FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Real-time Ray Tracing on the GPU

Ray Tracing using CUDA and kD-Trees

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing
eingereicht von

Gunther Voglsam
Matrikelnummer 9955844

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Dr. Robert F. Tobler

Wien, 29.04.2013

(Unterschrift Ginther Voglsam) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Real-time Ray Tracing on the GPU

Ray Tracing using CUDA and kD-Trees

MASTER'’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Gunther Voglsam
Registration Number 9955844

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Dr. Robert F. Tobler

Vienna, 29.04.2013

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Glinther Voglsam
Hubertusstrasse 7, 4470 Enns

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Glnther Voglsam)

Acknowledgements

I want to thank Michael Wimmer at the Institute of Computergraphics and Algorithms for his
support for the thesis, as well as the members of the VRVis Forschungs-GmbH for making this
thesis happen in such a pleasant environment. At the VRVis I want to say special thanks to
Robert F. Tobler, Michael Schwirzler and Christian Luksch for all their support and the numer-
ous discussions we had.

I also want to thank the Faculty of Computer Science at the Vienna University of Technology
for the financial support to acquire the needed hardware to make this thesis happen.

Finally I’d like to thank my colleagues from the Computer Graphics Club for all the inter-
esting discussions and their friendship.

iii

Abstract

In computer graphics, ray tracing is a well-known image generation algorithm which exists
since the late 1970s. Ray tracing is typically known as an offline algorithm, which means that
the image generation process takes several seconds to minutes or even hours or days.

In this thesis I present a ray tracer which runs in real-time. Real-time in terms of computer
graphics means that 60 or more images per second (frames per second, FPS) are created. To
achieve such frame rates, the ray tracer runs completely on the graphics card (GPU). This is
possible by making use of Nvidia’s CUDA-APIL. With CUDA, it is possible to program the
processor of a graphics card similar to a processor of a CPU. This way, the computational power
of a graphics card can be fully utilized. A crucial part of any ray tracer is the acceleration data
structure (ADS) used. The ADS is needed to efficiently search in geometric space. In this thesis,
two variants of so called kD-Trees have been implemented. A kD-Tree is a binary tree, which
divides at each node a given geometric space into two halves using an axis aligned splitting
plane.

Furthermore, a CUDA library for the rendering engine Aardvark, which is the in-house
rendering engine at the VRVis Research Center, was developed to access CUDA functionality
from within Aardvark in an easy and convenient way.

The ray tracer is part of a current software project called “HILITE” at the VRVis Research
Center.

Kurzfassung

Die Strahlen-Verfolgung (,,Ray-Tracing®) ist ein Verfahren zur Berechnung von Bildern, dass
seit den spéten 1970er-Jahren bekannt ist. Dieses Verfahren ist typischerweise ein so genann-
ter ,,off-line* Algorithmus, was bedeutet, dass die Berechnung fiir ein Bild zwischen mehreren
Sekunden oder Minuten bis hin zu mehreren Stunden oder gar Tagen bendétigen kann.

Im Zuge dieser Diplomarbeit wurde ein Programm zur Strahlen-Verfolgung (,,Raytracer*)
entwickelt, der die Erzeugung von Bildern in Echtzeit ermdglicht. ,,Echtzeit* im Sinne der
Computer-Graphik bedeutet dabei, 60 oder mehr Bilder pro Sekunde berechnen und anzeigen zu
konnen. Um solch hohe Bilderzeugungsraten erreichen zu konnen, wird der Raytracer komplett
auf der Graphikkarte (GPU) ausgefiihrt. Ermdglicht wird dies durch verwenden der Technolo-
gie CUDA. CUDA wurde vom Graphikkarten-Hersteller Nvidia entwickelt und erlaubt es, den
Prozessor einer Graphikkarte in dhnlicher Art und Weise zu programmieren wie den einer CPU.
Damit ist es moglich, die volle Rechenleistung einer Graphikkarte auszunutzen. Ein wichtiger
Teil eines Raytracers sind dessen Beschleunigungsdatenstrukturen. Diese werden verwendet,
um das Aufsuchen von Objekten im geometrischen Raum zu beschleunigen. In dieser Diplom-
arbeit wurden so genannte kD-Bdume in zwei unterschiedlichen Varianten implementiert. Ein
kD-Baum ist ein bindrer Baum, bei dem jeder Knoten einen gegebenen geometrischen Raum
durch achsparallele Ebenen in zwei Unterrdume teilt.

Zusitzlich wurde fiir die Programmierung des Raytracers eine CUDA Bibliothek fiir ,,Aard-
vark* entwickelt. Aardvark ist die hauseigene Rendering-Engine des VRVis Forschungs-GmbH.
Die Bibliothek erlaubt es, CUDA-Funktionalitét innerhalb von Aardvark ohne grof3en Initialauf-
wand verwenden zu kénnen.

Der Raytracer ist Teil eines groeren Software-Projekts namens ,,HILITE®, welches am VR-
Vis umgesetzt wird.

vii

For my grandfather

Albert Weichhart

1919 - 2012

(I_Introduction|

1.1 About Ray Tracing|

Contents

|1.2 Programmable Graphics Hardware and Ray Tracing|

[1.4.1 CUDA Library|

1.4.2 CUDA Ray tracer|

[1.4.4 Anew debugging Method| 000

[1.4.5 Presentation of Algorithms forthe GPU|

[2.1 'The Rendering Equation|

1T BRDEBTDEBSDH

[2.1.2 Solution Attempts of the Rendering Equation|

[2.2 Light Transport Notation|

|3 Background and Related Work|

[3.1 Acceleration Data Structures for Ray Tracing|

[3.1.6 Divide-and-Conquer Schemes|

[3.1.7 Spliting Strategies|

32 CUDAI. . . o e

3.2.1 Motivation for General Purpose Programming on Graphics Hardware| .

3.2.2 CUDA|

I = N, L, B N U R

11
12
14
14
14
16

23
23
23
23
24
31
32
32
34
39

39
46

X1

|4 Ray Tracing on the GPU|

1

Advent of Real-Time Ray Tracing|

75

Iterative Ray Tracing|

3

Parallel Ray Tracing|,

5.2.1 Management|
5.2.2 Built-In Data-Types|
5.2.3 Graphics-Resource Sharing|,

4 Examples|

[CUDA Ray Tracer]

6.1 OVerviewl

6.2

Program Flow|

6.3

The CUDA Ray Tracing Kernell

Xii

49
49
51
51
53
53
53
55
55
56

57
57
58
58
63
64
65
65

67
67
68
68
69
70
72
74
74

77
77
77
83
&3

89
89
90

93

CHAPTER

Introduction

1.1 About Ray Tracing

Ray tracing is one of the classic rendering algorithms. It arose already in the late 1970s. Ray
tracing simulates the transport of light in a scene by shooting rays of light from the eye-point
into the scene. Those rays are then intersected with the scene objects. If a ray hits a surface
which is reflective like a mirror, the ray bounces off the surface and the path of the ray is further
traced. Moreover, if a ray hits an object made of a transparent material, the ray gets refracted
and is traced through this transparent object. However, when the ray hits an object with diffuse
material or no object at all, the tracing of the ray stops. Figure[I.2] shows the basic ray-tracing
scheme and Figure |1.1| shows a typical example of a ray-traced image. The strength of ray
tracing is that it can generate images with correct reflection and correct refraction, as well as
correct hard shadows, with relatively low programming effort in contrast to rasterization (see
below). The basic ray-tracing algorithm is described in detail in Section[2.3]and throughout the
thesis, various properties are discussed with particular attention paid to real-time ray tracing.

Figure 1.1: Example ray tracing image. ||

Eye Image Plane Scene Objects Light Source

&

- diffuse Material
Bl specular Material

[transparent Material

Figure 1.2: Ray-tracing scheme. Light rays are traced from the eye-point into the scene through
each pixel. The rays are intersected with the objects in the scene and if the object’s material is
either reflecting or transparent, one or more follow-up rays are traced.

As opposed to ray tracing, rasterization has been the dominant rendering algorithm for sev-
eral decades. In order to generate an image using rasterization, the whole scene geometry is
projected onto the image plane. For each pixel, it is determined which polygon covers the space
of the pixel. To ensure that polygons farther away do not overwrite pixels of polygons nearer to
the image plane, a depth buffer is maintained. The depth buffer stores for each pixel the distance
of the polygon currently drawn at this pixel. Using a depth test, the polygons which are farther
away than the one at the corresponding location in the depth buffer are discarded, and therefore
only the polygons nearest to the image plane are drawn.

Graphics cards are highly optimized for rendering using rasterization. However, dealing with
rasterization becomes tricky when images with a realistic look are desired. Therefore, several
extension algorithms have been invented to render effects like shadows, reflection, refraction,
depth-of-field and others. These algorithms are usually either hard to implement, computation-
ally expensive or do not meet the desired image quality because of algorithmic simplifications.
Many of those effects like correct reflection and refraction as well as hard shadows, however,
come naturally with the ray-tracing algorithm, and other effects can be implemented into a ray
tracer without much effort.

1.2 Programmable Graphics Hardware and Ray Tracing

Looking at the evolution of graphics cards during the last decade, they became more and more
flexible and programmable. Instead of using only a hard-wired pipeline for rendering images, the
so-called fixed function pipeline, nowadays this pipeline can be programmed at several stages.
This flexibility eventually led to the point where graphics cards were fully programmable. Five
years ago, the graphics cards vendor Nvidia supplied an API called CUDA for accessing their
fully programmable hardware to make use of the computational power of these graphics cards
for other purposes than rendering using rasterization.

The original purpose of graphics cards was calculating a color for each pixel on the screen.
This can be done in a parallel manner, and, due to this fact, graphics cards are highly parallel pro-
cessors. Also, ray tracing can be calculated in parallel by many independent threads or proces-
sors. Hence, calculating ray-traced images on those fully programmable graphics cards instead
on CPUs became an interesting topic. However, the hardware architecture of graphics cards was
not perfectly suited for ray tracing, mainly because random memory accesses were comparably
slow in graphics memory as opposed to CPU-RAM. Latest graphics cards generations try to
remedy this drawback by implementing faster memory access and a cache hierarchy [[Cool0].

Depending on the complexity of the scene, a ray-traced image can take from a few seconds or
minutes, up to several hours or even more to render. In computer graphics, the term “real-time”
usually refers to a frequency of 60 or more images per second, each of which has to be generated
by the application. The frequency at which the images can be generated is called the frame rate.
It is often expressed in frames per second (FPS). Even on a modern high-end computer, it is
very hard to achieve such high frame rates using the CPU to ray trace an image. But when
exploiting the computational power of modern, massively parallel GPUs, these frame rates can
become possible. However, this still depends highly on the complexity of the scene and the

3

concrete implementation, as well as on the used acceleration structures and other optimizations
(see Chapter [3.1), but real-time ray tracing is possible nowadays.

1.3 Aim of the Thesis

This thesis is part of the HILITE project [Gmb] at the VRVis Forschungs-GmbH. The aim
of this project is to give a highly realistic, interactively modifiable preview of the illumina-
tion of architectural scenes. The main lighting computations are done using advanced raster-
ization techniques like GPU-based light simulation using lightmaps, together with a photon
simulation done on the CPU. Since reflections are view-dependent and the application is in-
teractive, correct reflections cannot be precalculated when moving through the scene. Sev-
eral attempts have been made to render correct reflections on curved surfaces with rasteriza-
tion [EMD™05]] [EMDTO6] [RHO06|]. All these methods, however, are either not accurate enough,
can not handle concave geometry or can not handle 2"-order reflections. Therefore, a real-time
ray tracer was needed. The idea was to integrate the ray tracer into the rasterization-based
algorithms to form a hybrid rendering system. Attempts for hybrid rendering systems as a com-
bination of rasterization and ray tracing have been done already by Beister et al. [MBOS5] and
Cabeleira [Cab10]. Both utilized the rasterization algorithm on the GPU to generate an image
and enhanced it with a ray tracer running on the CPU, which is in both cases only capable of
creating first-hit reflections and refractions.

The goal of this thesis was to realize a ray tracer on the GPU which is capable of running
at interactive to real-time frame rates. The implementation of the whole ray tracer on the GPU
led to several challenging tasks. The first one is that the GPU can run many (up to thousands) of
threads in parallel, which made new designs of the implemented algorithms necessary. Further-
more, recursion was not or not sufficiently supported at the time of implementing the ray tracer.
This required iterative solutions. Finally, the development tools for GPU programming are not
that advanced yet as they are for the CPU. Hence, the lack of debugging possibilities made it
hard to debug a bigger program running entirely on the GPU. Solutions for that are presented in
Section

As a prerequisite to implementing a GPU ray tracer, a library for accessing the GPU com-
puting capabilities from within the VRVis-internal rendering engine Aardvark was needed. The
goal was further to provide easy, high-level access to CUDA through this library. Based on this
CUDA library, a CUDA ray tracer has been developed. It was designed in such a way that it can
be used from within any Aardvark application. Furthermore, since the ray tracer should be able
to integrate into the main program of the HILITE project, the HILITE-Viewer, an interface and
data conversion should be provided by the ray tracer, which proved to be a demanding task. The
CUDA library will be described in detail in Chapter[5|and the CUDA ray tracer in Chapter [6]

1.4 Contributions

This thesis has two contributions of a more practical nature and three contributions which can
be called scientific. They will be summarized in this section.

4

1.4.1 CUDA Library

The first contribution is a CUDA library developed for the VRVis-internal rendering engine
Aardvark. Aardvark is used as a base framework for many scientific projects. The CUDA
library now makes it possible to utilize the power of GPU computing for various projects. One
of those projects is the CUDA ray tracer, which was also developed for this thesis (see next
contribution).

The CUDA library provides access to CUDA-functionality on a high level of abstraction
from within Aardvark, which is written in C#. The library is explained in detail in Chapter [5]
The most important features of the library are:

Management of CUDA-Context, -Device, -Modules and -Functions: By using the library,
CUDA contexts can be created easily as well as modules and functions can be loaded in a
convenient way.

Memory manager: The CUDA resources are managed with a memory manager, which
automatically cleans up unused resources on the GPU.

Data types: Ready-to-use data types for arrays and struct-like data are provided. Those
data types can be worked with as with normal C#-data types and are automatically made
available for inside a CUDA kernel. Page-locked arrays are supported too.

Simple kernel launch: The launch of a CUDA kernel can be done almost as simple as
calling any C#-function.

Graphics resource sharing: DirectX graphics resources, like textures and buffers, can be
shared with CUDA. Functionality for sharing of OpenGL resources can be added with
very little effort as well.

Full support for CUDA-Streams, CUDA-Events and -Timers, and so on. Almost every
feature of the CUDA API 3.x is available via the CUDA library.

1.4.2 CUDA Ray tracer

The second contribution is the CUDA ray tracer itself. It is called CURA and utilizes the CUDA
library. CURA will be described in detail in Chapter[6] Some of the features are:

A ray tracer which runs completely on the GPU, so the CPU is free for other tasks.
Real-time to interactive frame rates, depending on the scene complexity.
The ray tracer uses kD-Trees in two variants:

— Object-kD-Tree: One kD-Tree per scene object.

— Uber-kD-Tree: One kD-Tree for the whole scene. The leaves of this tree are the
Object-kD-Trees.

Both are described in Sections[6.4] and [7.3]

e The main purpose of the ray tracer is to render static scenes, however, scene updates and
hence animations are supported as well.

e The used graphics resources are shared between CUDA and Direct X for efficient render-
ing.

e Fully configurable at runtime.

e Since the implemented ray tracer can be used by any Aardvark application, CURA serves
as an example on how to use the CUDA ray tracer inside Aardvark projects.

o Last but not least, the ray tracer has already been built into the HILITE-Viewer by another
student concurrently to writing this thesis.

1.4.3 Uber-kD-Tree

One of our contributions is a new data structure which we call the Uber-kD-Tree. It is a kD-Tree
with kD-Trees in its leaves. The leaf kD-Trees are kd-Trees per geometrical object and we call
them Object-kD-Tree. The main reason why we developed this data structure is that in the final
application, the HILITE-Viewer, objects need to be added and deleted interactively at runtime.
To spare costly rebuilds of data structures in case of an addition or deletion of an object, just the
usually small Uber-kD-Tree needs to be rebuilt, which can be done quite fast.

The Uber-kD-Tree is described in Section details on the implementation are given in
Section [6.4] and results using this data structure are presented in Section

1.4.4 A new debugging Method

Debugging kD-Trees is hard, and it is even harder when they are implemented on the GPU, for
several reasons. First, on the GPU a kD-Tree or any other data structure is “flattened” to an array
and uses indices as pointers between the nodes. This makes traversing the data structure harder
because indices, which also encode leaves, have to be processed. Second, recursive function
calls are nowadays supported on GPUs, but slow. Hence, iterative methods have to be used
which leads in turn to several special cases which occur only seldom.

Since GPU debugging capabilities are still limited, the only way to debug such code is to
rewrite the GPU code for the CPU and debug it there. However, an image to be rendered consists
of a few-thousand to a few-million pixels and only some of them exhibit erroneous results. For
this reason it is not possible nor necessary to debug the complete rendering of the whole image.

As a solution to this, I introduced the so-called “debug pixel”. It is one pixel fixed on the
screen for which debugging can be triggered on the CPU. When moving around with the camera
in the scene, one can point the debug pixel to a pixel which shows a wrong result and trigger
debugging for this pixel only. This way, special cases can be debugged well.

The debug method is further described in Section[6.6]

1.4.5 Presentation of Algorithms for the GPU

There are several papers released which deal with real-time ray tracing on the GPU. However,
it is hard to find information on complete algorithms for GPUs, especially iterative and parallel
versions of the ray tracing algorithm for CUDA, as well as several techniques for the traversal
of kD-Trees. For this reason, Chapter 4] describes and summarizes the complete algorithms for
iterative and parallel ray tracing for GPUs and several traversal methods for GPUs for kD-Trees.

CHAPTER
Theory

In this chapter, the theoretical foundations for generating an image from virtual scenes are ex-
plained. First, the rendering equation is introduced. Ray tracing provides a partial solution to
the rendering equation. Later on, an overview is given on how to model properties of materials
before presenting methods of practical solutions of the rendering equation. For the classification
of rendering algorithms, the light transport notation is presented. Finally, the basic ray-tracing
algorithm is explained in detail in the last section of this chapter.

2.1 The Rendering Equation

In order to generate realistic-looking images, the propagation of light in a scene has to be cal-
culated. The rendering equation is a mathematical formulation of how light disperses in a scene
and can be used to classify diverse rendering algorithms, depending on which parts of the render-
ing equation the algorithms can solve, approximate or which parts are omitted. The rendering
equation was published simultaneously by Kajiya [[Kaj86] and Immel et al. [ICG86] in 1986.
Equation [2.1]shows the original Kajiya version.

I(z,2') = g(z,2) [e(z,2') + /p(:c,m’,:c”)](:v',:c”) da"]. 2.1
S

where
I(x,2') is the intensity of light passed from point 2’ to point x,

g(x,2') is a geometry term which encodes the occlusion between the two points,
€(x, x") is the emitted light from point 2’ to x,
S is the union of all surfaces in the scene and

p(x,x’, 2") is the intensity of the light scattered from x” to x via 2. p is the BRDF.

The alternative and nowadays more common form of the rendering equation from Immel et
al. [ICG86] is as follows:

Lo(pywo) = LE(p7 wo) + Ls(p; wo)- (2.2)

where
Ly(p,w,) is the outgoing radiance from point p in the direction of w,,

L¢(p,w,) is the emitted radiance from point p in the direction of w, and

Ls(p,w,) is the scattered radiance from p in the direction of w,.

L itself can be expanded to

La(pws) = / (s 5> wo) Li(ps i) cost de. 2.3)
Q

where
() is the hemisphere of the incoming radiance,

p(p,wi,w,) is the amount of the reflected radiance at point p for incoming radiance with
angle w; and outgoing radiance with angle w,. This is the BRDF.

L;(p,w;) is the incoming radiance at point p from direction w;. It can also be seen as the
outgoing radiance from a point p’ with angle —w;, thus L;(p,w;) = Lo(p’, —w;). This is in turn
the same as the first hit of a ray from the point p in the direction wj. It is usually expressed by
the visibility function h with p’ = h(p, —w;), which then gives L,(p', —w;) = Lo(h(p, —w;), w;)
(see Figure [2.1] left) [Las99].

cos 0 corresponds to the geometric term from Kajiya’s rendering equation. 6 is the angle of
incident, which is the angle between the surface normal at point p and the incoming radiance.
Thus, if the angle increases, the available energy is distributed over a greater area, decreasing
the amount of energy per unit area (see Figure right).

It is hard to solve the rendering equation analytically. One problem is the recursion. Every
incoming radiance L; at point p is the L, of another point p/, which in term has other incoming
L;’s of other points p”, and so on. Because of the law of conservation of energy, no additional
energy can be produced or emitted at a recursion level, but energy can be absorbed by the
material. This means that the deeper the level of recursion, the lower the available energy, and
thus the contribution to the final image is also comparatively small. Some rendering algorithms
therefore stop the recursion either at a fixed maximum level, or if the energy of a recursion level
is below a certain threshold.

Another problem is that the integral over the hemisphere () has infinitely many incoming
directions. This is the reason why the hemisphere can only be approximated by sampling.

10

— e

Figure 2.1: Left: Incoming and outgoing radiance at point p from point p’. Right: C'os #-Term.
If the incident angle 6 increases, the amount of energy per unit area decreases. (Figures adapted
from [Gue08]].)

2.1.1 BRDF, BTDF, BSDF

BRDF is the abbreviation for bidirectional reflectance distribution function. It is used to describe
the reflection characteristics of a surface, i.e., it describes how incident light is scattered and
reflected. Since light can only be reflected into the upper hemisphere, the BRDF is defined only
for this region. Formally, the BRDF is a function which takes four parameters, the incoming and
outgoing directions in spherical coordinates (Equation [2.4). If the two-dimensional position on
a surface is included, the BRDF has six parameters, as in the rendering equation (Equation [2.1)).

