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Kurzfassung

In vielen Anwendungen (z.B. Robotic Vision) ist es wichtig Punktwolken in logisch zusammen-
hängende Cluster zu zerteilen, um Objekte oder Oberflächen erkennen zu können. Ein essenti-
eller Teil der meisten existierenden Segmentierungsansätze ist die Definition von Nachbarschaft
zwischen Punkten. Diese Arbeit beschreibt und evaluiert die Verwendung des ‘Boundary Com-
plex’, einer aufspannenden, verbundenen Menge von Dreiecken über die Punktwolke, für die
Nachbarschaftsermittlung im Zusammenhang mit der Segmentierung von Punktwolken. Die er-
zielten Ergebnisse werden mit existierenden Ansätzen zur Nachbarschaftsermittlung verglichen.
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Abstract

For many applications (e.g. robotic vision) it is important to separate the Point Clouds produced
by a 3D scanner into logically associated clusters in order to recognize objects or surfaces. A
crucial part of most of the existing segmentation approaches is the definition of neighborhood
between points. This thesis describes and evaluates the use of the ‘Boundary Complex’, a span-
ning connected set of triangles on the point cloud, for neighbor detection in the context of cloud
segmentation. The results will be compared to existing neighbor picking approaches.
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CHAPTER 1
Introduction

1.1 Motivation

Point clouds are a common representation for range images that we receive from 3D scanning
devices such as laser range scanners. The use of those devices is steadily increasing, for example
in the area of robotic vision. Therefore the task of acquiring semantic information out of those
point clouds is a big issue. In many applications, acquiring this information is closely connected
to detecting objects or surfaces. This in turn corresponds to a proper segmentation of the cloud.

A recently developed method for boundary reconstruction of point clouds, the “Minimum Bound-
ary Complex” (see Section 2.1), can possibly support and improve existing segmentation tech-
niques. For many segmentation approaches, the detection of “neighboring” points is of great
importance: when following a region growing approach for example, neighbors are needed to
determine where the region should grow to. Especially in unorganized point clouds, where the
points are not given in a two-dimensional array which is produced by the laser scanning device
(like assumed in [2]), this is not a trivial task; neighborhood can be defined in different ways [7],
some of which will be discussed in Chapter three. This is where the Boundary Complex comes
into play: Due to its spanning graph structure and other properties which will be discussed later,
it can be used as an indicator for neighborhood.

1.2 Problem Statement

The aim of this work is to evaluate how well the neighborhood function provided by the Bound-
ary Complex performs in the field of point cloud segmentation, compared to other neighborhood
functions. More accurately, the application in a region growing algorithm in the Euclidean sense
will be examined.
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1.3 Methodological Approach

The results of the new approach for neighbor finding will be tested and evaluated empirically.
For that, a simple segmentation algorithm, which will be described later, has been implemented
using three variants of neighbor selection:

• Boundary Complex

• K nearest neighbors

• Radius search

The computed clustering solutions are then each compared to a solution which has been created
manually, in a way that seems reasonable for a human observer. For comparison of the solutions
we use an F1-measure for unsupervised clustering, as described in Section 2.3. The F1-measures
produced by numerous tests, using various input clouds of different sampling densities and noise
levels, will be the basis of the result and conclusion of this work.

1.4 Structure of the work

In Chapter 2 we will provide background for our thesis. First the Minimum Boundary Complex
will be introduced, then we describe the other neighborhood definitions that will serve as ref-
erences for comparison in this work. Also the F1-measure for unsupervised clustering will be
explained. Chapter 3 describes our approach to the stated problem. We introduce the cluster-
ing algorithm to which the neighbor finding approaches will be applied, explain the parameters
that need to be set and describe how we generated the ground truth for evaluating the clustering
results. In Chapter 4 a short overview on our implementation will be given. In Chapter 5 the
results of our experiments will be discussed. Some statistical analysis will be given, along with
visual examples of the different clustering performances. We will then make conclusions, if and
under which circumstances the Boundary Complex holds advantages over the other methods.
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CHAPTER 2
Background and Related Work

2.1 The Minimum Boundary Complex

The Minimum Boundary Complex, which is described in [9], is a connected set of triangles
on a point cloud, which was developed for being a basis to the construction of an aesthetically
pleasant boundary representation of the cloud. The term ‘aesthetically pleasant’ can be described
more accurately by the fulfillment of the Gestalt laws of proximity, good continuity and closure.
In this context, proximity means that spatially close points should be connected, continuity
means that there should be no abrupt changes in curvature and closure refers to a surface that
bounds a solid region.

Construction of the Minimum Boundary Complex

A Boundary Complex BC is defined as a spanning complex of connected triangles on the point
set P , with the constraint that each edge has at least 2 incident triangles. The basis of the
Boundary Complex is a three dimensional Delaunay triangulation DG of the point set, which
is, per definition, already a BC. To create the Minimum Boundary Complex BCmin, a subset
of triangles must be selected from DG, in a way that minimizes the sum of the longest edges of
the triangles:

BCmin =

T∑
ti

λ(ti)→ min

where λ(ti) is the longest edge in triangle ti.
This is an NP-hard problem, but a very good approximationBC0 ofBCmin can be found by

using a greedy algorithm in a computing time of O(n log n). The triangles of BC0 largely over-
lap with those of the ideal solution BCmin, because they are selected by the same minimization
criterion.
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Figure 2.1: Left: 3d Point Cloud. Right: BC0

Properties of BCmin

• Due to the fact that BCmin is created on the basis of a Delaunay Triangulation, which
minimizes the length of edges and maximizes the angles between edges, the Gestalt laws
of proximity and good continuity are implicitly mostly followed. We also acquire a low
curvature, which corresponds to a good boundary shape.

