Glyph-based Visualization: Design Considerations and Challenges

Johannes Kehrer
University of Bergen &
Vienna Univ. of Technology
How to design a successful Glyph?

- Some visual channels are more dominant
 - position
 - length
 - slope

- Some can be compared more accurately
 - angle
 - area
 - volume
 - saturation

[Cleveland & McGill 84]

[Ware 04]
Challenges in Glyph Design

integral pairs

red-green yellow-blue
width height
size orientation
color shape
color motion
color location

separable pairs

[Ware 04]
Design Considerations

[Ward 02/08, Ware 04, Ropinski et al. 08/11, Lie et al. 09, Maguire et al. 12]

<table>
<thead>
<tr>
<th>Authors / Technique</th>
<th>Design guideline</th>
<th>Visual channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brewer [Bre99]: Color use guidelines</td>
<td>2D/3D</td>
<td></td>
</tr>
<tr>
<td>Cleveland & McGill [CM84]: Graphical perception</td>
<td>2D/3D</td>
<td></td>
</tr>
<tr>
<td>Crawfis & Max [CM93]: Vector field visualization</td>
<td>3D</td>
<td>2</td>
</tr>
<tr>
<td>de Leeuw & van Wijk [dLvW93]: Local flow probe</td>
<td>3D</td>
<td>-3</td>
</tr>
<tr>
<td>Healey & Enns [HE99]: Combining textures and colors</td>
<td>2.5D</td>
<td>1</td>
</tr>
<tr>
<td>Healey et al. [HBE96]: Preattentive processing</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>Kindlmann & Westin [KW06]: Glyph packing</td>
<td>3D</td>
<td>2</td>
</tr>
<tr>
<td>Kindlmann [Kin04]: Superquadric tensor glyphs</td>
<td>2.5D</td>
<td>1.5</td>
</tr>
<tr>
<td>Kirby et al. [KML99]: Concepts from painting</td>
<td>2D</td>
<td>1</td>
</tr>
<tr>
<td>Laidlaw et al. [LAK*98]: Stochastic glyph placement</td>
<td>2D</td>
<td>2</td>
</tr>
<tr>
<td>Li et al. [LMVW10]: Symbol size discrimination</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>Lie et al. [LKH09]: Design aspects of glyph-based 3D visualization</td>
<td>3D</td>
<td>2</td>
</tr>
<tr>
<td>McGill et al. [MTL78]: Variations of box plots</td>
<td>2D</td>
<td>-3</td>
</tr>
<tr>
<td>Meyer-Spradow et al. [MSSD*08]: Surface glyphs</td>
<td>2.5D</td>
<td>0</td>
</tr>
<tr>
<td>Peng et al. [PWR04]: Clutter reduction using dimension reordering</td>
<td>2D</td>
<td>1</td>
</tr>
<tr>
<td>Pickett & Grinstein [PG88]: Stick figures</td>
<td>2D</td>
<td>3</td>
</tr>
<tr>
<td>Piringer et al. [PKH04]: Depth perception in 3D scatterplots</td>
<td>3D</td>
<td></td>
</tr>
</tbody>
</table>
Visualization Space

2D
- Star glyphs
- Stick figures

3D
- Chernoff faces
- Profile glyphs
- [Kindlmann&Westin 06]

Surface glyphs
- [Meyer-Spradow et al. 08]
Complexity vs. Density

dense & simple sparse & complex

Stick figures Glyph packing Helix glyphs Local flow probe
[Pickett&Grinstein 88] [Kindlmann&Westin 06] [Tominski et al. 05] [de Leeuw&van Wijk 93]
Complexity vs. Density

- dense & simple
- sparse & complex

- attributes mapped to angles
- texture patterns

Stick figures
[Pickett&Grinstein 88]
Complexity vs. Density

dense & simple

sparse & complex

- represent multiple flow properties
- sparsely placed

Local flow probe
[de Leeuw & van Wijk 93]
Hybrid Visualizations

Layering [Kirby et al. 99]

Arrow glyphs [Treinish 99]
Data Enhancement

- Data range $\rightarrow [0, 1]$
- Exponentiation
- Inverse mapping

[Johannes Kehrer 10
Lie et al. 09]
Gestalt principles: Simple & symmetric shapes facilitate perception of patterns [Ward 08, Peng et al. 04]

Random ordering

Complexity and symmetry-driven ordering
Perceptually Uniform Channels

- **Colors**
 - Rainbow colormap
 - Black-body radiation
 - Green-red isoluminant

- **Symbol size**

 ![Symbol size example]

 power law transformation [Li et al. 10]

[Borland&Taylor II 07]
Glyph Shapes [Ropinski et al. 11]

- **Basic glyph shapes**
 - box, spere, torus, ellipsoid, etc.
 - pre-attentive processing

- **Composite shapes**
 - combine basic shapes

Customized glyphs [Kraus&Ertl 01]
Orthogonality & Normalization

- Perceive each visual channel independently

- Account for distortions (e.g., shape→size)

[Lie et al. 09]
Ellipsoid glyphs
8 tensors
different viewpoint

Superquadric glyphs
8 tensors
different viewpoint

View-point Independence

Johannes Kehrer

[Kindlmann 04]
Intuitive Mapping based on Semantics

- **Diverging data**
 - 100°C
 - 0°C
 - -100°C
 - bad
 - neutral
 - good

- **Sequential data**
 - high
 - low

- **Direction**

 Arrow glyphs [Crawfis&Max 93]

[Brewer 99, Stolte et al. 02]
Importance-based Mapping

- Emphasize important variables
- Guide the user’s focus of attention (e.g., color, size)

PET activity \rightarrow thickness

[Ropinski et al. 08]
Enhance Depth Perception

- Halos/contours
 [Lie et al. 09]

- Chroma depth
 [Toutin 97]
Summary

- Just combining visual channels is not enough
- Design considerations (e.g., orthogonality, perceptually uniform channels, semantics)
- Glyph design restricted by perceptual limits