Lo(wy)
Li(w;) cosb; dw;

BRDFs must fulfill several properties to be called physically plausible [Las99]. First, a
BRDF must satisfy the Helmholtz reciprocity, which means that the BRDF is symmetric with
regard to the incoming and outgoing directions:

p(wi,wy) = 2.4)

p(wi, wo) = plwe, wy). (2.5)
This property is important, because this allows ray tracing to be performed in the opposite

(backward) direction. Furthermore, a BRDF must satisfy the law of energy conservation. This
means that the reflected amount of light is less or equal to the incoming light:

/p(wi,wo) <1. (2.6)

Q
A BRDF for a material with perfect specular reflection reflects the light in one direction
only. If a material exhibits perfect diffuse reflection, light is scattered equally in all directions
into the upper hemisphere. Real-world materials, however, consist of a combination of diffuse
and specular reflection properties, like rough specular or directional diffuse materials (see Fig-
ure [2.2). To model realistic-looking surfaces, models can be created by measuring the behavior

11

—— i

ideal specular ideal diffuse
rough specular directional diffuse

Figure 2.2: Reflection and scattering. Ideal specular reflection reflects light only in one direction,
whereas an ideal diffuse surface scatters the incoming light equally in all directions. Real-
world materials, however, are a combination of both, like a rough specular or directional diffuse
material.

Lambertian Phong Oren-Nayar Cook-Torrance Anisotropic
Cook-Torrance

Figure 2.3: BRDF examples. Different analytical BRDF-models are shown. ||

of real materials under defined illumination. The results are then either stored in a table, or an
analytical model is created or fitted to the measured data. Some examples of analytical models
can be seen in Figure 2.3]

As stated above, BRDFs only describe the reflection into the upper hemisphere. Hence, for
transparent materials, the BTDF, the bidirectional transmittance distribution function, is defined
for the lower hemisphere (the backside, or interior) in a similar way. BRDF and BTDF form
finally together the BSDF, the bidirectional scattering distribution function.

2.1.2 Solution Attempts of the Rendering Equation

Since the rendering equation is hard to solve, several algorithms have been developed which
simplify the rendering problem and give only an approximate solution. They can be divided into

12

the following three groups [L4s99|:

o Local Illumination methods

The simplest way to solve the rendering equation is by only considering light coming di-
rectly from a light source and omitting the light reflected, refracted and scattered between
surfaces. Because only local properties of the material of the surface and the given light
source(s) are considered, this type of light is called direct light [Hec90]. Local illumina-
tion methods are usually simple and fast to calculate, however, due to simplifications of
the rendering equation, sacrificing realism of the resulting image.

e Recursive Ray tracing

Recursive ray tracing, also called visibility ray tracing, enhances the local illumination
model by allowing recursion of the rendering equation for perfectly reflective and refrac-
tive materials. To prevent infinite recursion, usually a maximum recursion depth is de-
fined. For recursive ray tracing, the rendering equation can be written as follows [Las99]:

Lo(p7 Wo) - LE(p7 wO) + /p(p7 Wi, wO) LLS(h(]?, _wz)vwz) 6039 dwz+
Q 2.7)

pr(pv Wy, wo) Lo<h(p7 _wr)a wr) + pt(ﬁa Wt, Wo) Lo(h(p7 _Wt)a Wt)-

where

Ly s is the incoming radiance from a light source,

wy and w; are the ideal directions for reflection and transparency, respectively, and
pr and p; are the BRDFs for reflection and transparency.

Hence, recursive ray tracing can handle materials with perfect reflection and refraction.
However, diffuse surfaces can still only handle direct light. To be able to also solve the
diffuse inter-reflection of surfaces, global illumination solutions are needed. Many of
those solutions use ray tracing as a basis for the algorithms. The ray tracing algorithm
will be described in detail in the following sections. In this thesis, we will describe the
implementation of a recursive ray tracer. However, it should be possible to use this ray
tracer also in global illumination solutions.

o Global Illumination solutions

In the real world, light bounces off from surfaces and reflects and refracts not only for
perfectly specular or transparent materials, but scatters in various directions, according
to the type of material. This further means that the illumination of a surface depends
also on the light bounced off from all other surfaces, the so called indirect light. Hence,
for properly solving the rendering equation, this scattering has to be considered as well.

13

Symbols Regular Expressions
L | Light Emission * 0-n
D | Diffuse reflection or refraction + I-n
S | Specular reflection or refraction || [] 0-1
E | Eye interaction | or
0 Precedence
Classification of some rendering algorithms
LDE Ray Casting
LD*E Radiosity
L[D|S*E Ray Tracing
L(D|S)*E Path Tracing; all possible light paths

Table 2.1: Light Transport Notation

Algorithms which are able to calculate indirect lighting are called global illumination al-
gorithms. Well known examples are radiosity, path tracing and photon tracing. Figure[2.4]
shows a comparison of the different solution attempts of the rendering equation. It can
be seen that the more physically correct a rendering solution is, the more time it takes to
compute the image.

2.2 Light Transport Notation

A convenient way to describe the capabilities of different rendering algorithms is to use the light
transport notation [Hec90]. With a small string, all possible paths of a ray or photon traversing
the scene can be described (see Table [2.T)). Letters describe the type of interaction. They can
be combined with symbols to form regular expressions. The capabilities of some well-known
rendering algorithms are also given in Table[2.1]

A path LD*E means that an algorithm is able to handle several bounces of rays or photons
between diffuse surfaces, like the classical radiosity algorithm does. All possible paths would
be described as L(D|S)*E, which means that there can be arbitrarily many diffuse or specular
bounces. Classic ray tracing can handle paths of the form L[D|S*E, which means that when
traced from the eye, there can be many (or none) specular reflections or refractions, but a maxi-
mum of only one diffuse bounce. Examples of possible paths are shown in Figure[2.5]

2.3 The Ray Tracing Algorithm

2.3.1 Overview

Ray tracing is a rendering algorithm which simulates the propagation of light in a scene. Ray
tracing can handle correct reflection and refraction as well as pixel-accurate hard shadows. By
implementing even more effects, like depth-of-field, motion blur and the like, ray tracing can
generate realistic-looking images for many types of scenes.

14

local illumination method local illumination method with shadow computation

recursive ray-tracing global illumination method

Figure 2.4: Comparison of different rendering solutions. The local illumination took 90 seconds
to render (95 seconds with shadows), the ray tracing image was computed in 135 seconds and
the global illumination solution took 9 hours for generating the image. [Las99]

15

Light Source

Eye

- diffuse Material
- specular Material

Figure 2.5: Light Transport Notation showing some possible light paths.

In light transport notation, ray tracing can handle paths of the form L[D]S*E. This means
when shooting a ray from the eye, the algorithm can simulate paths of light with multiple (or no)
ideal specular reflections until it hits a diffuse surface.

Originally, the light rays have been shot into the scene from the light source. The paths of
the rays through the scene have been followed until the eye was hit. However, only a few of
those rays hit the eye and so this approach was wasteful. Therefore, the direction of the rays has
been reversed and nowadays the rays are shot from the eye into the scene.

The basic version of the modern ray-tracing algorithm was published in 1979 by Turner
Whitted and is hence often called Whitted style ray tracing. In the following, the basic
ray-tracing algorithm as well as some extensions will be explained.

2.3.2 Basic Ray Tracing Algorithm

The basic Whitted ray-tracing algorithm is given in Algorithm [I] It starts with creating an eye
ray or primary ray for each pixel. The pixels lie in the image plane and therefore the origins
of all primary rays lie on this image plane. The exact position of the origins correspond to
the location of the pixels in world space. The direction of the primary rays point from the eye
position towards the pixel in the image plane (see Figure [2.6).

Then the tracing of the primary ray starts. The ray is intersected with the objects in the scene
and the nearest intersection, if any, is selected. The intersection of the rays with the objects in the
scene is the most time-consuming part of the ray tracing algorithm. In the original publication,

16

it consumed 95% of the total run time. Strategy on how to reduce unneccessary intersection
operations is therefore crucial for reasonable rendering performance for ray tracing. The chapter
on acceleration data structures (Chapter [3.1)) gives details about various strategies on how to
reduce those intersection tests.

If no hitpoint is found, the background color is returned and the calculations for this pixel
are finished. If a hit is recorded, shadow tests for all light sources are performed. For this, for
each light source a shadow ray is created. The origin of the shadow ray is the hitpoint of the
nearest intersection and the ray’s direction points towards a light source. If there is at least one
object between the hitpoint and light source, the hitpoint is in shadow with respect to this light
source. Thus, the hitpoint is not shaded with the given light source. When testing the shadow
ray for an intersection, the test can be terminated as soon as any intersection is found, which is
faster than looking for the closest intersection. The shadow test is done for all light sources in
the scene. If, however, the hitpoint is visible from a given light source, the hitpoint is shaded
with local shading techniques like Lambert or Phong shading.

The next step is to cast reflected rays, if the material at the hitpoint is specularly reflecting.
The origin of the reflected ray is the hitpoint. In ray tracing, all specularly reflecting materials
are ideal. This means that the outgoing direction of the reflection ray encloses the same angle
with the normal of the surface at the hitpoint as the incoming ray (see Figure left). Now
the tracing recursively starts again with the reflected ray as the ray to be processed. When the
tracing of this ray, and all rays possibly following due to other reflections or refractions, are
calculated, the tracing stops. There are two common ways to end the recursion of tracing rays.
One is to define a maximum recursion level and to stop the recursion when the maximum level
is reached. A maximum level of 2 usually gives already good results. The other way to end the
recursion would be a more physically-based one. As mentioned in Section[2.1] the radiance gets
lower with each bounce. Therefore, one can set a minimum threshold for the contribution and
stop the recursion if this threshold is reached.

For transparent materials, refraction rays are traced in a similar way as the reflection rays.
The main difference is that the direction for the refraction rays depends on the material proper-
ties, more precisely on the index-of-refraction of the material a ray enters and of the material the
ray is leaving (see Figure right).

After all reflection and refraction rays are traced, the final color for this pixel has been
calculated. What remains is to write the color into the output buffer. When a color for all pixels
is calculated, the algorithm has finished and the image can be displayed.

Ray Tree

When a ray hits a transparent object, this ray creates a reflection and a refraction ray. Hence,
at every intersection point, a maximum of two follow-up rays can be created. This can be
represented by a binary tree called a ray tree (see Figure[2.8)). The root is the primary ray, and if
this ray hits an object which has a reflecting surface, a reflection ray is created. If the surface is
also transparent, a refraction ray is created as well. In the ray tree, the left child is the reflection
ray and the right child the refraction ray [SufO7]. By looking at the ray tree it can be seen that
with the support for reflection and transparency, a single primary ray can create a deep tree of

17

Light Source

Image Plane
Eye
- diffuse Material —> Primary Ray ———— Shadow Ray
- specular Material ——~ SecundaryRay —-—— Occluded Shadow Ray

Figure 2.6: Basic ray tracing algorithm. Primary rays are sent from the eye through a pixel and
intersect the objects in the scene. If a specular material is hit, a reflected ray is created. Finally,
when a diffuse material is hit, the shadow rays are cast to test if the given hitpoint is in shadow.

—> Incoming Ray —_—

Incoming Ray
—> Reflected Ray ——> Refracted Ray

Figure 2.7: Left: Reflection. The outgoing angle is equal to the incident angle for perfectly
specular materials. Right: Refraction. The angle of the refracted ray depends on the material
properties of the inner and outer materials.

18

Algorithm 1 Basic Ray Tracing Algorithm (continued on next page)

1: procedure DORAYTRACING()

2 for each pixel (z,y)

3 primaryRay <~ CREATEPRIMRAY(z, y)
4 outputColor <— TRACE(primaryRay)
5: WRITEOUTPUT(z, y, outputColor)
6 end for each
7: end procedure
8

9

: function CREATEPRIMRAY(z, y)

10 origin < point on image plane at pixel (z, y)

11: direction < (pixel location in the world) - (eye-point position)
12: return Ray(origin, direction)

13: end function

14:

15: function TRACE(ray)

16: color < black

17: hit < INTERSECT(ray, scene)

18:

19: if hit then

20: color += SHADE(ray, hit Point)

21: if Material is reflective then

22: reflection Ray < Ray(hit Point, reflected(ray.direction))
23: color += TRACE(re flection Ray)

24: end if

25: if Material is transparent then

26: refractionRay < Ray(hit Point, refracted(ray.direction))
27: color += TRACE(re fraction Ray)

28: end if

29: else

30: color <— BackgroundColor

31: end if

32:

33: return color

34: end function

rays. Usually a maximum tree level is defined to stop the fan out of the tree and hence omit
further tracing.

Packet Traversal

The simplest way to trace rays is to trace one by one. However, nearby rays are likely to hit
similar objects. Hence, it would be beneficial to trace those rays together to utilize cached

19

Algorithm 1 Basic Ray Tracing Algorithm (continued from previous page)

35: function SHADE(ray, hit Point)

36: color < black

37:

38: for each light source

39: shadowRay <+ Ray(hit Point, (light source position — hit Point))

40: mShadow < CASTSHADOWRAY (shadow Ray)

41: if inShadow then — hitpoint is in shadow with respect to this light
source = do not shade hit Point with this light

42 continue

43: else

44: color += CALCULATELOCALSHADING()

45: end if

46: end for each

47:

48: return color

49: end function

r0

Eye

< 0

r2 3 t1

[diffuse Material — Primary Ray
[specular Material —> Reflection Ray

77 transparent Material — Refraction Ray

Figure 2.8: In the left image, a ray is traversed through the scene. The corresponding ray-tree
is shown on the right side. The tree is made up of the rays, starting by the primary ray. Each
intersection in the scene corresponds to an inner node of the tree.

memory access. This can be done using packet traversal. The main idea behind packet traversal
is to create a frustum of rays and trace them together. The frustum can be created by four
boundary rays which form a pyramid-styled frustum. These four rays, or all rays in this frustum
if there are other rays in it, can then be traced with SIMD (Single Instruction Multiple Data) on
CPUs. If one of the rays has already finished by having found the nearest intersection, this ray
has to be marked as inactive while the remaining rays of the frustum continue the traversal.

Packet traversal can gain considerable speedup for coherent rays. Primary rays are inherently

20

coherent and packet traversal pays off most for them. Secondary rays, like shadow, reflection
and refraction rays, are much less coherent and hence gain far less speedup.

21

CHAPTER

Background and Related Work

The first part of this chapter describes the most common acceleration data structures for ray trac-
ing. Since kD-Trees have been implemented in this thesis (see Section [6.4)), they are discussed
thoroughly. Because splitting strategies are important for the construction and the resulting qual-
ity of acceleration data structures, they are described as well. The second part of this chapter
presents Nvidia’s CUDA API in detail, paying attention to the software as well as the hardware
side of CUDA. After that, in the last part of this chapter, adaptations of the basic ray-tracing
algorithm, presented in Section [2.3] for parallel and GPU rendering are examined.

3.1 Acceleration Data Structures for Ray Tracing

3.1.1 Motivation

Ray tracing as it is known today was first published by Turner Whitted in 1979 [Whi80]. At
that time it was far from a real-time technology. The creation of images took minutes to several
hours, depending on the scene complexity and the screen size (Figure [3.I). Whitted observed
that his ray-tracing application spent about 95% of the rendering time with intersection tests.
Accordingly, strategies for reducing and eliminating unnecessary intersection tests have been de-
veloped. Those led to the invention of special data structures, called acceleration data structures
(ADS). They aim for efficiently culling those parts of the scene a given ray does not intersect.
By culling those parts, the computationally expensive ray-primitive intersection calculations can
be reduced and hence rendering time can be saved. The most important ADS will be discussed
in the following.

3.1.2 Brute Force

The simplest form of having an acceleration data structure is the absence of it. Hence, when
rendering an image, every ray has to be intersected with every primitive in the scene. However,

23

Figure 3.1: Image from the original Whitted paper [Whi80|]. Rendering time was 74 minutes at
a resolution of 640x480 pixels. No acceleration data structures have been used back then.

this is only feasible for scenes with only a few primitives. For performance comparison, this
“type” of acceleration data structure was also implemented in this thesis’ ray tracer.

3.1.3 KD-Trees

In 1985, Kaplan [M.R85] introduced kD-Trees in the computer graphics domain. They had
been developed by Bentley in 1975 for general purpose associative searching in k-
dimensional data.

KD-Trees are a special form of binary space partitioning-trees (BSP-Trees). BSP-trees are
binary trees and every node of the tree splits the 3D space into two disjoint regions by a plane
dividing the space. The root node spawns a box over the whole scene and every tree level
recursively divides the space by a splitting plane. Planes for BSP-trees can be oriented in an
arbitrary way. Since this makes inside-outside (or left-right) tests more expensive to calculate,
those planes are often restricted to be axis aligned. Using axis-aligned planes is a common way
to divide space, this type of acceleration data structure has its own name, called a kD-Tree.

To make the cutting of space more efficient, it is often the case that for every other level in
the tree hierarchy, the axis to which the splitting plane is aligned to is switched in a round-robin
manner: x-axis first, y-axis next, then the z-axis, again the x-axis and so on.

24

The primitives of the scene are stored in the leaves of the tree. All inner nodes only store
the axis of subdivision, being either the x-, y- or z-axis, and the position of the splitting plane on
this axis.

Further, algorithmic extensions exist such that large chunks of empty space can be cut off
efficiently, as well as breaking the round-robin manner to divide along the axis promising the
most effective split.

Since planes divide the scene, it can happen that a plane cuts through a primitive. There
are several ways to handle such a situation. One way is to split the primitive into two halves
and sort the split parts into the corresponding child nodes. Another strategy would be to include
the unsplit primitives into both children. This is faster to construct than the previous approach,
however, due to the duplication of the primitives, this leads to higher memory consumption.

The kD-Trees are known to be the best acceleration data structures in terms of rendering
performance [Hav0O], since they clip away parts of the scene very efficiently. Therefore, kD-
Trees are the acceleration data structures which were chosen to be implemented in two different
types for this thesis (see Chapter [6).

Classic Construction Algorithm

KD-Trees are constructed in a top-down manner (see Figure [3.2). First, the bounding box in-
cluding all the primitives of the whole scene is created. Then the splitting position is chosen. The
position depends on the used splitting strategy, some of which are described in Section (3.1.7
When the position for the split is found, the splitting plane divides the primitives into two sets.
For the left and the right side of the plane, a node is created in the tree hierarchy and the corre-
sponding primitives are sorted into their nodes.

Some of the primitives may be intersected by the splitting plane, and they need special
treatment. One solution is to include the intersected primitives in both sets, the left and the right
one. This can be done easily and quickly, however, this leads to duplication of the primitives,
which in turn leads to higher overall memory consumption.

The other possibility is to split the primitives along the plane. There are two major ways to do
so. The first, and computationally more expensive one, is to split the primitives itself accurately
with the plane. The other one would be to create an axis aligned bounding box (AABB) for the
primitive to be split, and split only the AABB with the plane. Since with kD-Trees the planes are
always axis aligned too, the split can be performed very efficiently. This is sometimes referred
to as the boxed kD-Tree builder.

The search for the position of the new splitting planes is then done recursively for the former
left and right child nodes. This recursion lasts until a leaf node has to be created. There are
several different criteria for creating a leaf node. An often used criterion is to define a fixed
number of primitives, under which a node is not to be split anymore. Another, more seldom
used criterion, is that a fixed tree height is defined. When using the Surface Area Heuristic (see
Section [3.1.7)), a leaf node can be created when the cost of splitting a node is higher than not to
split it.

25

<)

’
ﬂ

finished kD-Tree:

O
@

e)
d) l < ’ l < ’
© S
Figure 3.2: Classic kD-Tree construction algorithm: a) A soup of primitives (here: triangles)
for which the kD-Tree has to be created. b) Around the primitives, a tight bounding box is
constructed. c) The first splitting plane is inserted. In the corresponding kD-Tree, this plane
serves as the root of the tree. d) Next, the two cells created by the previous splitting plane
are again divided by inserting splitting planes. The new splitting planes again create nodes for
the kD-Tree. e) One more splitting plane is inserted in the upper left cell, such that in each
cell (in this example) only one primitive is left. For all cells which are not further subdivided,

the corresponding primitives are inserted into the tree as leafs, and the kD-Tree construction is
finished.

26

Approaches for Parallel Construction

The classic construction algorithm for kD-Trees is not well suited for massively parallel ma-
chines like GPUs. The power of GPUs can only be utilized when all threads are busy all the
time. The classic algorithm, however, only allows to start a few new threads with every level.
Therefore, other ways to build the hierarchy have to be found.

One way for parallelization is to start a thread for each primitive and let each thread test its
primitive against a splitting candidate. Another way is, if there are enough nodes, to parallelize
over the nodes of a tree level and let each thread calculate the split for its node. Zhou et al.
[ZHWGOS]|| use a combination of both. They choose their parallelization scheme depending on
the currently processed tree level and hence on the amount of primitives per node and on the
number of nodes per tree level.

Another common scheme is to set a fixed number of splitting locations and evaluate those
in parallel. Danilewsky [DPS10] has implemented a fast kD-Tree builder by using this binned
splitting planes. In order to use the full potential of the GPU, five different stages (i.e., kernels)
for different sized nodes were implemented.

All of the parallel algorithms have in common that they try to fully utilize the GPU all
the time. Therefore, the parallelization scheme may be switched during the processing of the
algorithm.

Recursive Traversal

When the intersection of a ray with the scene is performed, the data structure has to be traversed.
The standard way for traversing a kD-Tree is to recursively traverse the nodes of the tree. A
pseudo code of this traversal is shown in Algorithm 2]

First, in order to intersect the ray with the scene, the ray is intersected with the bounding box
of the scene. If the ray hits the bounding box, the values for ¢,,;, and t,,,4, of the ray are set and
the traversal of the data structure begins.

Then the root node is tested if the ray intersects the part left or right of the splitting plane,
or both. In case of the ray intersecting only the left or the right part, the traversal continues with
the corresponding left or right child-node and the ¢-values of the ray are adapted, depending on
which side of the plane the ray is. If both are intersected, the node which is closer to the ray
origin is traversed first and the other node is traversed if the other traversal path does not return
an intersection.

