raw video frames. The application
outputs the rendered sequence, performance traces of the video pipeline execution and a log file.

FrameBenderTests is a collection of unit tests. The tests are written against the interfaces of
the libFrameBender library and therefore include the library in the same way the FrameBender
application does. Besides testing the behavior of data structures and classes of the framework,
the testing framework also includes golden samples of expected rendering results under a well-
defined set of parameters. During the development of optimizations of the implementation, these
golden samples are used to make sure that the rendered output is still correct, i.e., that using an
added optimization does not introduce errors.

In summary, the following features are provided by the FrameBender framework:

• Studio-quality renderer for TV graphics

– V210 10-bit Y’CbCr as raw input and output formats

– Linear color coding (gamma correct rendering)

– High-quality N-tap filters for chroma reconstruction and subsampling

– Real-time preview of rendered output

• Optimized frame transfers and Y’CbCr conversion

– High throughput rates between CPU and GPU by overlapping GPU upload, render
and download

– Multithreaded frame handling

– Vendor-specific optimizations for AMD and NVIDIA

35

– Multiple variations of Y’CbCr to RGB conversion shaders

– Using OpenGL 4.2 and 4.3 features

• Integrated performance profiler

– CPU- and GPU-based sampling

– Writes traces into a well-defined file format

– Visualization of traces for analysis

• File-based configuration

– Allows to use different test sequences

– Optimizations can be enabled/disabled selectively

– Large set of debugging parameters

– Can be used to re-run previous configurations for benchmarking purposes

• Unit-tested framework

– Across shader variations, rendering results are kept consistent

– Avoids regressions when optimizing the implementation

36

CHAPTER 4
Video Pipeline Implementation

The design and intent of our framework was described in Chapter 3. This chapter explains the
actual implementation of the previously introduced concepts. We begin by demonstrating the
C++ implementation of the pipeline infrastructure in Chapter 4.1. We then show how to apply
this model on top of the OpenGL API to build the video processing pipeline (Chapter 4.2). The
scheduling of the pipeline for hardware-concurrent execution is described in Chapter 4.3. The
remaining chapters contain other details about OpenGL usage, profiling and debugging features
of the framework.

4.1 C++ pipeline infrastructure

The general model and design of our pipeline model was described in Chapter 3.1. We use the
C++ language to implement this model in several classes that provide a generic functionality of
a pipeline model.

4.1.1 CircularFifo implementation

The most important data structure for the pipeline is the FIFO queue that passes tokens between
stages (see Figure 3.3). As we intend to run the stages on different threads, access to those
queues has to be thread-safe. Williams describes implementations of thread-safe queues using
C++11 in his book [38]. Another simple implementation is described by Hedström [20], which
was chosen as the basis for our framework’s queue implementation. This type of queue is a
lock-free, bounded circular queue providing thread-safe access to a single writer and a single
reader. Since connections between stages are shared by exactly one stage that writes tokens,
and another that reads them, this simple model of a thread-safe single-producer single-consumer
queue is sufficient for our use case.

Listing 4.1 shows the C++ template interface to the CircularFifo of our framework.
The queue is parameterized with the template type Element. During construction of an empty
queue, an array to hold a number of size elements is allocated and stored in the _array data

37

1 template<typename Element>
2 class CircularFifo {
3 public:
4
5 CircularFifo(size_t size);
6 virtual ~CircularFifo();
7
8 bool push(Element&& item);
9 bool push(const Element& item);

10
11 bool pop(Element& item);
12
13 bool was_empty() const;
14 bool was_full() const;
15 size_t had_num_elements() const;
16
17 bool is_lock_free() const;
18
19 size_t size() const;
20
21 private:
22
23 template <typename InsertElement>
24 bool push_element(InsertElement&& item);
25
26 size_t increment(size_t idx) const;
27
28 const size_t _size;
29 const size_t _capacity;
30
31 std::atomic<size_t> _tail;
32 std::unique_ptr<Element[]> _array;
33 std::atomic<size_t> _head;
34 };

Listing 4.1: FIFO implementation as implemented in libFrameBender.

member. This queue is able to hold at most a number of CircularFifo::_size elements,
hence it is bounded. The data members _tail and _head store indices to the previously
allocated array and represent the current write and read position of the queue. When an element
is written or read, these indices are incremented and potentially wrapped around the size of
the queue. In order to make read/write access to the queue thread-safe (for a single reader and
writer), it suffices to increment these indices atomically. Using C++11, this is easily done by
using std::atomic<size_t> as the data members for the indices. More details on the new
multiprocessor-aware memory model of C++11 is given by Williams [38].

The data type that is passed as the template parameter Element has to provide at least a
default constructor. If the Element also provides a move constructor and move assignment
operator, unnecessary copying can be avoided. Move semantics is a new feature introduced in
C++11. It allows to transfer an object’s ownership of all its data to another instance, the object in

38

1 enum class WaitingPolicy {
2 SPIN,
3 BLOCK
4 };
5
6 template <typename Element, WaitingPolicy policy>
7 class WaitingCircularFifo {
8
9 public:

10
11 static const WaitingPolicy kWaitingPolicy = policy;
12
13 // Same interface as CircularFifo<Element>
14
15 private:
16
17 CircularFifo<Element> fifo_;
18 std::mutex mutex_;
19 std::condition_variable condition_;
20 };

Listing 4.2: Wrapper around CircularFifo for providing a waiting read operation.

its essence is moved somewhere else. This is not only useful to more strictly defined ownership
of data, but it also improves performance by avoiding unnecessary copies. Therefore, if the data
type Element supports it, reading and writing into the queue are reduced to move operations.
A thorough description of move semantics is given by Stroustrup [32].

Another advantage of a circular buffer is that it allocates and deallocates its memory outside
of read and write operations, i.e. the data member _array is allocated in the constructor. This
is not only advantageous in terms of performance, but it also removes the responsibility of the
read and write operations to handle errors during allocation.

4.1.2 WaitingCircularFifo wrapper

The implementation of CircularFifo in Listing 4.1 returns a boolean value for the pop
method. It signals the caller whether an element could be fetched (true) or the queue was empty
at the time of calling (false). In some situations, however, it would be more convenient for the
pop method to wait until an element can be read, instead of just returning an unsuccessful state.
In our framework, this is implemented using the wrapper WaitingCircularFifo around
CircularFifo (Listing 4.2). This wrapper has the same interface as the CircularFifo
class and adds an additional compile-time constant of type WaitingPolicy to the interface.
There are two possible values for this policy:

• SPIN: Busy-wait in the calling thread until a value is available.

• BLOCK: A std::condition_variable is used to suspend the calling thread when
no element is available. Once an item has been added, the thread is notified via the condi-
tion variable and is able to fetch the newly added element.

39

The choice between the two approaches should really be made based on performance mea-
surements. In our case, the interval between queue manipulation is comparatively large. The
overhead of suspending and resuming a thread between stage executions is therefore accept-
able. Because suspending a thread allows other threads to take over CPU resources, the overall
performance of system is improved. We therefore use the BLOCK strategy by default.

4.1.3 The Stage C++ template class

The pipeline of our frameworks consists of several stages. The design of a pipeline stage is
shown in Chapter 3.1.1. Its implementation is described in the following.

A stage consists of a task that reads input tokens from the input queue and writes output
tokens to the output queue. The Stage class (Listing 4.3) provides a convenient C++ class that
is able to connect with a previous stage, manages the dispatch of tokens from its queues and
passes the tokens to its task for execution. The actual execution of a stage’s task is triggered
from the outside using the execute method of the Stage interface. It allows the user of the
class to decide how stage executions should be triggered. This could be done serially from a
single thread or concurrently from multiple threads. This choice does not influence the output
of the pipeline executions, i.e. the scheduling of the pipeline’s executions is orthogonal to the
definition of its algorithm, and therefore not part of the Stage classes’ interface.

The Stage class is parameterized by two template type arguments: InputElement and
OutputElement. These arguments define the input and output data types of a stage’s task.
While stages always process video frames in our pipeline, the data representation of a frame
might vary between different stages. For example, one stage type might need to store the raw
data of a frame with a token. For another stage, a frame might be represented only by an
identifier to some OpenGL-specific resource, and only this identifier needs to be passed along
the queue. It would be a waste of resources or unnecessarily complicated to map both of these
frame representations to a single abstract data type for a queue’s token. Since the types of the
token are usually known during compile-time, it is better to explicitly pass the type parameters
to the Stage template class. This has the following advantages:

• No runtime polymorphism is needed when using varying data types between different
types of stages.

• Incompatible input and output types are reported by the compiler as an error.

• The definitions of tasks are easier to read and their implementation is more efficient be-
cause data types can be exactly tailored to the needs of a task.

A stage’s task is defined as a std::function instance. This is a callable object that takes
references to the current input and output token as function arguments (see line 31 in Listing
4.3). The task reads the data from the input token, processes it and writes the result back into
the output token reference. The std::function wrapper is a new C++11 feature that wraps
a callable object with a specified signature. For each execution, a task also has to return a status
value of type StageCommand (see line 7 in Listing 4.3). This status value is processed by the
generic stage class that originally called the task functor. Based on the value of the command, the

40

1 enum class PipelineStatus {
2 INITIALIZING,
3 READY_TO_EXECUTE,
4 HAS_BEEN_STOPPED
5 };
6
7 enum class StageCommand {
8 NO_CHANGE,
9 STOP_EXECUTION

10 };
11
12 template <typename OutputElement>
13 struct OutputToken {
14 typedef OutputElement TokenElementType;
15 TokenElementType element;
16 StageCommand command;
17 };
18
19 template <typename InputElement, typename OutputElement>
20 class Stage {
21
22 public:
23
24 typedef OutputElement OutputType;
25 typedef InputElement InputType;
26 typedef OutputToken<InputElement> InputTokenType;
27 typedef OutputToken<OutputElement> OutputTokenType;
28 typedef WaitingCircularFifo<OutputTokenType, kDefaultWaitingPolicy>

OutputFifoType;
29 typedef WaitingCircularFifo<InputTokenType, kDefaultWaitingPolicy>

InputFifoType;
30
31 typedef std::function<StageCommand(InputType&, OutputType&)> Task;
32
33 template <typename InputInputType>
34 Stage(Task task,
35 std::vector<OutputType> output_queue_initialization,
36 const Stage<InputInputType, InputType>& input_stage);
37
38 void execute();
39
40 PipelineStatus status() const;
41
42 private:
43
44 std::weak_ptr<InputFifoType> input_downstream_;
45 std::weak_ptr<InputFifoType> input_upstream_;
46
47 std::shared_ptr<OutputFifoType> output_downstream_;
48 std::shared_ptr<OutputFifoType> output_upstream_;
49
50 Task task_;
51
52 std::atomic<PipelineStatus> status_;
53 };

Listing 4.3: Template interface to the pipeline stage class (some details are omitted). 41

stage performs additional managing routines. For example, a task is able to stop the execution of
the pipeline by returning the constant StageCommand::STOP_EXECUTION. When its stage
encounters this value, it will notify all other stages that the overall pipeline execution should be
stopped.

The template arguments to the Stage interface only define the data types of the stage’s
task arguments. State that is common to all stages (e.g., flow control) also needs to be
communicated over the queues’ tokens. To allow this, the OutputToken structure (see
line 13 in Listing 4.3) holds, in addition to the task-specific data types, also data that is
common to every stage, like the command field. For example, if one stage’s task returns
StageCommand::STOP_EXECUTION, this command will be passed along the data stream
to the following stage, which then knows at which point not to expect any more data from its
preceding stage.

An instance of a Stage always owns its output queues (upstream and downstream). Input
queues are only references to the input stage’s output queues. As you can see in Listing 4.3
on line 44 and following, this is implemented using std::shared_ptr for owning queues,
and std::weak_ptr for referenced queues. These classes are new to the C++11 STL library.
They safely manage the lifetime of the queues while still being efficient enough.

Input and output queues both use the WaitingCircularFifo wrapper (see Listing 4.2),
i.e. calls to Stage::execute block until data dependencies are met and the stage’s task
function has been executed.

4.1.4 Example of the execution of a simple video pipeline

Listing 4.4 shows a simplified code example of how to use three stage instances in order to create
simple video display pipeline:

• In line 13 we create the stage acquire_stage. This is a ProducerStage, and we use
the constant NO_INPUT as the input element type to specify that this stage has no input.
In this example, we don’t care about the actual implementation of this stage. All we need
know is that this stage outputs a raw video frame of type HostFrame for each execution.

• In line 17 we define the upload stage. This stage is responsible for uploading a previously
acquired raw frame into OpenGL-mapped memory. We call the constructor of the Stage
class (see line 34 of Listing 4.3), and pass the following parameters:

– The first parameter to the constructor is the task definition for this stage. In our
example, this is a function pointer to the free function upload_frame defined
in line 1. Note that this could also be a C++11 lambda expression or some bound
expression using std::bind.

– The second parameter of the constructor passes a vector of output tokens from which
the output upstream queue is first initialized. The dimensions of this vector also
define the maximum size of the output queues. In our example, we pass a vector of
three default-constructed instances of OpenGLFrame for initialization.

42

1 StageCommand upload_frame(HostFrame& input, OpenGLFrame& output) {
2
3 if (input.marks_end_of_sequence())
4 return StageCommand::STOP_EXECUTION
5
6 output.upload(input.data());
7
8 return StageCommand::NO_CHANGE;
9 }

10
11 ...
12
13 Stage<NO_INPUT, HostFrame> acquire_stage = ...;
14
15 std::vector<OpenGLFrame> init{3};
16
17 Stage<HostFrame, OpenGLFrame> upload_stage{&upload_frame, init,

acquire_stage};
18
19 Stage<OpenGLFrame, NO_OUTPUT> display_stage = ...;
20
21 while (display_stage.status() == PipelineStatus::READY_TO_EXECUTE) {
22
23 if (acquire_stage.status() == PipelineStatus::READY_TO_EXECUTE)
24 acquire_stage.execute();
25
26 if (upload_stage.status() == PipelineStatus::READY_TO_EXECUTE)
27 upload_stage.execute();
28
29 display_stage.execute();
30
31 }

Listing 4.4: Example usage of the stage class shown in Listing 4.3.

– The third parameter is the input stage to the stage that is being constructed. This
is the stage that acquires a frame. Note that a stage only stores references to the
output queues of its input stage, i.e. stages communicate with each other only via
their queue connections, and never by calling each other directly.

• The function defined in line 1 performs the task of the upload stage. If the input frame
marks the end of a sequence, and pipeline execution should therefore be stopped, a proper
flag is returned. If input represents a normal frame, then its data is uploaded into the
OpenGL output token. Note that HostFrame and OpenGLFrame are classes that
only exist for the purpose of demonstrating this example code. The actual OpenGL im-
plementation of this framework is more complex and described in the next Chapter.

• In line 19, the stage that is responsible for displaying an OpenGL buffer is created. The
details of its construction are hidden, the only thing that we need to know is that it is con-

43

1
2 ...
3
4 std::thread acquire_thread{[&]{
5
6 while (acquire_stage.status() == PipelineStatus::READY_TO_EXECUTE)
7 acquire_stage.execute();
8
9 }};

10
11 std::thread opengl_thread{[&]{
12
13 while (display_stage.status() == PipelineStatus::READY_TO_EXECUTE) {
14
15 if (upload_stage.status() == PipelineStatus::READY_TO_EXECUTE)
16 upload_stage.execute();
17
18 if (display_stage.status() == PipelineStatus::READY_TO_EXECUTE)
19 display_stage.execute();
20
21 }
22
23 }};
24
25 acquire_thread.join();
26 opengl_thread.join();
27
28 ...

Listing 4.5: Parallel execution of the pipeline defined in Listing 4.4.

nected with the upload stage and that it doesn’t produce output token as its only purpose
is to show frames on the display.

• The execution of the pipeline is triggered in line 21 and following. In this example, both
stages are executed serially. Their stages are executed in a loop as long as there are still
frames to be processed. The stage’s status() method is checked repeatedly in order to
determine whether a stage still has tokens to process.

Listing 4.4 shows the serial executions of a pipeline. Using the preliminaries of this example,
Listing 4.5 shows how this pipeline could be executed in parallel:

• With the stage definitions of Listing 4.4 at hand, two threads are created in line 4 and line
11.

• Notice that the two OpenGL stages (upload and display) still execute serially and that only
the stage to acquire the frame runs concurrently to the OpenGL stages. Let us assume
that the acquire stage and the upload stage are both relatively heavy operations and that
displaying a frame, once it is uploaded, is really quick. Then this implementation could
be potentially twice as fast as the previous serial implementation (also see Chapter 3.1.3).

44

libFrameBender

Acquire

Upload

Convert

Display

Convert

Download

Application

Deliver

StreamRenderer Render

Figure 4.1: Overview of the general video processing steps. The library provides an interface
to a generic video renderer, i.e. the actual rendering task can be defined by the application that
uses the library.

• In line 25 both threads are joined, i.e. the calling thread waits until the stages have no
more data to process.

4.2 OpenGL video render pipeline

In this chapter, we describe how the video render pipeline is implemented using the pipeline
infrastructure of the previous chapter. We show how to use the OpenGL API to implement
the video processing. We split this processing into several independent stages with the goal of
executing them concurrently on different hardware units of the machine. The chapter begins
by explaining the setup and structure of the video pipeline implementation. The scheduling of
the stages is described by Chapter 4.2.3, and the hardware-concurrent execution of its stages is
explained later in Chapter 4.3.

The video pipeline implementation is the heart of libFrameBender. It provides the client
application of libFrameBender with a simple API to acquire, render and deliver video frames.
Figure 4.1 shows the basic steps of the video processing engine. First a frame needs to be
acquired, i.e. read from memory. It is the client application’s responsibility to provide the
pipeline with video frames that are stored in main memory. Once a frame is made available, it is
uploaded to video memory of the graphics card. If necessary, the video frame is converted from
its input native pixel format to the canonical render format of the pipeline (see Chapter 4.4). The
video frame is then passed as the input to the renderer, which in turn stores its rendered result
into some other video frame on the graphics card’s memory. The renderer is a C++ interface.
Its implementation defines the actual rendering operation, such as the one described in Chapter

45

Acquire

CopyHostToPBO

UnmapPBO

UnpackPBO

ConvertFormat

Render

ConvertFormat

PackPBO

MapPBO

CopyPBOToHost

Deliver

Mapped PBO

Input texture (input format)

Input texture (render format)

Output texture (render format)

Output texture (output format)

Unmapped PBO

Unmapped PBO

Mapped PBO

Host output frame

Figure 4.2: C++ stages of the video pipeline implementation. Green stages represent stages that
only use the CPU for processing, blue stages use the OpenGL API to perform GPU-based tasks.
No assumptions are yet made about the scheduling of the stages.

4.5. After rendering, the resulting video frame can be displayed in a player window. This is an
optional step and can be bypassed completely in order to avoid any side effects on performance.
In any case, the rendered frame is then converted from the canonical render format to its output
native pixel format. Finally, the converted frame is downloaded from video memory to main
memory from which it is delivered back to the client. These are the basic steps of rendering a
video frame with our video pipeline.

4.2.1 Stage definitions

The pipeline uses the OpenGL API in order to fully take advantage of the GPU’s performance
in rendering and pixel processing. The logic of the pipeline uses the C++ infrastructure that was
described in Chapter 4.1. I.e., the complete processing is split across several C++ stages. A
diagram of all C++ stage implementations of the video render pipeline is given in Figure 4.2.
The C++ infrastructure of a stage allows the execution of its task from any thread. In practice,
however, we serialize some stage executions of our pipeline since they do not map to differ-
ent hardware units, and therefore parallelization would not bring a benefit. From the software
model’s perspective, the definitions of a stage and the actual execution model are orthogonal.

46

CopyHostToPBO

UnmapPBO

glUnmapBuffer
UnpackPBO

GLuint pbo_id; (mapped)
void* memory; (valid)

GLuint pbo_id; (unmapped)
void* memory; (invalid)

glMapBufferRange

Figure 4.3: The UnmapPBO stage is the gateway of unmapping/mapping pixel buffer objects
for client-side writing operations. This diagram shows the state of the frame token before and
after execution of the UnmapPBO stage. The colored token represents a downstream token that
carries a new video frame. The process described here depends on the ability to communicate
tokens upstream, i.e., to the predecessor of the current stage (see Chapter 3.1.1).

In the following, we describe the stage definitions, without considering the actual threading of
their executions yet, which is described later in Chapter 4.2.3.

4.2.1.1 Acquire

For each execution of this stage, a user-configurable callback is called that is expected to provide
the pipeline with one video frame. The format of the video frame is well-defined, and the
frame’s image data is expected to be stored in main memory. The client of libFrameBender
provides this callback. When the callback is called, a frame could be read from disk, or retrieved
from a video capture card, for instance. The queues between this stage and the next one keep
a constant number of frames circulated. The pipeline therefore buffers frames on behalf of the
client application.