• “Since an edge can have two or more incident triangles, BCmin is a single connected set
but in general, not manifold.” [9]

• Also works well for significant noise

• The resulting shape is hardly affected by downsampling

The use of BCmin for neighbor picking

The edges of the triangles of the Minimum Boundary Complex can be viewed as a graph span-
ning all the points in a point cloud. In that graph, two vertices are adjacent, if they are (at
least once) part of the same triangle. So, two points are neighbors, if they are adjacent in the
described graph (Figure 2.2). The reason for the assumption that this neighborhood can be supe-
rior to other approaches lies in the properties of the Minimum Boundary Complex itself, which
has been described above. First, the lengths of edges are minimized. This means that neighbors
can be generally expected to show smaller Euclidean distances than non-neighbors, and there
is a good chance that spatially close points should belong to the same cluster. Furthermore, in
contrast to other approaches such as a radius search, the Boundary Complex approach should be
robust to non-uniform point distributions, which naturally occur in laser scanning images.
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Figure 2.2: Neighborhood in the Boundary Complex. Red: seedpoint. Yellow: relevant edges.
Green: neighbors.

2.2 Other definitions of neighborhood

Radius Search

In this rather simple approach, neighboring points are defined as all points that lie within a
defined radius from the seed point [10]. The number of selected neighbors varies of course. The
problem of this approach is to find a suitable radius. Especially when facing very non-uniform
point distributions, it may be impossible to find a radius that works globally: if chosen too big,
too many neighbors are selected in dense regions; if chosen too small, too few or no neighbors
are found in sparse regions.

K nearest neighbors

The k nearest neighbors method is a widely spread approach, used in diverse fields of appli-
cation [11]. In contrast to the radius search, a fixed number of the nearest neighbors, defined
by parameter k, is selected. This makes the Knn-approach more suitable for non-uniform point
clouds, as there is no fixed distance threshold. On the other hand, this method can lead to the
selection of distant points, which should not belong to the same cluster.

2.3 F1-measure for unsupervised clustering

In order to achieve statistical significance, we need a numerical value describing the similarity
of two clustering solutions. A common measure for describing the accuracy of classification
tests is the F1-Measure or F1-Score, which is a harmonic mean of the statistical values precision
and recall:

F1 = 2 · precision · recall
precision+ recall
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The F1-measure ranges between 0 and 1, where 1 means total congruence. If objects only have
to be classified as positive or negative, precision and recall are defined as:

precision =
true positives

true positives+ false positives

recall =
true positives

true positives+ false negatives

The comparison of clustering solutions however is more complicated:

• We do not know how many clusters (=classes) there will be

• The number of clusters in the computed solution can be different from the number of
clusters in the ground truth

• The mapping between clusters of the ground truth and the computed clusters is unknown

The solution for that problem which is used in this work is the “F1-Measure for Unsuper-
vised Clustering with Non-Determined Number of Clusters”, as described in [5].

If C is the ground truth and K is the computed solution, the basic idea of this F1-measure
is as follows:

For each cluster ci of C, precision P (ci, kj) and recall R(ci, kj) are determined for each
cluster kj of K using these formulas (nc,k is the size of the overlapping of clusters c and k):

P (ci, kj) =

{
1−

∑
c∈C,c 6=ci

nc,kj∑
c∈C,c 6=ci

|c| if |C| > 1

1 otherwise

R(ci, kj) =

{
1−

nci,kj
−1

|ci| if |ci| > 1
1 otherwise

The total precision P (ci) and recall R(ci) of ci are then the sums of P (ci, kj) or R(ci, kj),
weighted by the size of the overlappings of the corresponding clusters kj with ci. The overall
precision P and recall R are then the sums of P (ci) and R(ci) respectively of all clusters in C,
weighted by the size of the corresponding clusters ci. From those total values for precision and
recall, the F1-measure can be calculated (see formula above).
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CHAPTER 3
Methodology

3.1 The Segmentation Algorithm

In order to test and compare the neighbor picking approaches in the field of point cloud segmen-
tation, a simple segmentation algorithm has been implemented: In the first step the cloud runs
through a Random Sample Consensus (RANSAC) [3] plane fitting segmentation, which detects
the largest planes within the point cloud. This is a reasonable step because as scenes are usually
set in a human made environment, which consists of planes for a big part (floors, tables, walls).
We exclude those planes because segmenting them is trivial and so they do not contribute sig-
nificantly to the evaluation of the different neighborhood finding approaches; this way, the other
objects of the scene are isolated.

After that, the remaining points are clustered using a flood fill approach, as known from image
processing (Algorithm 3.1), which was inspired by [10]. Of course, the crucial part of that algo-
rithm is the function getNeighbors() (line 11); here the different neighbor finding approaches,
which were described in Chapter 2, are plugged in.