The traversal continues recursively until a leaf node is reached. Then, all primitives in the
leaf node are tested for an intersection with the ray. If there are one or more intersections
found, the closest one is returned. The traversal for this ray is then finished. Otherwise, if no
intersection in the leaf node is found, the recursive call returns without intersection. In case any
of the traversed node’s splitting planes has been crossed, the other tree path now is traversed.
This is done until either an intersection is found, or no more recursive calls are left.

Rope Trees

KD-Trees with ropes, or rope trees, are special types of kD-Trees. When a leaf, i.e. its respective
primitives, is intersected with a ray and no intersection has been found, the traversal through the

27

Algorithm 2 Recursive kD-Tree Traversal (continued on next page)

1: function INTERSECTSCENE(ray)
2 if ray does not hit Scene. Bounding Box then
3 return no hit
4: end if
5:
6 foundHit < INTERSECTNODE(r00t, ray)
7
8 if foundH 1t then
9: return primitive which was hit
10: else
11: return no hit
12: end if
13: end function
14:
15: function INTERSECTLEAF(node, ray)
16: nearestIntersection < no intersection
17:
18: for each primitive in leaf
19: hit < intersect primitive with ray
20: if hit and hit is nearer then nearestiIntersection then
21: nearestIntersection < hit
22: end if
23: end for each
24:
25: return nearestIntersection

26: end function

tree, looking for ray-primitive intersections, continues. This is normally done by continuing the
tree traversal at the last node where the ray intersected both children and the traversal descended
into the nearer child. Now, the child which is further away has to be traversed. In a recursive
implementation of the tree traversal, the continuation of the traversal comes naturally with the
recursion. If the traversal was implemented in an iterative manner (see Section4.4.1)), the traver-
sal continues with the last node on the stack. However, both variants need to further traverse
parts of the tree, which consumes time.

To remedy this, Havran et al. [HBZ98]|] introduced rope trees. With rope trees, every leaf has
a link, a rope, to its neighboring leaves on each of its sides. When in 3D, a leaf cell hence has six
sides and one rope for each side. This way, when a ray does not intersect any of the primitives
in a leaf, the traversal can quickly continue by following the rope to the neighboring leaf which
is pierced by the ray. The ray-primitive intersection tests can now be executed immediately for
this leaf without the need to further traverse the tree.

In the general case, a leaf has more than one neighboring leaf cell on a side (see Figure [3.3).

28

Algorithm 2 Recursive kD-Tree Traversal (continued from previous page)

27: function INTERSECTNODE(node, ray)

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

foundH it < no hit

if node is leaf then
foundH it + INTERSECTLEAF(node, ray)
return foundHit

end if

if ray is entirely on left of node’s splitting plane then
foundH<it <~ INTERSECTNODE(node.C'hildLe ft, ray)
return foundHit

end if

if ray is entirely on right of node’s splitting plane then
foundH<it < INTERSECTNODE(node.C'hildRight, ray)
return foundHit

end if

if ray crosses node’s splitting plane then
if node.C'hildLe ft is nearer than node.ChildRight then
foundHit + INTERSECTNODE(node.ChildLe ft, ray)
if foundH it then
return foundH it
end if

foundH<it < INTERSECTNODE(node.C'hildRight, ray)
if foundHit then
return foundHit
end if
else
foundHit <~ INTERSECTNODE(node.ChildRight, ray)
if foundH it then
return foundHit
end if

foundHit < INTERSECTNODE(node.ChildLeft, ray)
if foundH it then return foundH it
end if
end if
end if

65: end function

29

A
A

A [A
A -

Figure 3.3: Rope tree example. A small example showing one single rope from leaf 1 to its
neighboring leafs 2 and 3. In Figure a), the rope points to the lowest node in the kD-Tree which
holds all adjacent leafs to leaf 1. In Figure b), the rope points to a treelet. The treelet is a small
kD-Tree which the ray needs to traverse in order to decide with which adjacent leaf it should
continue the traversal.

Since it would be inefficient to store a list of ropes for each of the six sides, there are two common
strategies to handle such a situation. The first one is that the rope points to the lowest kD-Tree
node that holds all the neighboring leaf nodes (Figure [3.3h). The second method is that the rope
points to an external treelet, which is a small external kD-Tree (Figure[3.3p). This treelet is than
traversed by the ray to find the actual neighbor leaf.

With rope trees, kD-Tree traversal can be significantly accelerated. However, the downside
of rope trees is that due to storing additional ropes and bounding boxes for each leaf, the memory
consumption for rope trees is considerably higher as for normal kD-Trees.

30

3.1.4 Bounding Volume Hierarchies

Another highly efficient acceleration data structure are bounding volume hierarchies (BVH).
They have been introduced by Kay and Kajia [KK86] in 1986. A bounding volume is a prefer-
ably convex and geometrically simple geometric object, like a sphere or a box, tightly enclosing
a usually complex object in the scene. This way it can quickly be tested if a ray intersects or
misses the original object at all. If a ray does not hit the bounding volume of an object, it can’t
hit the original object. Only if the ray hits the bounding volume, the ray may also hit the original
object in the scene, and the usually much more expensive intersection test with the object of the
scene has to be executed.

BVHs are hierarchies built by using such bounding volumes. Most BVHs nowadays use
axis aligned bounding boxes (AABB) as bounding volumes, because they are relatively in-
expensive to test against, usually fit an arbitrary object tight enough and can easily be com-
bined to hierarchies. However, spheres or oriented bounding boxes (arbitrary cuboids) are also
used [HQL ™ 10], albeit far less often, even if they may fit the enclosed objects tighter.

As with kD-Trees, BVHs form a tree, but in this case a tree of bounding volumes. Usually
the arity of the nodes is two, which means that every node can have two bounding volumes
as children. Both children are fully enclosed by the parent node. An arity greater than two is
possible, but hardly used in praxis.

BVHs can be constructed top-down or bottom-up. For the bottom-up way, first, some prim-
itives are grouped together into a bounding volume. Then, nearby bounding volumes are com-
bined to a new bounding volume. This is repeated until the whole scene is encapsulated in the
hierarchy. For the top-down approach, first a bounding volume for all primitives in the scene
is built. Then, the primitives contained in the scene are divided into usually two children, each
of them again having its own bounding box. This is recursively repeated until the bounding
volumes contain only a given number of primitives. The decision where to split the bounding
volumes can be done in several ways, see Section[3.1.7}

It is important to note that the bounding volumes are not necessarily disjoint regions (see
Figure[3.4). Consider for example two nearby triangles. If they are near enough, their bounding
boxes can overlap. It is an important property of BVHs that the bounding volumes may overlap.
Thus, if a node has two overlapping child nodes and a ray intersects both bounding volumes
of those child nodes, both of those nodes have to be tested against intersection and hence have
to be further traversed down the tree. This is the main reason why BVHs are not as efficient as
kD-Trees are. The big advantage, on the other hand, is that BVHs consume far less memory than
kD-Trees. The maximum memory needed for a BVH is known in advance, since every primitive
in the hierarchy is included exactly only once. Note that kD-Trees can have more references to
primitives in case of “cut” primitives (primitives split by a splitting plane).

Algorithmic extensions for BVHs exist to prohibit the overlapping of the nodes’ bounding
volumes by introducing spatial splits like SBVH [SFD09] or FBVH [GPP™10]. Both aim at
minimizing redundant intersections tests, which results in faster traversals. The SBVH and
FBVH can be considered as hybrids between BVHs and kD-Trees.

31

Figure 3.4: Overlapping BVH cells. Since BVH cells no not have to be disjoint regions, they
can overlap if the bounding box of a primitive penetrates the bounding box of another cell. If a
ray intersects both cells, the ray intersects the overlapping region and the primitives of both cells
have to be tested for intersection with the ray.

3.1.5 Other Common Acceleration Data Structures

Another ADS is the uniform grid. Uniform grids have the advantage of being simple and can be
constructed very fast. However, they are not optimal for non-balanced scenes. This means, if the
primitives are not evenly distributed in the scene, which is hardly the case in a general scene, the
rendering performance of grids can be relatively slow. This is because in some cells of the grid
there are lots of primitives to test against, whereas in other areas there are hardly any primitives
in a cell. A typical example is the “teapot in a stadium”. In this case it is hard to choose the
optimal resolution of the grid. Kalojanov et al. for example have investigated the use
of two-level nested grids of different solutions to remedy this.

The last presented ADS is the Octree. An Octree is basically an AABB divided into eight
equally sized AABBs, which are then again recursively divided, and so on. Octrees are also
fast to construct, however, the tree of arity eight is very wide. For ray tracing, however, deeper
hierarchies usually perform better because they more efficiently cut off regions of the scenes
which are not relevant for a given ray.

A comparison of the mentioned ADS is given in Figure [3.3]

3.1.6 Divide-and-Conquer Schemes

Recently a new and quite promising approach has emerged. This approach does not need the
explicit construction of any acceleration data structure. Usually, all the acceleration structures
mentioned before have to be explicitly constructed before any ray can traverse it. If the scene
geometry changes, due to animations or the like, with a few exceptions, the whole data structure
has to be rebuilt first before starting ray traversal to render an image. One exception would be

32

i R p&)

4. 4-

Ny A " P A)
Ny

Figure 3.5: Different acceleration data structures: a) Regular grid, b) Octree, ¢) Bounding Vol-
ume Hierarchies and d) kD-Tree.

BVH-refitting, which however usually degrades tree quality over time and hence occasionally
needs a complete rebuild.

To remedy rebuilding an ADS, they can be built on-the-fly. This differs from the rebuild in
the way that the ray traversal can start immediately, and the ADS is constructed while the ray tra-
verses the scene. This way, fully dynamic scenes can be ray traced efficiently. Furthermore, this
approach usually takes up far less memory then all other approaches. The on-the-fly constructed
ADS can basically be of any type.

The lazy construction of ADS has been already proposed in 1987 by Arvo and Kirk [AK87]].
Recently, Mora [Morl11b]] investigated divide-and-conquer strategies for kD-Trees and Keller

33

L\ I e
> Ny
\ Q

Figure 3.6: Left: Spatial median bad case. The resulting tree hierarchy for the left cell will be
much deeper than for the one on the right side. Right: Object median bad case. The cell on
the right encapsulates a big area of empty space. This space will be divided further and further,
leading to unnecessary traversal steps.

and Wichter [AK11] as well as Afra [Afr12] for BVHs. Efficient algorithms and implementa-
tions are subject of current and future research.

3.1.7 Splitting Strategies

The quality of some of the ADS, like kD-Trees and BVHs, strongly depends on where the
splitting planes have been placed. Several strategies for choosing the splitting positions exist.
The most common ones are described below.

Spatial Median

The simplest form, and hence quite often used, is to position the split plane in the geometric
middle of the longest axis. However, when the primitives are not evenly distributed in the scene,
and in the majority of scenes this will be the case, this does not provide a very good choice
for the split, since one subtree of the node will become much deeper than the other one (see

Figure 3.6] left).

Object Median

Another easy possibility is to split at the object median. Such a split will result in half of the
objects lying on the one and the other half at the other side of the splitting plane. This can
however lead to some geometrically unnecessarily big nodes. Consider an object consisting
of many primitives in the middle of the scene, and an object with only a few primitives at the
very end of the scene. With an object median split, a node would span over primitives of the
small object and a few primitives of the complex object, encapsulating the whole empty space
in between, which would in turn lead to unnecessary traversal steps (see Figure [3.6] right).

Surface Area Heuristic

Several other strategies for positioning the splitting planes than the ones mentioned above exist.
Some of them work with heuristics. One of them has proven to be particularly useful and is used

34

frequently.

To find good positions for splitting a node is crucial for an ADS to be of good quality. Good
quality for an ADS means that its traversal and intersection with a given ray is as efficient as
possible in such a way that the parts of the scene which are not pierced by the ray are culled as
soon as possible.

The Surface Area Heuristic (SAH), introduced by Goldsmith in 1987 [[GS87], is a heuristic
commonly used to estimate the cost of intersecting an arbitrary ray with an ADS. When con-
structing an ADS, the resulting hierarchy is considered to be optimal when the cost of the SAH
is minimized and hence traversing the structure with a ray is relatively fast. The SAH presumes
that the rays are uniformly distributed in the scene, that they do not stop at any primitive and that
the ray hits the scene’s bounding box at all.

Exact SAH

Assume that a ray hits a node in any ADS and the node can be represented by any bounding
box or volume. Given that a ray hits this parent node N, the conditional probability P of a ray
hitting one of its child-nodes IV, is related to the ratio of their surface areas S A [PGSS06]:

SA(N)

P(Nc|Np) = SA(N,)

3.1
The SAH is then defined as the expected cost of traversing the parent node itself and the cost
of intersecting the left and the right child node as shown in Equation[3.2}

C=C+0Cy, P(NP‘NZ)—I-CRP(NMNT), 3.2)

where C' is the cost for a random ray intersecting a node, C; is the cost for traversing the
node itself, C';, and Cr are the costs of traversing the left and right subtrees respectively and /V;
and NV, the left and the right nodes.

The cost for the subtrees C'r, and C'r can only be calculated when this subtrees are built. For
this reason, a greedy local approximation is used to evaluate the SAH [ZHWGO8|. For this it
is assumed that the children are leaf nodes and the cost of intersecting them is replaced by the
cost of intersecting a primitive multiplied by the number of primitives in each of them (Equation

3.3).

C = C; + Cyny P(N,|N}) + Csny P(N,|N,), (3.3)

where C; is the cost for intersecting a primitive and n; and n, are the number of primitives
in the left and right child nodes respectively.

When the conditional probabilities in the above equation are expanded, the formula for the
exact SAH is obtained as given in Equation [3.4]

ny SA(N;) + n, SA(N,)
SA(N,)

C=0C+C; (3.4)

35

Lot 2 L i IR
« l« « 4 4 4

Figure 3.7: Comparison of the splitting strategies (from left to right): Spatial median, object
median and split using the SAH.

At some point in the hierarchy construction, the cost for splitting a node will be higher than
the cost of adding a leaf node. The cost for creating a leaf node is the cost of intersecting all
primitives in it, as shown in Equation [3.3]

C’Leaf =C; Np, (3.5)

where Cf,cqy is the cost for making this node a leaf node and n,, is the number of primitives
in the node.

To create a hierarchy using SAH, the SAH must be computed for every splitting candidate.
For example for kD-Trees, for every possible splitting plane the SAH cost has to be calculated.
A common way to calculate the SAH is to use a sweep builder. Again, for kD-Trees, the inter-
esting splitting positions are the borders of bounding boxes of the primitives. The sweep builder
“sweeps” through all those candidates and calculates a value for each. The one with the minimal
cost is considered the optimal splitting plane and the split is performed with it.

A comparison of the resulting splits is shown in Figure

Binned SAH

Using a sweep builder can be expensive because usually there are many splitting candidates.
Another approach is to use only a fixed number of splitting candidates which are placed on
predefined positions, so called bins. The SAH is calculated for each of the bins and the one with
the minimal cost is selected. The quality of hierarchies created using a binned SAH algorithm is
only slightly lower compared to an exact SAH [DPS10].

Binned SAH construction is used frequently for constructing ADS on the GPU, especially
for kD-Trees and BVHs. This is because the cost at the bins can be calculated in parallel effi-
ciently. A popular method for calculating the number of primitives left and right of each splitting
candidate is min-max binning [DPS10,[SSK07,PGSS06] (see Figure [3.8)). Two arrays L and H
are created, both having the length of the number of bins. Each array entry corresponds to a bin
and is used as a counter. The entry at position ¢ stores the events occurring between the (i —1)-th
and the ¢-th event. In the array L, for every lower bound of a primitive, the counter at the corre-
sponding position is increased. Likewise, in the array H, all the higher bounds are counted. To
get the number of primitives left and right to a splitting candidate as well as the ones intersected
by the splitting candidate, a suffix sum on L and a prefix sum on H are calculated. Having done
that, each entry (¢ + 1) in array L holds the number of primitives right and in array H, entry
7 holds the number of primitives left of a given splitting candidate. The number of intersected

36

primitives can be calculated by subtracting the number of primitives left and right from the total
number of primitives. With this information, SAH values for each splitting candidate can be
calculated.

The resolution of the bins can either be fixed or adaptively chosen for each node, depending
on the number of primitives. Furthermore, resampling of a bin can be done. Likewise, the SAH
function could also be evaluated first only at each n-th event and then at a finer resolution. Min-
max binning can be done efficiently in parallel by using parallel primitives operations like scan
and reduction. A comparison between using a sweep builder and binned SAH and their splitting
candidates is given in Figure[3.9]

Empty Space Cutoff

Finally, for large regions of empty space, an empty space cutoff is possible. Usually a threshold
for the ratio of empty space to an axis is set. If the ratio for the empty space and the given axis is
above the threshold, the split will be placed such that the empty space is encapsulated in a single
node.

37

g
2 ; ya

e ///

lcount
L:(1]2][3]1]0]0]1]1[2]0]
H:fo[1[1]2]1]1]1[1]1]2]

l suffix/prefix sum
L: [11]10]8[5[4]4]4[3]2]0]
H:{ol1]2]4]5]6]7[8]9]11]

Figure 3.8: Min-max binning example using 10 bins. An array entry at position ¢ stores the
events occurring between the (i — 1)-th and the i-th event. First, the array L counts for each
entry the lower bounds of the primitives and the array H all the higher bounds. Then, a suffix
sum over L and a prefix sum over H is computed. After that, in L each array entry (i + 1)
holds the number of primitives completely to the right and in H entry ¢ holds the number of
primitives completely to the left. The number of primitives which lie partially on both sides can
be computed by subtracting the number of primitives to the left and right from the total number

of primitives. (Figure adapted from [DPS10].)

\ ‘) N
4 4
<

Figure 3.9: Left: SAH splitting candidates using a sweep builder. At each border of a primitive,
a splitting candidate is created. Right: SAH splitting candidates using binning with 10 bins. The
splitting candidates are created at fixed locations only.

38

3.2 CUDA

3.2.1 Motivation for General Purpose Programming on Graphics Hardware

Modern graphics cards are fully programmable, highly parallel, massively multithreaded many-
core processors with tremendous computational power (Figure [3.10). Many-core processors
calculate (“render”) the graphics output pixel by pixel in many threads per processor.

Theoretical
GFLOP/s
3250

3000
MVIDIA GPU Single Pred sion

2750 g WY DIA GPU Double Precision
g | ritel CPU Single Predsion

2500 Intel CPU Double Predsion
2250
2000
1750
1500
1250
1000
750 Tesla C2050 Sandy Bridge
500
Tesla C1060
50 Woodcrest Bl
0 —= v =0 Westmere
Sep-FENtUM4 j0 g Mar-0712rPertown 0o 09 Aug-12

Figure 3.10: Evolution of computational power of GPU and CPU [Cooc].

Early graphics cards implemented the so called fixed-function pipeline in hardware. Only
specific parameters could be set via a Graphics-API like OpenGL or Microsoft’s DirectX. As
graphics hardware evolved, parts of this fixed-function pipeline were made programmable through
so-called shaders. Eventually, the graphics cards consisted of many processors, each of which
could work independently. Since graphics cards, or graphics processing units (GPUs), have
tremendous computational power, Nvidia introduced an API and programming model called
CUDA (see next Section) to use this computational power not only for graphics, but also for
other calculations.

3.2.2 CUDA

CUDA [[Cooal] stands for Compute Unified Device Architecture and was introduced in 2007
by graphics card vendor Nvidia. CUDA is a general-purpose parallel programming model for
graphics cards. CUDA was originally only supported on Nvidia GPUs. However, Nvidia re-

39

Host Device

. CUDA-Kernel

Figure 3.11: The host program first allocates memory on the CUDA device and copies data
to the GPU. Then, it starts the CUDA kernel on the device. After the kernel has finished its
calculations, the host typically copies back the results from the device to the host.

leased their LLVM-code and now CUDA can be programmed from any language that LLVM
supports [Coob|. With CUDA, it is possible to not only render traditional graphics using raster-
ization with APIs like OpenGL or Microsoft’s DirectX, but also to execute basically any other
general purpose code on graphics cards.

Programming Model

A CUDA program consists of two different parts. One running on the host, which is usually a
CPU. The other one is executed on the device, typically a CUDA-capable GPU (Figure [3.11). If
a graphics card contains two GPUs (“dual GPU cards”), they also contain two CUDA devices.
The host program starts the device program, called a kernel. The host program also typically
allocates memory on the device, copies data to the device, copies back results from the device to
the host and frees memory on the device. CUDA host programs are usually written in C or C++,
but third party bindings for C#, Fortran or other languages exist as well.

The CUDA programming model for the host consists of two different APIs, the CUDA
C/C++ API, or runtime API, and the CUDA Driver API. Both APIs can be used to manage the
device, the (parallel) execution, the memory management, sharing of resources used by graphics
APIs like OpenGL or DirectX, and so on. The CUDA C/C++ APl is a higher-level API than the
Driver API and allows for more convenient programming, while on the other hand sacrificing
flexibility. A program using this API further needs a runtime DLL when executed. The C-styled
Driver APIL, on the contrary, reveals the programmer full access to all features with the price of
higher complexity. However, a program written for the Driver API accesses the Nvidia graphics
driver’s API directly, hence no further DLLs are needed.

The CUDA device programs are the kernels executed on the CUDA device. They are im-
plemented in CUDA device code, which is very similar to traditional C++. As of version 4.x of
the CUDA toolchain, programming constructs like class inheritance, namespaces, templates and
others are supported.

40

Compute Capability

The CUDA Compute Capability defines the hardware capabilities of a CUDA device. Nvidia
introduced CUDA in 2007 with the release of the G80 chip, which was used in the Geforce 8
series of graphics cards. The generation of those cards featured the CUDA compute capability
in its first version 1.0. With every revision or release of a new graphics chip, the CUDA compute
capabilities were enhanced. Devices of CUDA compute capability equal or greater than 2.0 are
able to handle recursive functions. The current generation of graphics cards is the 600 series
(Kepler), exposing Compute Capability 3.2.