4.2.1.2 CopyHostToPBO

This stage takes a previously acquired frame and copies its data to a memory location that has
been mapped by OpenGL for a particular pixel buffer object (PBO). A description of OpenGL
PBO techniques is given in Chapter 2.3.6. While the identifier of the PBO has to be passed
along the output tokens in order to be uniquely identified, no OpenGL calls actually need to be
executed by this stage. This has the advantage of this stage being able to execute on a worker
thread that is not associated with an OpenGL context (see Chapter 4.2.3).

4.2.1.3 UnmapPBO

This stage manages the mapping of OpenGL PBO objects to memory locations in host mem-
ory. Depending on whether data is passed downstream or upstream, it performs two different
operations (see Figure 4.3):

47

• Downstream: The input token’s mapped PBO location is unmapped using
glUnmapBuffer. The identifier of the now-unmapped PBO is written into an output to-
ken which is passed further downstream to the following stage. This is necessary because
the UnpackPBO stage will perform operations which require a PBO to be unmapped.

• Upstream: The output token’s PBO is mapped to local memory using
glMapBufferRange. The resulting memory location is written to an input to-
ken which is passed further upstream to the previous stage. Again, this relieves the
stage CopyHostToPBO from the responsibility to have an OpenGL context bound during
execution (and therefore is able to run concurrently).

Note how important it is for this stage to be able to pass data upstream as well as downstream.
As hinted by Figure 4.2, PBO identifiers are passed from CopyHostToPBO via UnmapPBO
to UnpackPBO and then circulated back. Most other stage connections circulate tokens only
between two stages.

4.2.1.4 UnpackPBO

The input video frame has now been copied to OpenGL memory (PBO). This stage is responsi-
ble for copying (unpacking) this memory into an OpenGL texture. During execution, the input
token’s PBO is bound to the OpenGL pixel unpack buffer (see Chapter 2.3.6). An asynchronous
upload to the designated output texture is then triggered by executing the OpenGL command
glTexSubImage2D. Essentially, this triggers an asynchronous DMA transfer to video mem-
ory.

The output frame is now represented only by an OpenGL texture id. This stage and the
following one exchange tokens over a fixed number of input textures via their connected queues.
Note that even though the output of this stage references an OpenGL texture, its content is still
stored in the original input pixel format of the video.

4.2.1.5 ConvertFormat (1)

In order for the next stage to use the video frame for rendering, it first has to be converted into
the canonical render pixel format of the video pipeline (see Chapter 4.4). The output of this
stage references an OpenGL texture that stores the video frame in the render pixel format.

The conversion is achieved by the class ConvertFormat which is a generic stage that allows
to convert back and forth between two different formats. On execution, the following steps are
executed:

• Assemble GLSL shaders that are able to convert the specified input format to the desired
output format.

• Bind the input token’s texture ID to the input sampler uniform of the previously compiled
shader.

• Run the shader over the whole input texture image and write its fragment output into the
output token’s texture.

48

OpenGL provides multiple ways to write the output of a fragment shader to a texture. This
framework implements several flavors for transcoding the V210 10-bit Y’CbCr format. These
will be described later in Chapter 5.

4.2.1.6 Render

The input video frame is now available as an OpenGL texture and has already been converted
to the canonical render format. The Render stage executes a rendering algorithm that takes
this texture as input and provides its output as another texture. The output texture is again
stored in the canonical render format. While the render stage is responsible for triggering the
rendering operation, it does not contain the actual implementation. Instead, the libFrameBender
library provides the client of the library with the C++ interface StreamRenderer (see Figure
4.1). The client is expected to implement the interface and to pass the implementation to the
render stage during construction. This provides the client with a simple way of defining its own
pluggable video processing algorithm, without having to take care of the frame transfers and
format conversions.

If desired, this stage is able to display the output texture in a user-specified window. This
can be used to create a simple player system or to provide confidence monitoring for the live
broadcaster. However, the primary goal of this stage is to render a client-defined graphics algo-
rithm (e.g., blending images over the video stream) into another texture. Displaying the result
on screen is optional. As such, display timing (e.g. vsync) must not govern the timing of the
rendering operation.

4.2.1.7 ConvertFormat (2)

The input token of this stage references a texture that stores the output frame of a previous
rendering operation. In order to prepare the download of this frame to main memory, this stage
converts the input frame from its canonical render format to the specified output pixel format.
This conversion uses the same approach as ConvertFormat (1), only with different pixel formats.

4.2.1.8 PackPBO

The output frame has been converted to the output pixel format, and this stage now triggers an
asynchronous download from the input texture to the output token’s OpenGL PBO. This is done
by binding the PBO to the pixel pack buffer and by executing the glGetTexImage command
for the input token’s texture id.

4.2.1.9 MapPBO

Similar to the stage UnmapPBO, this stage performs two different operations, depending on
whether data is passed downstream or upstream:

• The downstream input token’s PBO is mapped to local memory using
glMapBufferRange, and the resulting memory location is passed further down-

49

stream to the next stage. This relieves the stage CopyPBOToHost from the responsibility
to have an OpenGL bound during execution.

• The upstream output token’s mapped PBO location is unmapped using
glUnmapBuffer. The identifier of the now-unmapped PBO is passed further
upstream to the previous stage. This is necessary because a texture can only be packed
into an unbound PBO.

4.2.1.10 CopyPBOToHost

The video frame that is referenced by the input token’s mapped PBO memory location is copied
to local memory of the output token’s frame representation.

4.2.1.11 Deliver

In this final stage, the input token contains the frame that was copied by the previous stage. The
client is expected to provide this stage with a callback that is called for each frame that arrives
in this stage. In this callback, the client implementation could write the frame back to disk, or
pass it back to a video card.

4.2.2 Data pools for queue elements

The previously described stages communicate via multiple circular queues (see Chapter 3.1).
The data elements of those queues are always allocated during construction of the pipeline.
During the execution of a stage’s task, only references are passed along via tokens. This is the
case for OpenGL buffers as well as host-side data structures. The following is a list of resource
pools which are used by the pipeline:

• Input frames: Host-side data elements storing data frames in local memory.

• Upload PBO buffers: OpenGL pixel buffer objects that allocate OpenGL-controlled
memory that is large enough to store multiple video frames in their input pixel format.

• Upload textures: OpenGL texture objects that are the destination when unpacking pixel
buffer objects from the upload PBO buffers.

• Input render textures: OpenGL texture objects that store input video frames in the
canonical render format in order for them to be passed to the renderer. Each texture is
attached to an individual OpenGL framebuffer object, whose identifier is always passed
along with the texture.

• Output render textures: OpenGL texture objects that store the results of the renderer in
the canonical render format. Each texture is attached to an individual OpenGL framebuffer
object, whose identifier is always passed along with the texture.

• Download textures: OpenGL texture objects that store the output frame in the output
pixel format, i.e. they hold the result of conversion into the output pixel format.

50

• Download PBO buffers: OpenGL pixel buffer objects that are used as the destination for
packing the download textures.

• Output frames: Host-side data elements storing video frames in local memory.

The size of each pool is configurable in the framework. It is important to set the size of each
pool to a sensible number of elements. A queue with too few elements might cause exhaustion
of resources, i.e. stages have to wait too long for tokens to become available. On the other end,
very large pools might cause cache misses.

4.2.3 Scheduling of the video processing pipeline execution

Until now, we have not made any assumptions about the threading of the stage executions. In
the simplest case, all stages are executed serially on the same thread. This approach does not use
the resources of the system efficiently. The hardware units that actually perform the processing
of our algorithm, i.e., CPU, GPU and DMA controllers (see Figure 3.1) have hardware-based
pipelines of their own. If only one software stage runs at a time, these hardware pipelines do
not have enough data available to run efficiently. We therefore need to execute as many software
stages as possible in parallel in order for the hardware units to run efficiently, i.e., we assign
stage execution to multiple threads. In principle, an instance of a stage can be executed from
any thread. The call to execute a stage blocks until all data dependencies are met and the stage’s
task has been executed (see Chapter 4.1.3).

Consider the previous example given in Listing 4.5: As soon as the acquire_thread
has first executed the acquire_stage, the other thread will immediately execute the
upload_stage in line 16, because its data dependency is now met. At the same time, the
acquire_thread is able to trigger the next execution of the acquire_stage, because
its output queue is able to hold more than one output element. Therefore the first execution of
upload_stage and the second execution of acquire_stage execute concurrently.

4.2.3.1 Concurrency of OpenGL-based stages

OpenGL was originally designed to provide a graphics API that is used by a client from a single
thread. Calls to the OpenGL API require an OpenGL context to be active for the executing
thread. The OpenGL API is not thread-safe, i.e., OpenGL-based calls can only be executed
from the thread that is assigned to its context. Therefore, for those stages of our pipeline that
use OpenGL calls, the following needs to be considered:

• The executing thread must have an active OpenGL context set.

• Stages that call the OpenGL API can only be executed concurrently if each concurrent
execution uses its own dedicated OpenGL context.

These constraints apply to the stages UnmapPBO, UnpackPBO, ConvertFormat, Render,
PackPBO and MapPBO. These stages need to be either executed by the same thread, or need to
use an individual OpenGL context that shares resources with the other contexts for each thread.

51

1
2 ...
3
4 std::thread opengl_thread{[&]{
5
6 while (display_stage.status() == PipelineStatus::READY_TO_EXECUTE)
7 {
8
9 while (upload_stage.status() == PipelineStatus::READY_TO_EXECUTE

10 && display_stage.input_queue_num_elements() < 2)
11 {
12 upload_stage.execute();
13 }
14
15 if (display_stage.status() == PipelineStatus::READY_TO_EXECUTE)
16 display_stage.execute();
17
18 }
19
20 }};
21
22 ...

Listing 4.6: Interleaving the OpenGL stage executions.

The decision of whether to use multiple contexts or to serialize OpenGL-based stages is
not straightforward. Some OpenGL driver implementation are able to perform asynchronous
transfers via separate GPU DMA controllers when the hardware supports it and when multiple
contexts are used from multiple threads (see Chapter 4.3.2). In our example of Listing 4.5, we
could then split the thread opengl_thread into two threads: upload_opengl_thread
and display_opengl_thread. This would allow the DMA controller to transfer the frame
asynchronously to the CPU and GPU.

For other implementations, the use of multiple contexts only creates a significant overhead
of driver-side synchronization, and performs worse compared to serial execution using a single
context. The best strategy for multithreaded OpenGL therefore depends both on hardware ar-
chitecture and the particular implementation of the OpenGL driver. Because there is no single
best choice, our framework uses a single thread for OpenGL stages by default, and provides
multi-threaded OpenGL usage as one of several settings for pipeline scheduling (see Chapter
4.3).

4.2.3.2 Interleaved stage executions on a single thread

This chapter describes a feature of the pipeline scheduler to optimize single-threaded execution
of several stages. For stages using OpenGL, this technique can be used as an alternative to using
multiple OpenGL contexts from multiple threads.

In the example given in Listing 4.5, each thread executes the stages as fast as possible,
immediately triggering the executions when data is available. Therefore, the overlapping of stage

52

executions between multiple threads happens naturally. However, in this example, the OpenGL-
based stages are executed serially by a single thread. When two stages are executed serially in
one thread, the data token that was produced by the first stage is processed immediately by the
following stage. Let us look at Listing 4.5 again: When the upload_stage uploads frame N,
the next execution of display_stage in line 19 will immediately display frame N, because
they both run serially in the same thread opengl_thread. Commanding OpenGL to display a
frame immediately after its upload might result in implicit synchronization, because the OpenGL
pipeline has to wait until the upload is done before it can display the frame (see Chapter 2.3.6).
This can result in undesired performance penalties and should be avoided. One possible solution
would be to use multiple OpenGL contexts with multiple threads as described in the previous
chapter. Alternatively, while still using a single thread, we could upload some frame N when
executing upload_stage and have the following execution of display_stage display
frame N-1. This has the following consequences:

• It should be less likely for the OpenGL driver to enforce an implicit synchronization point.
As a result, the CPU-side execution is not blocked and we can use its resources for other
tasks.

• The internal pipeline of the OpenGL driver is better saturated, which potentially allows
the driver to parallelize its own pipeline executions.

Listing 4.6 shows a modified version of the opengl_thread of Listing 4.5 that imple-
ments this interleaved scheduling between the upload and display stages of our example. In
line 10 of the example, the upload stage is now executed repeatedly until its downstream output
queue holds two frames. We call this the input constraint of the following stage, i.e. the display
stage of our example has an input constraint of two. In other words, the display stage waits until
its input queue has a load of at least two elements. When starting the example, the upload stage
is therefore executed twice before the display stage is executed. After the first round of exe-
cutions, the upload and display stage will then execute alternately in lockstep. But the display
stage always buffers an additional element in its input queue, and doesn’t process the frame right
after it has been uploaded. Notice that in our example, we might have improved the performance
by avoiding implicit synchronization, but we have also added one frame of latency to the overall
algorithm.

In summary, the purpose of interleaved executions and using multiple OpenGL contexts is to
parallelize the execution of OpenGL commands. Using multiple contexts has the advantage that
the client application itself can use different threads and therefore overlap at least the dispatch of
OpenGL commands at the call-site of the client application. However, this method is required to
explicitly synchronize between OpenGL contexts, which is complicated and adds overhead to the
execution of their tasks. Using a single context with interleaved executions, this synchronization
is not necessary, but we add a fixed number of frames to latency. Whether OpenGL commands
are actually executed in parallel, ultimately depends on the OpenGL driver implementation. It
is therefore important to implement multiple approaches and choose the one that shows the best
performance.

53

4.2.3.3 User-controlled scheduling setup

The libFrameBender implementation allows the user of the library to manually configure large
parts of the execution model that has been described in the previous chapters. This flexibility
is provided by a scheduler that assigns one or more stages to multiple threads. The scheduler
also supports the definition of the previously explained input constraints for their queues. Level
of concurrency, queue sizes and input constraints can be set by the user from the outside. This
provides the ability to define queue setups with different characteristics, e.g. deep pipelining
vs. lower latency. Chapter 6.1 shows examples of possible pipeline configurations. Executing
stages on multiple threads changes the performance characteristics of the pipeline drastically.
These optimizations are described in the following chapter.

4.3 Concurrent hardware executions of the pipeline

In Chapter 4.2, we showed the structure of the OpenGL video pipeline and described details
and limitations of how to schedule the execution of its stages. This chapter explains how this
mechanism can be used to actually execute stages concurrently on different hardware units of
the system. The client of the library can enable and disable these mechanisms. This can be used
for measuring the effectiveness of the applied strategy (see Chapter 6).

The pipeline that we have described so far describes a software model that conceptually
enables the concurrent execution of its stages. However, the actual degree of concurrency that
can be reached depends on the availability of hardware resources of the system that the pipeline
is executing on. Potentially, the following hardware units could execute stages in parallel:

• The GPU provides thousands of individual processing units that are able to process data-
parallel tasks such as processing pixels in parallel while the rest of the system is perform-
ing other tasks.

• A DMA controller on the graphics board is able to asynchronously handle the transfer of
data to and from video memory.

• Individual CPU cores are able to execute generic processing tasks concurrently, such as
the host-side copying of video data.

By default, the framework executes the pipeline on a single thread serially. This is equivalent
to a naive single-threaded implementation of the overall algorithm.

4.3.1 Asynchronous host copies

The first optimization technique is to offload the copying of frame data between host-side mem-
ory and OpenGL-mapped memory to worker threads. Instead of one thread for the overall
pipeline execution, we now use three (see Figure 4.4):

54

Deliver thread

Acquire thread

OpenGL thread

Acquire

CopyHostToPBO

UnmapPBO

UnpackPBO

ConvertFormat

Render

ConvertFormat

PackPBO

MapPBO

CopyPBOToHost

Deliver

Mapped PBO

Input texture (input format)

Input texture (render format)

Output texture (render format)

Output texture (output format)

Unmapped PBO

Unmapped PBO

Mapped PBO

Host output frame

Figure 4.4: Running the host copies for input and output on separate threads. OpenGL-based
tasks run on a single thread. Note that we could split the acquire and deliver thread again in
order to overlap client-based frame handling with the copying operation.

1. Acquire thread: Acquires a frame and copies the input frame’s memory into memory
mapped by OpenGL for transfer. This thread executes the following stages1:

• Acquire

• CopyHostToPBO

2. OpenGL thread: Performs all stage executions which require an OpenGL context to be
attached. This thread executes:

• UnmapPBO

• UnpackPBO

• ConvertFormat (1)

• Render

1In our prototype implementation, stages Acquire and Deliver use only a very small amount of CPU time. We
therefore decided to execute these stages in the same threads as CopyHostToPBO and CopyPBOToHost. If they
performed heavier tasks (e.g. reading files from hard disk) then these stages should have their own thread assigned.

55

• ConvertFormat (2)

• PackPBO

• MapPBO

3. Deliver thread: Copies memory mapped by OpenGL for downloaded frames into host-
side memory of the output frames and execute the user-supplied callback for frame deliv-
ery. Executes the following stages1:

• CopyPBOToHost

• Deliver

This configuration therefore overlaps host-side copy operations with OpenGL-specific tasks,
i.e., while the GPU is rendering. In comparison with the serialized execution of these stages, this
approach has a much better overall performance. An exact measurement of these performance
gains is given in Chapter 6.

4.3.1.1 Intel IPP - optimized memory copying

The Intel IPP library [15] is a library providing optimized algorithms for Intel CPUs. This library
provides an optimized copying routine ippiCopyManaged_8u_C1R. When copying large
data, Intel recommends to pass the flag IPP_NONTEMPORAL_STORE to this copying routine
in order to bypass caching of the destination memory [14]. Otherwise copying large data would
result in clearing the complete existing cache and might cause undesired cache misses in any
subsequent memory read operations. We have experienced that using this routine in the stages
CopyHostToPBO and CopyPBOToHost improves performance, especially in configurations that
are bound to the bandwidth of the CPU.

4.3.1.2 AMD pinned memory

The stages UnmapPBO and MapPBO unmap and map OpenGL pixel buffer objects to host-side
memory locations in order to copy video frames to and from these locations in other stages.
Both stages perform an OpenGL map as well as an OpenGL unmap command in a single execu-
tion. The name of those stages denotes the downstream operation, e.g. UnmapPBO unmaps an
already-mapped OpenGL buffer in the downstream direction because following stages require
the OpenGL buffer to be unmapped (see Figure 4.3). At the same time this stage maps the up-
stream tokens of OpenGL buffers that are currently not used, and which are free to be filled with
host-side video frames.

This rather complex setup is necessary because OpenGL forbids to use PBOs for texture up-
load in a mapped state. The OpenGL extension GL_AMD_pinned_memory [25] adds the pos-
sibility to use an existing host-side memory region as a persistent backing storage for OpenGL
pixel buffer objects (see Chapter 2.3.7.2). When using this extension, the host-side memory
location of a PBO is now persistent 1. We can therefore simplify the UnmapPBO and MapPBO

1At the time of writing, the OpenGL 4.4 core specification has been published which provides a similar technique
through the extension ARB_buffer_storage. However, OpenGL 4.4 was not available at the time of implementing the
framework, and therefore is not considered in this thesis.

56

CopyHostToPBO

UnmapPBO

n/a
UnpackPBO

GLuint pbo_id;
void* memory; (pinned)

GLuint pbo_id;
void* memory; (pinned)

glClientWaitSync

might still
be used by

unpack

GLuint pbo_id;
void* memory; (pinned)
GLsync fence; (unsignaled)

GLuint pbo_id;
void* memory; (pinned)
GLsync fence; (signaled)

safe to be
overwritten

Figure 4.5: Using the AMD pinned memory extension for backing the OpenGL PBOs relieves
the UnmapPBOStage of actually mapping OpenGL buffers, the memory is pinned (persistent).
However, this approach requires explicit synchronization: UnpackPBO inserts a fence upstream,
UnmapPBO waits until this fence has been signaled. It is then safe for CopyHostToPBO to
overwrite the pinned memory of the token.

stages and skip the map/unmap OpenGL commands during their execution. However, access
to these memory locations now has to be synchronized explicitly with OpenGL: UnmapPBO
applies the OpenGL command glClientWaitSync on the upstream token’s fence field,
which was inserted by the UnpackPBO stage (see Figure 4.5). This ensures that the buffer is not
used by any OpenGL command that has been triggered further downstream. When this token
is then passed to CopyHostToPBO, this stage can safely copy data into the persistent backing
storage of this PBO. This process is shown in the second scenario in Figure 4.5. Respectively,
MapPBO has to synchronize downstream before CopyPBOToHost reads from its memory.