3.2 Parameters

RANSAC

There are two parameters that influence the first processing step, in which a RANSAC plane
fitting is performed. First, the distance threshold d, i.e. the distance from a plane up to which
points are considered to support the plane model. Second, the break condition of the RANSAC
loop: we start detecting the largest plane and continue finding the next smaller plane up to a
certain point. The RANSAC segmentation is just a preprocessing step that is performed before
the actual clustering steps, in which the different neighbor picking approaches are compared; so
the results of this step do not contribute to the results of our comparisons. Therefore, we chose
parameters which led to the detection of the largest planes in our test scenes. Those values were
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input : set of unlabeled points U , minimum cluster size m
output : set of clusters {C}
initialize: {C} ← ∅

1 while U 6= ∅ do
2 current list of seeds S ← ∅;
3 current cluster Ccur ← ∅;
4 first point in U → u;
5 S ← S ∪ u;
6 Ccur ← Ccur ∪ u;
7 U ← U \ u;
8 while S 6= ∅ do
9 first point in S → s;

10 S ← S \ s;
11 N ← getNeighbors(s);
12 foreach n ∈ N do
13 if n ∈ U then
14 S ← S ∪ n;
15 Ccur ← Ccur ∪ n;
16 U ← U \ n;
17 end
18 end
19 if size of Ccur ≥ m then
20 {C} ← {C} ∪ Ccur;
21 end
22 end
23 end

Algorithm 3.1: Clustering algorithm

found by empirical testing: The distance threshold d is the maximum extent of the plane in x, y
and z direction divided by 100; the plane detection stops when the last detected plane contained
less than 10% of the total number of points of the cloud. An exception has been made for the
input files showing the “outdoor” scene A.5, as there are very few planar parts. For these files
the algorithm stops when the last plane contained less than 5% of the points of the cloud.

Knn search

The only parameter we need for the knn neighborhood is the value of the global parameter k,
that is, how many neighbors are selected for a seed point.

Radius search

Here we need to find a good radius r, which is a difficult task, since we are observing point
clouds of different scale, density and uniformity. The point densities of our example point
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clouds however are more or less uniform, so we decided to make the radius a function of the
maximum extent in the dimensions of the cloud, similar to the way the distance threshold is
calculated for the RANSAC step. Precisely, r is multiplied by the thousandth of the maximum
extent to acquire the actual search radius.

Boundary Complex search

In general, neighborhood in the sense of the Boundary Complex is strictly defined, as mentioned
above in Section 2.1, and does not require customization. However, there are rare cases in which
connections exist between very distant points, which obviously should not belong to the same
cluster. In order to detect those outliers, an additional threshold was introduced: If a point is
farther away from the seed point than the median distance of all neighbors, multiplied a constant
c, that point is not considered a neighbor. So c is the additional parameter.

3.3 What to compare

In order to evaluate the quality of segmentations using the different functions for neighbor pick-
ing, a ground truth is needed for comparison. For that purpose, a couple of point cloud datasets
(taken from [8] and [1]) have been manually clustered in a way that seems reasonable for a hu-
man observer. This manual segmentation was done by coloring the clouds using a point cloud
editing software [6]. All manually clustered input clouds in full sampling densities and with
zero noise can be found in appendix A. Our implementation then interprets the colors as clus-
ters. After the implemented clustering algorithms have performed the different segmentations,
their F1-measures with respect to the ground truth can be calculated.

Varying point density

The original point clouds have been downsampled to different sampling densities, in order to
compare the performances of different approaches in relation to the input data resolution. Each
data set have been examined in five sampling densities:

• all points

• 1
2 of all points

• 1
4 of all points

• 1
8 of all points

• 1
16 of all points

Introducing noise

The neighbor detection approaches will also be tested for their robustness to noise. For that
purpose we add a uniform random variable to the x, y and z coordinates of each point. The
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maximum offset (in positive or negative direction) can be controlled by an additional parameter
u. If u is set to zero, no artificial noise is applied to the point cloud.

3.4 Evaluation

The first thing that needs to be done is to find optimal values for the parameters that are specific
to the different neighbor picking approaches, as described above. This will be done by running
the segmentation for each approach, for each test dataset in each resolution but with zero noise,
varying their respective parameters. For each input dataset the parameter value that produced the
best F1-measure is picked; the median of all picked parameters is then supposed to be the most
suitable one. The parameters that we find this way are then fixed; this is necessary to reduce
the complexity of the following comparison. For each parameter, the following values will be
considered:

• k: {1,2,3,...30} The determination of this interval was in fact the result of empirical test-
ing, where ks of different magnitudes have been tried to find out in where an optimal k
definitely cannot be found. What remained was the interval from 1 to 30. We decided to
set the step size to one, because the interval is not very large and k has to be an integer.

• r: {1.0,6.0,11.0,...96.0} Note that r is, as mentioned 3.2, not a total value for a radius but
a factor multiplied by the thousandth of the maximum extent of the cloud. A radius has
to be non-zero in order to select neighbors, so we started our interval of observation at
r=1. Also, an r greater than 100 seems to be absurd; this would correspond to more than
a tenth of the clouds maximum extent, which would lead to the blending of all structures.
Since we are covering a quite large interval, a step size of 5 seems reasonable.