Execution Model

A CUDA kernel (a CUDA device program) is started by the host. To use the full power of the
GPU, kernels are executed in parallel, one thread for one instance of a kernel. The CUDA pro-
gramming model has a three-level hierarchy for arranging the parallel threads (see Figure [3.12).
Threads are grouped into blocks. All blocks form the grid. The layout of the grid, i.e. how the
threads are arranged into blocks, is defined by the host program. For easier addressing with two-
or three-dimensional problems, blocks and grids can be defined using two (blocks also in three)
dimensions.

It is common that each thread accesses a portion of a global chunk of memory and works on
that data. For a thread to be able to access its data in the memory chunk, CUDA provides built-in
variables for thread-index and block-index as well as thread-dimensions and block-dimensions.
Using them, the global thread-ID can be calculated. With the thread-ID, for example an offset
can be retrieved to access the correct data in memory.

When a kernel is started, the grid is launched. One instance of a CUDA kernel is calculated
by one single thread, which itself is part of a thread-block. If viewed from the hardware side,
a CUDA device consists of several streaming multiprocessors (SM). Each of them can execute
several blocks, but each block is executed only on a single SM.

When a grid is launched, every available SM executes a block (see Figure[3.13)). Each started
thread is executed in parallel. However, the hardware executes threads in bundles called warps
(see Figure [3.14). A warp consists of 32 threads. Those 32 threads run together in lockstep,
which means that every one of those 32 threads has to execute the same hardware instruction.
Nvidia calls this SIMT, which stands for Single Instruction, Multiple Threads (similar to the
common term SIMD, which stands for Single Instruction Multiple Data). The lockstep further
implies that if one of the threads of a warp branches, all other threads have to follow that code
path even if they would not need to. To efficiently implement programs in CUDA, this issue has
to be addressed by designing appropriate parallel algorithms.

Memory Hierarchy

The CUDA architecture consists of multiple memory spaces (Figures [3.15] and [3.16). The
biggest memory space is called the global memory. It can be accessed by all threads, and
each thread can read and write to it. To prevent threads from writing to the same location si-
multaneously, atomic operations exist. However, access to the global memory is relatively slow.

41

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0,1),-" Block (1,1) Block (2,1)

/ Block (1, 1) \

|
\
\

’
/

Figure 3.12: CUDA execution model. Parallel threads are grouped into blocks, blocks form the
grid. (Figure adapted from [[Cooc]))

Therefore, access patterns such that data can be efficiently cached should be used. There is also
a memory space called constant memory, which is “read only” for a thread, but it can be read
from faster. However, the constant memory is quite small.

Another memory space is the local memory. It is local per thread, and can be read by and
written to only by its thread. However, this memory is not located on the chip of the SM, but in
the VRAM of the graphics card, where also the global and constant memory reside. Thus, the
local memory is usually not significantly faster than the global memory.

In contrast, the shared memory is a memory space per block and resides on the chip of
the SM. Consequently, the shared memory is very fast to access. Each thread of the same

42

Multithreaded CUDA Program

A 4 A 4
GPU with 2 SMs GPU with 4 SMs

SMO0 SM 0

SM 1

SM 2

SM3

(%]

v

Figure 3.13: CUDA Scalability. A multithreaded CUDA kernel consists of several blocks. A
block is executed on a streaming multiprocessor (SM). The GPU starts as many blocks in parallel
as SMs are available. (Figure adapted from [[Cooc]))

Figure 3.14: CUDA Warps. The GPU executes threads in bundles of 32 threads. Those bundles
are called warps. Each thread of a warp executes the same instruction. This means, if one of the
threads branches, all other threads in this warp need to follow this branch too.

Block

43

SM 0 SM 1

SM 2 SM 3

Figure 3.15: CUDA memory hierarchy. The GPU consists of several memory areas. The VRAM
holds the global, constant and local memory as well as the texture memory, which has special
addressing modes. Each streaming multiprocessor (SM) has an on chip shared memory.

block shares the same memory (hence the name). A thread should use its own portion of the
memory. To access a thread’s data, an offset needs to be calculated using the built-in thread-
index variables. Shared memory is limited to 64KB on current hardware.

A memory space stemming from the graphics processing aspect of graphics cards is the
texture memory. The texture memory was initially used in computer graphics to store and access
diverse image data. It was, however, soon used as a buffer for arbitrary data. Since a pixel in the
image data often needed to be sampled or interpolated with nearby pixels, the texture memory
has different access patterns and is more suited for random memory access. Data residing in the
texture memory can be accessed in constant time, whereas for the other memory areas the access
time depends on alignment of the memory access pattern and therefore on the cache efficiency.

When designing an algorithm for CUDA, it is therefore beneficial to consider the diverse
memory spaces.

Graphics Resources Sharing

When programming computer graphics applications, data like vertex positions, textures and
such, have to be managed. Usually, graphics APIs like OpenGL or DirectX are used. The
mentioned graphics resources are passed to that API such that the graphics card can use those

44

Texture Memory

E Klowsa\ 1ueISUO)
Klows|\ [eqo|D

EPer Thread) Local Memor)a

E f Thread (Device)

n A can writeto B
n A can read from B

Figure 3.16: Memory access. The host and the threads from the device can read and write from
and to different memory locations. The only memory where both can read from and write to is
the global memory. Hence, data exchange is usually handled via this memory.

resources to render images. These resources then reside in the memory of the graphics card.
When using CUDA in a graphics application, it is often the case that the CUDA kernels need to
access the graphics data, e.g. to modify vertex positions for animations. It would be inefficient
to copy the data of the graphics resources into CUDA buffers, modify them, and copy the data
back to the graphics resources. Therefore, the CUDA API provides possibilities to share the
graphics resources of OpenGL or DirectX, read and write to them directly without having to
copy the data back and forth. In terms of a CUDA ray tracer this is important, since the CUDA
ray tracing kernel can directly write into the frame buffer of the graphics API, which is then
directly displayed by the application using the graphics API.

Compilation and Tools

The CUDA device code is programmed in *.cu-files. If the CUDA host code is written in C
or C++ and the C/C++ API is used, those files must also have this extension. Host and device
code can exist together in the same .cu-file. The Nvidia Cuda Compiler (nvcc) then compiles the
code. The compiler first extracts and compiles the device code and then uses the native C/C++

45

compiler to compile the host code.

The device code can be compiled to *.cubin binary files which can be executed immediately.
A binary file however is compiled only for a specific graphics chip. So, in order to be able to
run the same device code on multiple versions of graphics chips, like on a GeForce 200 and a
GeForce 600, two separate binaries would have to be generated and the appropriate one has to
be loaded at runtime.

The other way to compile CUDA device code is to compile to PTX format. PTX is an
assembly-like intermediate language, used by Nvidia’s graphics cards. The PTX-files can then
be loaded and automatically just-in-time (JIT) compiled by the graphics driver for the current
graphics chip on which the code needs to be executed on. Since this JIT-compilation can take
some time, the JIT-compiled code is temporarily stored by the graphics driver. Only when a new
version of the PTX exists, the JIT-compilation is performed again.

For debugging CUDA device code, Nvidia released a debugging tool called Nsight. Nsight
is available as a plug-in for Microsoft’s Visual Studio and Eclipse. With the help of the plug-in it
is possible to debug CUDA device code almost like CPU code, which means setting breakpoints,
stepping through code as well as variable inspection. Without Nsight, these debugging features
for CUDA device code are not possible and debugging can only be done by looking at the data
results calculated by a CUDA kernel. Furthermore, Nsight also provides a profiler so investigate
what parts of the code consume the most time or bandwidth.

CUDA and C#

The host languages supported by Nvidia for programming CUDA are C and C++. Both APIs,
the runtime and driver API, are C or C++ APIs. To use the features of CUDA in another pro-
gramming language, one has to gain access to those APIs first. In case of C#, which was used
as the host language in this thesis (see Chapter [5), the freely available runtime library called
CUDA.NET was used to gain access to the APIs. The CUDA.NET library itself performs un-
safe calls to C/C++ methods from the CUDA APIs. More details on accessing CUDA in C# are
given in the section on the implementation.

3.2.3 CUDA and OpenCL

OpenCL is an open industry standard which also allows for parallel general-purpose program-
ming on supported devices. Supported devices include diverse CPUs (Intel, AMD and Cell
architectures), GPUs (Nvidia, AMD and Intel), as well as ARM-processors for cell-phones.
OpenCL offers roughly the same features as CUDA, but is not limited to only Nvidia graphics
cards.

However, at the time of the beginning of the implementation for this thesis, OpenCL was
in an early state and some limitations existed concerning memory management and efficient
sharing of graphics resources. Also, some of the needed SDKs had not been released, or were
only in beta-phase. On the contrary, Nvidia provided an online platform with helpful resources
for CUDA-programming and announced the debugging tool Nsight. Moreover, Nvidia’s CUDA
has always been ahead of the OpenCL specification, so it has been possible to use the latest
features available on graphics cards. It is most likely that this will continue in the future. Based

46

on the support for CUDA from Nvidia in terms of online resources and tools as well as of the
power and possibilities of the language, it was finally decided to use CUDA for this thesis.

47

CHAPTER

Ray Tracing on the GPU

This chapter first gives an overview of the most important steps towards real-time ray tracing.
After that, as a contribution, we present a canonical iterative version of the ray tracing algorithm.
It has been derived from several collected publications. Building on that algorithm, furthermore
a parallel version is given. Later on, the section on “KD-Trees for GPUs” describes the main
methods for implementing and traversing kD-Trees on GPUs. Finally, the last section presents
our new data structure, the Uber-kD-Tree.

4.1 Advent of Real-Time Ray Tracing

One of the very first attempts to make ray tracing work in real-time was done by Muuss [MMO95]]
in 1995 from the U.S. Army Research Laboratory for the development of missile automatic
target recognition. He used an array of 8 network computer with 12 CPUs each to render 5
NTCS-frames per second. A few years later, in 1999, Parker et al. [PMS™99] used a supercom-
puter with up to 64 cores to render ray-traced images with a resolution of 600x800 in real-time.
In 2001, Wald et al. [WSBWOI1] first developed a highly optimized ray tracer for the CPU,
which could render images at interactive frame rates. Later the same year, they also released a
version for network distributed rendering [WSBO1]]. Finally, in 2002 Purcell et al. [PBMHO02]
mapped ray tracing to the back then newly programmable rendering pipeline on GPUs. At that
time, the vertex- and the fragment-stage of the former so-called fixed-function pipeline became
programmable. Purcell et al. implemented a ray tracer using the fragment shader.

Besides research for ray tracing in real-time on CPU and on GPU, some attempts have been
made to build custom hardware for ray tracing acceleration. In 2004, Schmittler et al. [SWW T 04]
presented SaarCOR, an FPGA-chip for accelerating dynamic scenes. One year later, Woop
and Schmittler [WSO05] developed the RPU, the “Ray Processing Unit”. In 2006, Woop et
al. [WMSO06] released the DynRT-architecture using B-kD-Trees, a hybrid data structure of
BVHs and kD-Trees. Also, commercial attempts have been made for custom hardware, like the
CausticOne by Caustic Graphics, Inc. [CG] in 2010.

49

During the last decade, however, graphics cards have reached a high level of computational
power, and researchers have tried to utilize this power as it became available. One of the first
attempts to ray tracing on the GPU using kD-Trees was made by Foley in 2005 [FSO5]]. They
presented two new traversal methods for traversing kD-Trees on the GPU, the kd-restart (Sec-
tion 4.4.2)) and the kd-backtrack algorithms (Section #.4.3). The two algorithms do not need a
stack, which was back then very expensive to use on the GPU.

Acceleration data structures are crucial for fast ray tracing. Therefore, Popov et al. [PGSS06]
as well as Wald and Havran [WHO6] investigated methods on how to build good quality kD-
Trees and how to build them fast. In the same year, Woop et al. [WMSO06| presented the B-kD-
Tree (bounded kD-Tree). The B-kD-Tree stores two splitting planes for each node, instead of
one, like for normal kD-Trees. Wichter and Keller [WKO06] developed the Bounding Interval
Hierarchy (BIH). The BIH is basically a kD-Tree with object partitioning. For each level, it
stores also two splitting planes. They furthermore use a new global heuristic for setting the
locations of the splitting planes.

In 2007, Popov et al. [SPSO7] released an improved version of the kD-restart algorithm
which uses ropes (Section [3.1.3) and packet traversal (Section[2.3.2). At the same time, Horn et
al. [HSHHO7] improved the kd-restart algorithm by adding a short stack (Sectiond.4.4). Also in
2007, Shevtsov et al. [SSKO7|] presented an interactive ray-tracing algorithm for the CPU. They
also used kD-Trees and the algorithm scales linearly to available CPUs.

Zhou et al. [ZHWGOS]| presented a real-time ray tracer in 2008. It runs completely on the
GPU and rebuilds the kD-Tree every frame, which allows arbitrary animations. In the same year,
Bikker presented his Arauna CPU real-time ray tracer [Bik11]]. It is written in highly optimized
C/C++ code and uses different BVHs for static and dynamic parts of the scene.

Up until 2009, the main bottle-neck for GPU ray tracing programs where thought to be the
limited memory bandwidth. However, Ailia and Laine from Nvidia showed in 2009 [ALO9]
that the main limiting factor, before memory bandwidth takes any effect, is the under-utilization
of the GPU and the performance penalty for branching code. They released a follow-up paper
in 2012 for current Nvidia graphics cards [ALK12]. In 2009, Stich et al. [SEDO9|] presented
the SBVH, the spatial-split BVH. In this data structure, they allow that also spatial splits can
be made when constructing the BVH in addition to the conventional object partitioning. Thus,
costly overlapping of cells can be reduced. Popov et al. [PGDS09] presented a similar work,
where they investigate different possibilities for spatial splits for BVHs.

In 2010, Pantaleoni and Luebke, also from Nvidia, presented their HLBVH algorithm [PL10]],
which allows real-time ray tracing of fully dynamical scenes by constructing the BVH from
scratch every frame. The HLBVH is a BVH which uses the Z-Morton curve [Mor66] to sort
and cluster the primitives in a scene, and then emits the hierarchy based on this sorted order. In
the same year, Danilewski et al. [DPS10] presented their real-time ray tracer for fully dynamic
scenes using kD-Trees which are rebuilt every frame. They used a binned SAH kD-Tree builder
and implemented several so-called stages to fully utilize the computational power of the GPU
for processing different tree-levels. Also in 2010, Nvidia introduced OptiX [PBD™10]]. OptiX is
a programmable ray-tracing system which allows developers to develop their own real-time ray
tracing application. Currently OptiX uses HLBVH internally.

In 2011, Garanzha et al. [GPM11]] improved the HLBVH algorithm by using work queues

50

instead of the compress-sort-decompress scheme [GL10] used in the original algorithm. Besides
the dominance of kD-Trees and BVHs on current real-time ray-tracing research, Kalojanov et
al. [KBS11b] showed that using a two-level uniform grid can be especially useful for dynamic
scenes, where fast rebuilding of the data structure for each frame is important. Moreover, Wu et
al. [WZL11]] showed how to build kD-Trees using SAH entirely on the GPU.

Also in 2011, a new category of ray-tracing algorithms has been introduced, the so-called
divide-and-conquer ray tracing (DACRT) (Section [3.1.6). DACRT does not need an explicitly
stored acceleration data structure like a BVH or kD-Tree, but subdivides the scene on-the-fly
when tracing rays. Mora’s DACRT algorithm [Mor11b] is a CPU implementation and uses a kD-
Tree-like spatial subdivision scheme which he called axis-aligned spatial subdivision (AASS).
He also introduced the direct-trace library [Morl1a]], which is a ray-tracing library which uses
DACRT. It supports CPUs as well as GPU acceleration. Recently, Keller and Wichter [AK11]]
and Afra [Afr12] presented DACRT algorithms using a BVH-like approach instead of the AASS.

Our implementation of the traversal of the kD-Tree is similar to the method used in Zhou
et al. [ZHWGOS]. It is a stack-based traversal with a stack per ray. This type of traversal is
described in Section[4.4.1] As far as kD-Tree construction is concerned, we use the construction
algorithm on the CPU which was already implemented in Aardvark and convert the resulting
kD-Trees to a format suitable for the GPU.

In the following, the adaption of the basic ray tracing algorithm, introduced in Section
for efficient implementation on the GPU will be described as well as variants of kD-Trees for
GPUs.

4.2 Iterative Ray Tracing

On GPUs, recursion was not supported until recently and still, recursion is inefficient on GPUs.
Therefore, we present a canonical iterative ray-tracing algorithm that we derived from various
information collected from a number of publications. The iterative algorithm of the basic ray
tracing algorithm (Algorithm 1)) is shown in Algorithm Note that only the T'race()-function
changes, as it is now implemented iteratively. All the other functions remain the same as in
Algorithm

The iterative version has to make use of a stack to store the rays to be traced. With the given
pseudo-code in Algorithm 3] the ray tree (c.f. Section[2.3.2)) is traversed in a depth-first, left-first
manner. If the tracing of reflection rays is done, the refraction rays are traced. If they again
create new reflection rays, they are first traced again until the stack of rays is empty.

4.3 Parallel Ray Tracing

The parallel version of the basic ray tracing algorithm is the same as Algorithm (1} with the ex-
ception that the for each-loop in line 2 in the DoRayT'racing()-method is executed in parallel.
Since the calculations for a pixel are independent of other pixels, as many pixels as possible can
be calculated in parallel. Therefore, an own thread is started for each pixel and its primary ray.
The primary ray and its secondary rays are traced independently of the other pixels. When all

51

Algorithm 3 Iterative T'race()-function

1: function TRACE(primRay)
2: color < black
3: ray <+ primRay
4: refraction stack < new ray stack — stack for refraction rays
5: depth stack < new int stack — stack for storing recursion level
6: tree depth < 0
7: continueLoop < true
8:
9: while continueLoop do
10: hit < INTERSECT(ray, scene)
11:
12: if hit then
13: color += SHADE(ray, hit Point)
14: tree depth < tree depth + 1
15: if Material is reflective and tree depth <= maximum tree depth then
16: if Material is transparent and not total internal reflection then
17: refraction stack.PUSH() <+— RAY(hit Point, refracted(ray.direction))
18: depth stack.PUSH() < tree depth
19: end if
20: ray < RAY(hit Point, reflected(ray.direction))
21: else — Diffuse Material
22: continueLoop + false
23: end if
24: else — no hit
25: color += BackgroundColor
26: continue Loop <+ false
27: end if
28:
29: if not continueLoop and stacks not empty then
30: ray < refraction stack.POP()
31: tree depth < depth stack.POP()
32: continueLoop < true
33: end if
34: end while
35: return color
36: end function

52

calculations for a pixel have been done, the calculations for the next pixel which has not yet been
calculated can be started.

On CPUs, multiple threads can be used to parallelize the algorithm, and SIMD and packet
traversal (Section [2.3.2) can be used as optimizations to gain performance. On GPUs, several
hundreds of threads are started in parallel. The limits of parallel execution are determined by the
warps and block sizes.

4.4 KD-Trees for GPUs

4.4.1 Stack-based Iterative Traversal

On GPUs, recursive traversal is nowadays possible in principle, however it is comparably slow.
Therefore, an iterative traversal is favored. In this case, one way for traversing a kD-Tree is to
maintain a stack.

Algorithm E] shows the iterative version of the IntersectNode() function. All other func-
tions remain the same as in Algorithm 2] The main loop is the outer while-loop. It can only be
broken when a leaf found an intersection or if the traversal did not find any intersection at all,
meaning that all paths have already been traversed, i.e., that the stack is empty. This is similar
to the recursive variant, when there are no more recursive calls left. The while-loop for the leaf
is necessary because if a node is popped from the stack, the new node can be a leaf again. When
traversing an inner node, there are still the three following cases. The ray can be on the left or
right side of the splitting plane, or crossing it. In the former two cases, just the new node is set
and the loop is continued. Only when the ray crosses the splitting plane, the node further away
is pushed onto the stack and the traversal continues with the nearer one. Since the nodes are
pushed on the stack and are later possibly retrieved again, this leads to the same traversal steps
as with the recursive variant.

Maintaining a stack for each ray on the GPU was inefficient on graphics cards before the
release of Nvidia’s Fermi-architecture in 2010. With Fermi, a conventional cache hierarchy for
memory access was introduced [[Cool0]. Furthermore, there had been an overall speedup, such
that the implementation of stacks became feasible. Therefore, prior to this architecture, traversal
methods have been invented which did not need a stack. They will be described in the next
sections.

4.4.2 KD-Restart

In 2005, Foley and Sugerman [FS05] released the first two algorithms for traversing a kD-Tree
on graphics cards. Back then, recursion was not supported on graphics hardware at all, and
using a stack for traversing a kD-Tree on the GPU was inefficient. Therefore, they developed
two stackless traversal methods.

The first one is the kD-Restart algorithm. Instead of maintaining a stack for a ray, they
only keep its values for ¢,,;, and ¢,,4,, the minimum and maximum ¢-values for the ray (see
Figure 4.1] left). Then, when a leaf is tested for intersection with the ray but the ray does not
hit any primitive in it, the traversal with this ray is restarted from the root with new values for
tmin and t,,q2. The new t,,;, 1s set to the former t,,,, and the new t,,,,; is set to the border of

53

Algorithm 4 Iterative Intersect N ode()-function maintaining a stack

1: function INTERSECTNODE(node, ray)
2 stack < new stack
3 while true do
4 while node is leaf do
5: foundH1it < INTERSECTLEAF(node, ray)
6 if foundH it then return foundH it
7 else
8 if stack not empty then node < stack.POP()
9: else return no intersection
10: end if
11: end if
12: end while
13:
14: if ray on left of node’s splitting plane then
15: node < node.ChildLeft
16: end if
17: if ray on right of node’s splitting plane then
18: node < node.ChildRight
19: end if
20: if ray crosses node’s splitting plane then
21: if node.ChildLe ft is nearer than node.ChildRight then
22 stack.PUSH() < node.ChildRight
23: node < node.ChildLeft
24: else
25: stack.PUSH() < node.ChildLeft
26: node < node.ChildRight
27: end if
28: end if

29: end while
30: end function

the scene. This way, the traversal will take its path to the nodes that would usually have to be
pushed on the stack. However, due to the re-traversal of the data structure, kD-restart leads to
redundant traversal steps.