4.3.2 Multithreaded OpenGL for upload/render/download

Chapter 2.3.7.1 described a technique that allows concurrent execution of upload, render and
download commands on the GPU using NVIDIA Quadro graphics cards. This is enabled by the
two DMA units of this graphics card. The optimization can be implemented by using multiple
OpenGL contexts for upload, render and download OpenGL commands. When each of these
contexts runs on its own thread, the driver can automatically parallelize the GPU-side execution.

Our video pipeline can be configured to implement this scenario and to distribute the stages
that execute OpenGL commands to three threads instead of just one (see Figure 4.6):

1. OpenGL upload thread:

• UnmapPBO

• UnpackPBO

2. OpenGL render thread:

57

Deliver thread

Acquire thread

OpenGL upload
thread

OpenGL render
thread

OpenGL download
thread

CPU
core

GPU
DMA
unit

Host input frame

GPU
DMA
unit

CPU
core

GPU
compute

units

Acquire

CopyHostToPBO

UnmapPBO

UnpackPBO

ConvertFormat

Render

ConvertFormat

PackPBO

MapPBO

CopyPBOToHost

Deliver

Mapped PBO

Input texture (input format)

Input texture (render format)

Output texture (render format)

Output texture (output format)

Unmapped PBO

Unmapped PBO

Mapped PBO

Host output frame

Figure 4.6: Using three different threads for the execution of OpenGL stages. On the left side of
the diagram we show the hardware units that potentially execute the stages’ task in parallel.

• ConvertFormat (1)

• Render

• ConvertFormat (2)

3. OpenGL download thread:

• PackPBO

• MapPBO

When sharing OpenGL data like textures and pixel buffer objects across multiple contexts,
it is necessary to explicitly synchronize between the context boundaries using ARB_sync (see
Section 4.1 in the OpenGL specification [29]). This is done with the following two commands:

• GLsync fence = glFenceSync(...): Adds a new fence into the GL command
queue, i.e. all previous OpenGL commands are added into the GL command queue before
this fence.

• glWaitSync(fence, ...): Adds a wait-command into the GL command queue for
a particular fence, i.e. OpenGL commands that are executed after this wait command are

58

UnpackPBO

glWaitSync

glTexSubImage2D

glFenceSync

ConvertFormat (1)

glWaitSync

convert

glFenceSync

pbo tex

[A]

[B]

[C]

[D]

[E]

[F]

synctex

synctex

synctex

sync tex

sync tex

sync tex

Figure 4.7: Stages UnpackPBO and ConvertFormat (1) use different OpenGL contexts. There-
fore, they need to perform a two-way OpenGL synchronization to avoid the concurrent modi-
fication and rendering of a texture’s image data. The red tokens in the diagram are tokens that
carry new video frames, i.e., the data that is passed downstream.

guaranteed to be executed after the OpenGL commands that preceded the previous fence
creation. Unlike glClientWaitSync, this command does not synchronize the client
execution, i.e. the call does not block the calling thread.

In our pipeline, the following stages now use the above commands to sync explicitly:

• UnpackPBO: The target of this stage’s unpacking operation is an OpenGL texture which
is shared between this stage and the ConvertFormat (1) stage. Because ConvertFormat
(1) uses a separate context in this optimization, explicit OpenGL synchronization is nec-
essary. The textures between those two stages are cycled back and forth via the tokens
of the output up- and downstream queues. Because the stage’s queues only synchronize
CPU-side execution, but do not know about the internal pipelining of the OpenGL imple-
mentation, the texture that has been retrieved by the upstream output queue might still be
used by some OpenGL command of a previous ConvertFormat (1) execution. We there-
fore add a GLsync field next to the GLuint texture id field of the output queues’ token
data structure. Both stages are able to synchronize their OpenGL executions with each
other using the sync fields of the tokens. UnpackPBO now synchronizes as follows (see
Figure 4.7):

A Synchronize with the output token’s GLsync field using glWaitSync. This fence
was created after a previous conversion operation that used the output token’s texture
id. Therefore syncing to this fence is equivalent to asking the OpenGL pipeline to
wait for any previous format conversion that still depends on this texture’s content
to finish.

B Perform the unpacking operation from the input token’s PBO into the output token’s
texture using glTexSubImage2D.

59

C Create a new fence using glFenceSync and write the new fence into the output
token’s GLsync field. The following stage can sync with this this fence in order to
make sure that the above unpacking operation is complete.

• ConvertFormat (1) needs to sync as well (see Figure 4.7):

D Synchronize with the input token’s GLsync field. This makes sure that the unpack-
ing operation (i.e. the texture upload) has been finished for this texture before it is
used as the input for the format conversion.

E Perform the format conversion from the input token’s source texture into some des-
tination texture.

F Create a new fence using glFenceSync and write the fence into the input up-
stream’s token GLsync field. This allows the previous stage (i.e. UnpackPBO)
to ask OpenGL to wait for this conversion to be finished before uploading another
frame into this particular texture.

• Because ConvertFormat (2) is executed by the render OpenGL context and PackPBO is
executed by the download OpenGL context, they synchronize their OpenGL execution in
a similar way as UnpackPBO and ConvertFormat (1) did.

When using this multi-threaded approach with multiple OpenGL contexts, we are able to
take advantage of the dual copy engines of recent NVIDIA Quadro hardware, which greatly
improves the throughput of the video pipeline. Chapter 6 provides exact numbers for the actual
improvement in throughput.

4.4 The canonical render format

The ConvertFormat stage of the video pipeline transcodes between the native video format and
the format which is used for rendering. The precision and color space of the render format can
be configured by the client of the video processing library. Higher precision and more accurate
conversion of color spaces require more processing and greater bandwidth. By making some
aspects of the render format configurable from outside the library, the user of the video process-
ing framework is able to make a compromise between performance and quality, depending on
the needs of the targeted use case. Chapter 6 provides a comparison between performance and
image quality of various configurations of our prototype.

The render format always represents an RGBA pixel format. The specific configuration
of the format has to be natively supported by OpenGL. The render format’s RGB values can
be configured to be stored as linearly coded intensity values (see Chapter 2.1.1). This results
in higher quality of most rendering operations, but requires the format converters to perform
image transfer between the perceptually encoded values and the linear RGB values of the render
format. Chapter 5 provides an example of how to perform this conversion for ITU-709-encoded
video.

The bit-depth and precision of the render format can be configured to be one of the following:

60

Figure 4.8: The demo renderer blends the logo and the lower-third images on top of the original
video material. Image appearance is animated using ease-in and ease-out curves. The image in
the background is a single frame of the EBU 1080P test sequence [4].

1. RGBA normalized 8-bit integer format

2. RGBA 16-bit floating point (half precision)

3. RGBA 32-bit floating point (full precision)

Depending on the requirements of the input and output video formats of the configuration,
a different choice of the above formats has to be made. The first format provides the best
performance but the least precision. As opposed to the other two formats, this format is also not
able to store values outside the unit processing range [0..1], which is necessary to avoid clipping
of RGB triples that originate from a Y’CbCr representation (see Chapter 2.1.6). The other two
formats store floating-point values, but with varying precision.

4.5 Demo renderer

The video pipeline itself does not define the rendering algorithm. Instead, the Render stage
defines an interface for rendering, which is implemented by the client of the library and then
used by the pipeline.

For the purpose of our prototype, we provide the implementation of a demo renderer, which
performs a simple broadcast graphics scenario: Blending images on top of a video stream. In

61

particular, a logo image is shown in the upper right, and another image is shown in the lower
third (see Figure 4.8). The images are encoded in the sRGB color space, versions in 8-bit and
16-bit color depth are available. The blending operation is performed in linearly coded RGB
space, i.e. the video material and sRGB images have to be transferred to a common space (see
Chapter 2.1.7).

The position and opacity of the overlaid images is animated using Bezier-interpolation. The
animation is driven by the input video’s time stamps, which are sent along the image data through
the video pipeline. The complete rendered sequence is available on YouTube 2.

4.6 Internal profiling

In order to measure the performance of the video pipeline, a profiling mechanism has been
added to the framework. While there exist several tools for external performance analysis, our
own profiling mechanism operates directly in the domain of our pipeline. This allows us to
more easily analyze bottlenecks and to evaluate the optimization techniques which have been
implemented.

4.6.1 Sampling timestamps of pipeline stage executions

Each stage of the video pipeline is able to record timestamps for every frame that is processed.
The C++ implementation of a stage (Chapter 4.1.3) provides a generic mechanism to record
high-resolution timestamps of events during stage execution. The following events are recorded
in chronological order:

• EXECUTE_BEGIN: A stage has entered its execution phase, i.e. the time at which
Stage::execute (see Listing 4.3) is called.

• INPUT_TOKEN_AVAILABLE: During execution, a stage waits until input and output
token are available, i.e. until data dependencies are met. This event is recorded when an
input token was made available.

• OUTPUT_TOKEN_AVAILABLE: Similar to above, an output token was made available.
The stage is now ready to actually execute its task.

• TASK_BEGIN: The stage’s task function is being called.

• TASK_END: The stage’s task function is finished.

• EXECUTE_END: This event is recorded when the stage has finished its task, added the
result token to the output downstream queue, and moved the input token back to the up-
stream input stream queue. This event basically records the time at which the method
Stage::execute returns.

2http://youtu.be/a8V2AacbPUY

62

The timestamps of these events are not stored in the stage class itself. This is done by
the helper class StageSampler, which is called by the stage implementation when an event
should be recorded. This class provides the following features:

• Store timestamps of stage events for a predefined number of frames.

• Preallocate containers for timestamp records in order to avoid the overhead of allocating
memory during profiling.

• Provide statistical summaries of all recorded timestamps.

The StageSampler class is implemented using the
boost::chrono library. Timestamps are recorded using the clock
boost::chrono::high_resolution_clock. Timestamp records are therefore
defined by boost::chrono::high_resolution_clock::time_point. While we
could have used C++11’s std::chrono library implementation, which provides the same
functionality, the implementation of Visual Studio 2012 was broken at the time of writing,
which made us fall back to the Boost-supplied library implementation.

4.6.1.1 Measuring GPU timing

The previously described stage events are captured with timestamps that are relative to the CPU
timer of the machine. This is useful for measuring general performance characteristics of the
pipeline, like overall data throughput, etc. However, many stages trigger the execution of GPU
algorithms, e.g. rendering the current video frame. In order to evaluate the performance of these
tasks, we would like to measure the time it actually took the GPU to process it. Because the
OpenGL driver internally buffers commands for pipelining, CPU timers can only be used to
measure the time it took to enqueue OpenGL command to the driver’s internal command queue.
In order to measure the GPU time of a task, we use OpenGL timer queries (see Chapter 2.3.1).
A timer query is inserted into the OpenGL command stream and records the GPU time when
it is actually processed by the hardware. The result of a query needs to be explicitly requested
by the client of the OpenGL API. Due to the pipelined nature of OpenGL, this request needs
to made at a time when it is likely that its results is already available, i.e. that hardware has
already processed the query. Asking for a timer query’s timestamp too early results in a stall of
the OpenGL pipeline. Our framework therefore uses a helper class that insert timer queries and
records their timestamps in a lazy fashion, i.e. several video frames later than when they were
inserted. This helper class reuses the StageSampler class and stores the GPU-times in the
events GL_TASK_BEGIN and GL_TASK_END.

While most stage events are recorded automatically by the generic stage class, GPU timer
queries have to be inserted manually by the stage’s task definition. The task decides which
section of its OpenGL commands should be measured for the GPU’s time of execution.

4.6.2 Trace format

The set of timestamps for all stage events of all used pipeline stages for a single frame is called
a trace. A trace uniquely identifies the timing history of a single processed frame. While pro-

63

cessing a video stream, the trace for each frame is recorded in internal data structures. These
data structures can written to a file for later analysis of this session’s performance. Google pro-
tobuf [8] is a C++ library that allows the user to easily define a data format for file storage. Our
framework uses this library to save all frame traces of processing a video stream to one file.
Among other things, this file stores the following data:

• Human-readable name of the processing session

• Information about OpenGL renderer and vendor

• Date and time of the recorded session

• Traces of all stages for all processed frames

Using the library protobuf to store the traces in its own independent file representation also
enables the processing of its data in other language like Python. In Chapter 6.1.3, we show
further applications of this format.

All profiling features are optional during the execution of our video processing pipeline.
While the overhead of the described profiling features is relatively low, the client of the
libFrameBender framework can decide to turn it off completely to avoid any processing over-
head of time sampling.

4.7 Debugging features

The libFrameBender library exposes several debugging options to the client of the framework:

• The framework can be configured to use an OpenGL debug context (see Chapter 2.3.4)
which helps to find errors in OpenGL usage quickly, and which also reports performance
warnings of the driver.

• Some parts of the pipeline can be bypassed or turned off in order to isolate performance
bottlenecks:

– Bypass input stages: Acquire, CopyHostToPBO, UnmapPBO and UnpackPBO will
not be executed.

– Bypass output stages: PackPBO, MapPBO, CopyPBOToHost and Deliver will not
be executed.

– Bypass render stages: ConvertFormat(1), Render and ConvertFormat(2) will not be
executed.

– Disable host-side copying: Stages CopyHostToPBO and CopyPBOToHost will not
perform host-side copying of frames. This is useful for isolating GPU-centric tasks.

– Force pass-through renderer: Stage Render will use a pass-through renderer instead
of the user-configured renderer.

64

Modify
code

Is the output correct?

Profile performance

No
Fix errors

Golden frames

Yes

Optimize
further

Figure 4.9: Once a correctly working implementation has been developed, optimizing the frame-
work’s performance was done in an iterative process: Based on a captured performance profile,
modify code and then test for correctness of the video output by comparing with golden frames
(expected output). If the output is not correct go back to fixing the code, otherwise continue
profiling and optimize further.

• The framework verbosely logs events and errors of the pipeline. Logging is implemented
using the boost::log framework. Log messages are automatically recorded to files.
Printing log messages to the console can be enabled, but is disabled by default in order to
avoid penalties in performance. If the framework is configured to use an OpenGL debug
context (see Chapter 2.3.4), then the OpenGL debug output is also written into these log
files.

• In order to monitor pipeline execution, a stage can be configured to log each encountered
data token with its timestamp. This results in extremely verbose logging message and is
usually turned off.

4.8 Testing

The framework uses several layers of testing. The most basic tests are unit tests of supporting
infrastructure classes, like the C++ stage class. The library boost::test is used to implement
a test runner. This framework provides convenient tools to register test scenarios and to build an
executable that automatically executes these tests.

During development it was important to repeatedly test the correctness of the implemented
image-processing algorithms. This was done by processing a well-known set of video frames,
and testing the resulting video frames against golden samples which are known to represent the
correct result for the tested algorithm. When using a pass-through renderer and when the format
converters are configured to use the same format for source and destination, the output of the
pipeline can be compared directly with the input frames. This proved to be one of the most
useful test cases, where many errors could be found early during development.

While optimizing the framework, testing for correctness was a crucial part of the iterative
process between development and performance measurement (see Figure 4.9).

65

CHAPTER 5
V210 Y’CbCr to RGB Transcoder

The V210 video format is widely used by professional video cards and camera interfaces. Our
video framework natively supports the transcoding between this format and the canonical RGB
render format (see Chapter 4.4). We have implemented the V210 transcoder in the ConvertFor-
mat stage (Chapter 4.2.1.5) of our video processing pipeline.

DeckLink API2SECTION

287SDK Software Developers Kit

bmdFormat10BitYUV : ‘v210’ 4:2:2 Representation

Twelve 10-bit unsigned components are packed into four 32-bit little-endian words.

Word 0
Decreasing Address Order

X X
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Byte 3
Cr 0

Byte 2 Byte 1 Byte 0
Y’ 0 Cb 0

Word 1
Decreasing Address Order

X X
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Byte 3
Y’ 2

Byte 2 Byte 1 Byte 0
Cb 2 Y’ 1

Word 2
Decreasing Address Order

X X
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Byte 3
Cb 4

Byte 2 Byte 1 Byte 0
Y’3 Cr 2

Word 3
Decreasing Address Order

X X
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Byte 3
Y’ 5

Byte 2 Byte 1 Byte 0
Cr 4 Y’ 4

Figure 5.1: Data layout of a V210 group. Image courtesy of BlackMagic Design R©.

67

5.1 V210 structure

V210 is an interleaved 4:2:2 chroma-subsampled Y’CbCr format where each component has a
precision of 10 bits. Three 10-bit components are packed in a single 32-bit little-endian word,
where the last two bits are ignored. A group of four 32-bit words store 12 Y’CbCr components
in the interleaved pattern Cb0, Y ′0 , Cr0, Y

′
1 , Cb2, ..., Y

′5. Chroma values (CbCr) are sampled in
half the resolution of luma (Y’). Each V210 group therefore stores 6 pixels. Figure 5.1 shows
the V210 data layout.

The 4:2:2 chroma subsampling in V210 is cosited, e.g. Cb2 and Cr2 of the diagram in
Figure 5.1 refer to the same spatial sample location as Y’2.

The V210 coding pads each image line to the next multiple of 128 bytes (48 pixels). The
byte size sizev210(w, h) of a video frame with width w and height h is therefore calculated as:

sizev210(w, h) =
⌈ w
48

⌉
∗ 128 ∗ h (5.1)

5.2 OpenGL V210 representation

The V210-encoded frames need to be transferred to and from the GPU using a natively supported
OpenGL texture format before it can be processed by GLSL shaders. The transfer format should
store the original data without loosing any precision: OpenGL 3 added native support for integer
texture formats with a precision high enough to store the V210 frames. Integer textures are not
normalized by OpenGL, i.e. the original code values of the texture elements (texels) can be
accessed when sampling the texture in a shader.

Our framework stores V210 frames in OpenGL textures such that one texel represents a
single V210 word. The framework implements two different approaches for storing V210 code
words in 32-bit textures:

• GL_RGB10_A2UI: The components of a single V210 word (one line in the diagram of
Figure 5.1) are extracted by the driver. When fetching a texel from the V210 texture in
GLSL, the first three components (rgb) of the fetched vec4 value directly represent the
components of a single V210 word.

• GL_R32UI: A single V210 word is accessed by reading the first (RED) component of
the fetched texel of the V210 texture. Extracting the 10-bit components needs to be done
in the shader. This is done using the GLSL function bitfieldExtract. For insert-
ing the V210 components back into a single 32-bit unsigned integer, the GLSL function
bitfieldInsert is used. Bitfield operations were introduced in version 4.0 of GLSL.

While the former seems the be more convenient, the latter approach usually yields better
performance. A comparison in performance between these two methods is given in Chapter 6.
Our framework uses the OpenGL extension ARB_internal_format_query2 to assert the
optimal configuration of the OpenGL internal texture format and data type (see Chapter 2.3.4).

68

5.3 GLSL implementation

Our framework performs the conversion between V210 and RGB within a single OpenGL ren-
der pass using only GLSL shaders. The encoding and decoding process is implemented in three
different versions of GLSL: 3.3, 4.2 and 4.3. Each version adds new features of the GLSL lan-
guage and OpenGL API which allow more optimized implementations of the V210 transcoding
process. The input and output data of the conversions are always the same:

• Decoder: Input is a texture containing a single V210 frame, output is an RGBA texture.

• Encoder: Input is an RGBA texture, output is a texture containing a V210 frame.

Each shader of the V210 encoders/decoders is also parameterized with the following options:

• Flip origin (yes/no): OpenGL always operates with an image origin in the lower-left.
If input/output data are represented using an upper-left origin, images need to be flipped
during transcoding.

• Chroma filter complexity: For each shader, there are three levels of chroma filtering
complexity available (described further below):

– NONE

– BASIC

– HIGH

• Extract/insert V210 components in shader (yes/no): Depending on the internal texture
format of the V210 textures (see Chapter 5.2), this option is automatically enabled or
disabled.

• Convert to linearly coded RGB space (yes/no): This option is usually enabled, since
rendering in linear space yields better results, but can be disabled for debugging purposes
or performance measurements.

5.3.1 Chroma filters

Each shader variation of our V210 encoders/decoders is able to use filter kernels with a variable
width for chroma decimation and reconstruction. Chapter 2.1.5 provides more background in-
formation on chroma filtering and the filter kernels that are used in this section. The previously
described three levels of chroma filter complexity correspond to the following kernels:

• V210 encoder:

– NONE: drop, i.e. no filtering is done, every second chroma sample is discarded.