• c: {1,1.2,1.4,...5} Since outliers cannot be closer than the median neighbor distance, c
must be ≥ 1. So we start our experiments at c = 1 and go up to 5 in moderate steps of
0.2, since 5 times the medium neighbor distance is already quite far away from the seed
point.

Then the different approaches will be tested with different data sets, different resolutions
and different noise levels. Then the results will be checked for correlations between resolutions
and F1-measures, and between noise levels and F1-measures. This way the three approaches
will be compared in order to find out if and under which circumstances the Boundary Complex
approach is superior to the other methods in terms of neighbor finding.
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CHAPTER 4
Implementation

For the empirical evaluation and comparison of the neighbor finding approaches, a small c++ ap-
plication has been developed. The following chapter will just roughly describe what the program
does, without going too much into detail.

4.1 External Software

We used the Point Cloud Library (PCL) [4] for major point cloud processing tasks, namely:

• Reading and writing point cloud files in .ply (Polygon File Format) and .pcd (PCL’s point
data format)

• Representation of point clouds in memory

• Rendering of point clouds

• RANSAC plane fitting

• Creating Kd tree structures for efficient radius- and knn search

For the construction of the boundary complex we used the implementation that was used in [9]

4.2 Program Flow

At startup, the application performs the following steps:

1. Read a manually clustered (colored) point cloud as input data and store it in PCL’s Point-
Cloud datastructure.

2. Interpret the coloring as clustering and, for the sake of simple handling, store it to an array
of integers, where the value at position i is the number of the cluster of point i. This will
be the ground truth for future comparison.
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3. Apply artificial noise to the input cloud (if the noise intensity parameter is not set to zero),
as described in 3.3.

4. Create the Boundary Complex.

After that, the following procedures can be initiated by user input:

Perform the clusterings

The input cloud can be clustered using the neighborhood definition by knn, radius search and
Boundary Complex. This is done by an implementation of the algorithm described in 3.1. Like
the ground truth, the clustering is stored in an array of integers; but also a copy of the input
cloud is created and colored according to the computed clustering, so that the clustering can
be represented visually. The clustering functions also deliver various data about the clustering
processes, such as total number of clusters, the size of each individual cluster, and other statisti-
cally relevant data, such as the average number of neighbors detected by the Boundary Complex
approach.

Visualize the clusterings

The clustering solutions and also the ground truth can be visualized as differently colored ver-
sions of the input cloud. For this we use a simple cloud viewer built in to PCL.

Compare the clusterings to the ground truth

The different clustering solutions have to be compared to the ground truth. This is done by an
implementation of the F1-measure for unsupervised clustering, as described in 2.3.

Save the colored clouds

The colored clouds created in the clustering process can be saved to the disc in .ply format.

12



CHAPTER 5
Results

5.1 Determining the parameters

As mentioned in 3.4, first we want to find the parameters for the neighbor picking approaches
that are most suitable for our set of test data. According to our empirical results (see table B.1),
we fixed the parameters to the following values:

• k = 16

• r = 41

• c = 1.8

5.2 Analyzing the test results

With the parameters defined above, we carried out numerous tests. A full record of the test results
can be found in tables B.2, B.3, B.4 and B.5. Looking at the mean F1-measures, averaged over
all input data, sampling densities and noise levels (table 5.1), we do not see huge differences
at first glance. At this point it should be noticed, that most of the F1-measures ranged between
0.7 and 1.0. This is because the RANSAC part of the segmentation, which often takes up a big
part of the total points and usually agrees with the ground truth very well, is also included to the
calculation of the total F1-measure of a solution. But the results are not biased; the near-perfect
ransac results just dilute the overall f1-measure, so even small differences are expressive. For
now it seems that over all knn seems to be slightly better than the boundary complex approach,
whereas radius search is clearly the worst. But we want to go more into detail now.
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Approach Mean F1-measures
knn 0.87839
radius 0.86041
bc 0.87486

Table 5.1: F1-Measures, averaged for all input combinations B.2B.3B.4B.5
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Figure 5.1: Average F1-measures over all point clouds and all noise levels grouped by the
different sampling densities.

F1 vs. sampling rate

If we take a look at the performance of the different approaches in relation to the sampling
densities (see figure 5.1), we see that all approaches show similar tendencies. Just the radius
search drops off very early when it comes to higher sampling densities. The Boundary Complex
results more or less copy the trend of the knn results on a slightly lower level; however it should
be noted that at the lowest resolutions, the Boundary Complex performs a bit better.
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Figure 5.2: Average F1-measures over all point clouds and all sampling densities grouped by
the different noise levels.

F1 vs. noise level

Regarding the results for different noise levels (figure 5.2), we get a similar picture: while all the
F1-measures are decreasing with increasing noise, Boundary Complex and knn stay level and
radius search is dropping more rapidly.

Boundary Complex vs. knn with equal number of neighbors

During all the tests, the rounded average number of neighbors per seed point in the Boundary
Complex was 7. So an interesting question would be, how well the knn approach performs
if k is set to 7. As the previous results showed, Boundary Complex and knn react to noise
almost equally, therefore we restricted the experiments on this subject to zero noise test data.
Figure 5.3 again shows the performances in relation to the sampling densities. Now we can see
large differences; at an equal number of neighbors, the Boundary Complex is obviously superior
to knn.
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Figure 5.3: Average F1-measures over all point clouds (without noise) grouped by the different
sampling densities, for BC and knn with k = 7

Visual comparison

Figure 5.4 shows two examples of the neighborhood of seedpoints delivered by the different
neighbor finding approaches. Note that these are two dimensional images of a three dimensional
cloud. While the first example (first row) shows a planar region, the second example is placed
in a more three dimensional structure.

