
neuroMap - Interactive
Graph-Visualization of the Fruit

Fly’s Neural Circuit
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Johannes Sorger
Matrikelnummer 0225843

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Math. Dr.techn. Katja Bühler, VRVis

Wien, 30.01.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

neuroMap - Interactive
Graph-Visualization of the Fruit

Fly’s Neural Circuit
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Visual Computing

by

Johannes Sorger
Registration Number 0225843

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Math. Dr.techn. Katja Bühler, VRVis

Vienna, 30.01.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Johannes Sorger
Wasagasse 31/22, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to take the time and thank everyone who accompanied me during my studies
and supported me in carrying out the work for this thesis.

I thank Meister Eduard Gröller for his supervision on behalf of the university, his
helpful advice during the course of my thesis, and for reviewing my work.

My thanks also go to Katja Bühler for offering me this interesting topic and therefore
giving me the great opportunity to work at VRVis, and also for her supervision and her
insight during the work on my thesis. I thank Florian Schulze and Florian Deringer for
always being available for technical questions, and also the former for proofreading my
thesis.

I give my thanks also to Barry Dickson’s team at the Institute of Molecular Pathol-
ogy, especially Tianxiao Liu for his essential input during design, implementation and
evaluation phases.

I thank the VRVis, its team, and my colleagues for providing a great place to work
as well as a friendly, productive environment.

Finally, I would like to thank my family, who enabled me to accomplish my studies
by giving me all the support that I needed.

iii

Abstract

Neuroscientists study the function of neural circuits in the brain of the common fruit
fly Drosophila Melanogaster to discover how complex behavior is generated. Through
a combination of molecular-genetic techniques and confocal microscopy the scientists
are able to highlight single neurons and produce three-dimensional images of the fly’s
brain. Neurons are segmented, annotated, and compiled into a digital atlas. Brain at-
lases offer tools for exploring and analyzing their underlying data. To establish models
of neural information processing, knowledge about possible connections between indi-
vidual neurons is necessary. Connections can occur when arborizations (the terminal
branchings of nerve fibers) of two neurons are overlapping. However, analyzing over-
lapping objects using traditional volumetric visualization is difficult since the examined
objects occlude each other. A more abstract form of representation is therefore required.

The work in this thesis was motivated by a manually constructed two-dimensional
circuit diagram of potential neuronal connections that represents a novel way of visu-
alizing neural connectivity data. Through abstracting the complex volumetric data, the
diagram offers an intuitive and clear overview of potential connectivity.

In collaboration with a group of neuroscientists neuroMap was designed and im-
plemented in an attempt to deliver the visual features and encoded information of this
circuit diagram in an automatically generated interactive graph, with the goal of facili-
tating hypothesis formation and exploration of neural connectivity.

In this thesis the visual and interaction design decisions that went into neuroMap are
presented, as well as the result of evaluative discussions that shows that the integration
of this novel type of visualization into the existing datamining infrastructure of our
clients is indeed beneficial to their research.

v

Kurzfassung

Neurowissenschaftler erforschen die Funktionen neuronaler Netzwerke im Gehirn der
Fruchtfliege Drosophila Melanogaster, um herauszufinden, wie komplexes Verhalten
erzeugt wird. Eine Kombination aus molekulargenetischen Verfahren und Konfokal-
mikroskopie erlaubt es den Wissenschaftlern, einzelne Neuronen in dreidimensionalen
Bildern des Fruchtfliegengehirns sichtbar zu machen. Dabei werden die Neuronen seg-
mentiert, annotiert, und in einem digitalen Atlas zusammengetragen. Solche sogenann-
ten Gehirnatlanten bieten in der Regel Werkzeuge, um die darin gesammelten Daten
zu explorieren und zu analysieren. Um jedoch Modelle über neuronale Informations-
verarbeitung aufstellen zu können, ist es notwendig, über die potentiellen Verbindun-
gen zwischen einzelnen Neuronen Bescheid zu wissen. Solche Verbindungen können
auftreten, wenn sich die Arborisierungen (terminale Verzweigungen von Nervenfasern)
zweier Neuronen überlappen. Diese Überlappungen anhand von volumetrischen Visua-
lisierungsmethoden zu analysieren ist jedoch schwierig, da sich die betrachteten Objekte
durch die Überlappung gegenseitig verdecken. Eine abstraktere Darstellungsform der zu
untersuchenden Daten wäre daher vorteilhaft.

Das Thema dieser Diplomarbeit wurde durch ein von Hand konstruiertes zweidi-
mensionales Schaltkreisdiagramm potentieller neuronaler Verbindungen inspiriert. Durch
die Abstraktion der komplexen volumetrischen Daten, bietet diese neue Dartstellungs-
form eine intuitive und klare Übersicht über die potentiellen Verbindungen der betrach-
teten Neuronen.