– BASIC: three-tap filter (tent) using the coefficients

[0.25, 0.5, 0.25]

69

– HIGH: 13-tap filter as given by Poynton [3]:

[−0.00390625, 0.01171875,
−0.0234375, 0.046875,
−0.09375, 0.3125,
0.5,

0.3125,−0.09375,
0.046875,−0.0234375,
0.01171875,−0.00390625]

• V210 decoder:

– NONE: replicate, i.e. neighboring chroma value is duplicated.

– BASIC: two-tap filter (linear interpolation) using the coefficients

[0.5, 0.5]

– HIGH: 12-tap filter as given by Poynton [2]:

[−0.0078125, 0.0234375,
−0.046875, 0.09375,
−0.1875, 0.625,
0.625,−0.1875,
0.09375,−0.046875,
0.0234375,−0.0078125]

5.3.2 GLSL shader inclusion system

A lot of code is shared between the multiple variations of the shaders. Because GLSL does
not natively provide a preprocessor command to include other sources, our framework provides
a simple mechanism to include shader source files within other files. This is done by using
the token #fb_include<FILE.glsl> in any shader. The framework’s shader preprocessor
looks for these token using C++11’s std::regex library, parses the filename and looks for
this file in a pre-configured location of GLSL sources. It then replaces the include token with the
actual content of the referenced file. Indentation is done properly, recursive inclusion is possible
and circular dependencies are avoided. This technique enables the framework to share existing
code snippets between multiple shader variations.

5.3.3 Transcoding algorithm

All shader variations of the V210 encoders and decoders perform the same basic set of calcula-
tions. Let the region of interest (ROI) be the part of the image that is converted between the two
formats in a single shader execution, then each shader variation performs the following steps
with a single execution:

70

• Encoder:

1. Gather RGB ROI: Fetch the RGB pixels covering the region of interest that should
be encoded into V210. Also fetch enough neighboring pixels for applying the chosen
decimation filter for chroma values later in the process.

2. Convert RGB to Y’CbCr: Apply the inverse image transfer function to convert
from RGB to R’G’B’, then apply the 3x3 matrix to convert from R’G’B’ to Y’CbCr
(see Chapter 2.1.6).

3. Perform chroma subsampling: Apply the chosen decimation filter on the previ-
ously converted Y’CbCr values in order to reach a 4:2:2 subsampling. Note that the
filter only needs to be applied on those chroma values which are actually written out
(every second chroma value).

4. Write out V210 ROI: Write the resulting V210 groups covering the region of inter-
est into the destination texture.

• Decoder:

1. Gather V210 ROI: Fetch enough V210 groups covering the region of interest from
the input texture sampler. Also fetch a neighborhood of V210 groups that contains
enough chroma samples to accommodate the width of the chosen chroma recon-
struction filter (see Chapter 5.3.1).

2. Apply chroma reconstruction filters: Apply the reconstruction filters on the input
chroma values in order to reconstruct the missing chroma values. After this step, we
have a Y’CbCr triple for each spatial location of the output image (Y’CbCr 4:4:4
sampling).

3. Convert Y’CbCr to RGB: Apply the 3x3 matrix to convert Y’CbCr to R’G’B’
(see Chapter 2.1.6), then apply the image transfer function to convert perceptually
encoded R’G’B’ to linearly coded RGB.

4. Write out RGB ROI: The resulting RGB values are written into the destination
texture.

Figure 5.2 and 5.3 show the access patterns of the encoding and decoding process of a single
V210 group (four 32-bit words). Table 5.1 shows the relation of dimensions and sizes between
V210-encoded textures and RGBA textures.

5.3.4 GLSL 3.3

The encoding and decoding process in this version is implemented by a fragment shader that is
active during the rendering of a quad. The quad’s geometry covers the full range of the normal-
ized device coordinates [−1..1] × [−1..1] in OpenGL. In order to execute the fragment shader
for each element of the output texture, the dimension of the active viewport needs to be set to
the dimension of the output texture using glViewport. The fragment shader derives the texel

71

Cr0Y'00Cb0 Y'2Cb2Y'1 Cb4Y'3Cr2 Y'5Cr4Y'4

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5

word 0 word 1 word 2 word 3

V210

RGB

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

R-1 G-1 B-1

Figure 5.2: Access pattern for encoding six RGB pixels into a V210 group using a 3-tap deci-
mation filter. Because Y’CbCr 4:2:2 encodes only half the chroma resolution, only even chroma
samples need to be filtered and written out. This diagram uses a three-tap filter for chroma
decimation.

Cr0Y'00Cb0 Y'2Cb2Y'1 Cb4Y'3Cr2 Y'5Cr4Y'4 Cr6Y'60Cb6

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5

word 0 word 1 word 2 word 3 word 0

V210

RGB

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

Figure 5.3: Access pattern for decoding a V210 group into a group of six RGB pixels using a
2-tap chroma reconstruction filter. Because V210 has cosited chroma samples, chroma filters
need only be applied to odd pixels. This diagram uses a two-tap filter for chroma reconstruction.

location of the target texture using the built-in GLSL constant gl_FragCoord (see Figure
5.4). The fragment shader reads texture elements by using the GLSL command texelFetch.
This command uses integer texture coordinates in order to fetch the texel at this exact location,
bypassing any texture filtering. By default, gl_FragCoord returns the center of pixels in
floating point coordinates (the lower-left corner would be [0.5, 0.5] instead of [0, 0]). We can
re-declare the constant in order to get the integer coordinates that we expect:

layout(pixel_center_integer) in vec4 gl_FragCoord;

If the image origin needs to be flipped, we change the signature again:

layout(pixel_center_integer, origin_upper_left) in vec4 gl_FragCoord;

In GLSL 3.3, the fragment shader can output only one pixel value per render target. We
therefore have to execute the fragment shader for each texture element of the destination texture:

72

V210 texture V210 texture RGBA texture RGBA 8-bit RGBA 16-bit RGBA 32-bit
resolution size resolution integer texture float texture float texture

size size size

HD 1080p 1280x1080 5.5 MB 1920x1080 8.3 MB 16.6 MB 33.2 MB
UHD-1 2560x2160 22.1 MB 3840x2160 33.2 MB 66.3 MB 132.7 MB

Table 5.1: Resolutions and data sizes for V210 and RGBA textures. The V210 texture stores
6 RGB pixel values in 4 texels (V210 words). Therefore, the horizontal resolution of a V210-
encoded texture is 2/3 of the RGB texture’s width.

[-1, 1]

[-1, -1] [1, -1]

[1, 1]

gl_FragCoord.xy

viewport width

viewport height

[0, 1080] [1920, 1080]

[0, 0] [1920, 0]

Figure 5.4: The fragment shader of the encoders and decoders is executed by rasterizing a quad
that fully covers the range of the OpenGL normalized device coordinates (shown in black). In
order to execute the fragment shader for each texel of the output texture, it is only necessary to set
the viewport to the dimensions of the texture via glSetViewport. Texel locations of the currently
executing fragment shader are derived by using the GLSL constant gl_FragCoord (shown in
red).

The encoder executes its fragment shader per V210 output word, and the decoder executes its
shader per output RGBA pixel (see Figure 5.5). Looking at the diagrams in Figure 5.2 and 5.3,
we can see that the mapping between a single V210 word and an RGB pixel value is not simple,
and that the constraint of running the fragment shaders for each output texel will either require
the shader to use a lot of branching to distinguish between the different cases, or to accept
some redundancy in reading more input data than actually necessary for the output texel. We
chose the latter approach, e.g. the decoder always reads the full V210 neighborhood for every

73

Cr0Y'0Cb0 Y'2Cb2Y'1 Cb4Y'3Cr2 Y'5Cr4Y'4 Cr6Y'60Cb6

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5

word 0 word 1 word 2 word 3 word 0V210
input

texture

RGB
output
texture pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

invocation 1

invocation 2

Figure 5.5: With the GLSL 3.3 implementation, the V210 decoder executes per output RGBA
pixel and repeatedly has to read the same memory regions of the source image and perform a lot
of redundant calculations.

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5

Cr0Y'0Cb0 Y'2Cb2Y'1 Cb4Y'3Cr2 Y'5Cr4Y'4

word 0 word 1 word 2 word 3

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

invocation 1 invocation 2

Cr6Y'6Cb6 Y'8Cb8Y'7 Cb10Y'9Cr8 Y'11Cr10Y'10

word 0 word 1 word 2 word 3

Cr12Y'12Cb12

word 0

R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 R10 G10 B10 R11 G11 B11

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

V210
input

texture

RGB
output
texture

Figure 5.6: In GLSL 4.2, we can directly write 6 pixels for a single V210 group (4 bytes). This
provides a very efficient data mapping. The input data region in this diagram is slightly larger in
order to accomodate the neighborhood for the chroma filter.

output pixel, even though a V210 group actually covers six output pixels (see Figure 5.5). While
functionally correct, this implementation’s performance is suboptimal. By taking advantage of
newer OpenGL features, we can improve the algorithm’s performance drastically, as described
by the next chapter.

5.3.5 GLSL 4.2

OpenGL 4.2 introduced a new method for shaders to write to images 1 via the GLSL function
imageStore (see Chapter 2.3). A fragment shader is now able to write multiple values to
a texture within a single invocation. Using this feature, the V210 encoder is able to output a
complete V210 group of four 32-bit integer words for each input of six RGB pixels, and the
V210 decoder is able to output six RGB pixels for each input of four V210 words (a complete
V210 group, see Figure 5.6). When rendering the unit quad, we therefore set the width of the
active viewport to the number of V210 groups (i.e. pixel width divided by six) instead of the
number of output pixels. This results in less invocations of the fragment shader compared to
the previous GLSL 3.3 implementation. For example, for a width of 1920 pixels, the viewport’s
width is set to 320, the number of V210 groups necessary to store 1920 pixel values. The

1An image in this context represents a single level of a texture.

74

fragment shader is therefore executed only 320 times for each line in the image, as opposed to
1920 times using the GLSL 3.3 implementation.

Because the GLSL image load/store operations operate under a relaxed memory model, af-
ter executing the fragment shader and writing into the destination image, a barrier has to be
inserted by the host program in order to make these writes visible to the next operation. In our
pipeline, the decoder of the stage ConvertFormat (1) insert a fence by calling the GL command
glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT), because its output image
will be used for texture reads while executing the Render stage. The encoder of ConvertFor-
mat (2) insert a barrier using glMemoryBarrier(GL_PIXEL_BUFFER_BARRIER_BIT),
because the PackPBO stage will use its output image directly for pixel buffer transfers.

As opposed to the GLSL 3.3 implementation, the actual return value of the fragment shader
is irrelevant, because all output values are written to the destination image via imageStore.
However, in unextended OpenGL 4.2 we still have to attach a texture to the FBO that is bound
while rendering the quad. Because we can not bind the same texture to the FBO that we write
to via imageStore, we have to allocate and attach dummy textures, which is a waste of re-
sources. If the extension ARB_framebuffer_no_attachments2 is available, we can bind
an FBO without attachments, which removes the necessity of using dummy textures. This also
enables the OpenGL driver to ignore the output of the fragment shader when no texture is at-
tached and saves the bandwidth of writing back the fragment shader’s result to the framebuffer.

A complete listing of the GLSL 4.2 V210 decoder is given in Appendix A.

5.3.6 GLSL 4.3 compute shaders

While the previous two implementations rely on OpenGL’s rasterizer to invoke the fragment
shader, OpenGL 4.3 enables the host program to execute a shader independently of the tradi-
tional graphics pipeline. These shaders are called compute shaders. The principles of compute
shaders are explained in Chapter 2.3.5.

Similar to the GLSL 4.2 variation, a single thread of the compute shader implementation
operates on a single V210 group, i.e. four 32-bit words. However, these invocations are now
grouped into several work groups, within they are able to share data. In our implementation,
the size of a work group is defined as [xv210, 1, 1]. The variable xv210 defines the number of
V210 groups along a line of the image that should be processed within one work group. Our
framework enables the user to tweak this number for optimizing compute shader executions.
Chapter 6 shows results of how much the group size influences the overall performance on
different architectures.

Because the shader invocations within a work group are able to share data, we can split the
execution of our conversion algorithm into two phases:

1. Read input data for the complete work group and store in shared memory.

2. Read neighborhood from shared memory, convert to destination format, and store result
in image.

2This extension is part of the OpenGL 4.3 core specification.

75

1 ...
2
3 const int tile_v210_width = TILE_V210_WIDTH;
4
5 const int neighborhood_v210_size = (tile_v210_width +

chroma_filter_v210_width);
6 const int neighborhood_pixel_size = neighborhood_v210_size * 6;
7
8 layout(binding = 0) uniform usampler2D v210_input_image;
9 layout(binding = 1) uniform restrict writeonly image2D rgba_output_image;

10
11 // Define the work group size
12 layout(local_size_x=TILE_V210_WIDTH) in;
13
14 // Shared memory for input luma and chroma
15 shared uint luma[neighborhood_pixel_size];
16 shared uvec2 chroma[neighborhood_pixel_size/2];
17
18 void main() {
19
20 // Determine src/dst coordinates from
21 // compute shader’s built-in constants
22 const ivec2 tile_xy = ivec2(gl_WorkGroupID);
23 const uint thread_x = gl_LocalInvocationID.x;
24 const ivec2 v210_coords = tile_xy*ivec2(tile_v210_width, 1) + ivec2(

thread_x, 0);
25 const int v210_y_line_num = v210_coords.y;
26 const uint x = thread_x;
27
28 const uvec2 rgba_pixel_base_coords = uvec2(v210_coords.x * 6,

v210_coords.y);
29
30 // We might have had to spawn more threads than which are actually
31 // contributing to the image
32 if (rgba_pixel_base_coords.x < ((v210_image_size.x/4)*6)) {
33
34 // Phase 1: Read-in & decompose luma and chroma from V210 words
35 for (int i=0; i < neighborhood_v210_size; i += tile_v210_width) {
36
37 if ((x + i) < neighborhood_v210_size) {
38
39 // Extract Y’CbCr and store into shared memory
40 ...
41 }
42 }
43
44 // Barriers for synchronization threads and shared memory access
45 memoryBarrierShared();
46 barrier();
47
48 // Phase 2:
49 //] Apply chroma reconstruction filterconvert to RGB
50 //] Convert to RGB
51 //] Write results to rgba_output_image
52
53 ...
54 }
55 }

Listing 5.1: Skeleton of a GLSL 4.3 V210 decoder implementation using shared memory.
Implementation is based on example code given by Kilgard [10]. Note that source code was
skipped for the sake of brevity.

76

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5

Cr0Y'0Cb0 Y'2Cb2Y'1 Cb4Y'3Cr2 Y'5Cr4Y'4

word 0 word 1 word 2 word 3

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

invocation 1 invocation 2

Cr6Y'6Cb6 Y'8Cb8Y'7 Cb10Y'9Cr8 Y'11Cr10Y'10

word 0 word 1 word 2 word 3

R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 R10 G10 B10 R11 G11 B11

pixel 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5

V210
input

texture

RGB
output
texture

Cr12Y'12Cb12

word 0

shared
memory

work group, size = [2, 1, 1]

Figure 5.7: Using compute shaders, we can cache input data in shared memory. The data is then
read by each thread of a work group. This requires less redundant texel-fetches when reading
the neighborhood for chroma filtering. This diagram shows show a workgroup size of 2. Notice
how the overlapping reads of the first and second invocation are now read from shared memory
instead of fetched again from the texture unit.

This has the advantage that the neighborhood of chroma filter kernels only needs to be
fetched from the texture once. Figure 5.7 shows the structure of a single work group. Work
groups are distributed over each line of the image. A sensible work group size would be [64, 1, 1].
For an image of a pixel resolution of [1920, 1080] where each row is stored in 320 V210 groups,
this results in 5 work group executions for each line.

The skeleton of a GLSL 4.3 V210 decoder is shown in Listing 5.1:

• Line 8 and 9 declare the input texture and output image.

• The work group size is declared in line 12. TILE_V210_WIDTH is a constant that is
defined at compile-time and denotes the number of threads within a work group. Each
thread a work group operates on a full V210 group of four words.

• Shared memory is declared in line 15 and 16. The size of these arrays is defined as the
number of V210 groups to process within this work group, plus the neighborhood that is
necessary for the chosen chroma filter size.

• Each thread that enters the compute shader converts a single V210 group into six RGB
pixels. The address and texture coordinates of this group is determined in line 22 and
following. This is done using the GLSL built-in constants that are available to compute
shaders.

• Depending on whether the chosen work group size is a multiple of the number of V210
groups available, there might be threads spawned which actually do not contribute to the
image. These threads are excluded line 32.

77

• Line 35 and following reads in the neighborhood of the work group. Each thread reads
at least one texture element. Some threads read more values in order to fetch the texture
elements of the filter neighborhood.

• Line 45 insert a barrier to make sure that previous writes into shared memory are visible
to all threads.

• Line 46 inserts a sync point between all threads of this work group, i.e. execution of the
current threads blocks until all threads of this work group have entered the barrier.

• After the barrier is passed, each thread reads the Y’CbCr neighborhood of its assigned
V210 group, converts it into RGB and writes the six resulting RGB pixels into the desti-
nation image.

5.3.6.1 Bypassing shared memory

In our implementation, the use of shared memory eliminates redundant reads of the neighbor-
hood for chroma filters. This is particularly effective for very large filter kernels. However,
because those texture reads are spatially coherent, they are likely to be cached by the texture
units. It is therefore questionable whether the benefits of using shared memory outweigh the
shader complexity of its implementation and the synchronization of inter-thread access. We
have therefore also implemented a variation of our compute shader encoder/decoder which does
not use shared memory. Instead, each thread individually reads all necessary input data and
directly moves on to converting and writing out the results. This version is very similar to the
GLSL 4.2 implementation, except that the shaders are not invoked by the rasterizer but directly
by the host program’s compute shader dispatch. Chapter 6 provides performance charts of both
approaches.

5.3.7 Testing GLSL variations

During development, we made sure that each transcoder GLSL variation is functionally equiva-
lent to the others, i.e., for the same configuration of chroma filters and render formats, the output
has to be consistent across each GLSL implementation, only the performance characteristics
should vary. The transcoders were cross-tested repeatedly for correctness (also see Chapter 4.8).

78

CHAPTER 6
Results

In this chapter, we show the results of testing the prototype implementation of the framework.
We begin by describing the test setup and how the FrameBender application was used to provide
performance data and quality measurements. We then describe the results of running different
scenarios that influence performance and quality.

6.1 Test setup

We described a mechanism of our framework to capture performance profiles of particular con-
figurations in Chapter 4.6 and 4.7. In this chapter, we employ this mechanism to measure the
execution of the pipeline using different configurations. These configurations are described in
Chapter 6.1.1. For each tested configuration, we ran the FrameBender application to execute a
benchmarking scenario (Chapter 6.1.2) and analyzed the resulting performance trace files. In
Chapter 6.1.3, we show our method to visualize the data that was captured. We further describe
the statistical properties that can be extracted from a single trace of a benchmark run (Chapter
6.1.7) and explain how we measure the potential loss of image quality in our pipeline (Chapter
6.1.8).

6.1.1 Parameter space of benchmark configurations

Figure 6.1 provides an overview of the complete parameter space over which we define the con-
figurations that are used for benchmarking. In the following, we provide additional information
for each configuration parameter:

A Device: This parameter defines the device that was used for benchmarking with our test
machine (see Chapter 6.1.5). The following devices were tested:

– NVIDIA Quadro K5000, 4 GiB GDDR5 VRAM, Driver ver. 320.27

– NVIDIA GeForce GTX 680, 4GiB GDDR5 VRAM, Driver ver. 320.18

79

1 AMD FirePro W9000 (PCIe Gen-3)
2 NVIDIA GeForce GTX 680 (PCIe Gen-3)
3 NVIDIA Quadro 6000 (PCIe Gen-2)
4 NVIDIA Quadro K5000 (PCIe Gen-2)
5 NVIDIA Quadro K5000 (PCIe Gen-3)

1 Low latency
2 High latency
3 High latency + (un)map <-> (un)pack interleaved
4 High latency + transfer <-> render interleaved
5 High latency + (un)map <-> (un)pack & transfer <-> render interleaved

1 EBU Horse V210 HD 1080p50 (1920x1080)
2 EBU Rain fruits V210 UHD-1p50 (3840x2160)

1 Single thread, single OpenGL thread + context
2 Async host copies, single OpenGL thread + context
3 Async host copies & AMD pinned memory, single OpenGL thread + context
4 Async host copies, multiple OpenGL threads + contexts
5 Async host copies & AMD pinned memory, multiple OpenGL threads + contexts
6 Local best mode (AMD: 3, NVIDIA: 4)

1 GPU upload
2 GPU download
3 GPU upload & download
4 GPU upload & download & CPU host copying
5 GPU upload & download & render
6 GPU upload & download & render & CPU host copying (all)

1 RGBA 8-bit integer
2 RGBA 16-bit integer
3 RGBA 16-bit float
4 RGBA 32-bit float

A Device

B Pipeline depth

C Test sequences

D Pipeline concurrency

E Active stages

F Render format

G V210 settings

a GLSL mode

1 GLSL 3.3

a GLSL mode

2 GLSL 4.2

a GLSL mode
3 GLSL 4.2 & ARB_framebuffer_no_attachments

a GLSL mode
4 GLSL 4.3 & caching reads in shared memory

a GLSL mode

5 GLSL 4.3 & no shared memory

a GLSL mode

6 Local best mode (AMD: 2, NVIDIA: 3)

b Chroma filter

1 None

b Chroma filter 2 Basicb Chroma filter

3 High

c Work group size

1 16

c Work group size

2 32

c Work group size 4 64c Work group size

5 96
c Work group size

6 128

d V210 mode
1 RGB10_A2UI texture

d V210 mode
2 R32UI texture + shader bitops

Figure 6.1: This table shows the parameter space of the tests that were executed. Highlighted parameters
denote values that also affect image quality, others influence performance only. Each configuration is
uniquely identified by a tuple like [A1, B1, C1, D1, E6, F3, Ga2,b2,d2].

