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In this paper, we introduce a novel reconstruction and modeling pipeline
to create polygonal models from unstructured point clouds. We propose an
automatic polygonal reconstruction that can then be interactively refined by
the user. An initial model is automatically created by extracting a set of
RANSAC-based locally fitted planar primitives along with their boundary
polygons, and then searching for local adjacency relations among parts of
the polygons. The extracted set of adjacency relations is enforced to snap
polygon elements together, while simultaneously fitting to the input point
cloud and ensuring the planarity of the polygons. This optimization-based
snapping algorithm may also be interleaved with user interaction. This al-
lows the user to sketch modifications with coarse and loose 2D strokes, as
the exact alignment of the polygons is automatically performed by the snap-
ping. The generated models are coarse, offer simple editing possibilities by
design and are suitable for interactive 3D applications like games, virtual
environments etc. The main innovation in our approach lies in the tight
coupling between interactive input and automatic optimization, as well as
in an algorithm that robustly discovers the set of adjacency relations.
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Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S.
YYYY. O-Snap: Optimization-based snapping for modeling architecture.
ACM Trans. Graph. VV, N, Article XXX (Month YYYY), 15 pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Modeling and reconstruction of buildings poses a challenge for
both current research efforts as well as industrial applications.
While data acquisition processes and techniques have experienced
enormous advances over the last years, the ensuing processing and
modeling steps are by far not as sophisticated and unproblematic
to handle. Reasons for this are on the one hand the large size and
noisiness of the point cloud data gathered from laser scans, pho-
togrammetric approaches or stereo cameras, and on the other hand
the absence of suitable modeling tools and techniques that can han-
dle the complexity of large 3D point clouds.

Converting raw input data into 3D models suitable for applica-
tions like games, GIS systems, simulations, and virtual environ-
ments therefore remains a complex and time-consuming task suit-
able for skilled 3D artists only. Modeling applications like Google
SketchUp and its Pointools plugin [2011] address this issue by
proposing simplified user interfaces and interoperability with other
products like Street View (from where the artist can for example
retrieve photogrammetric data). However, the modeling process re-
mains cumbersome and time-consuming, as the accuracy of the re-
construction depends on the skills and patience of the user. In con-
trast, our system automatically maintains the fitting to the input
point cloud during the whole reconstruction and modeling process.
Fully automatic reconstruction approaches may omit any user inter-
action, but can hardly deliver satisfying results in case of erroneous
and/or partly missing data. We overcome these limitations by let-
ting a user guide the geometry completion. Although our system is

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • Arikan et al.

Fig. 1. An overview of our reconstruction and modeling pipeline, from left to right: Starting from a noisy and incomplete point cloud, we decompose the input
data into subsets lying approximately on the same plane (left). The boundary points of each subset are extracted and used to estimate coarse polygons (middle
left). Local adjacency relations are automatically discovered (middle left) and enforced via a non-linear optimization to snap polygons together, providing an
initial reconstruction (middle right) that can then be interactively refined by our optimization-aided sketch-based interface within a few clicks (middle right),
yielding a coarse polygonal model that well approximates the input point cloud (right).

interactive, we strongly benefit from tight coupling of user interac-
tion and automatic reconstruction techniques.

In this paper, we present a new approach to modeling 3D build-
ings from measured point cloud data. Our approach is mainly based
on the observation that many man-made objects, and especially
buildings, can be approximated and modeled using planar surfaces
with piecewise linear outlines as their primary elements, as long
as the desired level of detail is not too high. There are two main
insights that drove this research: (1) in order to create 3D models
suitable for virtual environments, the system needs to propose an
initial solution that already abstracts from the deficiencies of the
input data, like noise, missing elements etc. And (2), modeling re-
quires a tight coupling of interactive input and automatic optimiza-
tion. We therefore propose a modeling pipeline that first creates a
coarse polygonal model from an input point cloud, based on the de-
composition of the points into subsets associated with fitted planes
and subsequent polygon boundary extraction. The most important
step is an optimization-based algorithm that snaps adjacent parts of
the model together. This algorithm is then repeatedly carried out
during the interactive modeling phase to facilitate modeling. Our
work exploits certain characteristics in the input data to provide
an optimized reconstruction of piecewise planar surfaces with arbi-
trary topologies, which is precise on the one hand, and comprises a
very low number of faces on the other hand.

Our main contributions are

—a new polygonalization pipeline for point clouds that abstracts
polygon outlines to reasonable shapes even in the presence of
high amounts of noise and outliers, that is easy to implement
and most importantly maintains interactivity during the model-
ing process,

—a new optimization-based snapping algorithm for polygon soups,
where the novelty lies in a robust discovery of adjacency rela-
tionships,

—a new interactive modeling paradigm based on 2D sketching
combined with interactive optimization-based snapping, allow-
ing the user to model with coarse strokes.

2. RELATED WORK

The challenge of quickly generating 3D models of architectural
buildings from images, videos or sparse point clouds has received
tremendous interest lately. Although significant success has been
achieved with both semi- and fully automatic systems such as

from Werner and Zisserman [2002], Schindler and Bauer [2003],
Chen and Chen [2008], Furukawa et al. [2009] and Vanegas et
al. [2010], as well as interactive systems such as from Debevec
et al. [1996], van den Hengel et al. [2007], Sinha et al. [2008] and
Nan et al. [2010], these systems either require a greater amount of
manual intervention or have strict assumptions on the model to be
reconstructed. We refer the reader to the recent survey by Musialski
et al. [2012] for a comprehensive overview of urban reconstruction
algorithms.

The automatic reconstruction work of Chen and Chen [2008] in-
troduces a method to reconstruct polygonal faces of the model by
searching for Hamiltonian circuits in graphs. They assume the ex-
istence of the complete set of planes and their neighboring infor-
mation. Two planes are assumed to be adjacent if the minimum
distance between their corresponding point sets is within a dis-
tance parameter. Due to erroneous and missing data prevalent in
real-world data sets, we believe that one of the most challenging
problems in automatic reconstruction remains the determination of
neighboring information and that more sophisticated algorithms are
needed to solve this problem.

Image-based approaches [Werner and Zisserman 2002;
Schindler and Bauer 2003] generate coarse approximations con-
sisting of mutually orthogonal planes. The coarse models are then
refined with predefined shapes to add details such as windows,
doors, and wedge blocks.

In their seminal work, Debevec et al. [1996] introduced a hybrid
method that combines geometry-based modeling with image-based
modeling into one pipeline, in which the user matches edges in
the photographs to the edges in the model. Parameters and relative
positions of model components as well as camera parameters are
computed by minimizing a non-linear photogrammetric objective
function.

Recently, Nan et al. [2010] presented a system, the so-called
SmartBoxes, to quickly model architectural buildings directly
over 3D point clouds. SmartBoxes assumes Manhattan world
scenes [Furukawa et al. 2009; Vanegas et al. 2010], and is great
to reconstruct facades with repetitive axis-aligned structures. Com-
pared to SmartBoxes, our system doesn’t make any assumptions on
the shape of planar surfaces, their mutual alignments and orienta-
tions.

Sinha et al. [2008] introduce an interactive system to generate
textured models of architectural buildings from a set of unordered
photographs. The user sketches outlines of planar surfaces of the
scene by directly drawing on top of photographs. The drawing pro-
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cess is made easier by snapping edges automatically to vanishing
point directions and to previously sketched edges. Compared to our
approach, their system still needs a precise drawing of polygons,
since they do not automatically estimate polygon boundaries, and
snapping is induced by a simple proximity criteria, while our sys-
tem reliably extracts adjacency relations between elements of the
polygons.

The VideoTrace system proposed by van den Hengel et al. [2007]
interactively generates 3D models of objects from video. The user
traces polygon boundaries over video frames. While in the work of
Sinha a single image is sufficient to accurately reconstruct polyg-
onal faces, VideoTrace repeatedly re-estimates the 3D model by
using other frames.