Popov et al. [SPSO7] presented an improved version of the kD-restart algorithm by adding
ropes to the leafs of the kD-Tree. These ropes are links to the neighboring cells of the leaf
(see Section [3.1.3). When intersecting a leaf does not result in an intersection, the rope to the
neighbor cell is followed and the leaf cell or cells pointed to are tested. This way, the redundant
traversals are eliminated, but at the cost of higher memory usage for the ropes. Popov et al.
further used packet traversal (Section[2.3.2) to exploit ray coherence.

54

\ , N :
N N N N
N |7 A\ N | A\
AN} AN} AN AN}

Figure 4.1: Left: KD-Restart. When the ray traversal unsuccessfully tested a leaf for inter-
section, the ray traversal is restarted from the root with new values for %,,;, and ¢,,4,. Right:
KD-Backtrack. When the ray traversal unsuccessfully tested a leaf for intersection, a “back-
track” traversal is started, until the node is found which would have been pushed on a stack, and
traversal continues from there. (Figures adapted from [FS05].)

4.4.3 KD-Backtrack

The second stackless kD-Tree traversal presented by Foley in 2005 [FS05] is the kD-backtrack
algorithm. They already noticed that the kD-restart algorithm needs lots of redundant traversal
steps. To remedy this, they added a parent link to each node. This way, when a leaf is tested for
intersection with a ray but the ray does not hit any primitive in it, the traversal is “back tracked”.
This means that they look for the lowest parent node in the leaf’s ancestors which intersects
the appropriate t,,,;, and t,,,4, values (Figure [@ right). When this node is found, the normal
“down traversal” continues from this ancestor node. As in the improved kD-restart version by
Popov et al. [SPS07]], the kD-backtrack needs more memory because the parent links as well as
the bounding boxes for each node have to be stored.

4.4.4 Short-Stack and Push-Down

Another stackless algorithm was published by Horn et al. in 2007 [HSHHO7]. They also built
their algorithm on kD-restart, but added a short, fixed-sized stack where nodes can be pushed
and popped as usual. Whenever a stack underflow occurs, the algorithm reverts to the standard
behavior of the kD-restart algorithm. In case of an overflow, the deepest node in the stack is
discarded.

They also added push down. In the kD-restart algorithm, the traversal of the data structure
is restarted always at the root. Horn et al. observed that they could push the entry node for the
restart down the tree hierarchy, as long as the ray does not cross the splitting plane. Hence, they
save unnecessary traversal steps when restarting the traversal.

Horn et al. already observed in their implementation the main limiting factors for ray tracing
on the GPU: the parallel workload is not distributed equally, the memory latency and last but not
least, the penalty payed for divergent code.

55

@ -
® T n

Figure 4.2: Uber-kD-Tree. a) Some objects in the scene. b) Objects with their Object-kD-Trees.
¢) The Uber-kD-Tree (red) is a kD-Tree over the Object-kD-Trees.

4.5 Uber-kD-Tree

In this thesis, we developed a new data structure which we call the Uber-kD-Tree. It is a kD-
Tree which consists of kD-Trees in its leaves. The kD-Trees for the leaves are kD-Trees per
geometrical object and we call them Object-kD-Trees. Figure shows the idea of the Uber-
kD-Tree.

The main reason why we wanted to do implement such a data structure is to interactively
add and delete objects to the scene without having to deal with major data structure rebuilds.
This way, only the Uber-kD-Tree needs to be rebuilt, which can be done quite fast. Furthermore,
when there are only a few objects in a scene, a list of those Object-kD-Trees is sufficiently fast.
However, for lots of objects, having a kD-Tree over the Object-kD-Trees to cull objects can be
beneficial. Shevtsov et al. mentioned that they experimented with two-level kD-Trees
and reported a speedup when using this data structure with four or more non-overlapping objects.

To traverse the Uber-kD-Tree, first the Uber-kD-Tree is traversed. If a ray hits a leaf which
contains an Object-kD-Tree, this Object-kD-Tree is traversed to find an intersection of the ray
with the geometry.

Both, the Object-kD-Tree and the Uber-kD-Tree are implemented in the CUDA ray tracer
for this thesis (see Chapter|§| and Section. Results using the Uber-kD-Tree will be presented
in Section [7.31

56

CHAPTER

CUDA Library

This chapter takes a closer look at the CUDA library which has been developed for the VRVis-
internal rendering engine Aardvark. First, the host side, including context and memory manage-
ment as well as data-types, is presented. Later on, an overview of the device side of the library
is given.

5.1 Overview

CUDA is by default only accessible from C or C++ (see Section [3.2.2). To access CUDA
functionality from within C#, the function-calls to the CUDA-APIs have to be wrapped. Since
the CUDA-API is already very large, this would be a lot of work to do manually. Fortunately,
there is a library for C# called CUDA.NET [GAS] which is freely available. CUDA.NET wraps
the function calls of the CUDA-API 3.0 in both versions, the runtime API and the driver APIL
However, the CUDA-API and hence the wrapped functions are very low-level. To make working
with CUDA convenient in terms of object orientedness, it is useful to implement a higher-level
library on top of the low-level API. Besides that, as mentioned above, the CUDA.NET library
in its current version wraps the CUDA-API version 3.0. The CUDA-API version current during
the main programming tasks for the thesis was 4.2. Since the API partially changed, some of
those new API functions were wrapped manually to access new functionality.

After several iterations, the final implementation of the CUDA library CUDALIib supports
built-in data types, ready to use within Aardvark and C#, as well as semi-automatic memory-
management for the GPU.

The CUDALID is separated in two parts, the host side and the device side (Figure[5.1)). The
host side part contains the management code for CUDA, hence, the C# code. The part of the
device side contains CUDA device code which can be used from within any CUDA kernel. Also,
the ray tracer described in Chapter [6]is now part of the library, such that the ray tracer can be
used from within any Aardvark application.

57

oz
Cee (mwe) Ceme] (me] (o

Figure 5.1: The CUDALIib host and device parts. The host part has its root-namespace in
Aardvark. CUDA.Lib with sub-namespaces: Base, which includes all the main-functionality like
CUDA-Context, -Device, -Module and -Function management, as well as device memory man-
agement, namespace DataTypes, which provides read-to-use data structures for working with
CUDA, and finally the namespace Graphics, which provides data types for graphics resource
sharing. The device part has no particular namespace, but is logically subdivided into Math,
which includes vector-, color- and matrix-classes, and some utility-functions bundled in Utili-
ties.

5.2 Host Side

The host side is the main part of the CUDA library. It provides a high-level abstraction of the
CUDA-API in C#. The library is integrated tightly into Aardvark and can be used from any of
Aardvark’s research-projects to gain access to the GPU-computing power of graphics cards.

5.2.1 Management
Context Creation

On the host side, the main object is the CudaContext (Figure[5.2)), which encapsulates the CUDA
context in a very convenient way. When a new CudaContext is created, it first selects the CUDA-
device automatically if no preferred device is specified. Then the CUDA-context is created on
this device with the given flags, like graphics resource sharing or others. Also, a new memory
manager is created, which will be described below.

When context creation is done, one or more CUDA-modules, which are the PTX-files, can
be loaded. Modules can also be created by run-time compiling CUDA source-code, which can
be passed as a simple C#-string to the CUDA-runtime compiler. This CUDA-runtime compiler
was developed in collaboration with Georg Haaser at the VRVis Research Center and is an
encapsulation of the Nvidia CUDA-compiler nvce. It translates our custom defined compiler-
switches to actual ones for nvcc and then calls it with the translated commands. This way we
can compile CUDA-code during the runtime of a C#-program. The advantage is that the CUDA-
device code can be customized to specific needs of the currently running environment.

After the CUDA-modules are loaded, the functions, i.e. the CUDA-kernels, can be loaded
from the modules. The layout of the grid, which arranges the threads into blocks, is done per
function. In the current implementation, one CUDA-context per CUDA-device is supported.
Since a CUDA-context can be shared among CPU-threads, more than one CUDA-context is

58

CudaModule CudaMemoryManager CudaDotNet

_ : H‘HHU‘NHE-H'

Figure 5.2: The CudaContext is the central part of the CUDALIib. It contains and manages
the CudaDevice, the loaded CudaModules, the CudaMemoryManager for managing device-
memory and, if sharing of graphics resources is needed, also a concrete Aardvark-Renderer.

not necessary. However, if a system has more than one CUDA-capable device, the support of
multiple devices is important and therefore supported by the library.

Memory Management

The CUDALIb furthermore has its own GPU memory manager, the CudaMemoryManager. The
memory manager maintains a mapping from C#-(CPU-)objects to GPU-“objects”. It does this by
storing the references from C#-objects to the actual memory addresses on the GPU. To maintain
this mapping, a DoubleSided Dictionary(S, D) has been implemented. It is a dictionary which
can look up two values (S, D) (source and destination, respectively) fast by storing them as key-
value-pairs in two normal C#-dictionaries, but one time with (S, D) as key-value-pair and one
time reversed as (D, S).

For the memory manager, the double-dictionary is created as DoubleSidedDictionary
(IntPtr,object). The IntPtr are the pointers to the GPU memory location, thus, the address
of an object in GPU-memory. The object is the reference to a normal C#-object.

When a new C#-object is added to the memory manager, the C#-object reference is added
to the dictionary. One can register the C#-object in the memory manager first without copying
it to the GPU, and copy it to the GPU later. In this case, a “virtual” pointer for the GPU-address
is created, which is replaced by the actual one later. To copy a C#-object to the GPU, it is
first pinned so that its address can be taken. Pinning in C#-terms means, that an object is fixed
to its current memory location and the .NET-runtime can not move it as long as it is pinned.
The object is then copied to the GPU and the returned memory address is stored as an IntPtr
together with the reference to the C#-object in the dictionary. Finally, the C#-object does not
need to stay pinned anymore and is unpinned again. When an object is copied back from the
GPU, the GPU-memory location is looked-up in the dictionary and the corresponding data is
downloaded from the GPU.

When it comes to a scene hierarchy with lots of geometric objects which may share textures
or material properties, the same C#-object could be registered several times. To prevent load-
ing the same object to the GPU more than once, the memory manager implements a reference
counting approach. Therefore, when an object is added to the memory manager, it first checks if
the object has been registered already with this memory manager. If so, only a reference-count

59

to this object in the memory manager is increased and the current GPU-handle is returned. If
the object is not already registered with the manager, it is added. Likewise, the reference count
is decreased when a C#-object is unregistered from the manager. If the reference count becomes
zero, the memory for the object on the GPU is freed. An example using the memory manager is
shown in Listing [5.1]

In C#, besides arrays, structs provide the correct data-layout for working with CUDA. How-
ever, they are value types in C# and therefore no pointer to them can be maintained. After several
attempts we came up with an elegant solution. To prevent writing a wrapper-class for each struct,
any struct was encapsulated into an array of length 1. This way, the memory manager could also
keep track of the mapping between C#-structs and their CUDA-representation. This is, however,
not an integrated feature of the library itself, but rather a direction on how to use structs with
the library, such that data changes in structs are visible for the memory manager. An example is
shown in Listing[5.2]

The memory manager provides a convenient way to manage memory on the GPU. CPU-
objects are registered first, can then be loaded to the GPU automatically or manually, updated
if necessary and unregistered if not needed anymore. Currently the library supports only C#-
structs and arrays of such to be managed by the memory manager due to the memory-layout of
structs in C#. Support for classes could optionally be implemented.

Kernel Launch

Besides the memory management, one of the most convenient features of the library is that
CUDA-kernels can be launched as easy as normal C#-functions. Kernel launches with the use of
our library are simply of the form myK ernel.Call(...myParameterList...) (see Listing[5.1).
Call() is a C#-function with a variable parameter list. The passed parameters are checked by
the memory manager if one of them is registered in it. If so, the stored GPU-address is passed
as parameter to the kernel. Otherwise, the data is copied to the GPU. The passed parameters are
furthermore automatically correctly aligned.

Without this convenient kernel-call, the parameters would have to be mapped manually, the
actual program code would get much longer and therefore prone to errors.

Other Features

The library also supports other important CUDA-features. The CUDALIb is implemented in
such a way that it completely supports CUDA-streams. Modern CUDA-capable GPUs can run
different CUDA-kernels in parallel, as well as executing CPU<++>GPU memory transfer for one
kernel in background when the GPU is concurrently executing another kernel. Per default, all
kernels and memory transfers belong to stream 0. When using different streams for different
kernels and their associated memory transfers, those kernels can be executed either interleaved
or in parallel, and their memory transfers can be hidden by running in the background.
Furthermore, CUDA exposes a timer to measure the runtime of GPU operations. This timer
works a little different than conventional CPU timers. The CUDA-timer works with events. To
use the timer, a start event is created and inserted into the GPU-instructions. When then the
event is passed, or “executed”, the current time is recorded. Similarly, a stop event is created

60

var cudaContext = CudaContext.Create();
var cudaModule = cudaContext.LoadModule ("myCUDAModule");
var cudaKernel = cudaModule.LoadFunction ("myCUDAFunction");

// retrieve the memory manager
var cmm = CudaContext.CudaMemoryManager;

// create some C#-object. Let’s create an array of floats:
var myObj = new float[] { 0.0f, 1.7f, 3.0f };

// register the object in the memory manager
cmm.Register (myObj) ;

// copy myObj-data to GPU
cmm.ToDevice (myObj) ;

// do something, like starting a CUDA-kernel:

// set grid-layout first

// (needs to be done only once per kernel)
cudaKernel.SetKernelLaunchLayout (myKernelLayout) ;

// then launch kernel
cudaKernel.Call (myObj /% ...other kernel parameters... =/);

// after kernel has finished,
// copy myObj-data back from GPU
myObj = cmm.FromDevice<float[]> (myObj);

// unregister from memory manager if myObJj not needed anymore
cmm.Unregister (myObj) ;

Listing 5.1: CUDALIib example memory manager and kernel launch. First, a CUDA-context is
created and a module including a function is loaded. After that, a reference to the CudaMemory-
Manager is retrieved. Then some C#-object is created and is registered in the memory manager.
When copying the data to the GPU, the “virtual” pointer created by default in the memory man-
ager is replaced by the actual one. Next, the kernel launch layout ist set and the CUDA-kernel
is called. Finally, when the kernel has finished, the data is copied back and, if the data is not
needed anymore, unregistered from the memory manager. If there are no more references to
myObj, its data on the GPU is deleted and the corresponding memory freed.

61

// define some C#-struct for demonstration

struct MyStruct

{
public int a;
public int b;

// create a struct and fill it with data
var str = new MyStruct();

str.a = 17;

str.b 29;

// create an array of length 1 which contains the struct
var structArray = new MyStruct[l] { str };

// create CUDA-context, load module and function

var cudaContext = CudaContext.Create();
var cudaModule = cudaContext.LoadModule ("myCUDAModule") ;
var cudaKernel = cudaModule.LoadFunction ("myCUDAFunction");

// retrieve the memory manager
var cmm = CudaContext.CudaMemoryManager;

// register the object in the memory manager
cmm.Register (structArray) ;

// change some data in the struct
structArray[0].a = 333;

// copy the data to GPU. The changed value for
// structArray[0].a will be visible on the GPU!
cmm.ToDevice (structArray);

// set grid-layout
cudaKernel.SetKernelLaunchLayout (myKernelLayout) ;

// launch kernel
cudaKernel.Call (structArray /+* ...other kernel parameters... */);

// copy the data back from GPU
structArray = cmm.FromDevice<MyStruct[]>(structArray);

// unregister from memory manager if data not needed anymore
cmm.Unregister (structArray);

Listing 5.2: CUDALIib example on how to encapsulate structs in arrays. For demonstration
purpose, first, a struct needs to be defined, constructed and filled with some data. After that, the
struct is encapsulated into an array of length one. This way, changes of the data of the struct are
visible to the memory manager and hence later on transfered to the GPU. The remainder of this

example is similar to Listing[5.1]

62

var cudaContext = CudaContext.Create();
var cudaModule = cudaContext.LoadModule ("myCUDAModule");
var cudaKernel = cudaModule.LoadFunction ("myCUDAFunction");

// create an C#-array of floats
var floatArray = new float[] { 0.0f, 1.7f, 3.0f };

// create a CudaArray from it
var cudaArray = new CudaArray<float>(floatArray, cudaContext);

// CudaArrays can be worked with as normal CH#-arrays
cudaArrayl[l] = 2.0f;

// copy data to GPU
cudaArray.ToCudaDevice () ;

// set grid-layout
cudaKernel.SetKernelLaunchLayout (myKernelLayout) ;

// launch kernel
cudaKernel.Call (cudaArray /* ...other kernel parameters... %/);

// copy data back from GPU
cudaArray.FromCudaDevice () ;

Listing 5.3: CUDALIib CudaArray example. This listing shows the same example as Listing
but using a CudaArray instead of manually registering a C#-array in the CudaMemoryManager.
CudaArrays can be worked with as normal arrays in C#.

and inserted where the stop time should be recorded, for example after the memory transfers
and kernel execution. CUDA can then provide the elapsed time between the start and stop
events. Since memory transfers and kernel launches can run asynchronously, measuring time
with CPU timers may report incorrect timings and hence CUDA-timers should be used in that
case. Furthermore it should be noted that the stop event mentioned above is recorded only when
it is actually executed. For this reason, before the elapsed time can be read from the CUDA-
timers, one has to make sure that the events have been recorded already. This is simply done by
a CUDA-synchronize instruction for the stop event. The synchronize instruction tells CUDA to
execute all GPU code until the given event. After that it is guaranteed that the events have been
recorded and the correct elapsed time can be read. All this synchronization is done automatically
by the library, or, if required, it can be performed manually as well.

5.2.2 Built-In Data-Types

When programming with CUDA, one observes that certain CUDA-internal data types are used
quite frequently, but are cumbersome to use especially from within C#. That is why four spe-
cial data types have been implemented in the CUDALIib. They can be seen as two groups of
data types: arrays, containing homogeneous data, and a composite data structure, containing

63

heterogeneous data.

A conventional array on the GPU is provided by the CUDALIb as the CudaArray(T),
which contains elements of type 7T'. They can be worked with as usual C#-arrays, can be used as
kernel-parameters and can be conveniently loaded from and to the GPU. Listing [5.3] shows the
same code-example of Listing [5.1|with the use of a CudaArray.

A similar purpose to the CudaArray is fulfilled by the CudaPage Locked Array(T) of
type T'. The difference is that the data in the RAM can not be paged anymore when page-locked,
or pinned. Such arrays can additionally be mapped into the GPU memory space. Page-locked
arrays allow very fast updates, however, since using them reduces overall physical memory
for the operating system, they should be used sparingly. The last array data structure is the
CudaTexture. The CudaTexture is a 1D, 2D or 3D array which is internally mapped to the
CUDA-internal CUDAArray. It provides all functionality expected for textures, like border
wrapping or clamping, filtering, normalized coordinates and so on.

Besides the array data structures, it is often required to have objects with heterogeneous
data. For this reason, the CudaStruct(T") was implemented, where 7" can be any C#-struct.
This way, the library also permits to work with heterogeneous data with CUDA in an easy way.

5.2.3 Graphics-Resource Sharing

CUDA is often used in computer graphic programs alongside with the graphics APIs OpenGL
and DirectX. In such cases, CUDA can be used to accelerate computationally intensive tasks.
Those computations are often done on data which is already on the GPU in buffers or textures
from one of the graphics APIs. Such data can be for example geometry data stored in buffers or
image data stored in textures. When CUDA-kernels have to perform computations on this data,
it would be adverse to copy the data into CUDA-arrays. Therefore, the graphics resources of
graphics APIs can be shared with CUDA.

To make sharing of those resources as convenient as possible, the CUDALIb provides three
classes for sharing DirectX10 buffers and textures with CUDA. The CudaSharedBuf fer im-
plements sharing of graphics-buffers with CUDA and CudaSharedT exture shares textures.
It should be noted, however, that CUDA can only read but not write to textures. To be able
to directly write to a texture anyway, the CudaSharedT extureBuf fer was implemented
as a workaround. It shares a DirectX linear-buffer as a CUDA-buffer, but using the DirectX
shader-resource view to access the buffer in DirectX shaders as a texture. This way, direct writ-
ing from CUDA to a DirectX-texture can be obtained. The CudaSharedT extureBuf fer,
however, is a special case which is only needed because of current limitations in Aardvark’s
abstract renderer-implementation. The same behavior could basically also be achieved with
a CudaSharedBuf fer. Currently, a new renderer-backend for Aardvark is in development
which also considers the needs for CUDA and OpenCL. When this is done, the implementation
of graphics resource sharing can be simplified.

To use graphics resource sharing, a graphics resource must first be registered with CUDA.
After that, before being able to actually read or write from or to the shared graphics resource
from CUDA, the resource has to be mapped into and unmapped again from CUDA each time
before the graphics API can access the resource again. Since there were also rules implemented
for Aardvark’s scene graph, this mapping can be done automatically.

64

To make graphics resource sharing possible inside Aardvark, several C#-extensions have
been implemented for Aardvark’s abstract renderer-interfaces. Also, for sharing resources from
the targeted graphics API DirectX10, some extensions for concrete Aardvark-SlimDX classes
have been programmed. The integration of other APIs, like any other DirectX version or
OpenGL, can be done without much effort by implementing further C#-extensions, targeting
the desired APL.

5.3 Device Side

The counterpart of the host side of the CUDALID is the device side part. The methods and data
types provided in device code can be used by any CUDA kernel which includes the header of the
device side library. Most of this library was implemented concurrently with the development of
the CUDA ray tracer which is described in the next section. Therefore, the device side currently
contains only a math-library with vector, color and matrix support, as well as some utility-
functions which are useful programming CUDA-kernels. The utility functions calculate a linear
offset from the CUDA-thread- and -block-index. The offset can then be used for directly writing
into a buffer.

The ray tracing specific code is not part of the core of the device side library, but the ray
tracer itself is included as a part of the library so that any class, struct or method can be reused
if needed. The ray tracer itself will be described in detail in the following chapter.