Now we give some examples of clusterings done by our application, using the different
neighborhood approaches. Note that if the noise level is greater than zero, the F1 measures
stated in the image captions may not agree with those listed in appendix B. This is because those
images have been created later, and as the applied noise is truly random (within defined bound-
aries), the input clouds will vary in different executions of the program.

Figure 5.5 shows the “couch” scene in a resolution of 20 000 points. All three approaches
did a similarly good job; according to the F1-measures, in this case actually the radius search
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Figure 5.4: Neighborhoods of two seed points (white), using the optimal parameters defined
in 5.1 (except second column from left). From left to right: Boundary Complex, knn with k=7,
knn with k=16, radius search. In the radius search neighborhood of the second row black points
can be seen that look like lying inside the radius, but are in fact too far behind the seed point.

delivers the best results. In figure 5.6 we see the same scene downsampled to 2500 points. For
a human observer, the visible point cloud is no longer perceived as the underlying scene; also
the F1-measures decreased, but not as dramatically as could be expected. Especially the radius
search, again, delivers the best results, which can also be comprehended visually (when taking
a close look).

Figure 5.7 shows the “room” scene in its full sampling density of 16841 points. Artificial noise
of level 10 (the highest that we used) was applied to the input cloud. If we look at the resulting
clouds, the subjective impression would be that BC delivers the best results, closely followed
by knn, while radius search delivers the worst result. In the left part of the scene, where we see
an office chair and some other objects, BC produces the same amount of clusters as the ground
truth, radius search puts it all together in one cluster, and knn is somewhere in the middle. But
the F1-measures contradict these observations: First, the radius search does not receive a much
lower value than the other solutions. This could be explained by the fact that in this scene there
is a very large planar component (the floor) which weights much more than all the rest of the
scene. Second, knn is actually rated higher than BC. This might be because of those little black
(which means ’does not belong to a cluster’) regions at the feet of the office chair. Those un-
clustered regions occur if detected clusters are smaller than a defined minimum cluster size (see
Algorithm 3.1). This example shows the limitations of automated numerical comparison tech-
niques like the F1-measure for unsupervised clustering.
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Figure 5.5: “couch”, 20 000 points, noise level 0; top left: ground truth, top right: BC, bottom
left: knn, bottom right: radius; F1-measures: BC: 0.8510, knn: 0.8498, radius: 0.8718

In figure 5.8 we see a rather trivial scene (“table”) which serves as an example of how the
choice of k in fact influences the results. In the bottom left picture, where k=7, the right leg of
the table is divided into two parts; the result seen in the bottom right picture, where k=16, is
more smooth and therefore in this case more similar to the ground truth.

Figure 5.9 shows the “outdoor” scene at a very sparse sampling density (in relation to its ac-
tual complexity) of 5000 points with maximum noise, which is a quite extreme setting. As the
statistics above showed, radius search is quite weak at high noise levels; this is also visible in
this example, where it achieves an F1-measure of only 0.5869. BC and knn perform much better,
on a quite equal level.

Figure 5.10 is just another example in which BC performs much better than the other two ap-
proaches.

5.3 Conclusion

The overall conclusion that we have to make is that there is no clear “winner” among the exam-
ined approaches. The results always depend on the structure and complexity of the input scene,
the sampling density and the level of noise. So it can be stated that the Boundary Complex
as another good approach for neighbor picking, which delivers equally good results as existing
techniques. We want to discuss now some special properties of the Boundary Complex neigh-
borhood in context of segmentation, that have emerged from our studies.
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Figure 5.6: “couch”, 2500 points, noise level 0; top left: ground truth, top right: BC, bottom
left: knn, bottom right: radius; F1-measures: BC: 0.7882, knn: 0.7849, radius: 0.8214; At the
bottom left corner of the scene, the radius search detected structures that were just mixed with
everything else in the other approaches.

• A big advantage of the Boundary Complex is that it does not require parametrization per
se. We have introduced an additional parameter, but it is only used as a threshold to
handle extreme situations and does not influence the principal structure of the Boundary
Complex. At knn and radius search, the parameters have a much stronger influence on
the results and should be adjusted for each input dataset, which means additional manual
overhead.

• The Boundary Complex is one connected component. This means that, if we do not set
distance thresholds and/or perform a plane segmentation as a first clustering step, we will
receive one big cluster as a result. This can be seen as a disadvantage. On the other
hand, if we perform a plane segmentation, objects that lie on different sides of the plane
can never falsely be regarded as belonging to the same cluster, because the connections
between them have been “cut”. For radius search and knn, a plane would be no “barrier”.