80

– NVIDIA Quadro 6000, 6 GiB GDDR5 VRAM, Driver ver. 320.27

– AMD FirePro W9000, 6 GiB GDDR5 VRAM, Driver ver. 12.104.2.0

Note that not all of these devices take advantage of PCIe Gen-3. The Quadro 6000 is
limited to PCIe Gen-2 by hardware. Even though the hardware of the Quadro K5000 is
able to use PCIe Gen-3 transfers, the NVIDIA driver1 disables PCIe Gen-3 by default in
order to avoid compatibility issues with some motherboards. However, NVIDIA provides
a patch to explicitly enable PCIe Gen-3 support2. We have tested the Quadro K5000 both
with the default PCIe Gen-2 configuration and the patched PCIe Gen-3 support, hence it
is listed twice in the device parameter values.

B Pipeline depth: Each configuration is a preset of queue sizes and interleaving settings.
The following explains the effect of the used terms:

– Low latency: The queue sizes between stages are kept as small as possible (max.
2 elements per queue). This configuration never uses single-threaded interleaving
(see Chapter 4.2.3.2). The goal of this configuration is to keep the latency low.

– High latency: The queue sizes between stages are larger so as to increase the po-
tential of concurrency and interleaving (max. 8 elements per queue). This results in
higher latency.

– (Un)map <-> (un)pack interleaved: The stages UnpackPBO and MapPBO use an
input constraint of 2, i.e. their single-threaded execution is interleaved with the
execution of their predecessors UnmapPBO and PackPBO (see Chapter 4.2.3.2).
The goal here is to break the implicit dependency between the the pack and map
operations.

– Transfer <-> render interleaved: Similar to above, the goal of this setting is to
interleave the transfer-related stages with the rendering-related stages (this includes
format conversions). Using this setting, stage ConvertFormat (1) uses an input con-
straint of 2, i.e. it is interleaved with stage UnpackPBO, and stage PackPBO uses an
input constraint of 2 as well, it is interleaved with ConvertFormat (2).

– The above two interleaving options can be combined as well.

C Test sequences: See Chapter 6.1.4.

D Pipeline concurrency: The listed possible values relate to the degree of concurrency that
has been described in Chapter 4.3. Settings using AMD pinned memory are limited to
AMD hardware and not tested by NVIDIA hardware. The local best mode option shown
in the figure uses the settings that performed best for the chosen hardware. This setting is
used when test results are compared between different hardware configurations and when
this setting is not the focus of the comparison.

1As of NVIDIA ForceWare 320.27
2http://nvidia.custhelp.com/app/answers/detail/a_id/3135/~/geforce-600-series-gen3-support-on-x79-platform

81

E Active stages: These configurations allow isolating certain stage executions. They repre-
sent a preset of the debug configurations that were described previously in Chapter 4.7.
We use the same terminology as in Chapter 4.7:

– GPU upload: Bypass output, bypass render stages and disable host-side copying,
i.e. only GPU upload is performed.

– GPU download: Bypass input, bypass render stages and disable host-side copying,
i.e. only GPU download is performed.

– GPU upload & download: Bypass render stages and disable host-side copying, i.e.
GPU upload and download is performed.

– GPU upload & download & CPU host copying: Bypass render stages, i.e. up/-
download including host-side copying is performed.

– GPU upload & download & render: Disable host-side copying, i.e. only GPU
tasks are performed.

– GPU upload & download & render & CPU host copying: Disable nothing, exe-
cute complete pipeline. This is the only configuration that provides correct rendering
results. All of the above are for debugging purposes only.

F Render format: Configures the canonical render format (see Chapter 4.4).

G V210 settings: These are the parameters of the V210 transcoding process (as implemented
by the ConvertFormat stages).

a GLSL mode: These values map to the variation of the GLSL implementation as
discussed in Chapter 5.3:

GLSL 3.3: See Chapter 5.3.4.
GLSL 4.2: This variation uses only OpenGL 4.2 core profile features, i.e. it has
to allocate and attach dummy textures to FBOs (see Chapter 5.3.5).
GLSL 4.2 & ARB_framebuffer_no_attachments: This variation takes advan-
tage of the extension ARB_framebuffer_no_attachments as discussed
in Chapter 5.3.5.
GLSL 4.3 & caching reads in shared memory: This compute-shader variation
caches the input reads for a complete workgroup in shared memory (see Chapter
5.3.6).
GLSL 4.3 & no shared memory: This compute-shader variation does not use
shared memory for caching (see Chapter 5.3.6.1).
Local best mode: This option uses the best-performing mode for the chosen
graphics hardware.

b Chroma filter: Maps to the chroma filter kernels as described in Chapter 5.3.1.

c Work group size: If a compute shader is used as the GLSL mode, this setting con-
figures the used work group size (see Chapter 5.3.6). This setting has no effect on
other GLSL modes.

82

d V210 mode: Configures the approach to store and access V210-encoded video
frames (see Chapter 5.2):

6.1.1.1 Notation used for configuration identifiers

In order to uniquely identify the run configurations that are compared in our diagrams, we use
a tuple of mappings between letters and numbers which refer to the entries of Figure 6.1. For
example, [A1, B1, C1, D1, E6, F3, Ga2,b2,d2] defines using the FirePro device to render HD test
sequences in low-latency with a single thread using a 16-bit float render format and performing
V210 transcoding using GLSL 4.2 with a basic chroma filter where V210 10-bit extraction and
insertion is performed by shader bit operations.

We use a simple notation to describe the varying parameters of a chart:

∗: The chart varies over all options for a parameter, e.g.
[A∗, B1, C1, D1, E6, F3, Ga2,b2,d2] varies over all tested devices, i.e., we want to
compare how different devices perform in this scenario.

x|y|...|z: The chart uses a subset of options for a parameter, e.g.,
[A{4|5}, B1, C1, D1, E6, F3, Ga2,b2,d2] shows how the Quadro K5000 PCIe Gen-2
compares to the Quadro K5000 PCIe Gen-3 for the same set of parameters.

Parameters which are of particular interest to the shown scenario are printed in bold face.

6.1.1.2 Common settings

While the parameters described above might vary between benchmark executions, the following
settings are common to every test run that was used for capturing:

• The player window is disabled, i.e. previewing the rendered result should not influence
the benchmarking data.

• The OpenGL context is not a debug-configured context. This results in slightly improved
performance of OpenGL execution.

The binaries of the FrameBender executable and libFrameBender library that were used for
benchmarking were compiled with Visual Studio 2012 in Release mode using the x64 compiler,
i.e. using optimized code without debugging information.

6.1.2 Benchmarking scenario

For each test run, the FrameBender application performs the following tasks for benchmarking:

1. Load pipeline parameters (see Chapter 6.1.1)

2. Pre-fetch ~1 GB of V210 frames (200 1080p frames or 50 UHD-1 frames).

3. Enable CPU-based and GPU-based sampling.

83

4. Execute the video processing pipeline while looping ten times over this set of frames, i.e.,
render 2000 frames. For rendering, the demo renderer (see Chapter 4.5) is used.

5. Write the captured traces to a file.

The pre-loading of the frames excludes I/O operations of the hard disk from the benchmark-
ing process. Looping the video processing pipeline over this set allows executing the pipeline
over a larger number of frames without occupying a very large region of memory, which could
have side-effects of its own. In a real-world application, this management of loading frames
would be handled asynchronously by the acquire and deliver stages of the pipeline. However,
for the purpose of this benchmark, the acquisition and delivery of frames is ignored, i.e., only
the actual processing pipeline should be profiled.

For each test run, parameters of the pipeline configuration vary in order to evaluate their
influence (see Chapter 6.1.1). In order to efficiently manage the benchmark execution, we have
written a Python script that automates the process of launching the FrameBender application
with the desired configurations. This is particularly convenient when the benchmarking process
needs to be repeated for different hardware, or a re-run is necessary because of changes in
the implementation of the pipeline. The script performs the following operations for each test
configuration and for each tested graphics hardware device:

1. Assign a unique ID to the combination of parameters chosen for this configuration.

2. Create a folder with the unique ID of this run.

3. Assemble a human-readable string from the combination of parameters.

4. Run the benchmarking scenario using verbose logging and full debug parameters (i.e.
OpenGL debug contexts). Dump all configuration parameters to a file. Store this file and
the log file in the folder of this run.

5. Run the benchmarking scenario with normal logging and no debug parameters (i.e. normal
OpenGL contexts). Store the trace file along with the used configuration and log file in
the folder of this run.

Running the benchmarking with and without debugging parameters allows analyzing the
OpenGL debug output (see Chapter 2.3.4) of a particular run, if necessary, while still capturing
the trace of a non-debug configuration.

After all test runs are completed, the resulting trace files are automatically processed by the
Python script for trace visualization (see Chapter 6.1.3). After this processing, a summarizing
PDF of the CPU-sampled and GPU-sampled pipeline execution is available.

Each test session contains about 100 different test configurations and ran on five different
hardware setups (see Chapter 6.1.1). In order to overview the captured data, we wrote another
Python script that extracts summarizing statistics of all performed benchmarks and writes them
into a single CSV table along with the configuration-ID and the human-readable string. This
allowed us to quickly overview the data and to pick out interesting results.

84

6.1.3 Visualization of traces

In order to visualize the execution times of our pipeline, we have written a Python script that
opens the captured trace file (see Chapter 4.6.2) and draws an execution graph using the Cairo
vector drawing library [1]. Figure 6.2 shows an example and explains the components of the
generated diagram.

6.1.4 Input sequences

For the input sequences of our testing scenarios, we have used two uncompressed standard test
sequences:

1. V210-encoded 1080p50 EBU Horse sequence

2. V210-encoded UHD-1 (3840x2160) 50 hz EBU Rain Fruits sequence

Both sequences are provided by the European Broadcasting Union (EBU) and are publicly
available [4]. Both sequences use a gamma conforming to ITU-R BT.709 (see Chapter 2.1.2.1).
The UHD-1 sequence was originally stored in the DPX format in RGB 4:4:4 10-bit, which
we transcoded to V210 separately using the avconv [21] tool. The HD sequence was already
encoded in 10-bit 4:2:2 Y’CbCr. However, the container was yuv10, a format similar to V210
but storing the 10-bit components in big-endian words instead of little-endian 3. We wrote our
own converter tool that converts yuv10 to V210, without losing any of its original information.
Both sequences contain values in the head and footroom of the Y’CbCr encoding (see Chapter
2.1.6), which is common to real-world high-quality captured camera sequences.

6.1.5 Test machine specification

The following machine has been used for all configurations:

CPU: Intel R© Xeon R© CPU E3-1240 V2 @ 3.40GHz, 4 Cores, 8 Logical Processors

Mainboard: Asus P8C WS (incl. PCIe Gen-3 support)

RAM: DDR3 16 GiB (4x4 modules), 1600 MHz, Quad Channel, Corsair Vengeance Low
Profile

OS: Windows 7 Professional 64-bit SP1

6.1.6 Limitations

Certain graphics card drivers caused limitations in the execution of some benchmarking config-
urations (see Chapter 6.1.1). The following is a list of these limitations:

3Ffmpeg/avconv support this format as the v210x codec. However, the transcoding of ffmpeg from v210x to
v210 seems to lose some coding information in the process, therefore we have decided to write our own converter
tool for this.

85

692 �sCopyHostToPBO

1407 �sUnmapPBO

559 �sUnpackPBO

957 �sConvertFormat

1087 �sRender

107 �sConvertFormat

872 �sPackPBO

906 �sMapPBO

690 �sCopyPBOToHost

Slice #400 - #405 / 1900 frames (CPU time in milliseconds)

Async GL transfers
Avg. frame time: 2.18 ms
Avg. throughput: 2531.74 MB/s
Median latency: 9.75 ms
Renderer: Quadro 6000/PCIe/SSE2

[B] Stage Axis

[A] Statistics Summary

[C] Execution graph

Figure 6.2: Visualization of processing 8 frames in our pipeline. The upper-left (A) shows
a summary of the statistical markers, from top to bottom: average processing time per frame
(see Chapter 6.1.7.2), average data throughput per second (see Chapter 6.1.7.3), median frame
latency (see Chapter 6.1.7.4). It also includes the name of the OpenGL renderer to identify the
tested GPU. On the left side (B), each stage of the pipeline is listed. Stage Acquire and Deliver
are hidden for brevity. In our benchmarking scenarios, they only use a negligible amount of
processing time. Stage execution order is upwards, i.e. the first relevant stage is CopyHostToPbo,
the last is CopyPBOToHost. The median of stage execution time per stage (see Chapter 6.1.7.1)
is shown on the right side of the stage name in microseconds in block B. In the middle of the
graph (C), the traces for 8 frames are visualized. The horizontal axis represents processing time
in milliseconds. Each drawn box visualizes the processing time of a single stage execution for
a single frame, i.e. overlapping boxes denote concurrent stage executions. Individual frames
use exchanging colors, i.e. in this diagram frame #400 is blue, frame #401 is green, etc. This
diagram focuses on a slice of pipeline executions. Stage executions neighboring the focused area
are drawn in grey. Grey vertical lines in the execution diagram show ticks of milliseconds. These
diagrams are available for CPU-based sampling as well as GPU-based sampling. For GPU-based
sampling, the stage execution time has been calculated using the approach described in Chapter
6.1.7.1.

86

Figure 6.3: UHD-1 (left) and HD (right) test sequences as provided by the EBU. Both sequences
represent high-quality raw video captured from professional camera equipment.

• AMD Catalyst driver ver. 12.104.2.0:

– Compute-shader support did not work as expected and crashed the OpenGL driver.
Therefore, all GLSL 4.3-related tests were not executed.

– The OpenGL 4.3 extension ARB_framebuffer_no_attachments is not available, i.e.
for all AMD V210 tests, only the GLSL modes Ga1 and Ga2 were available.

– The implementation for the OpenGL texture format GL_RGB10_A2UI is broken,
i.e. for all AMD tests, only Gd2 was tested.

– The shader compiler of the AMD OpenGL implementation falsely reports an error
when more than one memory qualifier is used for GLSL image2D uniform declara-
tions. For all AMD tests, only the memory qualifier writeonly is used instead of
restrict writeonly (as used when testing NVIDIA cards).

• NVIDIA ForceWare 320.27 / 320.18:

– When using multiple GL contexts executed on multiple threads in order to achieve
GPU-side overlap of executions, OpenGL timer queries were only allowed to be
executed for the main context (the one executing ConvertFormat (1), Render, Con-
vertFormat (2)). If timer queries were used in all contexts, the driver would report a
performance warning that a fallback to serialized pixel transfers and rendering had
occurred. The goal of observing a GPU-side overlap in our own captured GPU traces
could therefore not be achieved.

– AMD pinned memory extension is only supported on AMD hardware, therefore con-
figurations using pinned memory were skipped when running NVIDIA hardware.

The drivers used here were the most recent driver available at the time of writing in 07/2013.
Newer driver versions might have fixed these problems.

87

6.1.7 Statistical properties of traces

In the following, we describe the statistical properties that we calculate from the output traces
of the executed benchmarking scenarios (see Chapter 6.1.2).

6.1.7.1 Stage execution time

Let TCPUbegin(i, j) be the the time in seconds at which the state
StageExecutionState::TASK_BEGIN of the ith stage was sampled in CPU
time for the jth frame, and let TCPUend(i, j) be the time in seconds at which
StageExecutionState::TASK_END was captured.

We then calculate DCPU (i, j) as the time in seconds in which a single CPU core is busy
executing the ith stage for the jth frame:

DCPU (i, j) = TCPUend(i, j)− TCPUbegin(i, j) (6.1)

Let TGPUbegin(i, j) be the result of an OpenGL timer query issued at the beginning of
executing the ith stage for the jth frame. This value is stored in the trace file as the state
StageExecutionState::GL_TASK_BEGIN of the ith stage for the jth frame. Let
further be TGPUend(i, j) the result of an OpenGL timer query issued at the end of exe-
cuting the ith stage for the jth frame. This value is stored in the trace file as the state
StageExecutionState::GL_TASK_END of the ith stage for the jth frame. We then cal-
culateDGPU (i, j) as the time in seconds in which the GPU is busy while executing the OpenGL
commands that were issued by the ith stage for the jth frame:

DGPU (i, j) = TGPUend(i, j)− TGPUbegin(i, j) (6.2)

We use the median of the above two properties to describe the long-term processing time of
the stage executions for CPU-based and GPU-based executions.

6.1.7.2 Average CPU processing time per frame

Let i = 1 denote the first stage Acquire (see Chapter 4.2.1.1) and i = N denotes the last stage
Deliver (see Chapter 4.2.1.11). Let M be the total number of frames processed. Then Pavg, the
average processing time in seconds per frame, is defined as

Pavg =
TCPUend(N,M)− TCPUbegin(1, 1)

M
(6.3)

6.1.7.3 Average data throughput

Let Sv210 be the size of a single V210 video frame in Megabytes, then the average throughput
Davg (MB/sec) of a single session is calculated as

88

Davg =
Sv210
Pavg

(6.4)

Historically, a Kilobyte was calculated as 210 bytes. As a result, a Megabyte was calculated
as 210 Kilobytes, i.e. 220 bytes. This, however, is an incorrect use of the SI unit Mega. In 1999,
the IEC therefore defined one Megabyte (MB) as exactly one million bytes (1 MB = 1 000 000
bytes) [12]. For the representation of 220 bytes, the binary prefix Mebibyte (MiB) should to
be used instead. The advertising of Megabytes which actually mean Mebibytes caused a lot of
confusion among IT professionals and computer scientists [37]. For example, hardware RAM
and cache sizes are labeled as MB, but actually mean MiB. On the other hand, the bandwidth of
the PCI-Express bus is calculated using the SI prefix (see calculation in Chapter 2.2.1). In order
to correctly express the amount of actual bytes transferred, we use the SI unit Megabyte, i.e. in
this thesis, MB/sec means exactly 1 million bytes per second.

6.1.7.4 Latency

We further calculate the latency L(j) of the jth frame as follows (also see Figure 3.6):

L(j) = TCPUend(N, j)− TCPUbegin(1, j) (6.5)

We define Lmed as the median of L(j) over all captured frame traces. This is used as a
marker for the frame latency within the pipeline.

6.1.8 Measuring image quality using PSNR

Using a high-quality set of input sequences, we are interested if and how much a roundtrip of
our format converters of Y’CbCr to RGB to Y’CbCr corrupts the original image quality. We
can measure this by using a pass-through renderer (i.e. no image overlays) and by calculating
the peak-signal-to-noise-ratio (PSNR) of the output image to the input image. The PSNR de-
scribes the ratio in power of the clean unmodified image signal to the noise signal that has been
introduced by some process. It is defined in decibel and calculated as follows:

MSE =
1

m ∗ n

m−1∑
i=0

n−1∑
j=0

[I(i, j)−O(i, j)]2 (6.6)

RMSE =
√
MSE (6.7)

PSNR = 20 ∗ log10
(
MAXI

RMSE

)
(6.8)

= 10 ∗ log10
(
MAX2

I

MSE

)
(6.9)

89

MAXI represents the maximum possible component value. MSE is defined as the mean-
squared-error, where I(i, j) represents the input image, O(i, j) represents the output image, and
[m,n] is the pixel-resolution of the image. RMSE denotes the root of the mean-squared-error.