5.4 Examples

For demonstrating the usage of the CUDA-library, a CUDA Example-project has been created in
Aardvark. It contains 14 examples on different topics on how to use CUDA-features in Aardvark
with the help of the library. The examples are:

e CudaArray Example:
Demonstrates the usage of the CudaArray-type of the library.

e Page-locked Memory Example:
Demonstrates the usage of the CudaPageLockedArray-type of the library.

e CudaStruct Example:
Demonstrates the usage of the CudaStruct-type of the library.

e Global Variable Example:
Demonstrates how to set and use CUDA’s global variables via CudaModule from the
library.

e Shared Memory Example:
Demonstrates how to set CUDA’s shared memory via CudaFunction from the library.

o Timer Example:
Example on how to use CudaTimer from the library. It measures data processing one time

65

- SharedBufferExample

AARDVARK 978 fps

Figure 5.3: CUDALIb Shared Buffer example demonstrates sharing a DirectX vertex-buffer with
CUDA. Each frame, the vertices are moved by CUDA and DirectX renders the quad with the
new vertices.

66

with a CudaArray and one time with a CudaPageLockedArray. The CudaPageLockedAr-
ray-variant should be faster on any CUDA-capable hardware.

Cuda-Event Example:
Shows the usage of CudaEvent.

Stream Example:
Shows usage of CudaStream by execution two kernels concurrently in different CUDA-
streams.

TexturelD, Texture2D and Texture3D Examples:
Demonstrate the usage and capabilities of CudaTexture.

Shared-Buffer, Texture and Texture-Buffer Examples:
These examples demonstrate the usage and capabilities of sharing graphics resources with
CUDA. Figure[5.3]|shows a screenshot of the “Shared Buffer”-demo.

CHAPTER

CUDA Ray Tracer

This chapter gives detailed information on the implementation of the CUDA ray tracer which
was implemented for this thesis. After a short overview, the program flow of the application is
examined. After that, the implemented CUDA ray-tracing kernel is described. Close attention is
further paid to the implemented acceleration data structures, including creation and conversion,
data layout and traversal. Since the ray tracer is fully configurable at runtime, those parameters
are presented. Finally, issues with debugging are mentioned as well as solutions to those.

6.1 Overview

The CUDA ray tracer implemented for this thesis is called CURA, which stands for CUda
RAytracer. It is part of the VRVis-internal rendering engine Aardvark and can be used from
within any Aardvark application. The ray tracer can handle arbitrary triangle meshes and sup-
ports reflections and hard shadows. The ray-tracing code runs completely in CUDA, which
means on the GPU only. Therefore the whole ray tracing algorithm and hence all the needed
data structures, including vectors, colors, rendertargets, cameras, triangle meshes, acceleration
data structures and so on, are implemented on the GPU using CUDA. The CPU is used solely
for updating the current camera position and for starting the ray tracing kernel. Therefore the
CPU is free to do other things while the GPU is busy calculating the ray-traced image.

Aardvark provides an abstract render-interface which is used by CURA as well as all other
Aardvark applications. In case of CURA, it is a simple DirectX10 rendering application which
just displays a textured full-screen quad every frame. Hence, the application has one render
target which is a DirectX10 texture. It is shared between DirectX and CUDA, such that the
CUDA ray-tracing kernel can render into this texture. The completely rendered texture-image is
then displayed on a full screen quad by the DirectX part of the application. Since the application
is interactive, the CUDA ray tracing kernel is executed every frame.

67

6.2 Program Flow

The program cycle is as follows (see Figure [6.1). When the program is launched, the Aardvark
kernel, which is responsible for maintaining a DirectX render-loop, is started. After that, the
DirectX10 renderer is initialized and the CUDA context is created. Also, the ray-tracing kernel
is loaded and configured as well as the render target, which is a DirectX10 buffer used as a full
screen texture. Next, the scene is loaded, but not yet onto the GPU.

Then the call to start the ray tracing kernel happens in the pre-render phase of Aardvark’s
rendering loop. If the scene is not ready for the GPU, the scene data gets converted and finally
loaded onto the GPU. This allows updates for scene changes and animations. Finally, the ray
tracing kernel is started and executed on the CUDA device. When the CUDA kernel has finished
generating the image, the Aardvark render-method is called and displays the render target as a
full screen quad.

The program loops over the rendering functions, thus generating a ray-traced image every
frame. If the scene is not changed nor animated, only the camera is updated with the current
position.

When the program is exited, all data on the GPU is cleaned up automatically by the memory
manager of the CUDALIb.

6.3 The CUDA Ray Tracing Kernel

For ray tracing to be efficient on GPUs, a few adaptations to the original ray-tracing algorithm
have to be made. First, the DoRayTracing()-function from Algorithmis now implemented as
a CUDA kernel and therefore called RayTracingKernel(), as shown in Algorithm |5} CUDA
kernels are executed on the CUDA device, running in many parallel threads. For the purpose of
the ray-tracing kernel, there are as many threads started as the render target has pixels. Hence,
the for-loop of the DoRayT'racing()-function can be omitted.

The Render()-function (also in Algorithm [5)) is part of the host code and is therefore im-
plemented in C#. It starts the CUDA kernel RayTracingKernel() on the device in as many
threads as needed. Each thread has its own CUDA thread-index in the block it belongs to. Like-
wise, each block has its own CUDA block-index in the grid. From these indices, the coordinates
which a thread corresponds to in the output image can be computed. Each thread calculates one
pixel of the output image.

Recursive functions are still slow on GPUs. For this reason, an iterative version of the ray
tracing algorithm was implemented (see Sectiond.2]and Algorithm[3). Since the primary use of
the ray tracer is to render curved (i.e. non-planar) reflections, the implemented version does not
support refraction. Another reason for omitting refraction is that with refraction, due to the inner
reflections and the resulting fan out of the ray tree, the implementation would require a stack for
rays, which in turn would slow down rendering performance.

The implemented T'race()-function is listed in Algorithm [6] The variable ray holds the
currently processed ray. Initially this is the primary ray. If there is no intersection between the
primary ray and the scene, the background color is returned. Otherwise, the hitpoint is shaded.
If the material at the hitpoint is reflecting, a reflection ray is created, tested for intersection with

68

Figure 6.1: CURA program flow. The blue boxes are executed on the CPU (C#), the green one
is executed on the GPU (CUDA). When the program is started, Aardvark (the rendering engine),
DirectX and CUDA are initialized, and the scene is loaded. The scene gets then converted to a
CUDA-capable format and is sent to the device. Each frame, the CUDA ray-tracing kernel is
started, and the scene is ray traced on the GPU. Finally, DirectX displays a full-screen quad with
the output buffer from the ray tracer as a texture.

the scene, shaded, and if the surface at the new hitpoint is again reflective, another reflection ray
is traced. To prevent reflection rays bouncing between specular surfaces, a maximum iteration
level is provided. This is the same as the maximum recursion level pointed out in the section on
the ray-tracing algorithm (Section 2.3).

6.4 Acceleration Data Structures
The acceleration data structures implemented in CURA are kD-Trees. There are two variants of

kD-Trees that have been implemented. The first one is a kD-Tree per geometric object. Since
it is created per object, it is called Object-kD-Tree. The second variant is a kD-Tree per scene

69

Algorithm 5 CUDA-kernel
1: [Host]

2: procedure RENDER()

3 numberO fThreads <— number of pixels

4 LAUNCHCUDAKERNEL(RayT racing K ernel, numberO fThreads)
5. end procedure
6
7
8
9

: [Device]
: procedure RAYTRACINGKERNEL()
: (z,y) < GETCOORDSFROMTHREADINDEX()
10: primaryRay < CREATEPRIMRAY (x,)
11: outputColor <~ TRACE(primaryRay)
12: WRITEOUTPUT(x, y, outputColor)
13: end procedure

and is built on top of the Object-kD-Trees, so it is a kD-Tree of kD-Trees and therefore called
Uber-kD-Tree (see Section . For performance comparison, it is also possible to render the
scene brute force, i.e. to use no acceleration structures at all and to intersect every ray with every
primitive in the scene. This is however only usable for scenes which consist of a maximum of
only up to a few hundred primitives.

6.4.1 Creation and Conversion

Since Aardvark has already had built-in support for kD-Trees, these have been reused and the
kD-Trees are created on the CPU using Aardvark’s KdIntersectionTree. The KdIntersectionTree
uses a variant of the SAH as the cost function and has support for empty-space optimization
(Section [3.1.7).

After the CPU kD-Trees have been constructed, they are converted to a CUDA capable
format (Listing [6.1). CudaK dT'ree is the CUDA format of the kD-Tree and consists of the
bounding box of the whole kD-Tree as well as two arrays. The first array T'ree Array contains
the inner nodes of the kD-Tree, the other one, Lea f Array, the indices to the primitives in the
leaf nodes.

CudaK dT'reeNode represents an inner node of the CUDA kD-Tree. It contains the fol-
lowing fields. The first one is the axis along which the split for that node has been made. The
second field holds the position of the splitting plane on along this axis. Next is the index of the
left child node. If this index is below zero, the index indicates a leaf node. If the left child is a
leaf, the Le ftCount gives the number of primitives in the leaf node. The last two fields contain
the same information for the right child node.

70

Algorithm 6 Implemented Trace()-function

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

function TRACE(primRay)

color <+ black
ray + primRay
iteration level < 0

while not reached maximum iteration level do
hit < INTERSECT(ray, scene)
if hit then
color += SHADE(ray, hit Point)
if Material is reflective then
reflectionRay < RAY(hit Point, reflected(ray.origin))
ray < reflectionRay
iteration level < iteration level + 1
else
break loop
end if
else
return BackgroundColor
end if
end while

return color

end function

Inner Node Array: @ ‘ @ @

o [A AJAJAIA

71

Figure 6.2: CURA kD-Tree conversion. The CPU kD-Tree is converted to two arrays, one for
the inner nodes and one for the leaf nodes. The conversion processes the tree in a depth-first,
left-first manner.

struct CudaKdTree
{

AABB BoundingBox // scene’s bounding box
CudaKdTreeNode[] TreeArray // array of inner nodes
int [] LeafArray // array of leaf nodes

}

struct CudaKdTreeNode
{

int Axis // axis of subdivision

float Position // position of subdivision

int Left // index of left inner or leaf node

int LeftCount // number of primitives if left is a leaf
int Right // index of right inner or leaf node

int RightCount // number of primitives if right is a leaf

Listing 6.1: CUDA kD-Tree Format (C#-representation)

The conversion of the tree from the CPU to the CUDA representation is then done in a
depth-first order by ascending the left path first. This way, the left child of a node always is
the next entry in the tree array and the leafs are stored from the lower-left leaf of the tree to the
lower-right of the tree (see Figure [6.2). The converted kD-Tree arrays are then copied to the
GPU together with other scene information.

6.4.2 Scene Traversal

In this section, the different scene-traversal methods will be presented. Each of the traversal
methods implements its own Intersect()-method (c.f. Algorithm[3). In CURA, every object has
its own model matrix. Therefore, for intersecting the rays with the ADS respective the objects
itself, the rays are transformed into the local coordinate system of the object.

The easiest way to traverse the scene is using brute force. Hence, all rays intersect all
primitives. The pseudo-code for the Intersect()-method is given in Algorithm 7]

The second traversal method is to traverse the scene using the Object-kD-Tree. Every object
in the scene stores its own kD-Tree. Therefore, all objects need to be tested for the closest in-
tersection. The implemented kD-Tree traversal method is similar to the traversal used in Zhou
et al. [ZHWGOS]. It is the stack-based iterative traversal explained in Section 4.4.1] Algorithm
[8]shows the pseudo-code of the implemented version. The call to the kD-Tree IntersectScene()-
method is similar to the one from Algorithm 2] but with the iterative version of the IntersectN-
ode()-function from Algorithm 4]

Finally, the last implemented traversal method is to use the Uber-kD-Tree. There is one kD-
Tree for the whole scene, which in turn contains the Object-kD-Trees as its primitives. There-
fore, all that has to be done to get the closest intersection is to intersect the ray with the Uber-

72

Algorithm 7 Brute-Force Traversal

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

function INTERSECT(ray, scene)

best Hit < no hit

for each object 0bj in scene
transformedRay < transform(ray, obj. Transformation)
for each primitive prim in obj
hit < intersect(prim, ray)
if hit nearer than best Hit then
bestHit < hit
end if
end for each
end for each

if best Hit !=no hit then

best Hit + transform(best Hit, obj. BackwardT rans formation)
end if
return best Hit

18: end function

Algorithm 8 Object-kD-Tree Traversal

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

function INTERSECT(ray, scene)

bestHit < no hit

for each object 0bj in scene
trans formedRay < transform(ray, obj.Trans formation)
hit <— obj. K dT'ree. INTERSECTSCENE(ray)
if hit nearer than best Hit then
bestHit < hit
end if
end for each

if best Hit !=no hit then

best Hit + transform(best Hit, obj. BackwardTrans formation)
end if
return best Hit

16: end function

Algorithm 9 Uber-kD-Tree Traversal

1
2
3:
4

: function INTERSECT(ray, scene)

hit < scene.Ueber KdI'ree. INTERSECTSCENE(ray)
return hit

: end function

73

kD-Tree. When the ray hits a non-empty leaf, the Object-kD-Tree of the leaf will be traversed
with the ray. The pseudo-code for the traversal is shown in Algorithm 9]

To efficiently create code paths for both types of kD-Trees, the kD-Tree is implemented
as a template. The IntersectLeaf()-methods (Algorithm [2)) are specialized variants, one for each
kD-Tree type. The IntersectLeaf()-method for the Object-kD-Tree intersects the ray with the tri-
angles of the leafs of the kD-Tree, whereas the counterpart of the Uber-kD-Tree implementation
intersects the ray with each of the Object-kD-Trees.

6.5 Runtime Parameters

The ray tracer implemented in CURA is fully configurable at runtime. A list of the parameters
is given in Table [6.I] As mentioned in the previous section, the usage of the different types of
ADSs can be switched. Furthermore, the maximum recursion depth can be set dynamically. In
the actual implementation, the recursion depth is an iteration count for rays, but conceptually
this is the same. Also, a global ambient term can be set to make the scene brighter or darker at
runtime. Since CURA supports animations, those can also be triggered. The animations however
are calculated on the CPU and only the changes are updated on the GPU.

Since shadow computation can take a considerable amount of time, especially when there
are many light sources, shadows can be turned off. To avoid self intersections when tracing
the shadow ray, the actual origin of the shadow ray is moved a small distance e away from the
surface of the hitpoint. This e can be set dynamically too. Furthermore, it is possible to switch
on and off a specific light source, or to toggle them all.

Mainly for debugging purposes, the background can be switched. The black background
is the standard background used in many scenes. However, for debugging it is better to have
a non-black background because a black pixel can often reveal an error in the traced ray path.
This is why there is the debug background with a green color. To make a scene look good, there
is also the possibility to provide a user-defined background.

Since the supported geometric primitives are triangles only, to render smooth-looking sur-
faces the normals have to be interpolated along the triangle surface. This behavior can also
be switched on and off, as well as rendering the surface normals as surface color. Finally, the
so-called debug pixel described in the next section can be overlaid to the rendered image.

The influences of some of the parameters can be seen in Chapter|[7]in Figure

6.6 Debugging

As mentioned earlier, Nvidia developed Nsight, a debugging plug-in for Microsoft’s Visual Stu-
dio and Eclipse. With Nsight it is possible to debug CUDA device code the same way as CPU
code, like using breakpoints, step through the code, variable inspection and so on. The first
versions of Nsight were released during the development of this thesis. Unfortunately, these
releases were very unstable. Nsight was primarily targeted to support CUDA developers who
use C/C++ as host language. Because of that, the configuration for using Nsight with C# took a
considerable amount of time. Furthermore, as newer versions of Nsight were released, the sup-
port for the CUDA APIs of versions below 4.0 was dropped. Even though a few API functions

74

] Parameter H Possible values Default ‘

’ General ‘
RenderMode Brute Force, Kd-Tree, Uber-Kd-Tree | Kd-Tree
MaxRecursionDepth 0..n 2
Global Ambient 0.n 1.0
Animations on, off off

Lights and Shadows
RenderShadows on, off on
Epsilon 0..n 0.25
Toggle single Lightsource || on, off off
Toggle all Lightsources on, off on
Debug

UseBackground Black, Debug, Scene Scene
InterpolateNormals on, off on
ShowNormals on, off off
ShowDebugPixel on, off off

Table 6.1: Runtime Parameters

of the CUDA API version 4.x were wrapped manually in the CUDALIb, the core of the library
uses CUDA.NET internally, which supports only CUDA API 3.0. That is why Nsight couldn’t
be used to successfully debug CUDA device code with CURA.

For these reasons, complex parts of the CUDA device code, especially the ray traversal in
the kD-Trees, were debugged on the CPU. To do this, the whole CUDA device code had to be
rewritten in C#, such that the C# version mirrored exactly the whole CUDA program. With this,
single frames could also be rendered on the CPU, having full debugging support from Visual
Studio.

An image of a single frame, however, has many pixels and each of them traces its own ray.
During development, only some of them behave erroneously. Therefore it is advisable to only
consider a specific pixel, i.e., debug only a specific ray. To do so, a debug pixel was used which
gets a special overlay color in the render target so it is visible. Then, one could move the camera
until the debug pixel was on the incorrectly rendered pixel, and then trigger rendering and debug-
ging for this pixel only on the CPU. This was very helpful because, especially when debugging
acceleration data structures, errors and faultily programmed special cases occur seldom. Hence,
debugging should only be done when such a special case with wrong behavior is encountered.
The precondition for this to work is that the CUDA code and the C# code stay mirrored, so
that the currently rendered and displayed image from CUDA is the same as the CPU version
would produce. Otherwise, debugging via the CPU would lead to misleading results because of
different code versions.

With the help of these debugging “tools” it was possible but tedious to properly debug the
CUDA ray tracer and its data structures.

75

CHAPTER

Results

7.1 Test Setup

All parts of this diploma thesis have been developed targeting Nvidia’s Fermi architecture. In
particular, an Nvidia GeForce GTX 480 graphics card with 1.5GB RAM was used for all tests.
The test machine consists of an Intel Core i7 920 CPU running at 2.67GHz, 12GB RAM and
Microsoft Windows 7 Professional 64-bit SP1 installed. The tested scenes are some well-known
ray-tracing benchmark scenes. They can be seen in Figure details are given in Table

7.2 Results

For each scene, a camera position has been chosen such that the whole model is in view, except
for the Sponza scene, where the camera is placed inside the building (Figure [7.1). Each scene
consists of the model itself and a sky-like environment. The Bunny and the Happy Buddha
scenes also have a ground plane. Furthermore, each scene has two light sources, one directional
and one point light source, except the Sponza and Turbine Blade scenes which have two point

’ Name ‘ Nr. Triangles | Kd-Tree Creation [sec] ‘
Bunny (low detail) 2.9k <1
Bunny (high detail) 69.5k 6.8
Sponza 66.5k 6.4
Buddha 293k 22
Blade 1765k 128
Soda Hall 2 145k 216

Table 7.1: The test scenes. The kD-Trees are created on the CPU using the implementation in
Aardvark.

77

Figure 7.1: The tested scenes: Bunny (in two versions of mesh-resolutions), Sponza Atrium,
Happy Buddha, Turbine Blade and Soda Hall.

78

light sources. Several measurements have been made related to the rendering performance of
primary rays, shadows and reflections. All measurements in this section are done by using the
Object-kD-Trees as acceleration data structures. The brute-force method is only feasible for
scenes with a maximum of a few hundred triangles and hence too slow for the given test scenes
to perform any reasonable measurements. In the chosen test scenes, the Uber-kD-Tree performs
just a little worse than the Object-kD-Trees. The reason is that in the given test scenes, there are
only one or two Object-kD-Trees and traversing them in a sequence is faster than the overhead
of traversing an Uber-kD-Tree. Measurements for the Uber-kD-Tree and a comparison of the
Uber-kD-Tree and the Object-kD-Trees with more suitable scenes are done in Section

The behavior of primary rays with different light configurations is shown in Table It can
be seen that the directional light usually performs slightly better. This may be due to simpler
calculations. Furthermore, the influence of higher screen resolutions and the subsequent impact
of the higher number of rays on the rendering performance, which decreases considerably, are
visible. An interesting result is the behavior of the Soda Hall scene. Its performance increases
with higher screen resolutions from 640x480 to 1024x768. Furthermore, the jump of Mrays/sec
from resolution 1024x760 to 1600x1200 is quite high compared to the other scenes. We have
not yet found the reasons for the unusual behavior of this scene.

Table presents the measurements for shadows. This again shows that the directional
light performs better than the point light. One reason may be that the shadow rays for the point
light might be more coherent as the shadow rays for directional shadow rays. Hence, those
shadow rays can exploit memory and cache coherence better, which in turn results in higher
rendering performance. Note that in our current implementation we do not yet support early exit
for shadow rays.

The results for reflection rays can be seen in Table It shows that with each reflection
bounce there are fewer reflection rays created, which means that the other reflection rays ei-
ther hit a non-reflecting material or get reflected out of the scene. Moreover, the values in the
table show that the tracing of reflection rays gets more expensive with each bounce. This is
the expected behavior, since reflection rays get more and more incoherent with each bounce.
Thus, memory and cache coherence can not be utilized well anymore and result in a penalty on
rendering time.

