
Teaching a Modern Graphics Pipeline Using a Shader-based Software Renderer

H. Finka, T. Webera, M. Wimmera

aVienna University of Technology, Austria

Abstract

This paper presents the syllabus for an introductory computer graphics course that emphasizes the use of programmable shaders
while teaching raster-level algorithms at the same time. We describe a Java-based framework that is used for programming assign-
ments in this course. This framework implements a shader-enabled software renderer and an interactive 3D editor. Teaching shader
programming in concert with the low-level graphics pipeline makes it easier for our students to learn modern OpenGL with shaders
in our follow-up intermediate course. We also show how to create attractive course material by using COLLADA, an open standard
for 3D content exchange, and our approach to organizing the practical course.

Keywords:
CG education, course organization, COLLADA, programmable shading

1. Introduction

The aim of this paper is to present a new framework for
the introductory computer graphics course that we have intro-
duced at the Vienna University of Technology in 2010. We
will start by describing related work and the background of this
course with our motivation of building a new course framework.
We are then going to explain our approach to teach fundamen-
tal aspects of a modern graphics pipeline using the concept of
shaders. We present our course framework, a Java-based 3D
editor with a software renderer (Fig. 1) and describe how this
editor motivates our students during the course by interacting
with their work. We also describe how we use COLLADA, an
open format for exchanging digital 3D assets, within our frame-
work and how we solve difficulties in organization and mainte-
nance of the course system. We conclude with our experiences
of the new course framework and suggestions for future work.
The main contributions of this paper can be summarized as:

• A syllabus for teaching fundamental aspects of a modern
graphics pipeline using shaders

• A course framework with a Java-based didactic software
renderer and an interactive 3D editor

• Using real-world COLLADA assets to motivate and en-
gage students during the course assignments

• Solutions for overcoming difficulties in course organiza-
tion and maintenance

This paper is based on an earlier conference paper [1]. We
extend the discussion and give more details on the specifics of
our software framework and course organization.

Email addresses: hfink@cg.tuwien.ac.at (H. Fink),
t.weber@cg.tuwien.ac.at (T. Weber),
wimmer@cg.tuwien.ac.at (M. Wimmer)

Figure 1: The editor of the course framework. This scene shows
a model that has been imported using the COLLADA format.
The matrix display is updated while using the widget in the
transform panel.

1.1. Related work

The introduction of computer graphics into computer sci-
ence curricula was first discussed in the late 1980s [2]. At
that time only the most fundamental graphics algorithms such
as line drawing and clipping were taught on expensive equip-
ment with highly specialized software [3]. When graphics
hardware became available as more affordable mainstream con-
sumer products in the 1990s, most universities started to offer
computer graphics courses in a computer science curriculum
[4]. At the same time graphics hardware APIs such as OpenGL
became widely available. Users of such APIs did not have to

Preprint submitted to Computers & Graphics November 9, 2012

deal with low-level drawing routines anymore. Due to this de-
velopment, several educators proposed to replace the traditional
syllabus of using raster-level algorithms with more practical ap-
proaches using higher-level APIs [5, 6].

During the thirtieth SIGCSE technical symposium on Com-
puter science education, educators agreed that teaching intro-
ductory computer graphics is inherently about 3D geometry, its
visual appearance and interplay with lighting simulation and
should be taught as interactive projects [7]. Consequently some
courses strongly based their syllabi on scene graph concepts
and many introduced Java3D, a Java-based scene graph API
that became popular in the late 1990s and early 2000s, to their
exercises [6, 8]. A discussion of how introductory computer
graphics courses could benefit from teaching scene graphs is
given by Cunningham and Bailey [9].

At the 2004 SIGGRAPH/Eurographics education workshop
[10], the prevalent opinion was that introductory computer
graphics courses should be made available to every undergrad-
uate computer science student and not just to those who spe-
cialize in this field during their studies. For students with a
less traditional background, it seemed more appropriate to teach
the higher level modules of a graphics application first (top-
down) as opposed to traditionally beginning the course with
raster-level operations and gradually moving towards higher
level concepts (bottom-up). The top-down approach showed
to work well for more mature students who took only a single
computer graphics course during their studies [11]. However,
the discussions of the 2006 SIGCSE panel [12] suggest that
there is no right way to build a computer graphics curriculum,
and that teaching the bottom-up approach as an introductory
course would still be a viable approach for those students who
follow up with a series of advanced computer graphics courses.

While previous discussions mainly focused on the structure
and content of the syllabus, more recent discussions emphasize
the importance of the context in which computer graphics are
being taught [13]. Choosing a context which allows students
to work on problems that are also relevant outside the course
environment turned out to highly boost motivation. For exam-
ple, Schweppe and Geigel used the context of theatre [14] for
teaching computer graphics.

With the wide availability of programmable graphics hard-
ware, approaches of teaching shaders in computer graphics
courses have been increasingly investigated [15, 16, 17]. As
shaders have become commonly used in graphics program-
ming, a shader-based introductory computer graphics course
has recently been proposed [18].