A large number of mesh reconstruction methods have been
proposed over the years: popular approaches include Extended
marching cubes by Kobbelt et al. [2001], the Delaunay refine-
ment paradigm [Boissonnat and Oudot 2005] and implicit ap-
proaches [Kazhdan et al. 2006; Alliez et al. 2007; Schnabel et al.
2009]. Typically, all these methods need to generate high resolu-
tion meshes in order to recover sharp edges. More recently, Salman
et al. [2010] have improved the accuracy of reconstructions for a
prescribed mesh size while ensuring a faithful representation of
sharp edges. Still, their method does not yield models of low face
count and visual quality as required in this work (cf. Figure 15).
Instead of applying an extensive post-processing pipeline (e.g. cen-
tered around Cohen-Steiner et al.’s shape approximation [2004]),
we propose to integrate all requirements into a single optimized al-
gorithm: our method fits median planes to the input data, accurately
reconstructs sharp edges from the intersection of these planes and
generates coarse polygonal models (with the complexity defined
by the number of planes). Most importantly, our method is good at
handling surfaces with boundaries: all our input data is incomplete,
with missing parts and holes due to the acquisition process.

Recent commercial systems such as SketchUp have been de-
signed to quickly create 3D models from users’ sketches. The
Pointools plugin for SketchUp [2011] allows users to model di-
rectly over 3D point clouds, but the accuracy of the reconstruction
depends on the skills and patience of the user, since the sketched
geometry has to be manually aligned to the point cloud by visual
inspection. In addition, the plugin offers a simple snapping tool that
allows snapping the endpoint of a sketched line to a nearby point
in the point cloud. In practice, this feature can be used to coarsely
sketch the floorplan of a building, but is impractical for more de-
tailed modeling tasks due to the noise inherent in point clouds, as
there is no way to align a primitive to a set of points. Furthermore,
gaps that appear in the modeling process have to be closed man-
ually by moving edges. In contrast, we optimally reconstruct pla-
nar primitives by least-median fitting to the point data. Moreover,
we automatically discover adjacency relations, which allows us to
run a planarity-preserving optimization-based snapping algorithm
to close the model.

GlobFit, recently introduced by Li et al. [2011], iteratively learns
mutual relations among primitives obtained by the RANSAC algo-
rithm [Schnabel et al. 2007]. Their system seems to be complemen-
tary to ours: While they focus on discovering global relations (like
orthogonality, coplanarity, etc.) among parts of the model to correct
the primitives, our strength lies in the automatic discovery of local
adjacency relations between polygon elements. To produce a final
model (which is not their primary goal), Li et al. only extrapolate
and compute pairwise primitive intersections. While it is relatively
easy to locally extend individual polygons, intersections of multi-
ple primitives can be highly complex and reconstruction becomes
non-trivial.

3. OVERVIEW

Our system takes as input a set of 3D points, for example from
a laser scanner, photogrammetric reconstruction or similar source.
The goal is to create a polygonal model suitable for interactive ap-
plications and not influenced by the noise and holes inherent in the
input data. The reconstructed polygonal model will be watertight
wherever feasible – in this paper we shall denote such a model a
closed model. It is important to emphasize that we do not assume
our target surfaces to be closed in a topological sense.

Modeling consists of two phases: an automatic phase that cre-
ates an initial model, and an interactive phase that is aided by
optimization-based snapping.

3.1 Automatic Phase

In the automatic phase, the input data is decomposed into subsets
lying approximately on the same plane (Figure 1, left). Through-
out the paper, we refer to these subsets as segments. For each such
segment, boundary polygons are estimated in the polygonalization
step (Section 4, Figures 1 middle left and 3). The resulting model
still has holes and is not well aligned.

We therefore introduce an intelligent snapping algorithm (Sec-
tion 5) that constrains and optimizes the locally fitted planes and
their corresponding polygons. The local fit of the planes is de-
termined by how well the planes approximate the observed point
cloud data, while the mutual spatial relations, i.e., adjacency rela-
tions between polygon elements, are iteratively computed and en-
forced through a non-linear optimization. This “intelligent snap-
ping” is a crucial part of our approach: Instead of simply snapping
to existing geometry or features within a given distance [Sinha et al.
2008; van den Hengel et al. 2007], we define a feature-sensitive
matching and pruning algorithm to discover a robust set of adja-
cency relations among parts of the polygons (Figure 1, middle left).
The polygons are then aligned by enforcing the extracted relations,
while best fitting to the input data and maintaining the planarity of
the polygons (Figure 1, middle right).

Note that while a completely automatic reconstruction of a whole
building can hardly be achieved due to erroneous and missing data,
our automatic phase produces results that are comparable to previ-
ous automatic systems, for example Chen and Chen [2008], who
assume the existence of a complete set of planes.

3.2 Interactive Phase

Since the initial geometry proposal from the automatic phase can
not guarantee a perfect solution in all cases, the interactive phase
provides a simple and intuitive sketch-based user interface (Sec-
tion 6) that directly interoperates with the optimization routines.
Even though such manual interventions can not be completely
omitted, the novel system differs significantly from other 3D mod-
eling techniques by exploiting the previous analysis: Due to the
known supporting planes, the modeling complexity is reduced from
a 3D to a 2D problem. This allows the user to model the neces-
sary changes with a few simple and loose strokes on a flat layer, as
the exact alignment is performed interactively by the optimization-
based snapping algorithm (Figure 1 middle right).

4. POLYGONALIZATION

We use a local RANSAC-based method [Schnabel et al. 2007] to
decompose the input point cloud into subsets (referred to as seg-
ments), each lying approximately on a plane, and a set of unclaimed
points. Even though the decomposition requires normal informa-
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Fig. 2. The first step of the automatic reconstruction pipeline, a local
RANSAC-based method, may capture nearby parallel structures (e.g. win-
dows and facade) as a single segment (left). The least-median of squares
method is used to fit a plane to the points of the dominant structure (mid-
dle left). By applying k-means clustering (k = 2) (and subsequent auto-
matic polygonalization and optimization) in the interactive modeling phase,
a more detailed hierarchical reconstruction (middle right, right) is achieved.

tion, the correctness of normals close to sharp edges is not critical
for the subsequent estimation of plane primitives (Section 4.1.1)
and the rest of our pipeline. Hence, our implementation approxi-
mates 3D normal vectors from point positions by applying a local
PCA [Jolliffe 2002] with fixed size neighborhoods.

A segment may consist of multiple connected components (e.g.,
front faces of all individual balconies on a facade), which are later
separated by the boundary extraction algorithm (Section 4.1.2).

The goal of the polygonalization step is to divide the segments
from the RANSAC stage into connected components, and approx-
imate their outlines by coarse polygons. In the first step, we divide
each segment into one or several connected components, and ex-
tract their ordered boundary points (Figure 3 top left), which act as
initial polygons. Since the extracted boundaries are generally noisy,
we cannot assume that we have high-quality vertex normal orienta-
tions. In the second step, we compute a smooth region around each
point (Figure 3 top right), to which we then apply a local PCA to
estimate initial 2D vertex normals (Figure 3 middle left). Finally,
we reconstruct 2D vertex normals based on their initial values and
a neighborhood relationship derived from the smooth regions (Fig-
ure 3 middle right), and use the reconstructed normal vectors to
compute consistent vertex positions (Figure 3 bottom left). This
process straightens the initial boundaries and thus provides a polyg-
onal approximation of the 2D components on a coarse scale (Fig-
ure 3 bottom right).

4.1 Initialization

4.1.1 Plane fitting. The polygonalization is computed in 2D
space defined by the segment plane. The first step is therefore fit-
ting a plane to all the points contained in a segment obtained by
RANSAC. As depicted in Figure 2 (left), nearby parallel structures
(e.g., main facade and windows) may have been detected as a single
segment. We therefore apply a Least Median of Squares (LMS) es-
timator [Rousseeuw and Leroy 1987], which consistently finds the
main structure (see Figure 2 middle left), as it is capable of fitting
a model to data that contains up to 50% outliers.