We measure the PSNR for each component of Y’, Cb, Cr of our V210 input/output format
separately. Each component has a bit-depth of 10-bit,MAXI is therefore always 1024. Because
of the 4:2:2 subsampling, MSEchroma, the mean-squared-error for Cb and Cr channels, uses
only half the horizontal resolution :

MSEchroma =
2

m ∗ n

m

2
−1∑

i=0

n−1∑
j=0

[I(i, j)−O(i, j)]2 (6.10)

Higher PSNR values indicate higher quality of the processing algorithm. For example, for
10-bit Y’ components, an RMSE of 102.4 (informally, an average pixel error of 10% of the
coding extent), results in a PSNR of 20 dB. An RMSE of 10.24 (average pixel error of 1%)
results in a PSNR of 40 dB. The PSNR value by itself is not very representative. It is rather
used when comparing the outputs of different algorithms. The MPEG committee, for example,
informally considers a PSNR delta of 0.5 dB for deciding whether an optimization of an encoder
should be integrated or not [28].

6.2 Performance

In this chapter, we show the results of testing our prototype for performance. We use the test
methodology and terminology that we described in the previous chapter.

6.2.1 Parallelization of pipeline executions

The base configuration for the pipeline execution is to execute every stage serially. Figure 6.4(a)
shows the CPU pipeline trace of a serially executed pipeline in a low-latency configuration. No
execution of stages can be overlapped in this scenario, we reach an average throughput of 1174
MB/sec. The first improvement is to offload the host-side copies as described by Chapter 4.3.1.
Figure 6.4(b) shows how CopyPBOToHost and CopyHostToPBO are now overlapped with the
rest of the pipeline execution. This increases the throughput by approximately 400 MB/sec to
1520 MB/sec.

To further parallelize the hardware execution of the pipeline, we configure the pipeline to use
multiple OpenGL contexts with multiple threads (see Chapter 4.3.2). Figure 6.6(a) shows the
CPU trace of this scenario. We can observe that this optimization results in drastically improved
performance (1523 MB/sec→ 2531 MB/sec).

For throughput-oriented scenario, we can further interleave those pipeline executions that
are constrained to single-threaded execution (e.g. UnmapPBO and UnpackPBO, see Chapter
4.2.3.2). We also increase the queue sizes of the connected stages. This results in a deeper
pipeline, increases overlap of stage executions, but also results in higher latency. Such a scenario
is shown in Figure 6.6(b). In the diagrams, the interleaving of two pipeline executions is shown

90

549 �sCopyHostToPBO

7 �sUnmapPBO

46 �sUnpackPBO

71 �sConvertFormat

1705 �sRender

42 �sConvertFormat

30 �sPackPBO

1691 �sMapPBO

554 �sCopyPBOToHost

Slice #400 - #405 / 1900 frames (CPU time in milliseconds)

Serial execution
Avg. frame time: 4.71 ms
Avg. throughput: 1174.29 MB/s
Median latency: 4.71 ms
Renderer: Quadro 6000/PCIe/SSE2

(a) Base configuration. All stages are executed serially. The highlighted area shows how each processing for a single
frame is executed sequentially. Used configuration: [A3, B1, C1,D1, E6, F3, Ga3,b2,d2] (see Figure 6.1).

1221 μsCopyHostToPBO

4 μsUnmapPBO

54 μsUnpackPBO

69 μsConvertFormat

1731 μsRender

55 μsConvertFormat

41 μsPackPBO

1660 μsMapPBO

1235 μsCopyPBOToHost

Slice #400 - #405 / 1900 frames (CPU time in milliseconds)

Async host copies

Avg. frame time: 3.63 ms
Avg. throughput: 1523.38 MB/s
Median latency: 10.90 ms
Renderer: Quadro 6000/PCIe/SSE2

(b) Input and output host-side copy operation are now executed by different CPU cores (see Chapter 4.3.1). Stage
executions of CopyPBOToHost and CopyHostToPBO are overlapping with each other and the OpenGL-related tasks.
Throughput is about 1.3 times better compared to the basic configuration. This figure also shows an increase in latency.
This latency is introduced because the only way to overlap the copying process of CopyHostToPBO is to overlap
this execution with the OpenGL stage executions of a previous frame, this increases latency. Used configuration:
[A3, B1, C1,D2, E6, F3, Ga3,b2,d2] (see Figure 6.1).

Figure 6.4: Parallelizing host-side copy operations. Based on rendering 1080p video.

91

5 μsUnmapPBO

1011 μsUnpackPBO

429 μsConvertFormat

528 μsRender

678 μsConvertFormat

973 μsPackPBO

1 μsMapPBO

Slice #400 - #405 / 1900 frames (GPU time in milliseconds)

Async host copies (GPU)

Avg. frame time: 3.63 ms
Avg. throughput: 1523.38 MB/s
Median latency: 10.90 ms
Renderer: Quadro 6000/PCIe/SSE2

Figure 6.5: This figure shows the GPU trace of Figure 6.4(b) using OpenGL timer queries. We
can see that the actual time spent on the GPU differs a lot from what we were able to measure
in their respective CPU-sampled stages. For example, the median CPU-side execution time of
stage Render does not reflect how much time the GPU actually spent converting the format.
The GPU-sampled trace in this figure shows the exact time for each operation (which is about
0.5 ms for format conversions and rendering). Also, the actual transfers to and from the GPU
can be observed by looking at the times shown in UnpackPBO and PackPBO. The median of
the execution times shows values which would be expected when transferring a single V210
frame of 5.5 MB over the PCIe Gen-2 bus: At a hypothetical peak rate of 6 GB/sec, 5.5 MB
of data would be transferred in 916 µs, which is close to the execution times shown for stage
UnpackPBO and PackPBO. Used configuration: [A3, B1, C1,D2, E6, F3, Ga3,b2,d2] (same as
in Figure 6.4(b)).

as interchanging colors between their following executions. For the rest of this chapter, we favor
a throughput-oriented pipeline depth, unless specified otherwise.

92

692 μsCopyHostToPBO

1407 μsUnmapPBO

559 μsUnpackPBO

957 μsConvertFormat

1087 μsRender

107 μsConvertFormat

872 μsPackPBO

906 μsMapPBO

690 μsCopyPBOToHost

Slice #400 - #405 / 1900 frames (CPU time in milliseconds)

Async GL transfers

Avg. frame time: 2.18 ms
Avg. throughput: 2531.74 MB/s
Median latency: 9.75 ms
Renderer: Quadro 6000/PCIe/SSE2

(a) Enabling GPU-asynchronous frame transfers on NVIDIA hardware in addition to asynchronous host-side copies
further overlaps OpenGL transfer-related stages with the other stage executions (see Chapter 4.3.2). In comparison to
the trace shown in Figure 6.4(b), this improves the performance approximately 1.6 times. Latency slightly decreased,
because a frame is able to earlier perform asynchronous tasks while the previous frames is still in the pipeline (hiding
latency). Informally, this is shown in the diagram as a better fit of a single frame’s trace to the trace of its preceding
frame. Used configuration: [A3, B1, C1,D4, E6, F3, Ga3,b2,d2].

819 μsCopyHostToPBO

34 μsUnmapPBO

1233 μsUnpackPBO

174 μsConvertFormat

1711 μsRender

96 μsConvertFormat

67 μsPackPBO

46 μsMapPBO

823 μsCopyPBOToHost

Slice #400 - #411 / 1900 frames (CPU time in milliseconds)

Async GL transfers (deep)

Avg. frame time: 2.01 ms
Avg. throughput: 2748.29 MB/s
Median latency: 20.70 ms
Renderer: Quadro 6000/PCIe/SSE2

(b) Using an aggressive configuration of heavy interleaving and larger queues between stages results in a highly-
overlapped execution. In comparison to Figure 6.6(a), performance could be improved slightly. Due to the heavy
pipelining, latency was doubled. Notice how colors denoting frame numbers are further away and that stage executions
of MapPBO and PackPBO are now much shorter, because implicit synchronization of OpenGL API calls could be
avoided through heavy interleaving (see Chapter 4.2.3.2). Used configuration: [A3,B5, C1,D4, E6, F3, Ga3,b2,d2].

Figure 6.6
93

6.2.1.1 Visualizing GPU-asynchronous execution using GPUView

The pipeline execution shown in Figure 6.6(a) is based on CPU-based sampling. As such, the
execution times of the OpenGL-based stages (e.g. UnmapPBO, UnpackPBO, ConvertFormat
(1), etc...) only show the CPU time occupied by the OpenGL API calls, but not the actual
time spent by the GPU to actually execute those. While the degree of CPU-side concurrency
in these stages is somewhat an indicator for the GPU-side concurrency, it does not provide any
proof. Originally, we intended to visualize the GPU-side overlap of this scenario using our own
GPU-trace using OpenGL timer queries (as shown in Figure 6.5 for a single OpenGL context).
However, because of current limitations of the NVIDIA driver we were not able to capture such
a trace using multiple GL contexts (see Chapter 6.1.6).

In order to observe the GPU-side overlap, we have used the tool GPUView [9]4. GPUView
directly instruments the Windows driver model. In this model, queues buffer commands that are
executed next on the hardware units of the graphics card (GPU and DMA units). These queues
are global to the system and managed by the kernel of the operating system. GPUView allows
visualizing the load of the graphics hardware command queues. Figure 6.6(a) and 6.6(b) show
how the scenarios shown in Figure 6.4(b) and 6.6(a) map to actual hardware execution.

4GPUView is now part of the Windows performance toolkit which can be downloaded with the Windows 8
SDK [39].

94

(a) Using a single OpenGL context for NVIDIA cards results in serialized hardware executions.This trace is based on
executing our pipeline using the configuration as described in Chapter 4.4.

(b) Using multiple OpenGL contexts from multiple threads results in hardware-parallel execution of upload, render
and download: Executions are overlapped as shown in this trace. This trace is based on executing our pipeline using
the configuration as described in Chapter 4.3.2.

Figure 6.7: GPUView hardware queue visualization. Three hardware queues represent upload
(bottom queue), render (upper queue) and download (middle queue) operations. Queue elements
represent hardware command packets, e.g. DMA transfer or render operations. The bottom of
each packet stack denotes the packet that is currently processed by the hardware.

95

MB/sec

0

1000

2000

3000

4000

AMD FirePro W9000 GeForce GTX 680 Quadro 6000 Quadro K5000

3490
3140

20702131

2967
2742

18821970

HD 1080p UHD-1

Figure 6.8: The larger data sizes of UHD-1 V210 frames improve the throughput of the
overall pipeline. A single V210 frame in HD 1920x1080 uses 5.5 MB of data while it
takes 22.1 MB to store V210 in UHD-1 resolution (see Table 5.1). Used configurations:
[A∗, B5, C∗, D6, E6, F2, Ga6,b2,d2] (∗ denotes the varying parameters).

6.2.2 Varying resolution (HD vs. UHD-1)

OpenGL PBO transfers are most efficient for data sizes of 8 MB and above (see Venkataraman
[35]). Figure 6.8 shows the increase of throughput between transferring frames in HD resolution
and UHD-1 resolution.

6.2.3 Isolating pipeline stages

In order to identify bottlenecks in our pipeline execution, we configure the pipeline to bypass
certain stages and then analyze the change in performance. This technique is described in Chap-
ter 4.7.

Figure 6.9(a) shows the isolated pipeline stage executions using a single GL context versus
using multiple GL contexts on NVIDIA Quadro hardware. As would be expected, this chart
shows that GPU-side upload and download can be almost perfectly overlapped when using mul-
tiple GL contexts (as opposed to using a single GL context).

We can also observe that performance drops when activating host-side copying (from 5542
MB/sec to 3439 MB/sec). Because we already made sure for this test configuration that host-
side copying could be overlapped with other executions of the pipeline (see Figure 6.4(b)), this
indicates a bottleneck during the actual copying from and to main memory. We have used the

96

0

1750

3500

5250

7000

GPU Up GPU Down GPU Up/Down GPU Up/Down & Host GPU Up/Down/Render All

3399
3980

3439

5542

66006526

17421871

29443198

63776443

NVIDIA Quadro K5000 PCIe Gen-2

Single GL context
Multiple GL contexts

MB/sec

(a) This chart shows a comparison between execution isolated stages with a single GL context and multiple GL
contexts using NVIDIA hardware. Isolated up- and downloads show the expected peak throughput of approximately
6 GB/sec. When performing both up- and download in the pipeline, throughput is cut in half when using a single
GL context. Using multiple GL contexts, throughput stays almost the same, i.e. up- and download can be overlapped
almost perfectly using two DMA controller units on the NVIDIA Quadro hardware. Adding host-side copies to the
pipeline causes a drop in performance, i.e. we are limited by CPU’s memory bandwidth. The right-most bar shows the
throughput of the fully-enabled pipeline. Used configuration: [A4, B5, C2,D{2|4},E∗, F2, Ga6,b2,d2].

1545 μsConvertFormat

1168 μsRender

2618 μsConvertFormat

Slice #400 - #403 / 1900 frames (GPU time in milliseconds)

GPU render times

Avg. frame time: 5.56 ms
Avg. throughput: 3980.11 MB/s
Median latency: 56.53 ms
Renderer: Quadro K5000/PCIe/SSE2

(b) This figure shows the GPU trace of the stages executed by the render GL context for the scenario GPU Up/-
Down/Render of the above figure. The sum of their median execution times is 5331 µs. For a frame data size of 22.1
MB, this is equivalent to a throughput of approximately 4145 MB/sec. In Figure (a) we can see that using multiple
GL contexts for GPU Up/Down/Render results in a throughput of approximately 4000 MB/sec. Because this is very
close to the pure render-related throughput of 4145 MB/sec, we can conclude that the GPU-side transfer times are
completely hidden beneath the hardware execution of the render context, i.e. we can assume that on the GPU-side we
are already bound by the render stages. Used configuration: [A4, B5, C2, D4,E5, F2, Ga6,b2,d2].

Figure 6.9: The upper diagram (a) shows the throughput of isolated stage executions in compar-
ison between using a single GL context vs. multiple GL contexts on NVIDIA hardware. The
diagram below (b) provides the GPU execution time of the Render stage which is common to
the above scenarios.

97

Intel R©VTune Amplifier XE 20135 in order to analyze this problem. We performed a CPU band-
width analysis of the GPU Up/Down & Host scenario of Figure 6.9(a). We were able to identify
the bottleneck as the CPU’s memory controller operating constantly at 22.8 GB/sec, which is
the peak bandwidth of our test machine’s CPU model (see Chapter 6.1.5). This limitation has
been confirmed by an NVIDIA engineer to be expected when using a single CPU machine in
our scenario.

In Figure 6.9(a) we can further observe a drop in throughput between GPU Up/Down and
GPU Up/Down/Render. Even though we are able to overlap GPU upload, render and download
(see Figure 6.7(b)), the render-related tasks (which include stages for format conversion) seem
to limit the overall GPU-side execution because render passes can not be overlapped when using
a single OpenGL context. Figure 6.9(b) provides the GPU-side execution times of the rendering
context. We can observe that the GPU-side rendering tasks alone would result in a hypothet-
ical throughput of 4145 MB/sec. In general, the largest pipeline stage dominates the overall
execution time (see Chapter 3.1.3), even for concurrent executions. In this case, the render-
related GPU executions limit the GPU-side execution, even if GPU-side up and download can
be overlapped.

In summary, we can conclude from Figure 6.9(a) that the GPU-side overlapping of GPU
upload, render and download tasks provides almost twice the performance in comparison with
serialized GPU-side execution of these tasks. With our test machine, the CPU memory controller
is the bottleneck (causing a drop from 5542 MB/sec to 3439 MB/sec). However, this limit is not
critical, because GPU-side render-related tasks limit the throughput either way to a maximum
of 3980 MB/sec (when using a Quadro K5000), hence the actual limitation of the CPU memory
bandwidth is less dramatic (a drop of 500 MB/sec).

While handling multiple GL contexts from multiple threads was worth the effort when using
NVIDIA hardware, using multiple contexts on AMD hardware does not provide the same bene-
fits. Figure 6.10 provides a comparison of using single GL contexts and multiple GL contexts in
combination with AMD’s pinned memory extension. The best-performing approach for AMD
hardware is to use a single GL context in combination with the AMD pinned memory extension.
This comparison shows us that the execution of our pipeline highly depends on the graphics
vendor’s implementation of OpenGL.

In order to summarize the behavior of different hardware architectures for isolated stage
executions, Figure 6.11 provides an overview of each hardware including different generations
of PCIe controllers. This diagram uses the local best mode for hardware-side parallelization,
i.e. all NVIDIA hardware uses multiple GL contexts, while AMD hardware uses a single GL
context. In this diagram we can observe the following:

• The GPU-only upload using a consumer-level GeForce GTX 680 card is extremely high
(~12Gb/sec), while download transfer is about half of it (~6 GB/sec). Because the
GeForce is primarily used for gaming where texture upload performance is far more im-
portant the download, this could be the result of an optimization of the consumer-level
driver.

5http://software.intel.com/en-us/intel-vtune-amplifier-xe

98

0

2250

4500

6750

9000

GPU Up GPU Down GPU Up/Down GPU Up/Down & Host GPU Up/Down/Render All

212923492296
3061

4772

8322

AMD FirePro W9000 PCIe Gen-3 Single GL context
Single GL context (+pinned)
Multiple GL contexts
Multiple GL contexts (+pinned)

MB/sec

Figure 6.10: Using AMD hardware with different combinations of single/multiple GL contexts
and the use of pinned memory extension. Only values of the single GL context (+pinned) are
labeled. Using multiple GL contexts on AMD hardware without the use of the AMD pinned-
memory extension results in very bad performance. The best-performing configuration is Single
GL context + pinned. Used configurations: [A1, B5, C2,D{2|3|4|5},E∗, F2, Ga6,b2,d2].

• The GeForce GTX 680 hosts a single on-board DMA controller, while the Quadro devices
host two (dual copy engines). The GPU-side overlap between transfer and render of the
GeForce GTX 680 can be observed by comparing GPU Up/Down (2455 MB/sec) with
GPU Up/Down/Render (2468 MB/sec), i.e. the GPU-side rendering is completely hidden
beneath the two (serial) GPU-side transfers. Because the GeForce GTX 680 hosts only a
single DMA unit, the performance halves between GPU Down (6488 MB/sec) and GPU
Up/Down (2455 MB/sec).

• While isolated GPU up- and downloads show very high transfer rates for PCIe Gen-3
enabled devices (e.g. ~10 GB/sec of simultaneous up- and download), PCIe Gen-3 does
not have any measurable advantage in the execution of the actual pipeline. This is expected
because of the previously mentioned bottlenecks in our pipeline. It is visible by comparing
the throughput of the Quadro K5000 PCIe Gen-2 and Quadro K5000 PCIe Gen-3 in the
right-most group (3399 MB/sec vs. 3452 MB/sec).

• Using our test machine, the best configuration of using a Quadro K5000 performs about
1.6 times better than the best configuration of using an AMD FirePro W9000. Considering
only throughput, this is the same ratio between the NVIDIA Quadro K5000’s performance
and the performance of the consumer-grade GeForce GTX 680 graphics device.

99

0

3000

6000

9000

12000

15000

GPU Up
GPU Dow

n
GPU Up/Dow

n
GPU Up/Dow

n &
 Host

GPU Up/Dow
n/Render

GPU Up/Dow
n/Render &

 Host (all)

3451
4048

3547

9635

6606

9987

3399
3980

3439

5542

6600
6526

3157
3719

3446

5499

6592
6312

2129
2349

2296
3061

4772

8322

2064
2468

1862
2455

6486

12225

Iso
lated

 stag
e executio

ns
G

eFo
rce G

T
X

 680 (P
C

Ie G
en-3)

A
M

D
 FireP

ro
 W

9000 (P
C

Ie G
en-3)

Q
uad

ro
 6000 (P

C
Ie G

en-2)
Q

uad
ro

 K
5000 (P

C
Ie G

en-2)
Q

uad
ro

 K
5000 (P

C
Ie G

en-3)

M
B

/sec

Figure
6.11:

T
his

figure
show

s
the

throughputof
each

tested
hardw

are
for

each
stage

using
its

best-m
ode

parallelization
setting.

U
sed

configuration:
[A
∗
,B

5
,C

2,D
6,E
∗
,F

2,G
a
6
,b2

,d
2].

100

6.2.4 V210 transcoder

This chapter shows performance charts of various V210 transcoder settings. We show how
performance is influenced when GLSL implementation, chroma filters, V210 storage mode and
render formats are varied.

6.2.4.1 GLSL variations

In Chapters 5.3.4, 5.3.5 and 5.3.6, we described three different implementations of the V210
transcoder where each variation uses different features of the GLSL language. Figures 6.12(a)
and 6.12(b) show how these variations differ in performance for the decoder and encoder.

The GLSL 3.3 implementation performs worse for all test candidates. This is expected and
confirms that the redundant calculations and unnecessarily complex access pattern for a single
output fragment is not efficient (see Chapter 5.6).