2. Course background and motivation

At the Vienna University of Technology (VUT), the bache-
lor program Media Informatics and Visual Computing and the
master program Visual Computing offer three main courses fo-
cusing on computer graphics:

1. An introductory course teaching fundamental aspects of
computer graphics using Java.

2. An intermediate course teaching modern OpenGL with
C++.

3. An advanced course on state-of-the-art graphics effects and
optimization methods.

Each course has lectures covering theoretical aspects that are
applied in a practical part with programming assignments.
Other advanced electives with related topics such as visualiza-
tion, virtual and augmented reality or color sciences are also of-
fered regularly. The outline of our curriculum is largely based
on the ACM recommendations [19].

In the European Space of Higher Education (ESHE), cur-
ricula have to be split into two cycles in accordance with the
Bologna requirements [20]. At VUT, the introductory and inter-
mediate computer graphics courses are compulsory during the
first education cycle (the Media Informatics and Visual Com-
puting bachelor program). These courses teach the theoreti-
cal foundations that are necessary to continue with advanced
degrees, as well as practical skills such as modern OpenGL
with C++ that are often required for practical work in the com-
puter industry. This is in line with recommendations made dur-
ing a previous education workshop where the consequences of
the Bologna process for computer graphics education were dis-
cussed [21].

This paper describes the first computer graphics course
which is usually taken by second-year full-time computer sci-
ence students. The prerequisites for this course are basic pro-
gramming skills in Java, object-oriented modeling and basic
linear algebra. In our curriculum, every student has had courses
covering these subjects before attending the introductory com-
puter graphics course. In particular, Java is taught as the intro-
ductory programming language in the first year of our curricu-
lum and is therefore the programming language of our choice
for this course. Our course is attended by approximately 150
students each year. This comparatively high number of students
poses challenges in distribution and maintenance of course ma-
terial. We address these issues in Section 5.

For the introductory course we chose the bottom-up ap-
proach, where a large amount of time is spent on implement-
ing fundamental graphics operations such as triangle rasteriza-
tion, viewing and visibility algorithms. The majority of our
students is enrolled full-time and is likely to attend the inter-
mediate course later. We believe that it is easier for our stu-
dents to learn more advanced computer graphics algorithms and
higher-level APIs in later courses when having learned the fun-
damental algorithms first, hence our choice for the bottom-up
approach. Previous publications on applying the top-down ap-
proaches to introductory courses support this decision, where
a bottom-up approach is still considered to work well in tradi-
tional computer science curricula [12, 11].

However, it was also our motivation to teach concepts
that are practically relevant. While teaching the second, in-
termediate graphics course, we experienced that many stu-
dents had problems adopting the modern approach of shader-
based OpenGL. Shaders are programming patterns that are now
mandatory in any recent real-world graphics API [18] (OpenGL
3.2+, OpenGL ES 2.0, WebGL, etc.). Therefore they are highly

2

relevant to graphics programming. We decided that the concept
of shaders should form a fundamental part of our syllabus and
that they should be included while teaching the more traditional
lower-level algorithms.

3. Course syllabus

The aim of the introductory laboratory course is for the stu-
dents to apply the concepts described in the lecture. These top-
ics include raster-level algorithms, polygon clipping, 3D trans-
formations, hidden surface removal, lighting models, texturing
and shaders.

At the beginning of the semester, students receive an incom-
plete version of a software renderer. We defined six program-
ming assignments that incrementally add features to the graph-
ics pipeline. Students are supposed to solve these assignments
individually.

A summary of the assignments and how we include the con-
cept of shaders in our syllabus is found in Table 1. We would
also like to refer to the online Wiki of the lab course1 that de-
scribes the assignments in detail.

What distinguishes our approach from other courses is that
it communicates aspects of a programmable graphics pipeline
while still being software-based: instead of a fixed-function
pipeline with a handful of illumination models and shading
modes, a fully programmable shader-based approach is used.
This is motivated by the fact that any current graphics API re-
quires the use of a vertex and fragment shader [18].

The course is split into six assignments which build upon
each other. This allows students to better understand the big
picture as opposed to isolated assignments that solve only one
particular problem. While we supply a standard solution after
each finished task, many students choose to use their own solu-
tions from start to end.

The first assignment is a straightforward and simple task:
Students implement Bresenham line rasterization and complete
the viewport transform of points from normalized device co-
ordinates to pixel coordinates. This gives them time to set up
the development environment and get accustomed to the frame-
work. The main thing students are supposed to learn in this
exercise is to set individual pixels in a framebuffer. Any line
drawing algorithm could be used for this. We chose the DDA
algorithm in the first iteration of the course for instance.

In the second assignment, students implement model trans-
formations and general 3D math operations like the dot-product
and matrix-multiplication. This is also the first time they
use shaders, when calling the vertex-shader and applying the
model-matrix to the input vertices. After completing this
task, students should understand the concept of 3D transforma-
tions, be able to build the inverse for combinations of common
transformations and understand the difference between matrix-
multiplication from the right and from the left.

In the third assignment, students implement polygon-
clipping in homogeneous coordinates and complete the view-
ing pipeline by adding viewing and projection matrices. They

1https://lva.cg.tuwien.ac.at/ecg/wiki

also implement the necessary sections to interpolate per-vertex
colors using the vertex and fragment shaders. Upon comple-
tion of this task, students have learned about the complete 3D
viewing-pipeline and polygon clipping.