4.1.2 Boundary extraction. In order to divide each segment
into connected components and extract their ordered boundary
points, we employ 2D α-shapes [Edelsbrunner and Mücke 1994]
(with α controlling the number of connected components and the
level of detail of their boundaries) on the segment points projected
to the median plane. The family of 2D α-shapes of the set of pro-

p

Qp

Fig. 3. Overview of our polygonalization pipeline. Ordered boundary
points (initial polygon) of a connected component are extracted (top left).
By applying PCA to smooth regions Q (top right), vertex normals are ini-
tialized (middle left). Initial vertex normals are smoothed over neighboring
vertices (with p and q neighboring if they are mutually contained in their
respective smooth regions) (middle right) and used to compute consistent
vertex positions (bottom left). Finally, a corner detection algorithm extracts
the approximating polygon.

jected segment points S is implicitly represented by the Delaunay
triangulation of S. Each element (vertices, edges and faces) of the
Delaunay triangulation is associated with an interval that specifies
for which values of α the element belongs to the α-shape. The con-
nectivity of the Delaunay triangulation and the classification of its
elements with respect to the α-shape is then used to extract the con-
nected components and their ordered boundary points. We estimate
α using the average distance between neighboring points.

4.2 Polygon Straightening

The goal of this step is to robustly estimate for each boundary a
coarse polygon that approximates the original shape’s outline. Most
surfaces used in architecture, especially at the level of detail rel-
evant for polygonal modeling, are bounded by straight lines that
meet in sharp corners. We also require from our method that it is
fast, since we need interactivity during the modeling process (see
Section 6.6).

Our method is inspired by the `1-sparse method [Avron et al.
2010] for the reconstruction of piecewise smooth surfaces. How-
ever, we found the `1 formulation computationally too expensive,
compared to our `2 approach counting only a few or even no re-
weighted iterations (the `1 formulation’s second-order cone pro-
gramming solver needs to solve a series of linear systems of com-
parable dimension to our setting). We tackle stability issues inher-
ent to least-squares approaches (such as sensitivity to outliers) with
statistical methods. In particular, we rely on the forward search
method [Atkinson and Riani 2000] and present a novel method
combining the simplicity of least-squares minimization with the
strength of robust statistics.
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4.2.1 Neighborhood estimation. Similar to Fleishman et al.’s
approach [2005], we classify a locally smooth region around each
vertex by applying the forward search method, which preserves
sharp features and is robust to noise and outliers. The main idea
in forward search is to start from a small outlier-free neighborhood
Q and to iteratively extend the set Q until a termination criterion
is met. Starting from Q and the model (in our case, a line) that is
fitted to the points in Q, one iteratively adds one point to the set
Q (the point with lowest residual) and updates the model at each
iteration, until the diameter of Q exceeds a threshold dmax. Fig-
ure 3, top right, shows an example of a smooth region around a
point p computed with forward search. Two polygon vertices p
and q are said to be neighboring, if q ∈ Qp and vice versa. The di-
ameter threshold dmax is the only parameter that affects the output
of our polygonalization method. Since dmax controls the local re-
gion sizes, we avoid high values of dmax (usually set to minimum
expected feature size) to prevent oversmoothing of sharp features.

4.2.2 2D Normal estimation. We then estimate consistently
oriented vertex normal vectors (Figure 3, middle right) based on
the neighborhood relationship computed by the prior step. As in
Avron et al. [2010], our least-squares minimization to reconstruct
vertex normals consists of two terms and is formulated as:

E1 =
∑

(p,q)∈N

wp,q‖np − nq‖2 + λ
∑
p

‖np − n0
p‖2. (1)

The first term minimizes the normal differences and extends over
the set N of all neighboring vertices. The second term prevents the
vertex normals n from deviating too much from their initial orien-
tations n0. The weighting function wp,q in Equation 1 penalizes
variations in normal directions, and is given by the Gaussian filter:

wp,q = e−(θp,q/σ)
2
, (2)

where θp,q is the angle between the normal vectors np and nq and
σ is a parameter set to 20 degrees in all our examples.

The normal vectors are initialized (cf. Figure 3 middle left) by
applying PCA to the local smooth regions computed by the prior
step. The consistency of the initial normal orientations is provided
by the order of the boundary points.

4.2.3 2D Polygon smoothing. We then compute consistent ver-
tex positions (Figure 3, bottom left) by displacing polygon vertices
in normal direction, i.e.,

p′ = p + tpnp.

Similar to Avron et al. [2010], the new vertex positions p′ are com-
puted as the minimizer of the energy function

E2 = E2,s +E2,init (3)

with

E2,s =
∑

(p,q)∈N

wp,q

(∣∣(p′ − q′) · nq
∣∣2 +

∣∣(q′ − p′) · np
∣∣2)

and

E2,init = µ
∑
p

t2p.

The first term smoothes (straightens) the polygon boundary by min-
imizing the deviation of q from the tangent through p weighted
according to the confidence measure wp,q (Equation 2) and vice
versa. The second term prevents the polygon vertices from devi-
ating too much from their initial positions and as a consequence
avoids shrinking of the polygon.

Both functionals E1 and E2 (Equations 1 and 3) are minimized
using a Gauss-Newton method. Since we use forward search to re-
construct outlier-free regions, we require only three re-weighted it-
erations to minimize E1 and a single iteration to minimize E2. The
weight parameters λ and µ are set to 0.1 in our data sets.

4.3 Polygon Extraction

The process described above provides us with a set of straightened
boundary points with high-quality vertex normals, which are then
used by a simple corner detection algorithm to extract approximat-
ing coarse polygons (Figure 3, bottom right).

We classify a vertex as an edge vertex if its normal vector is
almost parallel to the normal vector of the succeeding and preced-
ing vertex, respectively. Then we approximate sequences of edge
vertices in a least-squares sense and obtain edge lines. A corner is
detected at the intersection point of two successive lines. Note that
vertices that are isolated in our neighborhood relationship graph
are potential outliers or influenced by noise inherent in the initial
boundaries, and thus not used by the corner detection algorithm.

5. POLYGON SOUP SNAPPING

The result of the polygonalization step is a soup of unconnected
polygons P = {P1, . . . , Pn}. The snapping process aims at clos-
ing the holes between the polygons of the polygon soup, and is
used both in the initial automatic reconstruction and during interac-
tive modeling. Snapping iteratively pulls polygon vertices towards
other polygons, while simultaneously re-fitting P to the underlying
point cloud and preserving the planarity of polygons. Each iteration
consists of the following two steps:

—Robust search for adjacencies, which for each vertex identifies
the possible matches to other vertices, edges or faces and dis-
cards false ones.

—Optimization, which enforces the set of discovered adjacency re-
lations to snap the polygon soup together.

The process terminates when the polygon soup stabilizes, i.e., it be-
comes a closed model and satisfies the requirements given by the
constraints. Our snapping process is related to Botsch et al. [2006]
and Kilian et al. [2008], however our system requires the optimiza-
tion for various other constraints and in particular, the relations be-
tween the polygons are not known a priori. We now describe the
steps in detail.

5.1 Robust Search for Adjacencies

The problem of matching the elements of the polygon soup to a
closed model in a feature-aware manner is inherently ill-defined.
The expected bad quality of the real-world data sets and the lack
of any high-level input to the reconstruction pipeline (such as
shape templates or semantic information) prevent a rigorous math-
ematical definition. Instead, we propose an automatic and robust
algorithm based on stable vertex-vertex/edge/face and edge-edge
matches.

Adjacencies in the model are discovered by searching for
matches between polygon elements. There are five mechanisms
that constrain the allowed matches: (1) An auxiliary global parame-
ter rmax defines the maximal gap size to be closed in the model. (2)
Intrinsic stability locally avoids self-intersections, flip-overs, edge
and diagonal collapses. (3) An extended set of matching candidates
allows more degrees of freedom (thus a more connected model)
where (2) is too restrictive. (4) Local pruning fixes problems mostly
introduced by (3), and (5) global pruning prevents degeneration of
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polygons (especially of thin features) by considering global issues
of matches affecting more than two polygons. We first describe the
different match types, constrained by (1-3), and then show local
and global pruning. Please note that the choice of rmax doesn’t in-
fluence the stability of the pruning algorithms, but only defines the
maximal gap size.

