FAKULTAT Diplomarbeitsprasentation
FUR INFORMATIK

Faculty of Informatics

GPU-based Video Processing in

the Context of TV Broadcasting ehrische Universitit Wien

Masterstudium: Institut fur Computergraphik und Digitale Bildverarbeitung

Visual Computing Heinrich Fink Arbeitsbereich: Computergraphik
Betreuer: Assoc. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Mitwirkung: Dipl.-Ing. Dr. Anton Fuhrmann

- - //‘\// // // // // // [I Il I[Il ll l’ ‘\ ‘\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\"\\ - -
Motivation e e e i 1w Contributions
¢ In live TV broadcasting, the graphics processor (GPU) 7 /,_f’ £ ¢ A software model to build a highly parallelized
is used to render graphics. [L [, - -\ \ Video processing solution.
¢ A common scenario is to blend images over video. (E /e - S \\ Ay \\ \\\\ ¢ OpenGL-based implementation of a prototype
+ For rendering, video frames need to be ,, & | s 0 B broadcast renderer using C++11.
streamed to and from video memory. ¢ Design of a doubly-linked pipeline pattern
¢ Upcoming TV standards like UHD-1 (4K) WSS - - R . R B W e PN, CLLR e , that enables asynchronous two-way
result in much higher data rates of video /\ [Lol ol B \ 1\ > communication between stages.
images than previous formats. \\‘ ekl 57 = B e AN ,'" ¢ GPU-based algorithms to transcode
¢ [n order to process these data rates in real R | between 10-bit Y'CbCr and linearly coded
time, rendering and transfer of video need to be RGB in high quality.
parallelized. H a’fdwar@ ¢ A comparison between different GLSL
‘ / implementations of the transcoder module.
¢ \isualization and detailed performance analysis of
Research QueStl ons different configurations of our pipeline.
+ \Which methods can be used to parallelize the stages of an ' i ~
OpenGL-based video processing software? [
¢ Which stages can be executed concurrently by hardware? Results

¢ \What are the maximum data rates that can be reached and

what are the limiting factors? ¢ In comparison to a conventional

~144 GB/s t implementation, our pipeline enables W Serialized

2 How to implem§nt GPQ—based trgnscoding betweerl) optimizations that double the Concurrent

studio-quality Y'CbCr video and linearly coded RGB*: effective throughput of image data

’ / : when processing high resolution 2951
Video Memory video.
- ¢ This allows us to render UHD-1 in
Implementation ol tre

o \We use the pipeline patte(n to the builq a software ¢ Our profiling shows that the pipeline

prototype for broadcast video processing. fully saturates the CPU memory
o The overall algorithm Is split into several thread-safe stages. ~6.5 GB/s bandwidth, i.e., we are fully taking

(PCle 2)

o \We add a scheduler that can be configured to assign one or advantage of the system's resources.

more threads to the execution of stages.

¢ \We use OpenGL 4.x for all GPU-related tasks of the
pipeline. quality and is faster by an order of magnitude when
¢ \Ve use a sophisticated communication pattern to compared to a state-of-the-art CPU-based conversion.

synchronize concurrent OpenGL executions. op/ ‘ & lests of running our prototype on different graphics devices
~22.8 GB/s

¢ We implement the Y'CbCr to RGB transcoder using show that each OpenGL driver implementation requires

different versions of GLSL and take advantage of random- different threading strategies. The abllity of our framework to
writes to textures and compute shaders. { Main Memory] configure the assignment of threads to stage executions

dynamically is therefore very important.

¢ Our GPU-based transcoder between +
10-bit Y'CbCr and RGB shows better MB/s

o \We integrate a profiler into our pipeline that captures CPU-
side and GPU-side execution times of stages.

I ’ o T

/
Software Pipeline Execution

Conventional * Optimized
Serialized Execution . B Video Output Concurrent Execution
T 3| : 1 | \ '
Time (ms) ' | Copy from Pixel Buffer . . Host Out

1 .

Map Pixel Buffer

. . OpenGL
. Download

1 L

Download to Pixel Buffer

- Convert RGB to Y'ChCr O
CU) 1 [—1
® : OpenGL | =
IS Master - - | Render Graphics Render %

- . L ~ Q
il Convert Y'CbhCr to RGB 0

1 =

Upload from Pixel Buffer

1 I

OpenGL
Upload

Unmap Pixel Buffer

1 h I I I Y B R

Copy to Pixel Buffer

Host In

r

The naive approach uses a single thread for all stage—executions. Video Input When using multipgle threads to execute stages, we can observe
The whole pipeline is stalled while rendering a single video frame. ‘ * the concurrent transfer and processing of video frames.

T Tested on NVIDIA Quadro 6000

| Kontakt: hfink@hfink.eu |