• As for knn, clouds with non-uniform sampling densities are not a problem for the Bound-
ary Complex. If a region is sampled more sparsely than the rest of the cloud, even the
threshold for outlier detection scales accordingly, as it is calculated based on the distances
of the neighbors of the current seed point.
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Figure 5.7: “room”, 16 841 points, noise level 10; top left: ground truth, top right: BC, bottom
left: knn, bottom right: radius; F1-measures: BC: 0.9446, knn: 0.9483, radius: 0.9427

• The Boundary Complex is equally robust to noise and sparse sampling as knn. In very
sparse clouds, the Boundary Complex even delivers slightly better results.

• Another advantage of the Boundary Complex over knn is the number of neighbors per
seedpoint needed to deliver equally good results. We have shown that for similar results,
we have to set k to 16. The Boundary Complex however has an average of 7 neighbors
per seed point, that is, less than half of knn.

20



Figure 5.8: “table”, 5000 points, noise level 0; top left: ground truth, top right: BC, bottom left:
knn with k=7, bottom right: knn with k=16; F1-measures: BC: 0.9580, knn with k=7: 0.9638,
knn with k=16: 0.9833

Figure 5.9: “outdoor”, 5000 points, noise level 10; top left: ground truth, top right: BC, bottom
left: knn, bottom right: radius; F1-measures: BC: 0.7972, knn: 0.7643, radius: 0.5716
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Figure 5.10: “cabinet”, 10 000 points, noise level 4; top left: ground truth, top right: BC, bottom
left: knn, bottom right: radius; F1-measures: BC: 0.8918, knn: 0.8798, radius: 0.8859
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CHAPTER 6
Summary and future work

We have shown that the Boundary Complex is a good alternative for existing neighbor finding
approaches in the are of point cloud segmentation. It delivers similarly good results and has
some other advantages, such as not needing parametrization, and not needing a great amount of
neighbors per seedpoint to deliver good results.

Future work

Thinking of applications where we want to perform a segmentation and construct a surface, the
Boundary Complex could be used for both of these tasks; therefore it has to be constructed only
once. So as the Boundary Complex would have to be constructed anyway and we could create
the Boundary Complex in a datastructure that explicitly stores the neighbors of each point (some
kind of graph structure), the process of finding neighbors could be done in constant time.

Another interesting application of the Boundary Complex in the area of point cloud process-
ing could be the computation of surface normals. In general, the computation of good normals
from a point cloud is a difficult and much discussed problem [2]. In contrary, the computation of
normals on a mesh is a rather trivial task: If we want to calculate the normal of a vertex (point),
we just need to calculate the normals of all adjacent faces, which is simple vector analysis, and
then average them. Now in principle, the Boundary Complex provides a (non-manifold) mesh on
the underlying point cloud; actually a mesh that represents the boundary of a point cloud pretty
well. So theoretically, the Boundary Complex could be a very good tool for computing surface
normals. Those normals then could be used for applications like curvature based segmentation
techniques. We have not examined that aspect in this work, but it could be a promising basis for
future research.
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APPENDIX A
Input clouds
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Figure A.1: “table”, 10 000 points

Figure A.2: “room”, 16 841 points
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Figure A.3: “cabinet”, 20 000 points
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Figure A.4: “couch”, 40 000 points
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Figure A.5: “outdoor”, 40 000 points
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APPENDIX B
Numbers
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input file best k best r best c
cabinet_1000pt.pcd 15 76 2.2
cabinet_2500pt.pcd 12 41 1.6
cabinet_5000pt.pcd 11 26 4.4
cabinet_10000pt.pcd 11 21 2.2
cabinet_20000pt.pcd 25 16 3
couch_2500pt.pcd 8 51 1.2
couch_5000pt.pcd 11 46 1.8
couch_10000pt.pcd 16 36 1.6
couch_20000pt.pcd 30 36 1.6
couch_40000pt.pcd 20 36 3
room_1000pt.pcd 21 71 2.2
room_2000pt.pcd 9 71 1.8
room_4000pt.pcd 15 56 2.4
room_8000pt.pcd 23 46 2.8
room_16841pt.pcd 27 36 2.4
table_500pt.pcd 10 91 1.4
table_1000pt.pcd 12 76 1.8
table_2500pt.pcd 21 96 1.8
table_5000pt.pcd 12 41 1.6
table_10000pt.pcd 16 36 1.6
outdoor_2500pt.pcd 9 56 1.2
outdoor_5000pt.pcd 18 36 2.8
outdoor_10000pt.pcd 18 41 1.8
outdoor_20000pt.pcd 27 36 1.8
outdoor_40000pt.pcd 20 21 1.6
median 16 41 1,8