5.1.1 Vertex-vertex matching. We define an adaptive search
radius for each vertex of the model. The requirement of intrin-
sic stability bounds the search radius to half the minimal distance
from p to the polygon’s boundary, d∂(p) := mine∈∂P \p d(p, e),
where ∂P \ p denotes the polygon boundary after removal of p
and its incident edges. Half the distance d∂ prevents vertices be-
ing matched across polygon edges (self-intersections, flip-overs) or
vertices (edge or diagonal collapses). To respect the given upper
bound, we define r(p) := min(rmax, d∂(p)/2) as the adaptive
search radius of p.

The candidate set of matches for a vertex p comprises all vertices
of P \P within search distance r(p). If this candidate set is empty,
the closest vertex in P\P (if not further than rmax) is included. By
doing so, we may violate intrinsic stability intentionally to maintain
sufficient degrees of freedom. A subsequent pruning step, described
below, will restore validity at a later stage, if necessary. We define
rc(p) := max(r(p),min(dc, rmax)) (with dc being the distance
of p to its closest vertex in P \P ) as the extended search radius of
p.

A priori, two vertices p and q are considered matching, if they
are mutually included in their respective extended search radii,

‖p− q‖ ≤ min(rc(p), rc(q)).

Finally, two matching vertices are supposed to collapse into a cor-
ner point at the later optimization stage. Such a corner point is inci-
dent to the intersection line l of the two corresponding supporting
planes. Consequently, we further require a pair of matching vertices
to be in feasible distance to l,

d(l,p) ≤ rc(p) and d(l,q) ≤ rc(q).

Please note that the computation of l is numerically stable, as the
RANSAC stage gives a priori knowledge about polygons in the
same supporting plane.

5.1.2 Vertex-edge matching. In a similar fashion to vertex-
vertex matches, we establish correspondences between ver-
tices and edges. We assign a search radius to each edge
e = (p0,p1) as the minimal search radius of its end points,
r(e) = min(r(p0), r(p1)). A vertex p is matched to an edge
e if its orthogonal projection onto the line spanned by e is in the
edge’s interior, and – analogous to a vertex-vertex match – the two
following expressions hold true:

d(p, e) ≤ min(r(p), r(e)),

and

d(l,p) ≤ r(p) and d(l, e) ≤ r(e),

where l is the common intersection line of the corresponding sup-
porting planes.

5.1.3 Other matches. To complete the survey of matches, a
vertex p is paired with a face f if its orthogonal projection onto
the plane spanned by f is in the face’s interior and no further than
search radius r(p).

Based on the vertex-vertex and vertex-edge matches, we may
further derive edge-edge matches: Two edges are said to match if

p q

m

e0 e2e1

Fig. 4. The false match m = (p,q), which forces the center polygon’s
edge e1 to collapse and thus violates the intrinsic stability, is reliably de-
tected by our global pruning strategy.

their endpoints either induce two vertex-vertex matches, a vertex-
vertex and a vertex-edge match or two vertex-edge matches. Edge-
edge matches are used only in the matching and global pruning
stage and not for optimization, as their contribution to reconstruc-
tion is implicitly included through vertex-vertex/edge matches.
The same holds in an even stricter sense for edge-face and face-
face matches, which are either implied by vertex-vertex/edge/face
matches or are not present in the data due to occlusion in the acqui-
sition process.

5.1.4 Local pruning. The vertex-vertex matching yields gen-
erally stable results. A few false matches, which result from the
inclusion of closest vertices in candidate sets, are corrected in the
following pruning step: Consider two or more vertices qi of poly-
gon Q being matched to a vertex p ∈ P . This clearly violates
the intrinsic stability requirement for Q and we remove all but the
closest matching pair. This and all subsequent pruning steps are im-
plemented on a graph representationG = (V,EM ) of the matches,
with all vertices and edges of P comprising V and the edge setEM
being given by the set of all matches obtained from above (except
vertex-face matches). Pruning at this point boils down to investi-
gating all one-ring neighborhoods of G.

Similar to vertex-vertex matching, intrinsic stability demands the
pruning of those vertex-edge matches where a vertex corresponds
to multiple non-adjacent edges of a polygon. This can naturally
happen due to overlapping search cylinders (with radii r(e)) around
edges. Using the graph G, we compress this subset of matches to
the closest vertex-edge match.

5.1.5 Global pruning. Up to now, the matches have been ob-
tained on a local level only. They disregard any global issues af-
fecting more than two polygons. Consider the situation in Fig-
ure 4, with three polygons stringing together and several of the
corner points being matched. The vertex-vertex match between p
and q, jumping the center polygon, is not feasible, as it implies
a degeneration of the center polygon’s edge. Such a degeneration
happens when certain polygon elements (vertices/edges) are con-
nected through matches so that they form a cycle. The reason is
that we have to assume that all polygon elements connected through
matches might be joined to the same location during the optimiza-
tion phase. In this section we therefore present our approach to de-
fine and find such cycles. We also show a second approach based
on geometric tests for cases where the detection of cycles doesn’t
necessarily imply a degeneration.

For the example in Figure 4, to detect the contraction of the
edge e1, it would be sufficient to extend the edge set EM in the
matching graph G defined earlier by the actual polygon edges, and
find the cycle (m, e0, e1, e2) in the resulting graph. However, there
are many other cases that would lead to a polygon degeneration,
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e1e1e1
e1

m

m

m

m

Fig. 5. Top row: Examples of false matches m which would cause the constraint edges (denoted by e1) to contract. Bottom row: We reliably avoid such false
matches by searching for cycles in the extended matching graphs (only the matches of the cycles shown here).

Fig. 6. Construction of the extended matching graph Ge = (V,Ee): Each
polygon’s vertices (orange) and edges (blue) constitute the node set V (left).
The edge set Ee combines the set of all vertex-vertex/edge and edge-edge
matches (not shown here), and the constraint set. The latter connects all
pairs of elements in V of the same polygon, except polygon vertices with
their incident polygon edges (right).

namely, whenever a match would cause two elements of a polygon
to contract, see Figure 5 for several examples.

We therefore introduce an extended matching graphGe that pre-
vents all these internal contractions by representing them explic-
itly through so-called constraint edges. Formally, Ge = (V,Ee) is
a graph with V comprising the polygons’ elements (vertices and
edges, see Figure 6 left). The edge set Ee = EM ∪ EC combines
the set of matches EM , and the constraint set EC . The latter con-
nects all pairs of elements in V of the same polygon, except poly-
gon vertices with their incident polygon edges (see Figure 6 right).
Figure 5 shows several examples where the detection of an appro-
priate cycle containing a constraint edge (denoted by e1) in Ge
causes a false match to be pruned.

Our strategy is now to determine for every vertex-vertex/edge
match m = (p,q) ∈ EM whether it is part of a “harmful” cy-
cle. We first note that we only look for cycles c(m) where m is

m

ek0

0
ek2

2

... ...
e

1p q

m

ek0

0

...p q

...

eki

i

ekn

n

eki+1

i+1

.......

...

...

.......

Fig. 7. Illustration of our global pruning idea: We search for each vertex-
vertex/edge match m = (p,q) an edge cycle with only one constraint edge
(denoted by e1) in the extended matching graph Ge (top). If such a cycle
exists, we prune m (cf. Figures 4 and 5). Otherwise, we search for match-
paths (e

kl
l ,m, e

kj
j ) in the actual matching graph G (bottom). Subsequent

matches in the paths induce further matches (cf. Figure 8), which are then
used to geometrically verify whether m leads to polygon degenerations.

directly connected to another match on either side, i.e., c(m) =
(m, e0, . . . , en) with e0, en ∈ EM . The reason is that the degen-
eration of the constraint edges of p and q’s polygons is already
handled in the local pruning phase. Further, we ignore cycles con-
taining more than one constraint edge, for reasons explained further
below. Thus, we look for cycles c(m) = (m, ek00 , e1, e

k2
2 ), with

e1 ∈ EC and ekii = (ei,1, . . . , ei,ki) ∈ EkiM (ekii abbr. as ei for
ki = 1), ki ≥ 1 (see Figure 7 top).