In Table[7.5] the results for a “full” scene setup can be seen, including shadows for two light
sources and reflection with two bounces. The first interesting thing to note is that the amount
of secondary rays, which are all the shadows and reflection rays together, is almost as many as
the primary rays casted. However, the rendering performance for the full setup drops far lower
than half of the performance for primary rays. The reason is most likely again that secondary
rays exhibit less coherence and hence traversing them takes longer due to incoherent memory
access. The second interesting thing is the scaling of rendering time with respect to number of
pixels. If 640x480 is taken as 100%, then the given three higher resolutions have a factor of
1.56, 2.56 and 6.25 respectively more pixels. Since for every pixel one CUDA-thread is started,
when rendering an image of higher resolution, the additional amount of threads is of the same
ratio as the higher resolution image has more pixels. The rendering performance however scales
sublinearly with the number of pixels. The main reason may be that with higher resolution, the
rays of nearby pixels are more likely to hit the same objects in the scene and hence access the

79

Primary Rays

Name Resolution #rays no light directional point both
FPS ‘ Mrays/s || FPS ‘ Mrays/s || FPS ‘ Mrays/s || FPS ‘ Mrays/s
640 x 480 307.2k || 111.1 34.1 104.2 32.0 103.1 31.7 100.0 30.7
Bunny 800 x 600 480.0k 72.5 34.8 69.9 33.6 69.0 33.1 67.1 322

(low detail) 1024 x 768 786.4k 46.1 36.2 45.5 35.7 44.1 34.6 429 33.8
1600 x 1200 || 1,920.0k || 20.6 39.6 20.0 384 19.6 37.6 19.2 36.9

640 x 480 307.2k 81.3 24.9 80.0 24.6 78.7 242 76.9 23.6
Bunny 800 x 600 480.0k 55.5 26.7 54.1 26.0 532 25.5 52.6 25.3
(high detail) 1024 x 768 786.4k 38.5 30.2 37.0 29.1 37.0 29.1 35.7 28.1
1600 x 1200 || 1,920.0k || 16.7 32.0 16.7 32.0 16.1 31.0 15.6 30.0

640 x 480 307.2k 62.5 19.2 62.5 19.2 62.5 19.2 58.8 18.1
800 x 600 480.0k 43.5 20.9 41.7 20.0 41.7 20.0 40.0 19.2

Sponza *) 1024 x 768 || 7864k || 27.8 | 218 270 | 213 270 | 213 263 | 207
1600 x 1200 || 1,920.0k || 13.0 | 250 | 125 | 240 | 125 | 240 121 | 233
640 x 480 || 3072k | 526 | 162 | 526 | 162 | 526 | 162 | 500 | 154

Buddha 800 x 600 || 480.0k || 400 | 192 || 400 | 192 | 385 | 185 || 385 | 185
1024 x 768 || 7864k || 323 | 254 | 323 | 254 || 323 | 254 | 323 | 254
1600 x 1200 || 1,920.0k || 143 | 27.4 140 | 269 140 | 269 135 | 260

640 x 480 || 3072k || 154 | 47 152 | 47 152 | 47 149 | 46

Blade ¥ 800x 600 || 480.0k || 133 | 64 32| 63 32| 63 130 | 62
1024 x 768 || 7864k || 93 73 93 73 92 72 9.1 71

1600 x 1200 || 1,920.0k || 5.1 97 51 97 50 9.6 5.0 9.6

640 x 480 || 3072k || 74 23 72 22 72 22 72 22

Soda Hall 600 x 600 || 480.0k | 7.9 38 79 38 79 38 78 38
1024x 768 || 7864k | 8.2 6.4 81 6.4 8.1 6.4 8.0 63

1600 x 1200 || 1,920.0k || 5.5 10.5 5.5 10.5 5.5 10.5 54 10.4

Table 7.2: Measurements for primary rays for the test scenes at different resolutions. Frames
per seconds and the corresponding Mrays/sec are given. The primary rays were measured with
no lights on, with one directional light on, with one point light source on and with both lights
on. None of them casts shadows in these tests. Results for shadows and reflections are given in
Table[7.3]and Table[7.4]as well as a “full” setup in Table[7.5] The Sponza and Blade scenes have
a second point light source instead of the directional light source.

same data, which in turn leads to higher memory coherence and less penalty for memory access.

The rendering performance of primary, shadow and reflection rays and the “full” setup for
the “Bunny (high detail)” scene is depicted in Figure The impact of rendering shadows and,
even more, of reflections is clearly visible.

Finally, Figure shows the “Blade” scene with different parameters set. The first image
(upper left) corresponds to the “no light” value in table “Primary Rays” (Table [7.2). It traces
primary rays only, without any light sources. The second image (upper right) includes shading
for two light sources and corresponds to the “both™ value of that same table. The lower left
image includes shadows for the two light sources. Rendering performance is given in the “both”
values in the “Shadows”-table (Table [7.3). Finally, the lower right image shows the “full” setup
from Table[7.5| with two light sources including shadows and two reflection bounces.

80

*901n0S JYS1] [BUOTJOIIP Y} JO Pe9)sur 90Inos JYJI|
jutod puodas B 9ARY SaUDS Ipe[g pue ezuodg Y], "A[UO 9I0Jaq UWN[OD 3} JO In[eA 3y} 03 10adsal yiim puodas 1ad sAel uor[ruu ay) 9AI3
S/SKRIIA},, 9T, "90In0S JYSI] YOI I0J SABI MOPBYS PAJBAId A[MIU AY) AJUO QAIS SIN[BA-Y/ AU, "PAIsed sAer Arewrd Jo Ioquinu 810} dy)
SOAIS UWN[0d _ SARI4,, oY, "SeouewIofiod painsesw [€101 9U) 218 SJ QYL ToyreS01 seoInos 1ySI yroq pue 301nos 31 urod € ‘90Inos
JYSI] [BUONOAIIP B JOJ QUOP 2JOM SJUAWAINSBAW U], ‘SUON[OSAI JUIJIP J& SOUS 159} AY) J0J SMOPRYS JOJ SJUSWAINSLIN €'/ 9[qRL

L'L ASSIST | ¥T 09 ACT88IT | 9T ¥4 A€0E9 | T 0ol J0°0T6°L | +'S 00ZI X 0091
6V A0°TL9 8¢ (4% AToey | vy (4] ABved | 89 €9 A'98L 08 89L X ¥C01

BH epo

I'v | d960F | ¥¥ Ls | Yooz | o 06 | MWevl | 69 8¢ | Yoosy | s [009 X008 [[PH EPOS
o¢ | e | Ly e | woLr | s 19 816 | S9 zz | yweoe | Te || osyxop9

€v | 980T | T £€v | Yeors | ¢ Sy | Yesvs | 1€ 96 | j00z6'T | 0 || 00T X 0091

8T | degee | 0¥ e | A8cer | 8 e | XSL61 | 8¢ 1L | w9sL | 16 | 89LX¥z01 S
61 A10vT | 6 12 | IS6I1 | ¥L 1T | JS0Tl | vL 79 | voosy | o€l || 009 %008 (=

€1 19¢sT | €6 €1 Y9, | 18 il ALL | T8 ov | dzeoe | 6%l || 08y xop9
6€c Y19t | 9L || 11T | XS1LTT | €38 z8 Y606 | 811 [097 [00261 | S€1 || 0021 X 0091

el | Y611 | evt || sst | deer [191 €€ 9ze | vvz || vt | w9sL | €ze || 89L X pzo1 S—
911 | wzie [681] Tzl | AsTeT |00z || 0C Y661 | 8Lz | s81 | Moosy | s8¢ || 009 X008

69 | 6661 | voz| 68 | Yous1 [vve || v wzl | sve | wst | Yoo | oos || osyxov9
90z | desve'r | 96 || 91z | Yoele | 08 | Loz |z9zo'r | 9L || €€c [N00z6'T | 1Tl || 0021 X 0091
sl | wise [zer | s | wezee | 691 | ot | dssor | 191 | roz | w9sL | €9z || 89X #zo1 (. vzodg

6°S1 AO'LLY | T8I S'LT ALLTT | €9C 9°S1 AC6re | v co6l 008y | 0'0F 009 X 008
Syl ATS0E | €9¢ A ALSYT | O°LE el AS6ST | SvE ['81 AT LOE 8'8¢ 08% X 019

X494 AETEST | 001 ey ATYTL | 801 6'0¢ AT'LYC | 6°¢ 0°0¢ J0°0T6°L | 9°ST || 00TI X 0091
eve A9°66S | 0°CC X4 AE0IS | 0°SC 8'6C AE68 €Ce 1'8¢ AP 98L | L'SE 89L X ¥T01 (1resop y3y)
9°sC J0°99¢ | 0°0¢ |43 ACTIE | 0°S¢E (41! ACYS | S £°6C A0°08% | 9°CS 009 x 008 Auung
LTt ATYed | 6T 9°¢¢ AC661 | 187 VLI A6ve | 999 9°¢C ATLOE | 69L 08% X 019

v19 [owsest[oer [zie [918cr [vl | 80s | st [SL1 [69 [M00z6'T | el || 0021 X 0091
169 | €109 | €1€] ¥68 | weos | sve | 99L | 616 | 80v || s€c | W9sL | 6Ty || 89L X z0l (resop mop)
L1s | oo [ssv | o019 | yorre |oos || oz | vros [8ss | zze | Noosy | 19 || 009 X008 Kuung
zse | vever |69 || ses | voesl e | ect | vese | 698 | roc | czros | ooor || o8t Xor9
spsReay | W00y | sdd || sysheay | M0ty | sdd || ssAein [Py | sdid || ssKean [sKe | sdd
y1oq jutod [euonOaIIp

smopeys

Uuonnjosay QUBN

sAey Arewitid

81

*9[qe} SIY) Ul PARIWO UG IABY QOUY PUB SIAMN[BA OU dABY A9} ‘S[eLIoJeW SUIIOQ[AI OU 2ARY [[BH BPOS pue ezuodg aourg
"A[UO 910J9q UWN[OJ) JO anJeA 3y 03 30adsar Yiim puodas 1od sAeI UOI[[IW oY) SAIS _ S/SARIA],, Y, "2ounoq Jurpuodsaiiod oy 10] sAel
U000 PJBaId A[MAU A} ATUO AIS SAN[BA-Y/ AT, "PAIsed sAer Arewrid Jo 1oquuinu [810) Y} SOAIS UWN[0d SARIH, U], ‘seouewiojrod
PaInseaw 110} Y} aI8 S QYL "SUOIIN[OSAI JUSISIJIP J& SQUDS 1S9) YY) JOJ S0UNOQq UOIIO[AI JUSIJIP JOJ SIUSUIAINSEIA f'/ 9[qRL

1€0°0 | 3991 | ¥'1 £€90°0 A0E | S0 29T0 | M9'601 | 91 01'¢ A8°C8S 1 9'6 00261 | 0°¢ 00CI X 0091
0200 6’8 | ¥'C w00 A0TT | LT 961°0 AS6E | T¢E 0L'1 AT | €F 'L Ar98L 1'6 89L X ¥201

ape
L10°0 ALE | ¢ 9¢0°0 L9 8¢ €91°0 ATYC | ¥y LET A8'8C1 8¢ <9 A0°08y | O°€l 009 X 008 peid
S10°0 AET | SY 0€0°0 AEY 81 LETO AV ST | 9°¢ 901 A8 69 9Y ATLOE | 67 08t X 0¥9
9800 | dS9C | 9°C LTO0 AL'6S | 6C 69°0 Ae'6rl | v'e 801 A8 18T | TS 09¢ 00261 | S'E1 || 00T X 0091
990°0 AS6 | LS LT°0 ACIC | ¥9 S0 ATyS | 9L ¢ A0°E8y | I ¥'SC AP'98L | €7C¢ 89L X 01 eyppng

1900 | 38 | €8 || 9ro | veer | ze | zso | voee [11| ze | I8ver |TLI || S8T | 008y | S'8€ || 009 X008

eso0 | e (v wro [ass [ear | o | owie [vsi]] e | owwsst [ree | vst | o | oos || o8y xor9
010 [d9L1][17 [€90 [dzeor | Ty st [awos] wv [Tvr [dezeet | €9 | o0s [00261 [9s1 [0021 X 0091
800 | €9 | 16 || 6v0 | WeE | T6 0T | 89¢r [zor || €21 | Ar'8eS | I'vl || 18T | w98L | L'SE || 89LX+T01 || (1remp ymy)
L00 | dee Joer || zro | uive |zer | o1 | wes [6vl || 1ar | weee |80z €Sz | doosy | 9TS || 009 X 008 Auung

900 | oz [ssi] eco | wst Jzel | o1 [owes [eie] gor | degor |€oc || o€z | NeLoe | 69L || 08r xov9
1o [z | 19 [960 [dezor | €9 g¢ [agoe | L9 | ziz [veseet [L8 [69¢ [300z6'T | T6I | 0021 X 0091
600 | ey |ser || ceo | 69e [1wl || €€ [Nesel | vsi| vz | Moers | 80z | 8€€ | OW98L | 6Ty || S9LX 20l || ([rewep mop)
800 | 97 |00z || 890 | WSz |80z | 0€ | w¥s |0€r| 10T | d6Tee |€Te || Tze | 008y | I'L9 || 009 X008 Kuung
L00 |1 Josc| 090 [wvr [ver | 9t | orws |eze |l zer | vwwoor |ssv || coe | eroe [o001 || osrxor9
ssReIN | Ve | Sdd || s/sAeiN [Py [Sdd [ssReaN | Ty [sdd [ssRenn | TOV [odd || ssAean | sRexy | Sdd
20Unoq 4,7 20unoq .8 20UNoq ,,g 20UNoq 4T

uondapgY

uonnjosay QweN

sKey Arewutig

82

7.3 KD-Tree vs. Uber-kD-Tree

As mentioned before, the chosen test scenes are not well suited for the Uber-kD-Tree. To test
the performance of this data structure, two additional test scenarios have been created. The
Uber-kD-Tree becomes advantageous when there are many objects in the scene such that the
Uber-kD-Tree can cull most of the objects efficiently.

Two simple test cases have been constructed to show a scenario where the Uber-kD-Tree
becomes faster. In both tests, the scene consists of the high detailed version of the bunny, which
is instantiated many times such that a row of bunnies is created. In the first test the camera faces
the first bunny from the side and in the second test from the front. Only the first bunny is visible,
and all the others are either hidden behind the first one or not in the viewing region at all (see
Figure[7.4).

The results of the tests are given in Table As can be seen, the Uber-kD-Tree performs
almost constant in both scenes at about 5 FPS, whereas when rendering with the Object-kD-
Trees, performance slowly decreases from 10-12 FPS to about 3 FPS for about 120 and more
bunnies. The crossing point where rendering with the Uber-kD-Tree gets faster is for both scenes
at around 60 objects.

Shevtsov et al. [SSKO7] also experimented with two-level kD-Trees in one scene they tested.
They also created kD-Trees per object and a top-level kD-Tree on top of them. For their scene of
some dancers in a theater hall, they found that their version of the Uber-kD-Tree pays off already
for four and more different, non-overlapping objects. However, when the lower level kD-Trees
overlap, they report that their performance significantly decreases. It should be noted that their
ray tracer was implemented on the CPU, which makes comparison of the results difficult.

7.4 Lessons learned

As usual with the development of complex systems, some parts are harder or take longer to
implement than others. During development of the CUDA library and the CUDA ray tracer,
the following tasks turned out to be the most time-consuming ones (in decreasing order of time
consumed).

e CUDA Debugging

The by far most time-consuming and tedious process was debugging CUDA code. Since
the whole ray tracer runs completely on the GPU, the whole code necessary for ray tracing
had to be implemented in CUDA. Hence, the CUDA kernel consists of the same amount
of code as a ray tracer on the CPU would. However, debugging possibilities for CUDA
are limited. To make matters worse, C# was the host language used, since Aardvark is
implemented in this language.

One way to debug was to write some special values into the frame buffer. However, this
method is not feasible for complex and branching code. Approximately at the beginning
of the implementation for this thesis, Nvidia released their then new debugging tool Nsight
for debugging CUDA code. With the help of Nsight, it should have been possible to debug
CUDA code almost like CPU code. However, the first releases were very buggy and hence

83

Primary rays Full

Name Pixels #rays ‘ Mrays/s ‘ FPS ‘ ms ‘ T Arays ‘ Mrays/s ‘ FPS ‘ ms ‘ T
307.2k (x1.00) 307.2k 34.1 111.1 | 9 | 1.0 || 289.0k 20.2 225 | 45 1.0
Bunny 480.0k (x1.56) 480.0k 34.8 725 | 14 | 1.5 || 4514k 23.2 16.5 | 61 1.4

(low detail) 786.4k (x2.56) 786.4k 36.2 46.1 | 22 | 2.4 || 739.6k 25.6 11.1 | 90 | 2.0
1,920.0k (x6.25) || 1,920.0k 20.6 39.6 | 45 | 5.0 || 1,906.4k 29.0 50 | 201 |45

307.2k (x1.00) 307.2k 25.0 813 | 12 | 1.0 || 287.7k 13.4 149 | 67 |10
Bunny 480.0k (x1.56) 480.0k 26.7 55.5 18 | 1.5 || 449.6k 14.2 10.1] 99 |15
(high detail) 786.4k (x2.56) 786.4k 30.2 385 | 26 | 22 || 736.4k 16.6 72 | 139 | 2.1
1,920.0k (x6.25) || 1,920.0k 32.0 16.7 | 60 | 5.0 || 1,899.0k 19.4 33 | 300 |45

307.2k (x1.00) 307.2k 19.2 62.5 | 16 | 1.0 || 305.2k 16.1 263 | 38 | 1.0
480.0k (x1.56) 480.0k 20.9 435 | 23 | 14 || 477.0k 17.4 182 55 |14

Sponza 786.4k (x2.56) || 7864k | 21.8 | 27.8 | 36 | 23 || 7814k | 191 | 122 82 |22
1,920.0k (x6.25) || 1,920.0k | 249 | 13.0 | 77 | 48 || 19452k | 218 | 56 | 177 | 47
3072k (x1.00) || 3072k | 162 | 526 | 19 | 1.0 || 221.0k | 66 | 87 | 115 | 1.0
Buddha 480.0k (x1.56) || 480.0k | 192 | 400 | 25 | 13| 3454k | 82 | 69 | 145 |13
7864k (x2.56) || 7864k | 254 | 323 | 31 | 1.6 || 5660k | 99 | 51 | 197 | 1.7
1,920.0k (x6.25) || 1,920.0k | 274 | 143 | 70 | 3.7 || 15117k | 117 | 23 | 430 | 37
3072k (x1.00) || 3072k | 47 | 154 | 65 | 1.0]| 1690k | 20 | 34 | 295 | 1.0
Blade 480.0k (x1.56) || 480.0k | 64 | 133 | 75 | 12 || 2642k | 25 | 27 | 374 |13
786.4k (x2.56) || 7864k | 73 93 | 107 | 1.6 | 4328k | 27 | 1.8 | 551 |19
1,920.0k (x6.25) || 1,920.0k | 9.7 51 | 197 | 3.0 1,1958k | 3.7 | 09 | 1061 | 3.6
307.2k (x1.00) || 3072k | 23 74 136 1.0 2622k | 27 | 47 | 221 | 1.0
480.0k (x1.56) || 480.0k | 38 79 | 126 | 09| 4096k | 39 | 44 | 227 | 1.0
Soda Hall

786.4k (x2.56) 786.4k 6.4 82 | 122|109 || 671.0k 5.5 38 | 261 | 1.2
1,920.0k (x6.25) || 1,920.0k 10.5 55 | 182 | 1.3 || 1,818.5k 8.9 24 | 421 |19

Table 7.5: Rendering times for one frame, for primary rays only and the “full” setup (one direc-
tional, one point light source, shadows, two reflection bounces), measured for the four screen
resolutions 640x480, 800x600, 1024x768 and 1600x1200. Primary rays: The “#rays” column
gives the number of primary rays casted. Furthermore, the Mrays/sec are given as well as the
FPS and the corresponding rendering time in ms. Full setup: The “Arays” column gives the
number of secondary rays casted (shadow rays and reflection rays). The Mrays/sec are averaged
values for the whole rendering time, including casting primary and secondary rays. Also, the
FPS and corresponding rendering time in ms are given. The values in the “z” columns show
the factor when comparing the ratio of rendering times of different resolutions to the ratio of the
number of pixels if the screen resolution 640x480 (i.e., 307.2k pixels) is taken as 100%. It can
be seen that the rendering times scale sublinearly with respect to the number of pixels.

84

FPS
80

70

60

50

40

30

20

10

Primary Shadows Reflection Full

Figure 7.2: Rendering performance for the “Bunny (high detail)” scene, given for four measured
screen resolutions: 640x480 shown in red, 800x600 in green, 1024x768 in blue and 1600x1200
in yellow. Values are taken from Tables and “Shadows” are the measured
values for one directional light casting shadows, “Reflection” consists of one reflection bounce
and no shadows. For measuring the values for “Full”, one directional, one point light source,
both casting shadows and two reflection bounces were used. The impact on the performance of
rendering reflection-rays is clearly visible.

rendered the tool useless most of the time. Furthermore, since C# was the host language,
the setup to debug CUDA code with C# as host language was indeed possible, but very
tedious to accomplish. As the development of the thesis progressed, newer versions of
Nsight were released. However, in the newer versions of Nsight, the support for CUDA
API 3.x was dropped. This API version was the one used in the CUDA library and hence
also in the CUDA ray tracer. This was the reason why Nsight could not be used for
debugging anymore.

What’s more is that the CUDA compilers before versions 4.x were buggy as well. Es-
pecially when compiling bigger CUDA kernels, like the ray tracing kernel, the compiler
often showed unexpected behavior. In such cases, workarounds had to be found or even
a reimplementation of specific parts had to be done such that the compiler could handle
them.

Finally, the kD-Tree traversal needed to be debugged. The kD-Tree traversal happens in
an iterative manner (see Section f.4.1)). As this traversal has several special cases and

85

(c) Primary rays and shadows. (d) Primary rays, shadows and reflections.

Figure 7.3: Turbine Blade.

Figure 7.4: The tested scenes. Left: Test 1, facing the bunnies from the side. Middle: Test 2,
facing the bunnies from the front. The picture on the right shows the array of 150 bunnies.

