
Problemstellung

Kontakt: gvoglsam@vrvis.at, tobler@vrvis.at, wimmer@cg.tuwien.ac.at

Masterstudium:
Visual Computing

Diplomarbeitspräsentation

Günther Voglsam

Real-time Ray Tracing on the GPU
Technische Universität Wien
Institut für Computergraphik und Algorithmen
Arbeitsbereich Computergraphik
Betreuung: DI DI Dr. Michael Wimmer
Mitwirkung: DI Dr. Robert Tobler

Ray Tracing using CUDA and kD-Trees

This thesis is part of the HILITE-project at VRVis.

Overall goal of the project:
Dynamic, interactive, realistic real-time lighting simulation for complex ar-
chitectural environments.

One of the Requirements:
Correct rendering of curved re�ections using a GPU-accelerated ray tracer
=> Topic of this thesis: CUDA-Ray Tracer

Prerequisite:
CUDA-access from VRVis-internal rendering engine Aardvark used for HILITE
=> Develop CUDA-Library �rst

MotivationMotivation
This thesis is part of the HILITE-project at VRVis.

Overall goal of the project:
Dynamic, interactive, realistic real-time lighting simulation for com-
plex architectural environments.

One of the Requirements:
Correct rendering of curved re�ections using a GPU-accelerated
ray tracer
=> Topic of this thesis: CUDA-Ray Tracer

Prerequisite:
CUDA-access from VRVis-internal rendering engine Aardvark (C#)
used for HILITE
=> Develop CUDA-Library �rst

Results

Rendering performances:
Standford Bunny (image on the left) rendered with:

 Primary rays only: With re�ection (two bounces):
 640x480 81 FPS / 24.9 Mrays/sec *) 21 FPS / 1.6 Mrays/sec *)
 1024x768 39 FPS / 30.2 Mrays/sec 15 FPS / 2.0 Mrays/sec
 1600x1200 17 FPS / 32.0 Mrays/sec 5 FPS / 2.5 Mrays/sec

 With shadow (one point light): With shadow and re�ection:
 640x480 48 FPS / 25.6 Mrays/sec *) 15 FPS / 13.4 Mrays/sec (avg)
 1024x768 25 FPS / 42.5 Mrays/sec 7 FPS / 16.6 Mrays/sec (avg)
 1600x1200 11 FPS / 44.3 Mrays/sec 3 FPS / 19.4 Mrays/sec (avg)

*) Mrays/sec with respect to primary/shadow/re�ection rays only

Results
Rendering performances:
Standford Bunny (image on the left, 69.5k triangles) rendered on
an Nvidia GTX480 with:

 Primary rays only: With re�ection (two bounces):
 640x480 81 FPS / 24.9 Mrays/sec *) 21 FPS / 1.6 Mrays/sec *)
1024x768 39 FPS / 30.2 Mrays/sec 15 FPS / 2.0 Mrays/sec
1600x1200 17 FPS / 32.0 Mrays/sec 5 FPS / 2.5 Mrays/sec

 With shadow (one point light): With shadow and re�ection:
 640x480 48 FPS / 25.6 Mrays/sec *) 15 FPS / 13.4 Mrays/sec (avg)
1024x768 25 FPS / 42.5 Mrays/sec 7 FPS / 16.6 Mrays/sec (avg)
1600x1200 11 FPS / 44.3 Mrays/sec 3 FPS / 19.4 Mrays/sec (avg)

 *) Mrays/sec with respect to primary/shadow/re�ection rays only

CUDA Ray Tracer
- Ray tracing completely on the GPU
- Real-time to interactive performance, depending on scene
- Stack-based iterative kD-Tree traversal
- Uses two variants of kD-Trees as acceleration data structures:
 Object-kD-Trees and Über-kD-Tree (see below)
- Uses CUDA-library for managing CUDA-resources

Object-kD-Tree (OKD):
- One kD-Tree per geometric object
- Rendering processes lists of OKDs

Über-kD-Tree (ÜKD):
- KD-Tree of OKDs
- Rendering traverses ÜKD �rst,
 then OKD
- Useful for interactively editing scene
 and scenes with lots of objects

Algorithm:

 Load scene, create kD-Trees on CPU and convert it to a
 format suitable for GPU: Inner Node Array + LeafArray.

 In parallel, start a single thread for each pixel on the GPU.

 Each thread traces one primary ray and its secondary rays.
 The generated image is directly rendered into a DirectX-
 texture.

 DirectX renders the texture as full-screen quad.

1

2

3

4

CUDA-Library for Aardvark
Provides access to CUDA from C# for the
Aardvark rendering engine to gain GPU-
processing power for research projects at
VRVis.

- High-level object orientation
- Easy to use
- Full Aardvark integration
- Encapsulates CUDA Driver API

Features:
- CUDA-Context and -Device management
- GPU memory management
- Easy kernel calls from within C#
- Provides ready-to-use data types
- Graphics resource sharing
- Support for CUDA-Streams, -Timer/-Events, ...

Figure: OKD = black lines

 ÜKD = red lines

*.vrml

CPU
GPU Eye Light SourceImage Plane

di�use Material
specular Material

Scene Objects

1

2

3

4

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Grid

1 2 3 4 5

Inner Node Array

Leaf Array

1 2

3 4

5

0

1 2
0 1 2 3

3
1 2 3 4 5

Inner Node Array

Leaf Array
1 2

3 4

5

0

1 2 0 1 2 3

3

Grid
Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