If we find such a cycle, the corresponding match can be pruned
directly, because the cycle forces the constraint edge e1 to contract
(see Figures 4 and 5). However, in some rare cases (where poly-
gons’ elements meet at non-manifold vertices/edges of the final
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m

mi

e0

e1

e2

e3

e4

m

mi

e0

e1 e2

e3 e4

Fig. 8. Cycles (here (m, e0, e1, e2, e3, e4)) in the extended matching
graphs Ge containing more than one constraint edge can be “harmful”
(right) or not (left), and thus are not a good indicator for pruning. Instead
we geometrically verify whether the induced matches (denoted in green by
mi) resulting from subsequent matches (e0,m, e4) in the matching graphs
G cause polygon degenerations. Please note that in the right image, m is se-
lected in the matching phase due to large search radii of the corresponding
vertices (we show only a part of the polygons here).

model) we also observed the pruning of a few “correct” matches.
For the convergence of n polygon elements to the same location,(
n
2

)
connections (matches) are possible, but only n − 1 involving

all those n elements are sufficient. Thus in practice, the pruning of
a few “correct” matches doesn’t indicate a problem.

Most of the degenerations in the model can already be avoided
by pruning cycles with one constraint edge. However, there are also
some cases involving several constraint edges, see Figure 8 right.
Unfortunately, this situation cannot be detected unambiguously by
searching for cycles, as can be seen in Figure 8 left. To solve this
problem, we present a more general approach that is based on in-
vestigating sequences of matches. Such sequences induce further
matches between the elements they connect, in the sense that in
the optimization phase, these elements will also be joined. We thus
need to verify whether the induced matches do not cause polygon
degenerations.

Formally, for a matchm, we search for paths (e
kl
l ,m, e

kj
j ) (with

kl, kj ≥ 0) in the actual matching graph G (see Figure 7 bottom).
We then check whether all of the induced matches mi are in EM
as well. For every match that is not in EM , we need to verify ge-
ometrically whether it would lead to a polygon degeneration. Here
we note that an induced match does not necessarily join the at-
tached elements directly (e.g., two subsequent vertex-edge matches
m1 = (p, e) and m2 = (e,q) do not induce the vertex-vertex
match m3 = (p,q), but both vertices project to the same edge).
To geometrically verify whether an induced match leads to any de-
generation, we project the vertices and/or edge endpoints of the
match onto the common intersection line l of the polygons’ sup-
porting planes. We prune m if one of the thus-modified polygons
(with projected vertices/edges) has a flipped normal vector orien-
tation (flip-over) or has self-intersections. Note that the number of
paths to investigate is typically low because paths containing only
matches stay localized.

5.2 Optimization

Based on the discovered adjacencies, we transform the polygons
to optimally align with each other, while preserving their planarity
and fitting to the input point cloud.

As in Kilian et al. [2008], we introduce a Cartesian coordinate
system in the plane of each P ∈ P , with origin o and basis vec-
tors f1 and f2, and represent a point p ∈ P by the coordinates
(px, py), so that p = o + pxf1 + pyf2. During the optimization,

in order to reduce the spatial gaps between adjacent polygons, the
coordinates (px, py) are displaced, while the Cartesian coordinate
systems undergo a spatial motion. We linearize the spatial motion
of each coordinate system by representing the displacement of each
point through the velocity vector field of an instantaneous motion,
given by v(x) = c̄ + c × x. Thus the position of a vertex p ∈ Pi
during the optimization can be written as

p = oi+ c̄i+ci×oi+px(fi1 +ci×fi1)+py(fi2 +ci×fi2) (4)

in the unknown parameters ci, c̄i ∈ R3 of the velocity vector field
attached to Pi and in the unknown coordinates (px, py) (this can
be derived by applying the displacement x′ = x + v(x) for x ∈
{oi,oi + fi1 ,oi + fi2}).

5.2.1 Snapping. With the adjacency relations discovered by
the prior step, we measure the snapping error as

Esnap =
∑
i,j,k,l

d2(pi,pj) + d2(pi, ek) + d2(pi, Pl),

where d2(pi, ·) denotes the distance of vertex pi to the vertex pj ,
edge ek and face Pl, respectively.

5.2.2 Point cloud deviation. For the polygon soup P not to de-
viate too much from the input point cloud, we use the reference
term

Eref =

|P|∑
l=1

|Pl |∑
i=1

d2(pi(l), P
init
l ). (5)

The above equation minimizes the sum of squared distances of ver-
tices pi(l) ∈ Pl to the initial planes P initl (see Section 4.1.1). Man-
ually sketched polygons without underlying segments (Section 6.3)
are excluded from Equation 5.

5.2.3 Orthogonality. In order to meet orthogonality con-
straints that naturally exist in urban environments, we include the
following two terms

E⊥1
=
∑
i,j

wij(ni · nj)2 (6)

and

E⊥2
=

|P|∑
l=1

|Pl |∑
i=1

wi(l)(ei(l) · e(i+1)(l) mod |Pl |)
2, (7)

which measure the orthogonality of adjacent polygons and succes-
sive polygon edges, respectively. With the unit normal vector of P
given by n = f1 × f2, Equation 6 extends over all pairs of poly-
gons, with wij = 1 for adjacent polygons with normals deviating
from orthogonality by less than π

9
, and zero otherwise. Optimizing

for orthogonality of polygon boundary edges ei(l) in Equation 7
(with wi(l) defined similar to wij for polygons) might result in de-
generating edges of vanishing length. This problem is in particular
evident in case of missing geometry and is overcome by minimiz-
ing the sum of squared distances to current vertex positions p′i as
follows:

Ecur =
∑
i

d2(pi,p
′
i).

5.2.4 Global energy and weights. The above energy terms are
combined into the objective function

E = λsnapEsnap + λrefEref + λ⊥(E⊥1
+E⊥2

) + λcurEcur,
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eye

Fig. 9. Sketching of a polygon in an area without an underlying segment:
An edge of an adjacent polygon is selected by moving the mouse over it
(left). The camera view direction aligns with the edge, and a perpendicular
sketching plane is used to sketch a point (middle). The new plane is defined
by the edge vertices and the sketched point, and initialized with a rectangu-
lar polygon (right).

which is minimized using a Gauss-Newton method. Instead of de-
coupling the optimization as in Kilian et al. [2008], we solve simul-
taneously for the parameters of the velocity vector fields attached
to the polygons and the 2D coordinates of the vertices, resulting
in a non-linear optimization problem due to the products pxci and
pyci (Equation 4). Transforming the Cartesian coordinate system
of Pi corresponding to the pair (ci, c̄i) would not yield a rigid
body motion, but an affine one. Therefore we use the underlying
helical motion, which ensures rigidity, as described by Pottmann et
al. [2006]. The weights λ allow additional control of the optimiza-
tion. We used λsnap = 1, λref = 0.5, λ⊥ = 0.01 and λcur = 0.1
for all the models shown in the paper.

6. INTERACTIVE 2D MODELING

On top of automatic polygon creation and polygon soup snapping,
we propose an interactive editing and modeling system that pro-
vides a novel way of user-guided 3D content creation and recon-
struction. All user interaction is reduced to sketch-like approxi-
mate 2D operations by automatically choosing an appropriate 2D
modeling space based on segment planes in the underlying point
cloud. Implicitly dropping one dimension drastically reduces in-
teraction complexity and thereby reduces overall modeling effort.
At the same time, consistency and accuracy of the reconstructed
model increase due to the interactive optimization performed after
each modeling step (please see the accompanying video).