The topic of the fourth assignment is triangle rasteriza-
tion. Students implement a triangle rasterizer based on evalu-
ating line equations. Varying vertex shader outputs are interpo-
lated using barycentric coordinates and passed to the fragment
shader. Hidden surface removal using depth testing and back-
face culling is also implemented in this task.

When reaching assignment five, students have completed a
simple, yet flexible rendering system. At this point their task
is to implement different types of lighting using shaders. Two
types of shading (Gouraud and Phong) as well as two illumi-
nation models (Lambert and Blinn-Phong) have to be imple-
mented.

In the final assignment, students use textures and imple-
ment a shader effect of their choice. They also add perspective-
correct interpolation of varyings. This is necessary to correctly
pass UV coordinates between vertex and fragment shading. The
remaining time of this task is an open assignment to encourage
experimenting and to explore the potential of shaders. We pro-
vide a list of examples and suggestions (e.g. alternate lighting
models, normal mapping, etc...) to assist students in finding a
topic.

Students can test and interact with their solution through a
simple 3D editor that uses their implementation of the renderer
for live rendering. That way, our students are able to easily find
bugs and to explore the behaviour of their code. For each sub-
mission, starting with the second assignment, students also use
this application to create example scenes. These scenes show-
case implemented features of the particular task. For some as-
signments we also ask students to show things like the differ-
ence between left- and right-multiplication in assignment two,
or three-point lighting in assignment five. The target applica-
tion is explained in more detail in the next section.

4. Course framework

Students implement the assignments described in the previ-
ous section inside a custom Java framework. Java has been used
many times as the language of choice for introductory graphics
courses [22, 23, 24]. We agree that garbage collection, bound-
ary checks of array access and simple debugging facilities help
students to focus on more relevant aspects of their implemen-
tation. Using Java also allows us to support any major desktop
operating system like Windows, Linux or Mac OS X without
having to write platform-specific code.

4.1. Student packages
The framework is organized into several modules as Java

packages. During each assignment, students have to complete
sections of code in the following three packages:

• render: this package contains the implementation of
our graphics pipeline model as described by the previous
section. The public interfaces in this package correspond

3

Points Topics Interaction w. Shader Concepts

Assignment 1 6
Bresenham line rasterization
Viewport mapping

Assignment 2 8
3D vector/math operations Execute vertex shading stage
Model transformations Apply model matrix to vertices in vertex shader (VS)

Assignment 3 14

Polygon clipping Interpolate per-vertex attributes for clipped polygons
View and projection transform Concatenate model-view-projection (MVP) matrix
Linear color interpolation Pass MVP matrix and view matrix to VS

Apply MVP matrix to vertices in VS
Add interpolation of varyings to line rasterizer
Pass vertex color from VS to fragment shader (FS) as varyings
Return interpolated color in FS

Assignment 4 12
Triangle fill rasterization Interpolate varyings with barycentric coordinates
Back-face culling Call FS with interpolated varyings
Depth test with Z-buffer

Assignment 5 12

Transforming normals Calculate the inverse-transpose of the model matrix
Shading models Pass inverse-transpose to VS
Illumination models Create shaders for per-vertex and per-fragment lighting

Transform normal, view and light vector to world space using the VS
Calculate Lambert/Blinn-Phong illumination in world space in the FS

Assignment 6 8
Texturing Use sampler uniforms in FS
Perspective-correct interpolation Pass UV coordinates as varyings between VS and FS

Freely experiment with new custom shaders

Table 1: Overview of our syllabus and how we gradually approach shaders with each graphics topic.

to the API layer of a modern graphics API that is visible
to the application code.

• scene: classes in this package implement a simple data
model of a scene that consists of geometries, cameras and
light sources. A scene uses the render package to store
render data and to draw itself (see Figure 2). User imple-
mentations of shaders are also included in the scene pack-
age, such as the shader shown in Listing 1. Code con-
tained in this module largely represents the client code of
a graphics API, i.e. code that uses a graphics hardware
API to draw a 3D scene.

• math: a collection of classes and methods for linear al-
gebra routines with vectors and matrices.

The division between the scene and render package is
intended to model the separation between user code and graph-
ics driver in a typical 3D application. This is why rasterization,
clipping, framebuffers and any code that calls shaders is imple-
mented in the render package, but scene management, matrix
calculation and the actual shader implementation happens in the
scene package. Figure 2 shows how these two packages in-
teract with each other.

Since the code of the framework is intended to be read, un-
derstood and modified by novice programmers, great care has
been taken to use a didactic style when writing them. This
means that we generally avoid hard-to-follow concepts like re-
cursion and favor interface implementation over class inheri-
tance if polymorphism is required. Code is kept as simple and
compact as possible and is thoroughly commented. A single

pkg	
 render

pkg	
 scene

Geometry

Mesh <<interface>>
Shader

Surface

SurfaceShader

LambertGouraudShader

Renderer

Scene

BlinnPhongShader

draws with

contains

implements

is assigned

is-a

Figure 2: A simplified relationship diagram that shows how
classes from the scene package use public interfaces from the
render package.

graphics algorithm is usually encapsulated in a single class or
method.