Table B.1: Best parameters for each input file
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input file noise knn radius bc
cabinet_1000pt.pcd 0 0.859717 0.8346 0.852034
cabinet_2500pt.pcd 0 0.880519 0.892892 0.874599
cabinet_5000pt.pcd 0 0.864831 0.864357 0.856511
cabinet_10000pt.pcd 0 0.880037 0.883018 0.893524
cabinet_20000pt.pcd 0 0.880303 0.872286 0.87527
couch_2500pt.pcd 0 0.784861 0.821388 0.788218
couch_5000pt.pcd 0 0.826289 0.834904 0.830071
couch_10000pt.pcd 0 0.863854 0.863056 0.856731
couch_20000pt.pcd 0 0.849753 0.871775 0.851041
couch_40000pt.pcd 0 0.828681 0.857214 0.831954
room_1000pt.pcd 0 0.978412 0.963445 0.975383
room_2000pt.pcd 0 0.986513 0.974061 0.981148
room_4000pt.pcd 0 0.987753 0.984087 0.97801
room_8000pt.pcd 0 0.982744 0.987252 0.984777
room_16841pt.pcd 0 0.981589 0.98935 0.978051
table_500pt.pcd 0 0.979331 0.944098 0.961345
table_1000pt.pcd 0 0.985631 0.977803 0.984689
table_2500pt.pcd 0 0.985406 0.980437 0.984201
table_5000pt.pcd 0 0.984568 0.984847 0.981838
table_10000pt.pcd 0 0.984584 0.984875 0.957217
outdoor_2500pt.pcd 0 0.891442 0.877767 0.870909
outdoor_5000pt.pcd 0 0.895682 0.880326 0.876932
outdoor_10000pt.pcd 0 0.879586 0.87294 0.873043
outdoor_20000pt.pcd 0 0.881921 0.863975 0.885653
outdoor_40000pt.pcd 0 0.880731 0.872144 0.87976
cabinet_1000pt.pcd 2 0.847699 0.837511 0.855475
cabinet_2500pt.pcd 2 0.879031 0.890503 0.869888
cabinet_5000pt.pcd 2 0.852245 0.853375 0.844836
cabinet_10000pt.pcd 2 0.885253 0.886001 0.887773
cabinet_20000pt.pcd 2 0.884385 0.877125 0.875491
couch_2500pt.pcd 2 0.787166 0.823336 0.82504
couch_5000pt.pcd 2 0.852759 0.85227 0.837722
couch_10000pt.pcd 2 0.8584 0.855879 0.832844
couch_20000pt.pcd 2 0.846055 0.862956 0.846034
couch_40000pt.pcd 2 0.809888 0.822093 0.80691
room_1000pt.pcd 2 0.977313 0.961021 0.977165
room_2000pt.pcd 2 0.983931 0.971963 0.979348
room_4000pt.pcd 2 0.987476 0.985329 0.979013
room_8000pt.pcd 2 0.98102 0.985553 0.97728
room_16841pt.pcd 2 0.981094 0.988903 0.976799

Table B.2: F1-measures part 1
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input file noise knn radius bc
table_500pt.pcd 2 0.979387 0.976122 0.979387
table_1000pt.pcd 2 0.984678 0.976549 0.983603
table_2500pt.pcd 2 0.98662 0.984217 0.963964
table_5000pt.pcd 2 0.98524 0.985553 0.959194
table_10000pt.pcd 2 0.984382 0.98467 0.98008
outdoor_2500pt.pcd 2 0.893717 0.884055 0.892762
outdoor_5000pt.pcd 2 0.900009 0.882603 0.897228
outdoor_10000pt.pcd 2 0.868986 0.863019 0.868873
outdoor_20000pt.pcd 2 0.880263 0.862432 0.871378
outdoor_40000pt.pcd 2 0.876863 0.829084 0.881958
cabinet_1000pt.pcd 4 0.860013 0.827806 0.856911
cabinet_2500pt.pcd 4 0.816476 0.819488 0.818289
cabinet_5000pt.pcd 4 0.85923 0.858079 0.850449
cabinet_10000pt.pcd 4 0.864473 0.872172 0.879416
cabinet_20000pt.pcd 4 0.886888 0.88128 0.883632
couch_2500pt.pcd 4 0.78814 0.818229 0.791661
couch_5000pt.pcd 4 0.818781 0.827899 0.79367
couch_10000pt.pcd 4 0.825995 0.828192 0.796154
couch_20000pt.pcd 4 0.834973 0.856198 0.833863
couch_40000pt.pcd 4 0.826091 0.792934 0.825383
room_1000pt.pcd 4 0.979512 0.961404 0.974748
room_2000pt.pcd 4 0.98399 0.976833 0.982858
room_4000pt.pcd 4 0.987224 0.985239 0.983713
room_8000pt.pcd 4 0.97825 0.982822 0.97349
room_16841pt.pcd 4 0.98338 0.987736 0.980104
table_500pt.pcd 4 0.979291 0.976031 0.979291
table_1000pt.pcd 4 0.983131 0.974041 0.980575
table_2500pt.pcd 4 0.986756 0.983418 0.975087
table_5000pt.pcd 4 0.983939 0.984251 0.97594
table_10000pt.pcd 4 0.98249 0.982926 0.978221
outdoor_2500pt.pcd 4 0.893096 0.867879 0.894588
outdoor_5000pt.pcd 4 0.900043 0.881516 0.885381
outdoor_10000pt.pcd 4 0.828259 0.766293 0.838114
outdoor_20000pt.pcd 4 0.877683 0.80495 0.877946
outdoor_40000pt.pcd 4 0.855044 0.790946 0.86359
cabinet_1000pt.pcd 6 0.855811 0.824881 0.844586
cabinet_2500pt.pcd 6 0.867316 0.872932 0.861638
cabinet_5000pt.pcd 6 0.789786 0.793578 0.772992
cabinet_10000pt.pcd 6 0.82858 0.842236 0.834661
cabinet_20000pt.pcd 6 0.746552 0.763381 0.740709