6.1 Plane Selection

All modeling operations are based on and limited to planes. The ac-
tive plane is chosen by selecting a polygon or a point cloud segment
with a single mouse click. On demand, the camera’s view direction
aligns to the plane normal, allowing a “2D top-down view” onto it.

6.2 Polygon Editing

Polygons, which have either been created automatically or sketched
by the user (see below), can be modified arbitrarily. Once in focus,
the editing steps are comparable to a simple 2D vector graphics
editing program: By moving the mouse cursor over the correspond-
ing region, a vertex, an edge or the whole polygon is chosen for ma-
nipulation and can be dragged anywhere on the underlying plane.
Vertices can be added by right-clicking on an edge, and removed
by right-clicking on a vertex.

Individual polygons lying on the same segment plane, which
may occur due to holes in the point data, can easily be merged
by dragging polygons over each other, resulting in a single polygon
consisting of their combined convex hull. We opted for this fast in-

Fig. 10. A hierarchy relation between a dominant facade plane and a door
is defined with a single click (left). Side faces are automatically extruded
(middle) and contribute to the snapping process: Due to the newly found
matching pairs, a continuous surface is in this case generated within a few
optimization iterations (right).

teractive method of solving such cases instead of closing the holes
automatically, as there are various situations in which such individ-
ual coplanar polygons are intended (e.g. front faces of balconies on
a facade).

6.3 Polygon Sketching

In sketching mode, the selected plane also acts as a drawing area
for new polygons. Manual sketching is applied whenever a segment
has no polygons assigned (too few points), or if the existing poly-
gon has been estimated wrongly due to noisy and missing data.
In some cases, it can even be faster to replace the polygon by a
new one instead of repairing it. Sketching is performed by approxi-
mately clicking the new vertex positions on the sketch plane. Exist-
ing polygons overlapping the new one are automatically removed.

Since we are dealing with noisy data, sparsely sampled parts of
the model will most likely not be found in the RANSAC stage,
excluding both automatic polygonalization as well as plane-based
sketching in these areas. We therefore implemented an intuitive
way to model arbitrary planes adjacent to existing polygons (see
Figure 9): The user chooses an edge e of a polygon on which the
new plane should attach to by hovering over it with the mouse cur-
sor. By entering the sketching mode, the camera view direction
aligns with the edge (i.e., e is only visible as a point then), and
the user selects a point p on the plane perpendicular to the selected
edge. The new plane is built using p and the vertices of e, and
initialized with a rectangular polygon.

6.4 Interactive Optimization

It is important to note that both editing and sketching operations
only have to be performed very coarsely. As long as the approxi-
mate shape of the polygon is given, automatic snapping will align
vertices with other parts of the model by favoring right angles while
simultaneously re-fitting the polygon soup to the underlying point
cloud. Optimization is therefore interleaved with each individual
modeling step, providing the user with immediate feedback. When
sketching completely new parts of a model, interactive optimization
can also be switched off on-demand.

6.5 Hierarchies

The noisier and more sparsely sampled the faces to reconstruct are,
the less likely it is that a suitable plane to sketch on can be found
in the RANSAC stage. Depending on the chosen acquisition angle
and technique, some faces may not even be depicted in the point
cloud data at all. Despite the possibility to easily define arbitrary
planes as described above, modeling the side faces of features like
balconies, bays or windows remains a time-consuming and tedious
task. We therefore allow the definition of hierarchy relations be-
tween the polygons by “connecting” a child polygon to a parent
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Fig. 11. The snapping is not restricted to the reconstruction of the main
structure and to child-parent relations, but it can also handle child-child
relations to reconstruct detailed geometry: Two child polygons and their
parent polygons after the manual segment division and subsequent polygon
extraction (left). The child polygons snap to each other and the correspond-
ing side polygons are projected correctly to the main structure to form the
column (right).

polygon with a single click: The corresponding side faces are then
implicitly generated by extruding the child polygon’s edges to its
parent plane, reducing the modeling time to a few seconds (the cor-
responding holes in the parent polygons are created using a simple
difference set operation PParent\PChild ). This approach was used
for example in Figure 2 right.

The generated side faces also contribute to the interactive opti-
mization, which proves to be extremely useful in cases like doors
situated at the bottom of a parent facade plane (see Figure 10): the
vertices of the parent polygon lying in the front do not have to be
manually edited, but are automatically attached to the side faces,
generating a continuous surface with a single click.

Our hierarchy definition is extremely useful to model thin fea-
tures (see Figure 11), as child polygons (belonging to different par-
ent polygons) may snap to each other.

6.6 Manual Segment Division

As discussed in Section 4.1.1 and shown in Figure 2 (left), nearby
parallel structures may be captured as a single segment. There-
fore we offer the user the opportunity to manually divide (Figure 2
middle right) a selected segment by applying k-means clustering
(k = 2). For the emerging segments, new polygons are automati-
cally created (see Section 4, Figures 2 middle right and right). By
combining the manual segment division with the hierarchy defini-
tion, complete facades including windows, balconies and doors can
be modeled within seconds (see Figures 1, 10 and 11).

7. RESULTS

We have tested our reconstruction and modeling pipeline on a va-
riety of data sets, including six point clouds obtained from pho-
togrammetric methods (Figures 12 and 18), a laser scan (Fig-
ure 15), and a synthetic model (Figure 16). Figure 18 demonstrates
the individual steps of our framework. Figures 12, 14 and 13 il-
lustrate several applications. Figure 15 compares a model created
using our system to the results of mesh reconstruction and decima-
tion algorithms. The synthetic model, Figure 16, is used to validate
the accuracy of our algorithm. Interactive modeling sessions for the
town hall and church models can be observed in the accompanying
video.

7.1 Performance and Scalability

In all our test scenes, interactivity could easily be maintained dur-
ing the modeling sessions on a standard PC workstation (Intel i7
920 CPU with 2.67GHz, 4GB RAM): The computationally most
expensive step after a modeling operation, matching and pruning,
is computed within an average time of 0.2 seconds, while the op-
timization and the update of the rendering scene graph only take a
few milliseconds to perform. We solve the sparse systems of linear
equations at each Gauss-Newton iteration by a sparse QR factor-
ization [Davis 2011].

Note that in our current implementation, the adjacency (match-
ing) graph is completely rebuilt from scratch after each modeling
step. In our test scenes, we experienced an adjacency graph rebuild
time of one second as the worst case. By building the graph only
once and updating it locally after each modification, the computa-
tional effort for the graph update could be decoupled from the geo-
metric complexity, removing this potential bottleneck and keeping
the modeling process interactive in larger-scale scenes.

7.2 Convergence

Solving the problem presented in Section 5 is a challenging task
since we deal with an optimization problem that is

(1) non-smooth: the set of computed adjacencies is a discrete vari-
able,

(2) non-linear: due to the simultaneous optimization of the param-
eters (cf. Section 5.2.4), and

(3) constrained: the polygons shall remain planar.

To account for (1), we decouple the computation of the adjacen-
cies from the rest of the optimization: at each iteration, we first fix
the position of the polygons’ vertices and search for adjacencies.
Then, we fix the adjacencies and optimize vertex positions.

To account for (2), we choose a Gauss-Newton method (which
approximates the distance function) for the smooth optimization
and provide a good initialization of the problem (Section 4), which
is known to be necessary in the solution of non-linear optimization
problems (see e.g. [Kelley 1999]).

To account for (3), we attach a Cartesian coordinate frame to
each polygon and linearize its motion (which is again an approxi-
mation).

Due to the underlying characteristics of the given optimization
problem, there is no guarantee that a global minimum can be found
in an acceptable time. However, the results shown in this section in-
dicate that we manage to find an aesthetically pleasing and accurate
solution in a few iterations.