Shaders are implemented as classes in the scene package
and interact with the rasterizer pipeline through polymorphism.
The classes implement an interface which defines entry points
of the vertex and fragment shader as abstract methods. Students
will implement both the shader classes and parts of the renderer
that interacts with them. This way students learn about shader-
based computer graphics from day one and also get a chance to
see how shaders are employed within a graphics pipeline. This
is not possible with current graphics APIs because these parts
are usually hidden from the programmer.

4

public class LambertGouraudShader extends SurfaceShader {

@RGBParam(r = 1, g = 1, b = 1)
public Vec3 diffuse;

@Override
public Vertex shadeVertex(Mesh.Vertex v) {

Vec4 pos = Mat4.mul(_modelViewProjectionMatrix,
v.position);

Vec3 P = Mat4.mul(_modelMatrix,
v.position).homogenize3();

Vec3 N = Mat3.mul(_normalMatrix,
v.normal).normalize();

Vec3 C = v.color;
Vec3 surfaceColor = Vec3.mul(diffuse, C);

Vec3 I = IlluminationModels.lambert(P,
N,
surfaceColor,
_lights);

Varyings vr = new Varyings(new float[]{I.r(),
I.g(),
I.b()});

return new Vertex(pos, vr);
}

@Override
public Vec3 shadeFragment(Varyings varyings) {

float values[] = varyings.getValues();

return new Vec3(values[0], values[1], values[2]);
}

}

Listing 1: Shader implementation of Gouraud-shading with
Lambert-illumation

The typical shader inputs and outputs (vertex attributes, uni-
form values, varying values and the final fragment color) are all
included in the software model. Vertex attributes are a fixed
set of per-vertex values: color, normal, tangent, bitangent and
uv coordinates. Uniforms are represented by member variables
of the shader object. The fragment output is a single RGB
color triple. Varying values, which are the output of the vertex-
shader, are interpolated during rasterization and then become
the input of the fragment-shader. These are encapsulated in a
specialized class which consists of an array of float values and
methods for interpolating them. Perspective-correct interpola-
tion is also supported.

For a complete description of classes we refer to the
JavaDoc documentation of our framework, which is available
online2.

4.2. The target application: a simple 3D editor

In order for the students to interact with their solution, we
have added a simple and easy-to-use 3D editor to our frame-
work. This editor is written solely in Java and uses Java Swing
for displaying a graphical user interface (GUI). A recent ver-

2https://lva.cg.tuwien.ac.at/ecg/javadoc

sion of the application is publicly available online and can be
launched directly using Java Webstart3.

The application (see Figure 1) creates, loads and saves 3D
scenes and uses the classes in the student modules for scene
management and rendering. The status message in the lower
left corner provides useful context information and tool-tips.
This helps students to quickly understand the features of the
application.

Geometry, light and camera objects that are contained in
a scene are accessible through the scene outliner in the upper
right corner. These objects can be selected, added or deleted.
Below the scene outliner, another panel shows the properties of
the selected object. This panel should motivate students to play
around with parameters of the framework and their solution.
The position and orientation of this object can be modified by
applying a translation, rotation or scaling through a GUI wid-
get. Alternatively, the values of the transformation matrix can
be entered directly. The display of this matrix is updated inter-
actively each time the object’s transformation has changed (see
Figure 1). Any float parameter in the properties panel can also
be modified continuously by dragging the mouse. The render
view to the left is updated in real time and immediately reflects
a parameter change.

Uniforms of shader instances are also editable in the proper-
ties panel. Classes that implement shaders use Java Annotations
to mark class members as uniforms and to provide the GUI with
additional information. For example, the diffuse parameter
in Listing 1 is annotated by RGBParam which defines a default
color. The GUI then automatically adds a panel as shown in
Figure 3 to the properties display.

Figure 3: A color-picking widget that has been automatically
created from an annotated shader uniform. By clicking on the
colored square, a color can be selected using a standard Swing
dialog. The horizontal slider allows setting the intensity of the
color. The slider allows boosting the colors until 200 percent
(depicted as 2x by the widget). This is often useful for artistic
control of light source parameters.

Introspection is often used in the implementation of the
framework and ultimately allows students to quickly interact
with the uniforms of their own shaders in the GUI through au-
tomatically generated widgets.

There are multiple ways of navigating within a scene: tum-
ble mode, dollying, zooming, trackball rotation and walk-
through mode. While navigating, the transformation matrix of
the active render camera is modified and its matrix display is
updated in real time. The GUI thread is asynchronous to the

3https://lva.cg.tuwien.ac.at/ecg/go

5

renderer thread of the scene. This results in a very respon-
sive GUI. Most scenes that are used during the course render
at 30fps or higher on current laptops. In our opinion, a good
user experience with the GUI encourages students to playfully
explore the topics of the course.

The GUI and content pipeline which is described in the fol-
lowing subsection consist of a considerable amount of source
code. However, the six programming assignments of this lab
course are completely independent from their implementation.
We have therefore packaged their classes into a separate Java
Archive (JAR). This hides complex code that might distract stu-
dents. It also allows us to easily distribute bug-fixes of the GUI
by posting new versions of this JAR file during the semester.

Images rendered by the students and textures loaded from
disk are automatically gamma-corrected. Students do not im-
plement this, but we believe it is important that a student’s first
experience with rendering and lighting happens in a linear work
flow.

