
Masterstudium:
Visual Computing

Diplomarbeitspräsentation

Heinrich Fink

GPU-based Video Processing in
the Context of TV Broadcasting

Technische Universität Wien
Institut für Computergraphik und Digitale Bildverarbeitung

Arbeitsbereich: Computergraphik
Betreuer: Assoc. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Kontakt: hfink@hfink.eu

Mitwirkung: Dipl.-Ing. Dr. Anton Fuhrmann

Software Pipeline Execution

When using multiple threads to execute stages, we can observe
the concurrent transfer and processing of video frames.

Optimized
Concurrent Execution

The naive approach uses a single thread for all stage executions.
The whole pipeline is stalled while rendering a single video frame.

Conventional
Serialized Execution

Host In

OpenGL
Upload

OpenGL
Render

OpenGL
Download

Host Out

Master

5 threads

† Tested on NVIDIA Quadro 6000

Hardware

Motivation Contributions

Results

Implementation

◆ In live TV broadcasting, the graphics processor (GPU)
is used to render graphics.

◆A common scenario is to blend images over video.
◆ For rendering, video frames need to be

streamed to and from video memory.
◆Upcoming TV standards like UHD-1 (4K)

result in much higher data rates of video
images than previous formats.

◆ In order to process these data rates in real
time, rendering and transfer of video need to be
parallelized.

◆We use the pipeline pattern to the build a software
prototype for broadcast video processing.

◆ The overall algorithm is split into several thread-safe stages.

◆We add a scheduler that can be configured to assign one or
more threads to the execution of stages.

◆We use OpenGL 4.x for all GPU-related tasks of the
pipeline.

◆We use a sophisticated communication pattern to
synchronize concurrent OpenGL executions.

◆We implement the Y'CbCr to RGB transcoder using
different versions of GLSL and take advantage of random-
writes to textures and compute shaders.

◆We integrate a profiler into our pipeline that captures CPU-
side and GPU-side execution times of stages.

Research Questions
◆Which methods can be used to parallelize the stages of an

OpenGL-based video processing software?
◆Which stages can be executed concurrently by hardware?
◆What are the maximum data rates that can be reached and

what are the limiting factors?
◆How to implement GPU-based transcoding between

studio-quality Y'CbCr video and linearly coded RGB?

◆ In comparison to a conventional
implementation, our pipeline enables
optimizations that double the
effective throughput of image data
when processing high resolution
video.

◆ This allows us to render UHD-1 in
real time.

◆Our profiling shows that the pipeline
fully saturates the CPU memory
bandwidth, i.e., we are fully taking
advantage of the system's resources.

2531

1174

Serialized
Concurrent

MB/s †

◆A software model to build a highly parallelized
video processing solution.

 ◆OpenGL-based implementation of a prototype
 broadcast renderer using C++11.
 ◆ Design of a doubly-linked pipeline pattern
 that enables asynchronous two-way
 communication between stages.
 ◆ GPU-based algorithms to transcode

 between 10-bit Y'CbCr and linearly coded
 RGB in high quality.
◆A comparison between different GLSL

 implementations of the transcoder module.
◆Visualization and detailed performance analysis of

 different configurations of our pipeline.

◆Our GPU-based transcoder between
10-bit Y'CbCr and RGB shows better
quality and is faster by an order of magnitude when
compared to a state-of-the-art CPU-based conversion.

◆ Tests of running our prototype on different graphics devices
show that each OpenGL driver implementation requires
different threading strategies. The ability of our framework to
configure the assignment of threads to stage executions
dynamically is therefore very important.

Copy from Pixel Buffer

Map Pixel Buffer

Download to Pixel Buffer

Convert RGB to Y'CbCr

Render Graphics

 Convert Y'CbCr to RGB

Upload from Pixel Buffer

Unmap Pixel Buffer

Copy to Pixel Buffer

Video Output

Video Input

~22.8 GB/s

~6.5 GB/s
(PCIe 2)

~144 GB/s †

GPU

Video Memory

Main Memory

DMA
unit

DMA
unit

CPU

1
th

re
ad

Time (ms)