7.3 Further Applications

7.3.1 Photo-guided modeling. During our tests with a wide
range of different data sets, we have made the observation that in
some cases parts of the model to reconstruct are not only sparsely
sampled, but are not depicted in the point cloud data at all. This
may be caused by occluders (e.g. lots of trees and bushes), highly
reflective materials (e.g. glassy or metallic facades, which lead to
problems for both laser scanners and photogrammetric approaches)
or the viewing angle from which the building has been captured.
Our modeling tools have still proven to be capable of reconstruct-
ing such areas, if the user is provided with photos of the object – in
case of photogrammetric data, these can even be reprojected onto
the existing geometry. The example in Figure 12 shows a complex
of connected buildings that are highly occluded by trees, resulting
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Fig. 12. Reconstruction of a building complex occluded by trees and
bushes. Top left: An example photo of the data set. Top right: The seg-
ments extracted from the sparse point cloud (obtained from a photogram-
metric approach) and the main structures after approximately three min-
utes of optimization-aided modeling. Bottom left: The reprojected images
help the user to modify the polygon boundaries and to sketch new polygons
forming the balconies. Bottom right: The final model after 20 minutes using
the additional image information.

in a noisy and sparse point cloud in which details like the balconies
are not present. The image information reprojected on the basic
shapes helps the user to modify the boundaries accordingly, and
lets him or her accurately add any missing polygons as explained in
Section 6.3. Please note that no reprojection of images was applied
during the modeling process of the objects displayed in Figure 18.

7.3.2 Manufacturing. Precise reconstructions with low face
count are of interest to applications beyond architecture, in par-
ticular to manufacturing. Simple production patterns are valu-
able, e.g. for upfolding planar cut patterns from paper or sheet
metal. We shortly outline here how to implement the reverse op-
eration to upfolding in our pipeline to generate production data.

Fig. 13. A paper model of Town Hall.

Unfolding a polyhedron
to a planar, connected
shape without any self-
intersections by only
cutting along edges is a
well surveyed research
area (cf. [Demaine
and O’Rourke 2007]).
Interestingly, it is still
unknown if any convex
polyhedron allows such
an edge-unfolding,
whereas it is known that
there exist non-convex
polyhedra where this is
not possible. Basically,
the solution space for

a given mesh is given by all spanning trees of the mesh’s face
dual. By relaxing the constraints and requesting not a single but a
small number of connected components, we determine a feasible
spanning tree by heuristically searching the solution space. An
example of a folded paper version of the town hall model is shown
in Figure 13.

Fig. 14. By design, the reconstructed models offer the generation of shape
variations by exploiting the underlying adjacency graph.

7.3.3 Advanced editing. Besides the modeling features intro-
duced in Section 6, our models offer (by using the underlying ad-
jacency graph) further editing possibilities to create different looks
of reconstructed shapes: The user selects a single face of a chimney
and applies an affine transformation to it. The connected compo-
nent of the adjacency graph (containing the chimney’s transformed
face) undergoes the same affine transformation and the optimiza-
tion is applied to reestablish a closed model (see Figure 14). While
our main task is still reconstruction from point clouds, our pipeline
leads to interesting ways for shape manipulation. Although having
different objectives, the idea of optimization coupled editing has
been extensively studied in the shape manipulation framework in-
troduced by Gal et al. [2009].

7.4 Evaluation

To evaluate our method, we compared the visual quality of the mod-
els generated using our system and various other mesh reconstruc-
tion and decimation algorithms, performed a test to validate the
accuracy of our results compared to using an existing interactive
tool, and conducted a user study with non-expert users to show the
ease of use of our method.

7.4.1 Comparison with meshing methods. To evaluate the vi-
sual quality of our reconstructions, we applied our method and var-
ious other meshing techniques to the laser scan of the Church of
Lans le Villard (Figure 15 top left). Figure 15 compares the dif-
ferent approaches: MeshLab’s [2008] implementation of Poisson
Surface Reconstruction [Kazhdan et al. 2006] (top right), Salman
et al.’s feature-preserving mesh generation [2010] (middle left),
the latter method followed by Graphite’s [2010] implementation
of geometry segmentation [Cohen-Steiner et al. 2004] (middle left,
small image), and the same model with quadric-based mesh deci-
mation [Garland and Heckbert 1997] applied to each segment with
fixed boundary, for which we used MeshLab [2008] again (middle
right). The third row shows the results of our reconstruction and
modeling pipeline.

7.4.2 Accuracy comparison. We used our system and a com-
mercial point-based modeling tool, the Pointools plugin for
SketchUp [2011], on a point cloud sampled from a synthetic house
model. Noise was added to sample positions in the amount of 0.5%
of the bounding box diagonal. Modeling was performed by a skilled
artist, who was instructed to create the most accurate model possi-
ble in the two tools, both of which he had used before. There were
no time constraints. After completion the artist reported to be con-
fident having created perfectly accurate models in both tools, but
also that he needed considerably more time and patience for mod-
eling in Pointools. In order to quantify this feedback, we compared
Hausdorff distances for each result to the original synthetic model
(measured using the Metro tool [Cignoni et al. 1996]), and model-
ing times (see Table I). The results indicate that our method outper-
forms the commercial tool in terms of accuracy and modeling time.
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Fig. 15. Top left: Input point cloud (provided courtesy of INPG by the
AIM@SHAPE Shape Repository) downsampled to 10% of the original data
set. Top right: Meshed Poisson implicit function [Kazhdan et al. 2006] (41k
triangles). Middle left: Feature-preserving mesh [Salman et al. 2010] pro-
vided courtesy of the authors (18k triangles). Middle left, small: Segmen-
tation of the latter mesh [Cohen-Steiner et al. 2004]. Middle right: Mesh
obtained by applying quadric-based simplification to the segments [Gar-
land and Heckbert 1997] (1k triangles). Bottom row: Initial automatic re-
construction of our method (43 polygons, 289 triangles used for rendering)
and final refined model after additional 15 minutes of optimization-aided
modeling (174 polygons, 109 of them for the windows, 799 triangles used
for rendering).

Table I. Comparison of modeling times and
approximation errors (color coded in Figure 16) relative

to the model’s bounding box diagonal.
Tool Duration Min Mean Max

O-Snap 6.2 minutes 0 0.000588 0.007794
Pointools 35.7 minutes 0 0.001433 0.009382

In addition to the Table I, see also Figure 16 for a visualization of
the approximation error.

7.4.3 User study. In order to verify our tool’s general usabil-
ity for non-expert users, we performed an informal user study. All
participants had never used the tool before and received the same
ten minutes hands-on introduction. Each user had to complete three
separate O-Snap sessions. Since not all candidates had a computer
graphics or modeling background, we only gave the general direc-
tive to create a good-looking model. We stopped each session as
soon as the user reached a closed model without major deficien-

Fig. 16. Point cloud with artificial noise (top left) sampled from a syn-
thetic model (bottom left). Results from O-Snap (middle) and Pointools
(right), colored according to approximation error, with blue meaning zero
Hausdorff distance, and red high distance, respectively. Note that with O-
Snap, the overall building structure is recreated very accurately. Errors
mainly appear at sparsely sampled child elements (e.g., windows), espe-
cially at their side faces, which currently do not consider the point cloud at
all.

cies. A time-stamped log file of all user interactions was generated
for each session (see Figure 17).

Session Data Set
Initial Duration

Reconstruction Ø, (min-max)
1 Town Hall available 3.7 minutes (1-6)
2 Town Hall no 6.8 minutes (5-9)
3 Old Church available 13.1 minutes (6-20)

Session 1 is based on the simple town hall model shown in Fig-
ure 18 (top row). Here the initial reconstruction (RANSAC, Sec-
tions 4 and 5) is almost perfect, and users only have to add a miss-
ing back wall and fine-tune some faces. An average user solves this
task in three minutes. Session 2 is equivalent to 1, but without the
polygonalization step (Section 4). Users have to manually sketch
all the polygons on the underlying segment planes (Section 4.1.1),
and are aided by interactive optimization (Section 5), which takes
seven minutes on average. We conclude that fine-tuning our auto-
matic pipeline results is about twice as efficient than sketching all
the polygons from scratch. On the other hand, the interactive opti-
mization allows a novice user to create a model from scratch in still
acceptable time. Finally, Session 3 challenges users with a complex
church model, shown in Figure 18 (second row). The initial model
contains misaligned faces and some parts are missing, but all users
were able to deal with the high geometric complexity and success-
fully create a closed model in only 13 minutes on average.