4.3. Employing a COLLADA-based content pipeline

We aim to provide our students with good-looking and in-
teresting content for the editor. COLLADA is an open industry-
standard XML format for exchanging 3D content [25]. It is
maintained by the Khronos Group, which is also organizing the
OpenGL graphics API standard process. We chose COLLADA
as the primary data format of our framework. Many popular
3D applications have importers and exporters available. These
include Autodesk Maya, Blender and other tools like Google
Sketchup. Our application saves, loads and imports COLLADA
scenes directly. This allows us to access an enormous amount
of online 3D assets. Google’s 3D Warehouse [26], for example,
hosts thousands of free COLLADA scenes that can be opened
and rendered by our framework.

While the largest part of our scene data model is a subset
of the COLLADA standard, scene attributes that are special to
our framework are stored as extra elements with COLLADA’s
extension mechanism. This does not break the validity of a
COLLADA file. Any scene that is saved by our framework,
can still be opened by any COLLADA-compatible application.
We also believe that students might benefit from the human-
readable XML format by looking at the elements that compose
a scene.

At the end of each course we organize a competition that en-
gages students to build interesting scenes with the editor and to
experiment with custom shaders. Importing COLLADA mod-
els enables them to incorporate real-world 3D assets either by
downloading online content or by importing assets from other
3D applications.

5. Course organization and maintenance

In this section we describe the organization of our course
and the solutions we have found for common problems. Our
course is attended by approximately 150 students each year.
This high number of students makes organizing a practical
course that retains a certain level of individuality and personal

support for each student difficult. Because of this, we tried to
automate many aspects of this process.

Doing so allowed us to support such a large course with rel-
atively little resources. If this same course were attended by a
smaller number of students many of the following methods (es-
pecially those discussed in Section 5.2, 5.3 and 5.4) wouldn’t be
necessary. A more personal organization style would be prefer-
able in this case.

5.1. Deployment of assignments
After the deadline of an assignment has passed, we provide

the students with a version of the framework that has the pre-
vious assignments completed while still missing the features
of the upcoming ones. In order to avoid maintaining multi-
ple source trees, we have created a markup system to tag those
sections of code that we expect our students to implement (see
Listing 2).

The main source tree which is maintained and continuously
developed always compiles the full reference solution. When
we build a student version of the framework, a Python script
parses comments that contain the tag #task and – depending
on the number of the assignment – automatically strips the ref-
erence solution, replacing it with the comments describing the
task and placeholder code.
1 // Iterate over all vertices
2 for (int i = 0; i < mesh.getVertexCount(); ++i) {
3
4 Mesh.Vertex meshVertex = mesh.getVertex(i);
5
6 //#task 2 "Execute vertex shader stage"
7 // Transform and shade all vertices
8 Vertex v = shader.shadeVertex(meshVertex);
9 vertices[i] = v;

10
11 //#spec
12 /**
13 * TODO 2:
14 * - Transform the vertices by calling the vertex
15 * shader.
16 * - You can access a vertex of a mesh by calling
17 * mesh.getVertex.
18 */
19 // // Delete me
20 // vertices[i] = new Vertex(meshVertex.position,
21 // Varyings.empty);
22 //#endtask
23 }

Listing 2: Excerpt from the Java class Renderer. The
tag #task in line 6 indicates that code from there until
the #spec tag contains the reference solution for a part
of assignment 2. Between line 11 (#spec) and 22
(#endtask) we can see the code that is presented to the
student in the beginning. Line 19 to 21 would automatically
be uncommented by our parser that generates the student’s
version.

This process allows us to automatically derive a variety of
resources from a single source branch, such as:

• Sources of reference solutions for each assignment;

• Prebuilt executable JAR files of each reference solution;

• Internal Wiki pages showing code segments for each as-
signment;

6

• Reference renderings of solutions for each task;

• Web resources such as Java Webstart wrappers, download
packages, and many more.

All of this is controlled by a single Apache Ant build script,
where all of these are individual targets. The build script also
allows preprocessing, building and executing any assignment
with a single command.

In case of a necessary code change during an ongoing
semester, the build script can be used to generate and upload
all necessary content files, reference solution packages, refer-
ence renders etc. to our servers with a single command.

Student source packages come with the prebuilt GUI pack-
ages, incomplete sources for the student framework and a sim-
ple build script that allows building and running the application.
The build script is also used to pack submission archives of the
student’s solution so that it can be uploaded to the submission
system. Previously, students would pack these archives them-
selves, but this was found to be a common source of errors. Stu-
dents would often pack their submission packages at the wrong
folder level, add unnecessary files or forget important files. By
automating this and setting up the submission system to reject
archives not created in this manner, we can avoid these prob-
lems completely.

5.2. Online resources and support
The main source of information for students is the course

wiki4. Here, they can find a detailed description of each assign-
ment along with any necessary information they might need for
implementation. At the end of each assignment description,
students can find a list of reference scenes along with images
rendered by the reference implementation. Students can down-
load these scenes and check if their solution is behaving cor-
rectly. The reference images are automatically generated and
uploaded using our Ant build script. In the wiki they also find
a general information on the structure of the framework and on
how to set up their development environment for the course.

The wiki allows students to write comments in a section
below every article, but we found that this feature was seldom
used. In the first iteration of the course, students also had the
ability to edit articles. We hoped this would encourage students
to discuss and edit unclear sections themselves, but this did not
happen.