The best performance is achieved by using the GLSL 4.2 approach. Using NVIDIA cards,
this approach performs approximately ten times better than the GLSL 3.3 implementation. For
AMD cards, this approach is about three times faster. The direct mapping between V210 groups
and a group of 6 RGB pixels seems to be very efficient (see Figure 5.6). If supported, the
additional use of the ARB_framebuffer_no_attachment could slightly improve perfor-
mance.

The compute shader (GLSL 4.3) implementation of the V210 transcoder shows worse per-
formance than the GLSL 4.2 implementation. Also, caching reads from the input texture in
shared memory (see Figure 5.7) performed worse than the compute shader variation that does
not use shared memory (direct read/write). Without using a specialized shader profiling tool, we
can only speculate about the observed differences in performance. Reasons could be:

• Compute shaders are a relatively new feature of the OpenGL pipeline. The performance
difference between our GLSL 4.2 and 4.3 implementation might be due to the fact that
GLSL 4.2 use cases are much better optimized by current drivers than GLSL 4.3 use
cases.

• The overhead of writing, synchronizing and reading from shared memory is larger than the
overhead of redundant reads from the input texture. Those redundant reads are necessary
for chroma filtering, i.e. these fetches are spatially coherent and therefore likely to be
cached by the texture unit.

• Compute shader performance could be worse than GLSL 4.2 because of memory bank
conflicts or bad saturation of shader units. This can only be confirmed by a specialized
profiler.

101

0

3750

7500

11250

15000

GLSL 3.3 GLSL 4.2 GLSL 4.2 + No attch GLSL 4.3 (shared) GLSL 4.3 (no shared)

37013444

16031596

11471

46164556

19151953

11325

37473544

14531421

9258

910

3181

V210 decoder GLSL modes (UHD-1) FirePro W9000
GeForce GTX 680
Quadro 6000
Quadro K5000

μs

(a)

0

2750

5500

8250

11000

GLSL 3.3 GLSL 4.2 GLSL 4.2 + No attch GLSL 4.3 (shared) GLSL 4.3 (no shared)

3329

5657

27602764

10435

35233807

29082985

9824

3020
3463

23352364

9198

523

2027

V210 encoder GLSL modes (UHD-1) FirePro W9000
GeForce GTX 680
Quadro 6000
Quadro K5000

μs

(b)

Figure 6.12: These figures show the medians of the GPU execution times DGPU (see Chapter
6.1.7.1) for the stage ConvertFormat (1) (a), i.e. V210 decoder, and the stage ConvertFormat
(2) (b). Processing is performed using UHD-1 resolution. Processing 1080p scales linearly
to about one fourth of execution times. AMD hardware was only able to provide results for
GLSL 3.3 and 4.2 due to current driver limitations (see Chapter 6.1.6). Used configurations:
[A∗, B5, C2, D6, E6, F2,Ga∗,b2,c4,d2].

102

0

750

1500

2250

3000

V210 decoder V210 encoder

1216
879

523
910

688
910

AMD FirePro GLSL 4.2 UHD-1

none basic high

μs

V210 decoder V210 encoder

2275
1902

2764

1596

2249

1673

NVIDIA Quadro K5000 GLSL 4.2 UHD-1

Figure 6.13: This figure shows the impact of varying the chroma filter kernel. The chart shows
GPU executions times of the stage ConvertFormat (1) and ConvertFormat (2). Used configura-
tions: [A{1|5}, B5, C2, D6, E6, F2,Ga6,b∗,d2].

6.2.4.2 Chroma filters

Figure 6.13 shows the GPU execution times of the V210 decoder and encoder using varying
chroma filter sizes. The chart shows inconclusive results between AMD and NVIDIA imple-
mentations. The difference in performance between the filter choices seems to be relatively low.
We expected a higher difference between using the 13-tap filter for high and using no filtering
at all (none). The V210 encoder shows even an increase in performance when using a larger
filter kernel. Without profiling the actual shader, we can not explain this phenomenon. One
reason could be the GLSL compiler being able to unroll the 13-tap loop more efficiently than
using the 3-tap loop of the basic filter, although this seems unlikely.

6.2.4.3 V210 storage mode

In Chapter 5.2, we described two approaches to store and access V210-encoded video frames in
OpenGL:

• Using the GL_R32UI internal texture format, a 32-bit integer texture with a single-
channel and extracting V210 10-bit components in a shader.

• Using the GL_RGB10_A2UI internal texture format where the RGB 10-bit components
are already extracted when sampling in the shader.

In Figure 6.14, we compare the average throughput and GPU executions times between
those two approaches. The approach of using GL_R32UI provides a much better throughput
than the other one, even though shader execution takes a bit longer due to the bit operations
that need to performed in the shader. It seems that the overhead of the driver to provide the

103

0

1000

2000

3000

4000

Avg. throughput

3440

2173

(higher is better)

RGB10_A2UI R32UI

0

750

1500

2250

3000

V210 decoder V210 encoder

2779

1605

2367

1521

(lower is better)μsMB/sec

Throughput GPU execution times

Figure 6.14: The left diagram shows the average throughput for both V210 OpenGL storage
modes, while the right-side chart shows the median GPU-side execution times of ConvertFormat
(1) (V210 decoder) and ConvertFormat (2) (V210 encoder). Due to current limitations of the
AMD driver, we could only perform these tests on NVIDIA hardware (see Chapter 6.1.6). Used
configurations: [A5, B5, C2, D6, E6, F2,Ga6,b2,d∗]

GL_RGB10_A2UI pixel format is larger than the overhead of performing additional bit oper-
ations in the shader. We can also speculate that this rather unusual pixel format enters a less
optimized path during the pixel transfer operations of the driver.

6.2.4.4 Render formats

In Figure 6.15, we vary the precision of the canonical render format (see Chapter 4.4). We
can read from the chart that our algorithm heavily depends on GPU memory bandwidth. For
all devices except the GeForce GTX 680, throughput decreases when precision of the render
format increases. The drop in performance between 8-bit integer and 16-bit float is acceptable
and much less dramatic than the difference between 16-bit and 32-bit floating point. As it is
shown in Chapter 6.3.1, the additional precision of 32-bit floating point vs. 16-bit floating point
does not contribute to higher output quality.

104

0

1000

2000

3000

4000

FirePro W9000 GeForce GTX 680 Quadro 6000 Quadro K5000

2652
2492

2080
1742

3436
3147

20702124

35883516

2077
2283

Varying render formats

RGBA 8-bit integer RGBA 16-bit float RGBA 32-bit float

MB/sec

Figure 6.15: Our processing algorithm is largely limited by the GPU bandwidth. In-
creasing the bit-depth of the render format decreases performance. The GeForce GTX
680 is able to overlap rendering with a single transfer direction, hence the high ren-
der time of using a higher bit-depth is hidden beneath a transfer. Used configurations:
[A{1|2|3|5}, B5, C2, D6, E6,F{1|3|4}, Ga6,b2,d2].

6.2.4.5 GLSL 4.3 compute shader workgroup sizes

Figures 6.16(a) and 6.16(b) show the influence of the workgroup size for the compute shader
implementation of the V210 transcoders. While a work group size of 64 shows best results
for the Quadro K5000, the results for the Quadro 6000 are different between the encoder and
decoder implementation (decoder favors 32, encoder favors 64).

105

0

1750

3500

5250

7000

GLSL 4.3 (shared) GLSL 4.3 (no shared)

59215708

46164575

3308
3671

V210 decoder / Quadro 6000

32 64 128

μs

GLSL 4.3 (shared) GLSL 4.3 (no shared)

4640

3424 37073445

4367

5297

V210 decoder / Quadro K5000

Work group size:

(a)

0

1750

3500

5250

7000

GLSL 4.3 (shared) GLSL 4.3 (no shared)

43414520

3515
3813 3895

5585

V210 encoder / Quadro 6000

32 64 128

μs

GLSL 4.3 (shared) GLSL 4.3 (no shared)

3782

6529

3330

5658

2998

5633

V210 encoder / Quadro K5000

Work group size:

(b)

Figure 6.16: This figure shows the performance when varying the work group size for the
compute shader implementations of the V210 encoders and decoders. Used configurations:
[A{3|5}, B5, C2, D6, E6, F3, Ga6,b2,c{2|4|6},d2].

106

0

1500

3000

4500

6000

V210 decoder V210 encoder

697
437

4593

5219

HD 1080p

Blackmagic SDK Ours (Quadro K5000)

μs

0

7500

15000

22500

30000

V210 decoder V210 encoder

27601603

18381
20962

UHD-1μs

Figure 6.17: We compare the GPU execution time of our V210 transcoding algorithm to the CPU
execution of state-of-the-art transcoders. The conversion of the Blackmagic SDK performed a
roundtrip from V210 to R210 and back to V210. Our approach as shown in this diagram uses
the following configuration: [A5, B5, C{1|2}, D6, E6, F3, Ga6,b2,d2].

6.2.4.6 Comparing CPU-based V210 transcoding

We compare our GPU-based V210 transcoder with a state-of-the-art CPU-based conversion.
Blackmagic Design is a company specialized in providing hardware for professional video solu-
tions. Their software SDK comes with a suite of CPU-based pixel format transcoders. We have
implemented a command-line utility which performs a roundtrip conversion from V210 to a 10-
bit RGB integer format and then back to V210. Figure 6.17 compares the CPU execution times
of these conversions compared with the GPU execution time of our algorithm. Our algorithm is
an order of a magnitude faster while providing better image quality than the CPU-based solution
(see Chapter 6.3.3). Especially when processing V210 in UHD-1 resolutions, the CPU-based
approach will not be able to provide real-time rates. Our transcoding algorithm also performs
additional operations like gamma correction, which is not provided by the Blackmagic SDK.

107

0

1

2

3

4

FirePro W9000 GeForce GTX 680 Quadro 6000 Quadro K5000

1.92.0

2.92.8 2.8

3.6
4.0

3.5

Processing HD 1080p
Serial execution
Our optimization

ms

(a)

0

4

8

11

15

FirePro W9000 GeForce GTX 680 Quadro 6000 Quadro K5000

6.3
7.0

10.710.4 10.2

12.9

14.7

13.1

Processing UHD-1
Serial execution
Our optimization

ms

(b) When rendering UHD-1 in real time, an improvement of several milliseconds is significant, e.g. 60 Hz progressive
requires a rendering time less than 16 milliseconds.

Figure 6.18: The serialized execution uses single-threaded interleaving as would a moderately
advanced single-threaded OpenGL implementation. The optimized scenario uses the best per-
forming settings for each tested devices.

108

6.2.5 Overview of speed improvements

In Figure 6.18, we summarize how the optimizations of our framework improve performance
as compared to the conventional approach. This method is represented by the serialized execu-
tion of our pipeline with single-threaded interleaving (see Chapter 4.2.3.2). In a conventional
serialized implementation, interleaving is a common technique.

Figure 6.18(b) shows that the applied optimizations reduce the render times from 12.9 ms
down to 7 ms (Quadro 6000). When targeting real-time playout in 50 or 60 Hz, this improvement
is significant because it provides more time for more advanced GPU rendering tasks than our
demo renderer (see Chapter 4.5).

6.3 Image quality

In this chapter, we show how much the output image is affected when parameters of our pipeline
are changed that influence quality (see shaded values in Figure 6.1). For each scenario, we use
a renderer that copies the input image to the output image (pass-through renderer) instead of
our demo renderer. The content of the output image is then supposed to be as close as possi-
ble to the original input. We calculate the PSNR (see Chapter 6.1.8) between the input image
and the output image in order to quantify the loss in quality of our pipeline using a particular
configuration.

6.3.1 Render formats

After decoding, a video frame is stored in the canonical render format (see Chapter 4.4) before
it is rendered again, encoded and finally sent back to the host. The bit-depth and precision
of this format therefore affects the image quality of the output frame. Figure 6.19 shows a
comparison of using different render formats. Because the conversion from Y’CbCr to RGB
results in negative pixel values (see Chapter 2.1.6), a floating-point format results in better PSNR
values than using integer formats. In particular, by conserving negative pixel values throughput
the process, we can restore Y’ without any loss (Y’ values are stored in the original resolution).
We can also observe that using a 32-bit floating-point format shows the same PSNR values as
compared to 16-bit floating point.

6.3.2 Chroma filters

In Figure 6.20(a), we show how different complexities of the used chroma filters influence the
output quality of our algorithm.

6.3.3 CPU-based implementations

In Figure 6.13, we showed a performance comparison between our approach and a state-of-the-
art CPU-based transcoder. Figure 6.21 provides a comparison in quality between our implemen-
tation and two CPU-based converters. In both CPU-based converters, we performed a roundtrip

109

41

43

45

46

48

Y’ Cb Cr

47.31

46.13

47.31

46.13

44.76

42.44

43.65

44.35

42.1642.27

PSNR of using different render formats

RGBA 8-bit integer
RGBA 16-bit integer
RGBA 16-bit float
RGBA 32-bit float

dB

Figure 6.19: Using floating-point for the render format improves the overall quality of our algo-
rithm. Using floating-point results in a mean-squared-error of 0 for Y’, therefore the PSNR for
Y’ is not defined for these formats (no loss in quality).

conversion from V210 to high-precision RGB and back to V210. These converters only pro-
vided integer-like formats. The charts in Figure 6.21 show that our approach yields superior
PSNR values for the V210 roundtrip scenario.

Figure 6.22 further shows a subjective comparison of rendering a synthetic encoder test
image 6 between our approach and the conversion performed by the Blackmagic SDK. The top
row shows the RGB test image in its original resolution. The other images are the output of a
roundtrip scenario between RGB → V210 → RGB. Our solution using its basic chroma filter
configuration shows subjectively identical results to the output of the Blackmagic SDK. When
no filter is applied (replicate/drop), the output image shows inferior quality. This setting should
be avoided.

6http://codecs.onerivermedia.com

110

dB

43

45

46

48

49

Cb Cr

48.84

47.98

47.31

46.13

45.00

44.24

Decoder: varying, Encoder: Basic
None (replicate)
Basic
High

dB

43

45

46

48

49

Cb Cr

48.22
47.64

47.31

46.13

Decoder: basic, Encoder: varying
Basic
High

(a) The left-side figure varies the decoder while the encoder is fixed, the right-side figure varies the encoder.

dB

43

45

47

48

50

Cb Cr

49.40
49.82

47.31

46.13

Decoder & Encoder: same setting
Basic
High

(b) The best quality is reached by using high chroma filter
complexity for decoder and encoder.

Figure 6.20: Varying the chroma filters significantly influences the PSNR values of the algo-
rithm. A comparison in performance for these values is shown in Figure 6.13.

111

40

42

44

46

48

Y’ Cb Cr

47.31

46.13
46.65

45.93

47.17

45.09

44.15

41.55

PSNR V210 <-> RGB roundtip
ffmpeg 1.1.1
Blackmagic SDK
Ours (basic filtering)

dB

n/a

Figure 6.21: Our solution shows superior quality in comparison with two state-of-the-art con-
verters of V210. The Blackmagic SDK used R210, a 10-bit integer RGB format, as the inter-
mediate format, because there is no higher-precision RGB format available in their SDK. The
ffmpeg conversion uses an integer 16-bit per-component RGB format as the intermediate format.

112

Original

Ours (None)

Ours (basic)

Blackmagic SDK

Figure 6.22: A comparison between our filters and using the Blackmagic SDK.

113

CHAPTER 7
Conclusion

We approached the problem of developing a broadcast-grade graphics renderer using a software
pipeline model. We set our goal to improve the throughput of our solution by processing several
video frames in parallel on different hardware units of the system. In order to achieve this
level of concurrency, we split our OpenGL-based video processing algorithm into individual
software stages, which can be executed by several software threads concurrently. Using our
prototype implementation, we found out that the actual number of concurrently running stages
is limited by the execution model of the OpenGL API and the availability of DMA controllers
onboard the graphics hardware. Even though only few stages could be executed concurrently in
hardware, we observed a significant performance improvement with our approach in comparison
with a serialized conventional implementation. The largest performance improvements were the
result of asynchronous frame transfers to and from GPU video memory via the PCIe bus. Our
measurements showed that our best performing configuration fully saturates the CPU memory
controller. This shows that our framework is able to build a high workload to efficiently process
video data. It also means that the performance of our solution will automatically benefit from
higher bandwidths of upcoming CPU architectures.

In our video processing solution, we used the OpenGL API to render graphics. In our soft-
ware framework, we applied two methods to improve the concurrency of OpenGL-based opera-
tions:

1. Interleaving executions within a single thread allows the OpenGL driver to execute its
own pipeline more efficiently and reduces the risk of enforcing implicit synchronization.

2. Using multiple OpenGL contexts from multiple threads enables hardware-concurrent exe-
cution of upload, rendering and download for some hardware devices. With this approach,
the implementation has to employ complex synchronization methods.

We were able to implement both approaches using our two-way communication model be-
tween stages of our software pipeline. In our test scenarios, we could seamlessly activate either
of those optimizations.

115

While testing our framework on different hardware, we found that there was no single con-
figuration that performed best on each tested device. Our framework required different settings
for each tested graphics driver in order to reach optimal performance. We found this to be par-
ticularly the case for buffer transfers in OpenGL, where the runtime behavior of the OpenGL
drivers varies significantly between different implementations. Our framework’s ability to pro-
vide the user with a wide range of settings for concurrency and OpenGL usage turned out to be
important not only for testing, but also for adapting to the varying characteristics of OpenGL
drivers. This is a critical feature for software that is expected to perform well on a range of
different commodity hardware.

In summary, we showed that our software pipeline model provides the necessary infras-
tructure to run tasks concurrently on hardware, that it enables several OpenGL-based optimiza-
tions and that it is flexible enough to accommodate the varying needs of different hardware and
software environments. We therefore conclude that our software pipeline is a good model for
implementing a video processing solution.

In this thesis, we have also implemented a V210 to RGB transcoder using different versions
of GLSL. After testing these variations, we conclude that the feature of GLSL 4.2 to perform
random writes to image units simplified the GLSL algorithm and significantly improved the per-
formance in comparison to legacy GLSL 3.3 implementations. For the implementation of the
V210 transcoder, GLSL 4.3 compute shaders did not provide the advantages that we expected
from their direct path in the OpenGL pipeline. The GLSL 4.2 implementation performed better
in every test scenario. With compute shaders being a relatively new feature, this might improve
in the future. From our experience of implementing and testing the V210 transcoder using dif-
ferent versions of OpenGL, we conclude that OpenGL 4.2 provides significantly better solutions
for rendering broadcast video than legacy versions of OpenGL 2.x or 3.x.

We finally compared the performance of a GPU-based, but conventional serialized imple-
mentation (simulated by turning off all optimizations in our pipeline) with our advanced solution
when processing high-resolution UHD-1 video streams. With our optimization, the video pro-
cessing pipeline performed almost twice as fast. We were able to reach our goal of processing
60 Hz UHD-1 video at real-time rates on commodity hardware. With some hardware configu-
rations, we could even render two UHD-1 streams simultaneously using one GPU. Processing
times for rendering HD 1080 video scaled linearly with the size of the video frames. Our frame-
work was therefore able to process about eight streams of HD 1080 50/60 Hz in real time. In
comparison to an existing state-of-the-art CPU-based software SDK, our GPU-based video pro-
cessing solution provides a higher image quality and performed better by an order of magnitude.
We therefore conclude that with our approach, it is possible to build a software playout solution
that is able to process new demanding TV formats in high quality and at real-time rates using
commodity hardware.

7.1 Future work

The pipeline design of our framework allows us to replace certain stages with different im-
plementations without requiring the rest of the pipeline to be changed. We would like to test
using OpenCL or CUDA for implementing the buffer-transfer and format-conversion stages.

116

Both APIs provide interoperability with OpenGL and use synchronization mechanisms that our
framework has already in place. However, interoperability often influences performance and
might require the hardware pipelines to be flushed in-between. In future work, we would like to
use our framework to accurately measure this impact and outline possible advantages or disad-
vantages in comparison to a purely OpenGL-based implementation.

OpenGL 4.4 introduced a new core feature with the extension
GL_ARB_buffer_storage. This extension provides a mechanism to control a buffer’s

locality of storage. For example, graphics hardware that uses a unified memory space for
GPU and CPU executions can benefit from allocating OpenGL buffers in that region, which
eliminates the need for buffer transfers over the PCIe bus. This extension also allows defining
persistent client-side mappings for OpenGL buffers, which is similar to AMD’s pinned memory
extension. We would like to integrate and test this new feature in our pipeline.