General observations. Users who spend more than average
time consistently try to model ever smaller details or extrapolate
building parts not contained in the original data. All users are able
to quickly recover from erroneous modeling actions using undo or
by deleting incorrect shapes. No user was ever genuinely lost or
stuck. An unexpected but useful observation is that users who man-
age to accidentally sketch a polygon inside a wrong plane, consis-
tently try to flip this polygon over to the correct plane. Currently
such an operation is not supported, but it seems to be expected in-
tuitively, which is an inspiration for future work.

Our main conclusion is that non-expert users are perfectly capa-
ble of understanding and applying O-Snap’s modeling tools after
only ten minutes of basic introduction. Even participants without
any prior CG and modeling experience are able to create shapes of
buildings, aligned with the underlying point cloud data.
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Fig. 17. All modeling sessions of our informal user study. Each of the 15 horizontal bars represents the timeline of a single session. Each user interaction has
been logged and timestamped. Different colors represent different kinds of interaction. Session 1 shows mostly vertex actions (move, add, delete) as results
from the automatic pipeline are fine-tuned. Session 2 consists mostly of polygon sketching because no initial model is available. Session 3 is based on a
complicated church data set. This takes more time, but all users are able to create a clean model. Participants: A has basic computer graphics skills. B and E
are researchers in real-time rendering. C is a skilled user of commercial modeling software. D has absolutely no computer science and graphics background.

Comparison with Pointools. We compared the effectiveness
of our system to an existing commercial tool by instructing the user
study participant with the most experience in 3D modeling to cre-
ate models of town hall and old church using Pointools (please see
the accompanying video). A time limit of 30 minutes per scene was
stipulated. The candidate was already familiar with the tool. While
he succeeded in modeling the town hall in about 12 minutes (as
compared to 5 minutes using O-Snap, see Figure 17, C), he had
severe problems handling the more complex church model. Choos-
ing appropriate points in the point cloud to construct the building’s
outline as well as to draw faces on top of the extruded outline con-
sumed much of the available time. At the end of the 30 minutes
time limit, he ended up with an incomplete model. Using O-Snap
he was able to successfully complete the same task in about 10
minutes.

We conclude that a Pointools-like approach is very well suited
for quickly creating simple axis-aligned models, but becomes te-
dious for more complex or incomplete (real-world) data sets. The
recommended approach of ground plane-based extrusion of build-
ing outlines results in additional effort and inaccuracies, since many
architectural elements cannot be captured by simple extrusion and
have to be fixed manually.

In contrast, O-Snap’s concept of sketching in 2D (on planes au-
tomatically fitted to the underlying point cloud) is more in line with
an artist’s workflow. It also strongly supports the comprehension of
complex data sets by removing the effort required to extract geo-
metric meaning from raw point data.

8. CONCLUSION

We presented an interactive 3D modeling system that leverages
techniques from mathematical optimization to provide a novel way
of user-guided reconstruction and modeling of architectural scenes.
The system first proposes an initial automatic reconstruction from
an unstructured point cloud, by extracting candidate planes and
estimating coarse polygons on these planes. Local feasible adja-
cency relations between polygons are automatically computed and
enforced to align (snap) different parts of the model, while main-
taining a fit to the input data. Besides these local relations, the sys-
tem also favors orthogonality. In an interactive modeling phase, the
model can be refined using coarse strokes on 2D planes. After each
step, snapping reestablishes a watertight model where feasible.

8.1 Limitations and Future Work

Since many man-made objects, and especially buildings, consist of
planar surfaces, we solely used planes in our reconstruction and
modeling pipeline. In practice, this already allows handling a wide
range of architectural styles by approximating curved surfaces in
the scene by planes (see the cylindrical and conical parts of the
model approximated by a number of planes in Figure 15 bottom
right). However, our method is not limited to planes and can sup-
port other shapes by extending our matching definition and defin-
ing appropriate modeling spaces, which is an inspiration for future
work.

In order to keep our matching and pruning definition simple, we
allowed a few restrictions: (1) skew edges aren’t matched, and (2)
vertex-face matches aren’t pruned. The edge-edge matching defini-
tion and the extended matching graph can be revised to overcome
these restrictions, but we didn’t observe any cases in our data sets
where this would be necessary.

The robustness of the boundary extraction algorithm can suffer
from non-uniformly sampled segments. Even though we have not
observed this known limitation of alpha shapes in our data sets, one
could use conformal alpha shapes [Cazals et al. 2005], which em-
ploy a local scale parameter (instead of the global α) to reconstruct
non-uniformly sampled surfaces.

Currently, our system does not investigate repetitive structures
(e.g. balconies, windows on a facade), but these structures can ef-
ficiently be modeled through our optimization-aided hierarchy op-
eration. However, we plan to extend our system to analyze regular
structures as proposed by Pauly et al. [2008].

Our novel modeling system differs significantly from other 3D
modeling techniques through its interactive coupling with the op-
timization routines. Currently, we are performing more extensive
user studies to learn more about expectations of O-Snap’s users.

ACKNOWLEDGMENTS
We wish to express our thanks to the reviewers for their insightful
comments, and to the user study participants for their efforts and
valuable feedback. We also thank Mariette Yvinec for providing us
with the output mesh of their algorithm for the Church of Lans le
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optimization [2008]).

we generated the data sets used in the paper), we thank Sudipta
Sinha (mountain house, playhouse), Rainer Brechtken (old church)
and Strecha et al. [2008] (castle-P19). We also acknowledge the
Aim@Shape Shape Repository for the laser scan of the Church of
Lans le Villard.

This work was partially supported by the Austrian Research Pro-
motion Agency (FFG) through the FIT-IT project “Terapoints”,
project no. 825842. The competence center VRVis is funded by
BMVIT, BMWFJ, and City of Vienna (ZIT) within the scope of
COMET – Competence Centers for Excellent Technologies. The
program COMET is managed by FFG.

REFERENCES

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN, M. 2007.
Voronoi-based variational reconstruction of unoriented point sets. In Pro-
ceedings of the fifth Eurographics symposium on Geometry processing.
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 39–
48.

ATKINSON, A. C. AND RIANI, M. 2000. Robust Diagnostic Regression
Analysis. Springer-Verlag.

AVRON, H., SHARF, A., GREIF, C., AND COHEN-OR, D. 2010. `1-sparse
reconstruction of sharp point set surfaces. ACM Trans. Graph. 29, 135:1–
135:12.

BOISSONNAT, J.-D. AND OUDOT, S. 2005. Provably good sampling and
meshing of surfaces. Graph. Models 67, 405–451.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006. Primo:
coupled prisms for intuitive surface modeling. In Proceedings of the
fourth Eurographics symposium on Geometry processing. 11–20.

CAZALS, F., GIESEN, J., PAULY, M., AND ZOMORODIAN, A. 2005. Con-
formal alpha shapes. Proceedings Eurographics/IEEE VGTC Symposium
Point-Based Graphics 0, 55–61.

CHEN, J. AND CHEN, B. 2008. Architectural modeling from sparsely
scanned range data. IJCV 78, 2-3, 223–236.

CIGNONI, P., CORSINI, M., AND RANZUGLIA, G. 2008. Meshlab: an
open-source 3d mesh processing system.

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1996. Metro: measuring
error on simplified surfaces. Tech. rep., Paris, France.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational
shape approximation. ACM Trans. Graph. 23, 905–914.

DAVIS, T. A. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multi-
threaded rank-revealing sparse QR factorization. ACM Transactions on
Mathematical Software 38, 1.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and
rendering architecture from photographs: a hybrid geometry- and image-
based approach. In Proceedings of SIGGRAPH 96. 11–20.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



O-Snap: Optimization-Based Snapping for Modeling Architecture • 15

DEMAINE, E. AND O’ROURKE, J. 2007. Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge University Press.
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