Students who want to submit an image for the annual con-
tent competition will do this by creating a new article in the
wiki. In order to support students, we provide an online forum
where questions are answered usually within one day, and we
also hold personal weekly support hours where several tutors
would be available in person to discuss more in-depth prob-
lems.

5.3. Grading
Students get points for each assignment for a total of 60

points. The number of reachable points per assignment can be

4https://lva.cg.tuwien.ac.at/ecg/wiki

found in Table 1. In order to get the full points, they have to
upload their submission on time. Every day of over-time leads
to 2 points deduction. In addition to that, each student has to
discuss the solved assignments with a member of the faculty
for evaluation of grades.

During the evaluation talks, the grading faculty member
checks the completeness of the solution and asks questions
about both the practical and theoretical nature of their imple-
mentation. The submitted student scene is also checked and
discussed at that point. Afterwards, the evaluator decides the
final number of points reached for each assignment.

These talks happen twice per semester and take about 15
minutes. This very short amount of time makes it necessary to
enable graders to get the relevant information on a submission
at the click of a button. A side-by-side comparison between
the render output of the student’s solution and the output of
the reference implementation provides a good first look at the
correctness of the student’s solution. Automatically generated
weblinks to the changed source parts of the student’s solution
and the ability to directly start the student implementation using
a Java Webstart launcher further helps the grading staff to assess
the student’s submission very efficiently.

Students also have the opportunity to get bonus points by
pointing out bugs in our framework or documentation. We have
found several small errors in our course material this way.

The necessary time spent by faculty members for evaluation
talks is half an hour per student per semester. For 150 students,
this is a total of 75 hours. Two graders could therefore hold
the talks within one week per evaluation phase. In order to
allow swift completion of the grading phases 15 members of
the faculty help with holding the evaluation talks of our course.
The effort for each individual grader is therefore relatively low
with about five hours or twenty 15-minute evaluation talks per
semester.

5.4. Submission system

The web-based online submission system is used for student
registration, submission of assignment solutions, download of
reference solutions and for grading.

After a submission package has been uploaded by a student,
the archive file is unpacked and compiled. If there are any er-
rors during this process, the student will be notified via email.
The compiled student implementation is then executed by the
submission system for rendering several reference scenes in a
headless batch-mode.

In the first iteration of the course, students would get a com-
parison page that would show the generated images of their im-
plementation side-by-side with images generated by the refer-
ence solution. We later removed this feature because we noticed
that some students would debug their assignments in a change–
upload–compare loop without really using the application GUI.
This was undesirable because we want to encourage experimen-
tation with the interactive viewer and because it creates an un-
necessary load for our systems. We therefore disabled the com-
parison page for students. Students should instead download
and compare the reference scenes themselves in the interactive

7

application. The comparison pages are still visible for graders
during evaluation talks.

Because we wanted to encourage experimentation in the
second iteration of our course, the students are now required to
create a simple scene during each assignment to showcase the
features that were implemented. This file and a textual descrip-
tion of the scene is also packed and uploaded with the submis-
sion file and will be rendered using the student’s own solution
afterwards. The resulting image, along with the description of
the scene, can be viewed in the submission system and a large
overview page with images from all student scenes for a given
assignment is created.

The submission system helps graders during the evaluation
talks in several ways. The student’s solution can be directly
launched from the browser using Java Webstart. The task an-
notations of the reference source are also used to create book-
marks which can be used to directly jump to relevant source
sections in the student’s source code. In addition to that, the
system is able to automatically create a color-coded compar-
ison between one student’s solutions to another. This allows
to explicitly check for cheating, if necessary. Graders can also
view the render comparison page to get a quick overview on the
completeness of the solution.

6. Discussion

Our new introductory computer graphics course was held
twice in the previous two years. We also taught the intermedi-
ate course each time in the following semester. In the interme-
diate course students write a computer game from scratch using
C++ and OpenGL. We noticed that students who attended our
new introductory course had less problems picking up shader
programming with OpenGL and GLSL later. While we do not
teach OpenGL in our introductory course, we take extra care
to teach practical skills that are easily transferable from our
didactic Java framework to real-world modern OpenGL pro-
gramming. One example would be the interplay between the
viewing pipeline and shaders, where the transformation ma-
trices (model/view/projection) have to be explicitly assembled
and passed to each shader instance in order to perform lighting
calculations. While teaching the intermediate course we found
that we did not have to hold tutorial sessions on basic shader
programming anymore because students were already familiar
with the concept and only had to learn how to apply it with
the OpenGL API and GLSL. As a result we were able to spend
more time on other topics of the intermediate course, such as
advanced OpenGL aspects or game programming techniques.
This also allowed us to make the use of a Core OpenGL 3.x
profile mandatory in order to pass the intermediate course. Pre-
viously, we had also tolerated the use of the deprecated fixed-
function OpenGL model.