86

Scene 1 Scene 2
Object-kD-Trees | Uber-kD-Tree || Object-kD-Trees | Uber-kD-Tree

12 9

#Bunnies

N B W N =
ENIIENIIENIIEN|

(@)}
W

W W W WA AR BROWUO OO,

10
15
20
25 5.5
30
35
40
50
60
70
80
90
100
110
120
130
140
150

[GIRVIRV IRV IRV IR IRV IRV IRV IR IR IR IRV R IR RO IRV, IRV IRV, IRV, | e Y e Y IR |

| | | | | | in| n| n| | | | | | | | WD | WD WD WDy Dy

W W R WW AR B O OO0 W

Table 7.6: This table shows the measured performances, given in FPS, for the two test scenes
(see Figure . It can be seen that the performance of the Uber-kD-Tree stays almost constant,
whereas the performance of the Objects-kD-Trees decreases slowly with more and more objects
in the scene. The crossing point where the Uber-kD-Tree has better performance for the given
scenes is around 60 objects.

therefore special code paths, some of the errors appeared only seldom. Since Nsight did
not work, there was no way to set breakpoints inside the CUDA code, nor was there
any other way to debug like one would do on the CPU. The solution was to rewrite the
complete CUDA code in C# and introduce a “debug-pixel”. The debugging procedure
with the help of the debug-pixel is described in Section[6.6]

Despite all the troubles with debugging, however, the ray tracer is well debugged and
works without problems known so far.
e Data exchange between CUDA and C# and Aardvark integration

The first part of the thesis was the development of the CUDA library for Aardvark. This
library needed to provide a way to maintain a mapping between dynamic C#-objects and
CUDA-memory locations within hierarchical data structures and to provide the possibility
to update only certain parts (fields) within such data structures. Most of the data types used

87

88

in CUDA are organized in structs and arrays. In C#, structs are value types, which leads
to special maintenance for the mapping and support for data updates. To successfully
accomplish and maintain such a mapping, several attempts have been implemented until
a clean solution has been found.

Another time-consuming task was to implement graphics resource sharing between graph-
ics APIs, like DirectX in versions 9 and 10, and CUDA. In Aardvark, the renderer is ab-
stracted away behind a renderer interface. The problem was, however, that in the first
place this interface did not allow access to certain low-level data like the DirectX resource
pointers, which are needed to implement graphics resource sharing with CUDA.

HILITE intertace

Concurrently to the development of the ray tracer, the HILITE-Viewer, which is the main
rendering application of the HILITE project, was developed. One of the goals of the
project is a hybrid rendering algorithm, combining rasterization and ray tracing. To make
the integration of the ray tracer into the HILITE-Viewer as easy as possible, an additional
layer of abstraction between the CUDA -representation and the Aardvark-representation
of the scene data had to be introduced. Furthermore, an interface had to be defined for the
data transition from the HILITE-Viewer into the CUDA ray tracer. Due to the ongoing
development of the HILITE-Viewer, however, the requirements to this interface changed
over time and several refactoring processes were necessary.

CHAPTER

Conclusion and Future Work

8.1 Conclusion

In this thesis, I presented a CUDA ray tracer for the HILITE research-project at the VRVis
research center. With the CUDA ray tracer it is possible to render correct curved reflections
with interactive to real-time frame rates, depending on the scene complexity. The ray tracer
runs completely on the GPU. Per pixel, one ray is traced in parallel using CUDA. The parallel
ray traversal was implemented in an iterative manner. From the geometry side, the ray tracer
can handle triangle meshes. Multiple reflection bounces and shadows for directional and point
light sources are supported and can be fully configured interactively at runtime. The ray tracer
was integrated by another student into the HILITE Viewer, the main application of the HILITE-
project, during the writing of the thesis.

As far as acceleration structures are concerned, the ray tracer supports two variants of kD-
Trees (Section [6.4). The first one is the Object-kD-Tree, which is a kD-Tree per geometrical
object in the scene. Since each object has its own transformation matrix, rigid animations are
possible with this data structure. The second variant is our newly developed Uber-kD-Tree. The
Uber-kD-Tree is a two-level kD-Tree, having the Object-kD-Tree as leaves inside the Uber-kD-
Tree. Both kD-Tree variants are constructed on the CPU first, then converted to a GPU-capable
format and traversed on the GPU. The traversals of the kD-Trees are implemented as stack-based
iterative traversals.

During research for available literature and resources, it turned out that it is hard to find
complete algorithms on how to implement an iterative, massively parallel ray tracer in CUDA.
The same holds true on how to store a kD-Tree in a GPU-capable format and how to implement a
stack-based iterative traversal for kD-Trees in CUDA. For these reasons, Chapter | summarizes
the algorithms for iterative and parallel ray tracing and diverse kD-Tree traversal methods.

It turned out that developing a complete ray tracer on the GPU, consisting of a few-thousand
lines of code in a big CUDA kernel, is cumbersome to develop and to debug. What’s more
is that, since C# was the host language, most of the few debugging possibilities available for
CUDA could not be used. To remedy this, the only solution was to rewrite the CUDA code in

&9

C# and debug the code on the CPU. After debugging the CPU mirror-code, it was necessary to
translate the code back to CUDA. This slowed down development tremendously. Doing so, I
came up with a new method on how to debug the kD-Trees (Section [6.6). This can be applied
to all interactive CUDA rendering applications using acceleration data structures. KD-Trees are
hard to debug in general, but because of the limited debugging possibilities on the GPU they
are even harder to debug there. The introduced debugging method uses a “debug pixel”. This is
a fixed pixel on the screen for which CPU debugging can be triggered. This only works if the
CPU representation of the kD-Tree code is an exact mirror of the GPU code. Otherwise, wrong
code paths will be debugged.

Finally, as a prerequisite to implement the ray tracer, a CUDA library for the VRVis-internal
rendering engine has been developed. This has the advantage that research projects using Aard-
vark can now utilize the power of GPU computing. The library has an easy-to-use interface
for high-level access to CUDA functionality. CUDA resources like the CUDA-context, -device,
-modules and -functions are managed by the library. It also provides memory management for
GPU resources by a memory manager using a reference-counting scheme. A special challenge
was that structs in C# are value types and can not be referenced by default. Hence, memory
management would not be possible with this data type. However, besides arrays, they are the
most important ones for GPU computing. The most satisfying solution to this was finally to
encapsulate the structs into an array of length 1. When working with CUDA, the data types used
most of the time are either arrays or compound types like structs. For this reason, ready-to-use
data types have been created, which can be used from within C# as normal C#-objects, as well as
from CUDA. Whats more is that CUDA-kernels can be called almost like any other C#-function,
providing flexibility and convenience when working with CUDA. This way, one does not have
to worry about parameter mappings and conversion issues. To provide efficient data sharing be-
tween CUDA and graphics APIs, graphics resource sharing has been implemented as well, even
if Aardvark did not support the needed low-level access to graphics resources in the first place.
Finally, the library also supports CUDA-Streams and -Events for parallel kernel execution and
timing measurements.

8.2 Future Work

Even if the targeted goals of this diploma thesis have been met, there are lots of possibilities to
enhance and extend the ray tracer.

The first one is the integration into the HILITE Viewer, the main application of the HILITE
project. During writing of this thesis, this task has already been done by another student.

In order to achieve better photorealism, transparency should be implemented. Further, com-
mon effects like depth of field, motion blur, ambient occlusion, subsurface scattering and soft
shadows are also candidates for future implementations.

Another important feature would be the implementation of multi-sampling and anti-aliasing,
as well as adaptive rendering in such a way, that when the camera moves and the frame rate drops
too low, only each n-th pixel is rendered. To enhance rendering time, algorithms like packet
traversal (as described in Section[2.3.2) could be added as well. Additionally, hybrid rendering

90

could be implemented by handling the primary rays with rasterization and then starting the ray
tracing task for the secondary rays only.

Furthermore, the CUDA code could be even further optimized. Especially the time for
memory access can be reduced. To avoid the penalty of threads in a warp waiting for longer
running threads in this warp to finish, ray pools and persistent threads as in [[ALO9|] could be
implemented as well.

Since the construction of the kD-Trees on the CPU take a considerable amount of time
especially for bigger scenes, it would be nice to implement kD-Tree construction on the GPU.

An interesting research topic would be the implementation of BVHs and to compare their
performance to kD-Trees in terms of rendering performance, construction time and memory
footprint.

Besides that, the CUDA library currently supports the CUDA 3.x API and parts of the 4.x
API, which are incompatible with the newer versions of Nvidia’s debugging-tool Nsight. Hence,
the API should be updated to fully support version 4.x.

91

[AKS87]

[AK11]

[ALO9]

[ALK12]

[Ben75]

[Bik11]

[Cab10]

[CG]

[Cooa]

[Coob]

[Cooc]

Bibliography

James Arvo and David Kirk. Fast Ray Tracing by Ray Classification. In
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’87, pages 55-64, New York, NY, USA, 1987. ACM.

C. Wichter A. Keller. Efficient Ray Tracing without Auxiliary Acceleration Data
Structures, 2011. HPG 2012, Poster.

Timo Aila and Samuli Laine. Understanding the Efficiency of Ray Traversal on
GPUs. In Proceedings of the Conference on High Performance Graphics 2009,
HPG ’09, pages 145-149, New York, NY, USA, 2009. ACM.

Timo Aila, Samuli Laine, and Tero Karras. Understanding the Efficiency of Ray
Traversal on GPUs - Kepler and Fermi Addendum. NVIDIA Technical Report
NVR-2012-02, NVIDIA Corporation, June 2012.

Jon Louis Bentley. Multidimensional Binary Search Trees used for Associative
Searching. Commun. ACM, 18(9):509-517, September 1975.

Jacco Bikker. Arauna - Real-time Ray Tracing. http://igad.nhtv.nl/
~bikker, 2011. Last accessed: 23" of February, 2013.

Jodo Cabeleira. Combining Rasterization and Ray Tracing Techniques to Approx-
imate Global Illumination in Real-Time. Master’s thesis, Technical University of
Lisbon, Instituto Superior Técnico, 2010.

Inc. Caustic Graphics. CausticOne. https://caustic.com/caustic-rt_
caustic-one.php. Last accessed: 22" of April, 2013.

Nvidia Coorp. CUDA. http://developer.nvidia.com/category/
zone/cuda-zone, Last accessed: 23"¢ of February, 2013.

Nvidia Coorp. CUDA LLVM Compiler. https://developer.nvidia.
com/cuda-1lvm-compiler. Last accessed: 16™? of April, 2013.

Nvidia Coorp. CUDA Programming Guide, Version 4.2. Part of the CUDA SDK.
Downloadable at http://developer.nvidia.com. Last accessed: 23"% of
February, 2013.

93

http://igad.nhtv.nl/~bikker
http://igad.nhtv.nl/~bikker
https://caustic.com/caustic-rt_caustic-one.php
https://caustic.com/caustic-rt_caustic-one.php
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
http://developer.nvidia.com

[Coo010]

[DPS10]

[EMD*05]

[EMDTO06]

[Afr12]

[FSO5]

[GAS]

[GL10]

[Gmb]

[GPM11]

[GPPT10]

[GS87]

[GueO8]

94

Nvidia Coorp. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
2010. Whitepaper.

P. Danilewski, S. Popov, and P. Slusallek. Binned SAH kD-Tree Construction on a
GPU. Technical report, Saarland University, 2010.

Pau Estalella, Ignacio Martin, George Drettakis, Dani Tost, Olivier Devillers, and
Frederic Cazals. Accurate Interactive Specular Reflections on Curved Objects. In
In Proc. of VMYV 2005, 2005.

Pau Estalella, Ignacio Martin, George Drettakis, and Dani Tost. A GPU-driven
Algorithm for Accurate Interactive Reflections on Curved Objects. In Proceedings
of the 17th Eurographics conference on Rendering Techniques, EGSR’06, pages
313-318, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

Attila T. Afra. Incoherent Ray Tracing without Acceleration Structures. Euro-
graphics 2012 short paper, 2012.

Tim Foley and Jeremy Sugerman. KD-Tree Acceleration Structures for a GPU
Raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, HWWS ’05, pages 15-22, New York, NY, USA, 2005.
ACM.

Company for Advanced Supercomputing Solutions Ltd. GASS. CUDA.NET.
http://www.cass—hpc.com/category/cudanet. Last accessed: 23™¢
of February, 2013.

Kirill Garanzha and Charles T. Loop. Fast Ray Sorting and Breadth-First Packet
Traversal for GPU Ray Tracing. Comput. Graph. Forum, 29(2):289-298, 2010.

VRVis GmbH. HILITE. http://vrvis.at/projects/hilitel Last ac-
cessed: 23" of February, 2013.

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. Simpler and faster
HLBVH with Work Queues. In Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics, HPG ’11, pages 59—64, New York, NY, USA,
2011. ACM.

Olivier Gourmel, Anthony Pajot, Mathias Paulin, Loic Barthe, and Pierre Poulin.
Fitted BVH for Fast Ray Tracing of Metaballs. Computer Graphics Forum, 29(2),
May 2010.

Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hierarchies for
Ray Tracing. IEEE Comput. Graph. Appl., 7(5):14-20, May 1987.

Paul Guerrero. Approximative Real-time Soft Shadows and Diffuse Reflections
in Dynamic Scenes. Master’s thesis, Vienna Unitersity of Technology, Institute of
Computer Graphics and Algorithms, 2008.

http://www.cass-hpc.com/category/cudanet
http://vrvis.at/projects/hilite

[Hav00]

[HBZ98]

[Hec90]

[HQL*10]

[HSHHO7]

[ICGS86]

[Kaj86]

[KBS11a]

[KBS11b]

[KK86]

[Las99]

[MBO5]

[MMBO5]

Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University, Prague, 2000.

Vlastimil Havran, Jiri Bittner, and Jirf Zdra. Ray Tracing with Rope Trees. In
in Proceedings of 13th Spring Conference On Computer Graphics, Budmerice in
Slovakia, pages 130-139, 1998.

Paul S. Heckbert. Adaptive Radiosity Textures for Bidirectional Ray Tracing. In
Proceedings of the 17th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’90, pages 145-154, New York, NY, USA, 1990. ACM.

Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou. Micropolygon
Ray Tracing with Defocus and Motion Blur. In ACM SIGGRAPH 2010 papers,
SIGGRAPH ’10, pages 64:1-64:10, New York, NY, USA, 2010. ACM.

Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. In-
teractive kD-Tree GPU Raytracing. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games, I3D *07, pages 167-174, New York, NY, USA,
2007. ACM.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A Radiosity Method
for Non-Diffuse Environments. In Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, SIGGRAPH °86, pages 133-142,
New York, NY, USA, 1986. ACM.

James T. Kajiya. The Rendering Equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’86,
pages 143—-150, New York, NY, USA, 1986. ACM.

Javor Kalojanov, Markus Billeter, and Philipp Slusallek. Two-Level Grids for Ray
Tracing on GPUs. In Oliver Deussen Min Chen, editor, EG 2011 - Full Papers,
pages 307-314, Llandudno, UK, 2011. Eurographics Association.

Javor Kalojanov, Markus Billeter, and Philipp Slusallek. Two-Level Grids for Ray
Tracing on GPUs. Computer Graphics Forum, 30(2):307-314, 2011.

Timothy L. Kay and James T. Kajiya. Ray Tracing Complex Scenes. In
Proceedings of the 13th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’86, pages 269-278, New York, NY, USA, 1986. ACM.

Szirmay-Kalos L4szl6. Monte-Carlo Methods in Global Illumination, 1999. Scrip-
tum.

Marc Stamminger Marcel Beister, Manfred Ernst. A hybrid gpu-cpu renderer.
Vision, Modeling, and Visualization 2005, 2005.

Michael John Muuss and Michael John Muuss. Towards Real-Time Ray-Tracing
of Combinatorial Solid Geometric Models, 1995.

95

[Mor66]

[Morl1a]

[Morl1b]

[M.R85]

[PBD*10]

[PBMHO02]

[PGDS09]

[PGSS06]

[PL10]

[PMST99]

[RHO6]

96

G. M. Morton. A Computer Oriented Geodetic Data Base; and a new Technique in
File Sequencing. Technical report, IBM Ltd., Ottawa, Canada, 1966.

Benjamin Mora. Direct-Trace Library: Ray Tracing for the Masses. http://
www.directtrace.org, 2011. Last accessed: 23" of February, 2013.

Benjamin Mora. Naive Ray Tracing: A Divide-and-Conquer Approach. ACM
Trans. Graph., 30(5):117:1-117:12, October 2011.

Kaplan M.R. Space Tracing: A Constant Time Ray Tracer, State of the Art in
Image Synthesis. In SIGGRAPH ’85 course notes, page 11f, 1985.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hobe-
rock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin
Robison, and Martin Stich. OptiX: A General Purpose Ray Tracing Engine. In
ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 66:1-66:13, New York,
NY, USA, 2010. ACM.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray Tracing on
programmable Graphics Hardware. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’02, pages 703-712,
New York, NY, USA, 2002. ACM.

Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek. Object Par-
titioning considered harmful: Space Subdivision for BVHs. In Proceedings of the
Conference on High Performance Graphics 2009, HPG ’09, pages 15-22, New
York, NY, USA, 2009. ACM.

S. Popov, J. Giinther, Hans-Peter Seidl, and P. Slusallek. Experiences with Stream-
ing Construction of SAH kD-Trees. IEEE Symposium on Interactive Ray Tracing,
pages 89-94, 2006.

J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH Construction for Real-
time Ray Tracing of Dynamic Geometry. In Proceedings of the Conference on
High Performance Graphics, HPG ’10, pages 87-95, Aire-la-Ville, Switzerland,
Switzerland, 2010. Eurographics Association.

Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and
Charles Hansen. Interactive Ray Tracing. In Proceedings of the 1999 symposium
on Interactive 3D graphics, I3D ’99, pages 119-126, New York, NY, USA, 1999.
ACM.

David Roger and Nicolas Holzschuch. Accurate Specular Reflections in Real-
Time. Computer Graphics Forum (Proceedings of Eurographics 2006), 25(3), sep
2006.

http://www.directtrace.org
http://www.directtrace.org

[SFDO09]

[SPSO07]

[SSKO07]

[Suf07]

[SWWT04]

[Tra0o6]

[WHO06]

[Whi80]

[WKO06]

[WMSO06]

[WS05]

[WSBO1]

Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial Splits in Bound-
ing Volume Hierarchies. In Proceedings of the Conference on High Performance
Graphics 2009, HPG *09, pages 7-13, New York, NY, USA, 2009. ACM.

Hans-Peter Seidel Stefan Popov, Johannes Giinther and Philipp Slusallek. Stack-
less kD-Tree Traversal for High Performance GPU Ray Tracing. Technical report,
Saarland University, 2007.

Maxim Shevtsov, Alexei Soupikov, and Er Kapustin. Highly Parallel fast
kD-Tree Construction for Interactive Ray Tracing of Dynamic Scenes. In
EUROGRAPHICS 2007, volume 26, Number 3, 2007.

Kevin Suffern. Ray Tracing from the Ground Up. A K Peters/CRC Press, West-
minster College, Salt Lake City, Utah, USA, 2007.

Jorg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and Philipp
Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’04, pages 95-106, New York, NY, USA, 2004. ACM.

Gilles Tran. Glasses. Persistence of Vision Raytracer (POV Ray) - Hall of Fame,
http://hof.povray.org, 2006. Last accessed: 23" of February, 2013.

Ingo Wald and Vlastimil Havran. On building fast kD-Trees for Ray Tracing,
and on doing that in O(N log N). In IN PROCEEDINGS OF THE 2006 IEEE
SYMPOSIUM ON INTERACTIVE RAY TRACING, pages 61-70, 2006.

Turner Whitted. An improved Illumination Model for Shaded Display. Commun.
ACM, 23(6):343-349, June 1980.

Carsten Wichter and Alexander Keller. Instant Ray Tracing: The Bounding Inter-
val Hierarchy. In IN RENDERING TECHNIQUES 2006 — PROCEEDINGS OF
THE 17TH EUROGRAPHICS SYMPOSIUM ON RENDERING, pages 139-149,
2006.

Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees for Hardware
Accelerated Ray Tracing of Dynamic Scenes. In Proceedings of the 21st ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’06, pages
67-77, New York, NY, USA, 2006. ACM.

Sven Woop and Jorg Schmittler. RPU: A Programmable Ray Processing Unit for
Realtime Ray Tracing. In ACM Trans. Graph, pages 434-444, 2005.

Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive Distributed Ray
Tracing of Highly Complex Models. In In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering, pages 277-288. Springer, 2001.

97

http://hof.povray.org

[WSBWO1] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive

[WZL11]

[ZHWGO08]

98

Rendering with Coherent Ray Tracing. In Computer Graphics Forum, pages 153—
164, 2001.

Zhefeng Wu, Fukai Zhao, and Xinguo Liu. SAH KD-Tree Construction on GPU. In
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,

HPG ’11, pages 71-78, New York, NY, USA, 2011. ACM.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kD-Tree Con-
struction on Graphics Hardware. In ACM SIGGRAPH Asia 2008 papers, SIG-
GRAPH Asia ’08, pages 126:1-126:11, New York, NY, USA, 2008. ACM.

	Introduction
	About Ray Tracing
	Programmable Graphics Hardware and Ray Tracing
	Aim of the Thesis
	Contributions
	CUDA Library
	CUDA Ray tracer
	Über-kD-Tree
	A new debugging Method
	Presentation of Algorithms for the GPU

	Theory
	The Rendering Equation
	BRDF, BTDF, BSDF
	Solution Attempts of the Rendering Equation

	Light Transport Notation
	The Ray Tracing Algorithm
	Overview
	Basic Ray Tracing Algorithm

	Background and Related Work
	Acceleration Data Structures for Ray Tracing
	Motivation
	Brute Force
	KD-Trees
	Bounding Volume Hierarchies
	Other Common Acceleration Data Structures
	Divide-and-Conquer Schemes
	Splitting Strategies

	CUDA
	Motivation for General Purpose Programming on Graphics Hardware
	CUDA
	CUDA and OpenCL

	Ray Tracing on the GPU
	Advent of Real-Time Ray Tracing
	Iterative Ray Tracing
	Parallel Ray Tracing
	KD-Trees for GPUs
	Stack-based Iterative Traversal
	KD-Restart
	KD-Backtrack
	Short-Stack and Push-Down

	Über-kD-Tree

	CUDA Library
	Overview
	Host Side
	Management
	Built-In Data-Types
	Graphics-Resource Sharing

	Device Side
	Examples

	CUDA Ray Tracer
	Overview
	Program Flow
	The CUDA Ray Tracing Kernel
	Acceleration Data Structures
	Creation and Conversion
	Scene Traversal

	Runtime Parameters
	Debugging

	Results
	Test Setup
	Results
	KD-Tree vs. Über-kD-Tree
	Lessons learned

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