Finally, we would like to perform more advanced profiling on the execution of the pipeline.
Some results of using GLSL 4.3 compute shaders could have been better analyzed using a ded-
icated tool such as NVIDIA’s visual profiler. However, at the time, this tool did not yet support
GLSL 4.3 shaders for profiling, but can be expected to do so in the future. We would also like
to better understand the CPU memory bandwidth limitations. This would require a more de-
tailed analysis of the OpenGL driver’s internal processing and more advanced use of the Intel
performance profiling tools.

117

APPENDIX A
GLSL 4.2 V210 decoder shader code

The following is a full listing of the GLSL 4.2 implementation of the V210 decoder. This im-
plementation has been described in Chapter 5.3.5. Note that some preprocessor macros (e.g.
FB_GLSL_CHROMA_FILTER_NONE) need to be set at compile time. These macros are writ-

ten in upper-case letters and start with the prefix FB_.
1
2 #version 420 core
3
4 #if (FB_GLSL_CHROMA_FILTER_NONE == 1)
5
6 // Replicating filter
7
8 const int chroma_filter_pixel_width = 2; // must be an even number!
9 const int chroma_filter_pixel_offset = chroma_filter_pixel_width / 2;
10 const float[chroma_filter_pixel_width] chroma_filter_pixel_weights = {1.0f, .0f};
11
12 #elif (FB_GLSL_CHROMA_FILTER_BASIC == 1)
13
14 // Simple linear interpolation
15
16 const int chroma_filter_pixel_width = 2; // must be an even number!
17 const int chroma_filter_pixel_offset = chroma_filter_pixel_width / 2;
18 const float[chroma_filter_pixel_width] chroma_filter_pixel_weights = {0.5f, 0.5f};
19
20 #elif (FB_GLSL_CHROMA_FILTER_HIGH == 1)
21
22 // 12-tap filter from Poynton
23
24 const int chroma_filter_pixel_width = 12; // must be an even number!
25 const int chroma_filter_pixel_offset = chroma_filter_pixel_width / 2;
26 const float[chroma_filter_pixel_width] chroma_filter_pixel_weights = {-2.0/256.0,

6.0/256.0, -12.0/256.0, 24.0/256.0, -48.0/256.0, 160.0/256.0, 160.0/256.0,
-48.0/256.0, 24.0/256.0, -12.0/256.0, 6.0/256.0, -2.0/256.0};

27
28 #endif
29
30 // This is basically rounding up to a multiple of 6
31 // Note that we need to multiple the chroma_filter_pixel_offset by two, because
32 // the chroma_filter for the chroma values always "skips" one pixel value, e.g.

119

33 // in order to access 3 chroma values, you’ll need to pass 6 luma values
34 // Note that the offsets are NOT symmetrical, because in the first V210 we
35 // already have one full CbCr pair.
36
37 const int chroma_filter_v210_offset_left = (chroma_filter_pixel_offset - 1 + 2) / 3;
38 const int chroma_filter_v210_offset_right = (chroma_filter_pixel_offset + 2) / 3;
39 const int chroma_filter_v210_width = chroma_filter_v210_offset_left +

chroma_filter_v210_offset_right;
40
41 const ivec2 v210_image_size = ivec2(FB_INPUT_IMAGE_WIDTH, FB_INPUT_IMAGE_HEIGHT);
42 const ivec2 v210_input_image_bounds = ivec2(FB_INPUT_IMAGE_WIDTH - 1,

FB_INPUT_IMAGE_HEIGHT - 1);
43 const ivec2 v210_input_image_group_bounds = ivec2(FB_INPUT_IMAGE_WIDTH - 4,

FB_INPUT_IMAGE_HEIGHT - 1);
44
45 const mat3x3 bt709_rgb_to_ycbcr_inv = mat3x3(
46 0.0011415525114155253f,0.0011415525114155251f,0.0011415525114155255f,
47 -2.8740650732344318e-20f,-0.00020906726889581339f,0.0020709821428571431f,
48 0.0017575892857142855f,-0.00052246012603867058f,-1.6263032587282567e-19f);
49
50 layout(binding = 0) uniform usampler2D v210_input_image;
51
52 layout(binding = 1) uniform restrict writeonly image2D rgba_output_image;
53
54 layout(pixel_center_integer) in vec4 gl_FragCoord;
55
56 in block
57 {
58 vec2 texcoord;
59 } frag_in;
60
61 layout(location = FRG_OUT_COLOR, index = 0) out vec4 out_color;
62
63 uvec3 uncompress_v210_components_from_word(uint word) {
64
65 uvec3 v210_components;
66
67 v210_components[0] = bitfieldExtract(word, 0, 10);
68 v210_components[1] = bitfieldExtract(word, 10, 10);
69 v210_components[2] = bitfieldExtract(word, 20, 10);
70
71 return v210_components;
72 }
73
74 // Optimized version of sRGB function without using branching
75 vec3 srgb_to_linear_component(vec3 c) {
76
77 vec3 linear_segment = c / 12.92f;
78 vec3 linear_segment_coeff = step(c, vec3(0.04045f));
79
80 vec3 power_segment = pow(max((c + 0.055f), vec3(0.0f)) / 1.055,vec3(2.4));
81 vec3 power_segment_coeff = step(vec3(0.04045f), c);
82
83 return linear_segment * linear_segment_coeff + power_segment *

power_segment_coeff;
84
85 }
86
87 vec3 convert_YCbCr_to_rgb(uvec3 y_cb_cr) {
88
89 // See Poynton, Eq. 30.6 and 30.7
90 vec3 rgb_norm = bt709_rgb_to_ycbcr_inv * vec3((ivec3(y_cb_cr) - binary_offset));

120

91
92 // Apply EOCF
93 return srgb_to_linear_component(rgb_norm);
94
95 }
96
97 void main()
98 {
99
100 // Based on gl_FragCoord, get the group number
101 ivec2 target_coords = ivec2(gl_FragCoord.xy);
102
103 // Number of the compressed group
104 // e.g. x = 960 -> group_num = 160
105 int v210_x_group_base_num = target_coords.x;
106 int v210_y_line_num = target_coords.y;
107
108 // Note that the +1 here accomodates the special case of the assymetric
109 // filter (think it through with a filter_v210_width of 1 what happens
110 // when the pixel_width == 2.
111 uint[(1+chroma_filter_v210_width)*6] luma;
112 uvec2[(1+chroma_filter_v210_width)*3] chroma;
113
114 for (int i = 0; i<(chroma_filter_v210_width+1); ++i)
115 {
116
117 int v210_x_group_num = v210_x_group_base_num -

chroma_filter_v210_offset_left + i;
118 const uint luma_base_index = i*6;
119 const uint chroma_base_index = luma_base_index/2;
120
121 const int v210_img_x = v210_x_group_num*4;
122
123 const ivec2 read_at_base = clamp(
124 ivec2(v210_img_x, v210_y_line_num),
125 ivec2(0, 0),
126 v210_input_image_group_bounds);
127
128 const bool clamp_right = v210_img_x > v210_input_image_group_bounds.x;
129 const bool clamp_left = v210_img_x < 0;
130
131 uvec3 v210_unpacked_words[4];
132 for (int v210_word_idx = 0; v210_word_idx < 4; ++v210_word_idx)
133 {
134
135 const ivec2 read_at = read_at_base + ivec2(v210_word_idx, 0);
136
137
138 const uint v210_packed = texelFetch(v210_input_image, read_at, 0).r;
139 v210_unpacked_words[v210_word_idx] =

uncompress_v210_components_from_word(v210_packed);
140
141 }
142
143 // This is the layout of the array ’words’,
144 // with the indices for horizontal sample location
145 // | Cb_0, Y’_0, Cr_0 | Y’_1, Cb_2, Y’_2 | Cr_2, Y’_3, Cb_4 | Y’_4, Cr_4, Y’

_5 |
146
147 luma[luma_base_index] = v210_unpacked_words[0][1]; // Y’_0
148 luma[luma_base_index + 1] = v210_unpacked_words[1][0]; // Y’_1
149 luma[luma_base_index + 2] = v210_unpacked_words[1][2]; // Y’_2

121

150 luma[luma_base_index + 3] = v210_unpacked_words[2][1]; // Y’_3
151 luma[luma_base_index + 4] = v210_unpacked_words[3][0]; // Y’_4
152 luma[luma_base_index + 5] = v210_unpacked_words[3][2]; // Y’_5
153
154 if (clamp_left) {
155
156 chroma[chroma_base_index][0] = v210_unpacked_words[0][0]; // Cb_0
157 chroma[chroma_base_index][1] = v210_unpacked_words[0][2]; // Cr_0
158 chroma[chroma_base_index + 1][0] = v210_unpacked_words[0][0]; // Cb_0
159 chroma[chroma_base_index + 1][1] = v210_unpacked_words[0][2]; // Cr_0
160 chroma[chroma_base_index + 2][0] = v210_unpacked_words[0][0]; // Cb_0
161 chroma[chroma_base_index + 2][1] = v210_unpacked_words[0][2]; // Cr_0
162
163 } else if (clamp_right) {
164
165 chroma[chroma_base_index][0] = v210_unpacked_words[2][2]; // Cb_4
166 chroma[chroma_base_index][1] = v210_unpacked_words[3][1]; // Cr_4
167 chroma[chroma_base_index + 1][0] = v210_unpacked_words[2][2]; // Cb_4
168 chroma[chroma_base_index + 1][1] = v210_unpacked_words[3][1]; // Cr_4
169 chroma[chroma_base_index + 2][0] = v210_unpacked_words[2][2]; // Cb_4
170 chroma[chroma_base_index + 2][1] = v210_unpacked_words[3][1]; // Cr_4
171
172 } else {
173
174 chroma[chroma_base_index][0] = v210_unpacked_words[0][0]; // Cb_0
175 chroma[chroma_base_index][1] = v210_unpacked_words[0][2]; // Cr_0
176 chroma[chroma_base_index + 1][0] = v210_unpacked_words[1][1]; // Cb_2
177 chroma[chroma_base_index + 1][1] = v210_unpacked_words[2][0]; // Cr_2
178 chroma[chroma_base_index + 2][0] = v210_unpacked_words[2][2]; // Cb_4
179 chroma[chroma_base_index + 2][1] = v210_unpacked_words[3][1]; // Cr_4
180
181 }
182
183 }
184
185 // This is the layout of the array ’words’,
186 // with the indices for horizontal sample location
187 // | Cb_0, Y’_0, Cr_0 | Y’_1, Cb_2, Y’_2 | Cr_2, Y’_3, Cb_4 | Y’_4, Cr_4, Y’_5 |
188
189 // This is the index into the accumulated array
190 const uint rgba_horiz_pixel_base_coord = chroma_filter_v210_offset_left*6;
191
192 const uvec2 rgba_pixel_base_coords = uvec2(v210_x_group_base_num*6,

target_coords.y);
193
194 // First output the values where no interpolation is necessary
195 // (V210 is cosited)
196
197 for (uint rgba_horiz_pixel_offset = 0; rgba_horiz_pixel_offset < 6;

rgba_horiz_pixel_offset += 2)
198 {
199
200 const uint pixel_idx = rgba_horiz_pixel_base_coord + rgba_horiz_pixel_offset

;
201
202 uint luma_value = luma[pixel_idx];
203 uvec2 chroma_value = chroma[pixel_idx/2];
204
205 const uvec3 y_cb_cr = uvec3(luma_value, chroma_value.x, chroma_value.y);
206
207 vec3 rgb_linear = convert_YCbCr_to_rgb(y_cb_cr);
208

122

209 imageStore(
210 rgba_output_image,
211 ivec2(rgba_pixel_base_coords + ivec2(rgba_horiz_pixel_offset, 0)),
212 vec4(rgb_linear, 1.0f));
213
214 }
215
216 // Now perform interpolation and write out
217 for (uint rgba_horiz_pixel_offset = 1; rgba_horiz_pixel_offset < 6;

rgba_horiz_pixel_offset += 2)
218 {
219
220 const uint pixel_idx = rgba_horiz_pixel_base_coord + rgba_horiz_pixel_offset

;
221
222 uint luma_value = luma[pixel_idx];
223
224 // Need to reconstruct chroma values from neighbouring values.
225
226 vec2 chroma_value = {.0f, .0f};
227
228 for (int j = 0; j<chroma_filter_pixel_width; ++j) {
229
230 // Note that the pixel rgba_horiz_pixel_offset has to be shifted by one,

because
231 // the chrom_value at int(pixel_idx) / 2) is already the one
232 // left to the spatial position to be interpolated.
233 int chroma_idx = (int(pixel_idx) / 2) - chroma_filter_pixel_offset + 1 +

j;
234 chroma_value += chroma[chroma_idx] * chroma_filter_pixel_weights[j];
235
236 }
237
238 const uvec3 y_cb_cr = uvec3(luma_value, int(chroma_value.x), int(

chroma_value.y));
239
240 vec3 rgb_linear = convert_YCbCr_to_rgb(y_cb_cr);
241
242 imageStore(
243 rgba_output_image,
244 ivec2(rgba_pixel_base_coords + ivec2(rgba_horiz_pixel_offset, 0)),
245 vec4(rgb_linear, 1.0f));
246
247 }
248
249 }

123

Bibliography

[1] Cairo Python bindings. http://cairographics.org/pycairo/, 07 2013.

[2] Charles Poynton’s short notes: Converting Y’CbCr to R’G’B’.
http://www.poynton.com/notes/short_subjects/video/ycbcr_to_rgb, 07 2013.

[3] Charles Poynton’s short notes: ITU-R BT.601-4 Digital Filters.
http://www.poynton.com/notes/short_subjects/video/itu-r_rec_601_digital_filter, 07
2013.

[4] EBU 4K & HD test sequences. http://tech.ebu.ch/testsequences, 07 2013.

[5] Mark D Fairchild. Color appearance models. John Wiley & Sons, 2005.

[6] Lionel Fuentes. A real-time profiling tool. In Patrick Cozzi and Christophe Riccio, editors,
OpenGL Insights, pages 503–512. CRC Press, 2012.

[7] B. Gaster, D.R. Kaeli, L. Howes, and P. Mistry. Heterogeneous Computing with OpenCL.
Morgan Kaufmann Pub, 2011.

[8] Google Protocol Buffers Library. http://code.google.com/p/protobuf/, 07 2013.

[9] GPUView online description. http://graphics.stanford.edu/~mdfisher/GPUView.html, 07
2013.

[10] GTC 2012, Mark Kilgard, OpenGL in 2012 presentation slides.
http://developer.download.nvidia.com/gtc/pdf/gtc2012/presentationpdf/s0023-monday-
nvidia-opengl-2012.pdf, 07 2013.

[11] Ladislav Hrabcak and Arnaud Masserann. Asynchronous buffer transfers. In Patrick Cozzi
and Christophe Riccio, editors, OpenGL Insights, pages 391–414. CRC Press, 2012.

[12] IEC 60027-2-3:2005. Quantities and units – Letter symbols to be used in electrical tech-
nology – Part 2: Telecommunications and electronics. ISO, Geneva, Switzerland.

[13] IEC 61966-2-2:2003. Multimedia systems and equipment – Colour measurement and man-
agement – Part 2-2: Colour management – Extended RGB colour space – scRGB. ISO,
Geneva, Switzerland.

125

[14] Intel blog: ippsCopy Vs. ippiCopyManaged. http://software.intel.com/en-
us/articles/ippscopy-vs-ippicopymanaged, 07 2013.

[15] Intel R© Integrated Performance Primitives. http://software.intel.com/en-us/intel-ipp, 07
2013.

[16] ITU. Parameter values for the HDTV standards for production and international pro-
gramme exchange (ITU-R Recommendation BT.709). International Telecommunications
Union, April 2002.

[17] ITU. Reference electro-optical transfer function for flat panel displays used in HDTV
studio production (ITU-R Recommendation BT.1886). International Telecommunications
Union, March 2011.

[18] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL R© Shading Language, Oc-
tober 2012.

[19] David Kirk and Wen-mei Hwu. Programming Massively Parallel Processors. A Hands-On
Approach. Morgan Kaufmann, January 2010.

[20] Kjell Hedström, Lock-Free Single-Producer - Single Consumer Circular Queue.
http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-
Consumer-Circular. CodeProject, 2012.

[21] libav - Open source audio and video processing tools. http://libav.org, 07 2013.

[22] Christopher Lux. The OpenGL Timer Query. In Patrick Cozzi and Christophe Riccio,
editors, OpenGL Insights, pages 493–502. CRC Press, 2012.

[23] Sanjit K Mitra and James F Kaiser. Handbook for digital signal processing. John Wiley &
Sons, Inc., 1993.

[24] OpenCL - The open standard for parallel programming and heterogeneous systems.
http://www.khronos.org/opencl/, 07 2013.

[25] OpenGL extension AMD_pinned_memory. http://www.opengl.org/registry/specs/
AMD/pinned_memory.txt, 07 2013.

[26] Charles A Poynton. Digital Video and HD. Algorithms and Interfaces. Morgan Kaufmann
Pub, January 2012.

[27] C Britton Rorabaugh. DSP primer. McGraw Hill, 1999.

[28] David Salomon. Data Compression.: The Complete Reference. Springer, 2004.

[29] Mark Segal and Kurt Akeley. The OpenGL R© Graphics System: A Specification, Version
4.3 (Core Profile), August 2012.

126

[30] Peter Shirley and Steve Marshner. Fundamentals of Computer Graphics, 3rd edition. AK
Peters, June 2009.

[31] SMPTE. 3 Gb/s Signal/Data Serial Interface. In ST 424:2012. 2012-10-08.

[32] Bjarne Stroustrup. The C++ Programming Language, 4th Edition. Addison-Wesley Pro-
fessional, 4 edition, May 2013.

[33] The NVIDIA CUDA programming language. http://www.nvidia.com/cuda, 07 2013.

[34] T. True, A. Reid, and J. Jones. Direct to GPU Video Transfers. In SMPTE Conferences,
volume 2011, pages 1–10. Society of Motion Picture and Television Engineers, 2011.

[35] Shalini Venkataraman. Fermi asynchronous texture transfers. In Patrick Cozzi and
Christophe Riccio, editors, OpenGL Insights, pages 415–430. CRC Press, 2012.

[36] Webinar Colour Pipeline for HD. http://www.poynton.com/notes/events/index.html, 07
2013.

[37] Wikipedia. Binary prefix — Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Binary_prefix, 2013. [Online; accessed
24-August-2013].

[38] Anthony Williams. C++ Concurrency in Action. Manning, 2012.

[39] Win 8 SDK incl. GPUView. http://msdn.microsoft.com/en-us/windows/desktop/hh852363,
07 2013.

127

	Introduction
	Motivation
	Research question
	Contributions
	Overview

	Background
	Video engineering
	Perceptual coding
	Image reproduction
	sRGB
	BT.709 Y'CbCr coding
	Chroma subsampling
	Converting between R'G'B' and 10-bit BT.709 Y'CbCr
	Mixing sRGB with BT.709 content

	Hardware
	Graphics processing units
	Video interfaces

	OpenGL
	Version 3.3
	Version 4.0
	Version 4.1
	Version 4.2
	Version 4.3
	Transferring texture data
	Vendor-specific optimizations

	Related software

	Design
	Pipeline model
	Stage
	Simplified model of the video processing pipeline
	Timing properties of the video processing pipeline
	Live playback constraints

	Targeted scenario
	FrameBender application

	Video Pipeline Implementation
	C++ pipeline infrastructure
	CircularFifo implementation
	WaitingCircularFifo wrapper
	The Stage C++ template class
	Example of the execution of a simple video pipeline

	OpenGL video render pipeline
	Stage definitions
	Data pools for queue elements
	Scheduling of the video processing pipeline execution

	Concurrent hardware executions of the pipeline
	Asynchronous host copies
	Multithreaded OpenGL for upload/render/download

	The canonical render format
	Demo renderer
	Internal profiling
	Sampling timestamps of pipeline stage executions
	Trace format

	Debugging features
	Testing

	V210 Y'CbCr to RGB Transcoder
	V210 structure
	OpenGL V210 representation
	GLSL implementation
	Chroma filters
	GLSL shader inclusion system
	Transcoding algorithm
	GLSL 3.3
	GLSL 4.2
	GLSL 4.3 compute shaders
	Testing GLSL variations

	Results
	Test setup
	Parameter space of benchmark configurations
	Benchmarking scenario
	Visualization of traces
	Input sequences
	Test machine specification
	Limitations
	Statistical properties of traces
	Measuring image quality using PSNR

	Performance
	Parallelization of pipeline executions
	Varying resolution (HD vs. UHD-1)
	Isolating pipeline stages
	V210 transcoder
	Overview of speed improvements

	Image quality
	Render formats
	Chroma filters
	CPU-based implementations

	Conclusion
	Future work

	GLSL 4.2 V210 decoder shader code
	Bibliography