There are commercial [27, 28] and didactic tools [16] that
allow easy authoring and interaction with shaders which also
could be used for teaching. WebGL [29], which is now avail-
able on all major web browsers, might also provide an inter-
esting learning environment. However, those tools and frame-
works use either OpenGL or DirectX for their implementation

and hide the actual execution of the graphics pipeline from the
student. We therefore believe that those might be very good for
learning shader authoring or higher level OpenGL, but that they
are not best suited for teaching the graphics pipeline. Since our
course framework uses a didactic software rasterizer, students
are able to both write shaders and understand how the graph-
ics pipeline actually interacts with the shaders. For example,
the students are able to set a breakpoint in the triangle rasterizer
and observe how the fragment shader instance is called for each
rasterized fragment. We believe that this ability is important
and that it allows our students to better understand the graphics
pipeline.

The framework has been used in two iterations of the
course. In the first iteration we have experienced that students
tend to implement the code snippets only by following the in-
structions without actually spending time experimenting with
the topic at hand. Our dynamic markup system as described in
Section 5, allowed us to quickly change the assignments and to
adapt to this problem for the second iteration. For this we re-
duced the amount of student documentation and asked students
to create test scenes to showcase the implemented features after
each assignment. We have also changed later assignments to
be more open. An example for this is the completely new last
assignment, where students implement texture mapping and im-
plement a custom effect shader.

The source code of the reference solution is only made
available to students who are registered in the submission sys-
tem. Despite this, there is still a possibility of students handing
over their source code to students doing the course in the fol-
lowing semester. Possible solutions are regular variation of the
course (framework code changes, replacement of algorithms,
change of assignments) and use of automated source code pla-
giarism tools.

The content competition held each semester turned out to
be very successful and we believe that we could also motivate
those students who had no previous experience with computer
graphics to participate. Figure 4 shows submissions by students
for the competition. An anonymous evaluation by students held
each semester showed above average ratings of our course. We
have also received very positive feedback from students during
the discussions of the assignments.

We think that our framework covers a broad range of fun-
damental topics in computer graphics. There are, however, fea-
tures that we have not implemented. Hierarchical transforma-
tions have been shown to be valuable to an introductory com-
puter graphics course [9]. Adding this feature would require
adapting the scene package to support object hierarchies. We
chose not to support it so far because calculation of final model-
and especially view-matrices would require a relatively com-
plex recursive operation. We also do not support alpha blending
in the framebuffer. This limits the framework to opaque mate-
rials only. We use multiple threads for each primitive during
the rasterization stage to reach interactive frame rates on recent
multi-core CPUs. We think that this approach is not optimal and
that we should rather implement true pipelining of each stage in
the renderer. This would also provide our students with a more
useful lesson in parallel programming.

8

Figure 4: Entries submitted by students for the annual lab course competition. From left to right: A COLLADA-imported chess
scene with custom shaders applied by Philipp Seeböck; Day-and-night shader implementation by Levin Pölser; Cel-shading by
Sascha Wiplinger.

In our software design we have decided to generally fa-
vor code clarity and modularization over code-level optimiza-
tions. Rhodes and Yan implemented a similar course frame-
work with EASEL, a didactic software-based rasterizer written
in Java [24]. They recommend avoiding small allocations on
the heap in favor of allocating larger blocks and reusing ob-
jects whenever possible. In many situations we trust Java’s op-
timizing compiler to avoid potential performance impacts due
to a higher-level class design. Optimizations that we build upon
are for example escape analysis for moving local allocations to
stack memory and inlining of virtual method invocations using
just-in-time compilation.

The shader shown in Listing 1, for example, allocates new
instances of Mat4 classes for each matrix multiplication. This
shader renders the Stanford Bunny consisting of 69451 trian-
gles with approximately 11 fps on a Core 2 Duo processor
at 2.53 Ghz using single-threaded rasterization. The EASEL
framework reports a performance of 11.3 fps with a slightly
faster processor [24]. This suggests that our choice of using
easier-to-read and small classes does not result in a significant
impact on performance in comparison with EASEL. Our frame-
work also supports multi-threaded rendering by default which
pushes frame rates for most models beyond 30 fps or higher,
depending on the number of CPU cores that are available.

7. Conclusion

We presented a syllabus that teaches the concept of shaders
while still employing raster-level algorithms of the graphics
pipeline. Our framework implements this concept effectively
and has shown to be successful in providing students with an
interactive learning environment. The integration of the COL-
LADA format proved to increase the quality of our course ma-
terials and to increase the motivation of our students. We be-
lieve that our students are well prepared for advanced courses
in computer graphics after completing this course.

In the future we would like to use our framework for demon-
stration purposes during the lecture of this course, and we

would like to evaluate its use for other related courses.

8. Acknowledgments

We would like to thank our administrator Stephan Plepelits
for creating the web-based submission system for this course
and for always helping us out with last-minute requests. We
would also like to thank our students who constantly give us
feedback to improve the course and its framework. For the sec-
ond iteration of our course, Dominik Rauch, a former student,
has added texturing to our software renderer, which greatly im-
proved the possibilities of our framework. Another big thank
you goes to all the tutors that helped us to carry out the course
successfully.
[1] Fink H, Weber T, Wimmer M. Teaching a Modern Graphics Pipeline

Using a Shader-based Software Renderer. Cagliari, Sardinia, Italy: Euro-
graphics Association. ISBN -; 2012, p. 73–80.

[2] Ohlson MR. The role and position of graphics in computer science edu-
cation. SIGCSE Bull 1986;18(1):232–7.