Table B.3: F1-measures part 2
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input file noise knn radius bc
couch_2500pt.pcd 6 0.782879 0.800775 0.804182
couch_5000pt.pcd 6 0.8096 0.843022 0.82018
couch_10000pt.pcd 6 0.825924 0.827966 0.804399
couch_20000pt.pcd 6 0.802988 0.733091 0.788011
couch_40000pt.pcd 6 0.843439 0.786228 0.828615
room_1000pt.pcd 6 0.96843 0.952512 0.97025
room_2000pt.pcd 6 0.983075 0.971158 0.97975
room_4000pt.pcd 6 0.984477 0.981624 0.980035
room_8000pt.pcd 6 0.97777 0.981798 0.97701
room_16841pt.pcd 6 0.980294 0.985542 0.980394
table_500pt.pcd 6 0.974732 0.941322 0.957009
table_1000pt.pcd 6 0.976213 0.967467 0.97414
table_2500pt.pcd 6 0.9825 0.977632 0.944308
table_5000pt.pcd 6 0.98336 0.983743 0.957984
table_10000pt.pcd 6 0.979481 0.981085 0.97583
outdoor_2500pt.pcd 6 0.864764 0.866763 0.868176
outdoor_5000pt.pcd 6 0.897631 0.875718 0.88817
outdoor_10000pt.pcd 6 0.864777 0.798656 0.863048
outdoor_20000pt.pcd 6 0.883241 0.820277 0.883777
outdoor_40000pt.pcd 6 0.83439 0.611647 0.845787
cabinet_1000pt.pcd 8 0.826076 0.781079 0.816335
cabinet_2500pt.pcd 8 0.851576 0.84842 0.845162
cabinet_5000pt.pcd 8 0.733164 0.758871 0.708761
cabinet_10000pt.pcd 8 0.834366 0.835011 0.82155
cabinet_20000pt.pcd 8 0.750514 0.72111 0.739981
couch_2500pt.pcd 8 0.704613 0.770274 0.726504
couch_5000pt.pcd 8 0.00284115 0.00331991 0.00614553
couch_10000pt.pcd 8 0.797368 0.760634 0.775794
couch_20000pt.pcd 8 0.801476 0.755188 0.792295
couch_40000pt.pcd 8 0.795514 0.722312 0.793393
room_1000pt.pcd 8 0.971616 0.950654 0.971047
room_2000pt.pcd 8 0.977048 0.967961 0.971418
room_4000pt.pcd 8 0.971688 0.969047 0.968744
room_8000pt.pcd 8 0.970107 0.97177 0.957257
room_16841pt.pcd 8 0.972772 0.979915 0.975253
table_500pt.pcd 8 0.975553 0.939573 0.942871
table_1000pt.pcd 8 0.980852 0.970944 0.981493
table_2500pt.pcd 8 0.966362 0.963801 0.965833
table_5000pt.pcd 8 0.961231 0.961677 0.958787
table_10000pt.pcd 8 0.964008 0.965817 0.939969

Table B.4: F1-measures part 3
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input file noise knn radius bc
outdoor_2500pt.pcd 8 0.852365 0.860401 0.86025
outdoor_5000pt.pcd 8 0.835527 0.786563 0.833678
outdoor_10000pt.pcd 8 0.854711 0.809433 0.874622
outdoor_20000pt.pcd 8 0.812984 0.58394 0.82332
outdoor_40000pt.pcd 8 0.772597 0.565718 0.81674
cabinet_1000pt.pcd 10 0.722946 0.648914 0.714786
cabinet_2500pt.pcd 10 0.765189 0.7762 0.767009
cabinet_5000pt.pcd 10 0.737482 0.737575 0.718313
cabinet_10000pt.pcd 10 0.756859 0.756066 0.743353
cabinet_20000pt.pcd 10 0.754705 0.715765 0.742193
couch_2500pt.pcd 10 0.694552 0.722147 0.727803
couch_5000pt.pcd 10 0.604891 0.678385 0.640174
couch_10000pt.pcd 10 0.783767 0.706306 0.7595
couch_20000pt.pcd 10 0.72058 0.677789 0.710148
couch_40000pt.pcd 10 0.766813 0.669716 0.728906
room_1000pt.pcd 10 0.92854 0.899856 0.919308
room_2000pt.pcd 10 0.930052 0.918924 0.927598
room_4000pt.pcd 10 0.903463 0.900625 0.896542
room_8000pt.pcd 10 0.946881 0.945058 0.934599
room_16841pt.pcd 10 0.948787 0.951452 0.947472
table_500pt.pcd 10 0.945014 0.90736 0.91674
table_1000pt.pcd 10 0.972462 0.965083 0.971073
table_2500pt.pcd 10 0.895474 0.894952 0.857408
table_5000pt.pcd 10 0.885788 0.895358 0.880091
table_10000pt.pcd 10 0.875915 0.885096 0.868078
outdoor_2500pt.pcd 10 0.624695 0.765028 0.818221
outdoor_5000pt.pcd 10 0.810841 0.586936 0.803848
outdoor_10000pt.pcd 10 0.831709 0.634922 0.824554
outdoor_20000pt.pcd 10 0.824768 0.584626 0.817719
outdoor_40000pt.pcd 10 0.800214 0.545475 0.796123

Table B.5: F1-measures part 4
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