[3] Wolfe R. Bringing the introductory computer graphics course into the
21st century. Computers & Graphics 2000;24(1):151 –5.

[4] Hitchner LE, Sowizral HA. Adapting computer graphics curricula to
changes in graphics. Computers & Graphics 2000;24(2):283 –8.

[5] Cunningham S. Powers of 10: the case for changing the first course in
computer graphics. In: Proceedings of the thirty-first SIGCSE technical
symposium on Computer science education. SIGCSE ’00; New York, NY,
USA: ACM. ISBN 1-58113-213-1; 2000, p. 46–9.

[6] Peter I, Gumhold S. Teaching computer graphics with java 3d. Advances
in Multimedia and Distance Education (Proceedings of ISIMADE’99)
1999;.

[7] Hitchner L, Cunningham S, Grissom S, Wolfe R. Computer graphics: the
introductory course grows up. SIGCSE Bull 1999;31(1):341–2.

[8] Bouvier DJ. From pixels to scene graphs in introductory computer graph-
ics courses. Computers & Graphics 2002;26(4):603 –8.

[9] Cunningham S, Bailey MJ. Lessons from scene graphs: using
scene graphs to teach hierarchical modeling. Computers & Graphics
2001;25(4):703 –11.

[10] Cunningham S, Hansmann W, Laxer C, Shi J. The beginning com-
puter graphics course in computer science. SIGGRAPH Comput Graph
2004;38(4):24–5.

[11] Sung K, Shirley P. A top-down approach to teaching introductory com-
puter graphics. Computers & Graphics 2004;28(3):383 –91.

9

[12] Angel E, Cunningham S, Shirley P, Sung K. Teaching computer graphics
without raster-level algorithms. ACM SIGCSE Bulletin 2006;38(1):266–
7.

[13] Cunningham S. Computer graphics in context: an approach to a first
course in computer graphics. In: ACM SIGGRAPH ASIA 2008 educators
programme. SIGGRAPH Asia ’08; New York, NY, USA: ACM. ISBN
978-1-60558-388-4; 2008,.

[14] Schweppe MK, Geigel J. Teaching Computer Graphics in the Context of
Theatre. In: [30]; 2009, p. 67–72.

[15] Owen GS, Zhu Y, Chastine J, Payne BR. Teaching programmable
shaders: lightweight versus heavyweight approach. In: ACM SIG-
GRAPH 2005 Educators program. SIGGRAPH ’05; New York, NY,
USA: ACM; 2005,.

[16] Bailey M. Teaching OpenGL shaders: Hands-on, interactive, and imme-
diate feedback. Computers & Graphics 2007;31(3):524 –31.

[17] Talton JO, Fitzpatrick D. Teaching graphics with the openGL shading
language. In: Proceedings of the 38th SIGCSE technical symposium on
Computer science education. SIGCSE ’07; New York, NY, USA: ACM.
ISBN 1-59593-361-1; 2007, p. 259–63.

[18] Angel E, Shreiner D. Teaching a Shader-Based Introduction to Computer
Graphics. Computer Graphics and Applications, IEEE 2011;31(2):9 –13.

[19] Roberts E, Engel G, Chang C, Cross J, Shackelford R, Sloan R, et al.
Computing Curricula 2001: Computer Science. Los Angeles/New York:
IEEE Computer Society/Association for Computing Machinery [URL:
http://www acm org/sigcse/cc2001/cc2001 pdf] 2001;.

[20] Fuller U, Pears A, Amillo J, Avram C, Mannila L. A computing perspec-
tive on the Bologna process. SIGCSE Bull 2006;38(4):115–31.

[21] Bourdin JJ, Cunningham S, Fairn M, Hansmann W. Report of the CGE
06 Computer Graphics Education Workshop, Vienna, Austria, September
9, 2006 . Prague: Eurographics Association; 2007, p. 51–6.

[22] Mukundan R. Teaching computer graphics using Java. SIGCSE Bull
1999;31(4):66–9.

[23] Tori R, Bernardes Jr. JaL, Nakamura R. Teaching introductory computer
graphics using java 3D, games and customized software: a Brazilian ex-
perience. In: ACM SIGGRAPH 2006 Educators program. SIGGRAPH
’06; New York, NY, USA: ACM. ISBN 1-59593-364-6; 2006,.

[24] Rhodes PJ, Yan B. Easel: A Java Based Top-Down Approach to 3D
Graphics Education. In: [30]; 2009, p. 29–36.

[25] COLLADA: Digital Asset and FX Exchange Schema. 2012. URL
http://www.khronos.org/collada/.

[26] Google Warehouse. 2012. URL
http://sketchup.google.com/3dwarehouse/.

[27] Tatarchuk N. RenderMonkey: an effective environment for shader pro-
totyping and development. In: ACM SIGGRAPH 2004 Sketches. SIG-
GRAPH ’04; New York, NY, USA: ACM. ISBN 1-58113-896-2; 2004,
p. 91.

[28] NVIDIA FX Composer. 2012. URL
http://developer.nvidia.com/content/fx-composer.

[29] WebGL: OpenGL ES for the Web. 2012. URL
http://www.khronos.org/webgl/.

[30] Domik G, Scateni R, editors. EG 2009 - Education Papers. Munich, Ger-
many: Eurographics Association; 2009. ISBN undefined.

10