In Zusammenarbeit mit einer Gruppe von Neurowissenschaftlern wurde im Rahmen
dieser Diplomarbeit neuroMap entworfen und implementiert, mit dem Ziel, visuelle Ei-
genschaften und kodierte Information des Schaltkreisdiagramms in einem automatisch
generierten, interaktiven Graph zu reproduzieren, und dadurch unseren Kollaborateuren
das Bilden von Hypothesen über und die Erforschung von neuronaler Konnektivität zu
erleichtern.

In dieser Diplomarbeit werden neben den Entscheidungen, die in das Visualisierungs-
und Interaktionsdesign von neuroMap eingeflossen sind, auch die Ergebnisse der Eva-
luierung präsentiert, die zeigen, dass die Integration dieses neuartigen Visualisierungs-
ansatzes in die bestehende Datamining-Infrastruktur unserer Kollaborateure tatsächlich
hilfreich für deren Forschung ist.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Requirements . 3
1.3 Thesis Overview . 4

2 Background 5
2.1 Circuit Neuroscience . 5
2.2 Drosophila Melanogaster . 6
2.3 The Drosophila Nervous System . 9
2.4 Data Acquisition . 9
2.5 Existing Infrastructure . 11

3 Related Work 15
3.1 Visualization of Neural Networks . 15
3.2 Biomedical Network Visualization . 22
3.3 Open Challenges in Biomedical Network Visualization 25
3.4 Parallels to Circuit Design . 28
3.5 Conclusion . 28

4 Methods 31
4.1 Graph Drawing . 31
4.2 Abstraction and Visual Encoding . 44

5 Visual Encoding 49
5.1 Yu’s Drawing . 49
5.2 Abstraction to Graph Elements . 51
5.3 Visual Encoding . 54
5.4 Layouts . 59

6 Interaction 67
6.1 Interface Overview . 67

ix

6.2 Graph Creation . 68
6.3 Graph Manipulation . 69
6.4 Exploration . 71

7 Implementation 77
7.1 System Overview . 77
7.2 yFiles AJAX . 78
7.3 Database . 79

8 Evaluation and Results 83
8.1 Evaluation Method . 83
8.2 Discussion of Results . 84
8.3 Comparison with Yu’s Drawing . 90
8.4 Tackling the Challenges . 93
8.5 Performance . 94
8.6 Summary . 94

9 Conclusion and Future Work 97
9.1 Conclusion . 97
9.2 Future Work . 98

Bibliography 99

x

CHAPTER 1
Introduction

A major goal in circuit neuroscience is to discover how behavior is mediated through
information processing in complex neuronal circuits of the brain. Our clients at the Insti-
tute of Molecular Pathology (IMP) are studying the brain of the Drosophila Melanogaster,
also known as the common fruit fly, in order to find out how the function of neural cir-
cuits drives the fly’s courtship behavior [78]. The fruit fly is a popular model organism
in the neuroscience community, because it allows studies of complex processes on a
simple example. By applying molecular-genetic techniques the scientists are able to
highlight single neurons and produce three-dimensional images of the fly’s brain using
confocal microscopy. These images together with the corresponding meta-information,
like the classification of the visible entity, the test subject’s sex, etc. are stored in a
relational database for further study and analysis.

1.1 Problem Statement
Knowledge about neuron connectivity is essential for the understanding of how infor-
mation is processed and transmitted within the brain. Thus, one of the tasks of the
scientists is the discovery of connections between neurons in the fruit fly’s brain. A
necessary but not sufficient condition for the existence of a connection is an overlap
between arborizations (treelike terminal branching of nerve fibers) of two neurons. Vi-
sualization of these potential connections would, on the one hand, support the formation
of hypotheses about neuronal connections, and on the other hand, offer visual verifica-
tion of already confirmed research results.

In the scope of several joint research projects, a complete software infrastructure
of data management, data mining, and visualization has been developed by VRVis and
IMP. BrainGazer handles the 3D visualization of the collected images and segmented

1

Figure 1.1: The original drawing from Yu’s publication [78].

structures, but their exploration becomes cumbersome. While it is possible to judge
overlaps of two or three objects in three-dimensional space, it becomes cumbersome
when there are more objects involved, since overlapping objects occlude each other.
Also, for the analysis of overlaps anatomical accuracy and exact spatial positioning of
the visualized entities are not as important as the ability to display large amounts of data
in a clearly structured overview. A more abstract form of representation was therefore

Figure 1.2: The heatmap associated with the diagram in Figure 1.1 [78].

2

desired, which is why Jai Y. Yu used a graph representation for depicting these neuronal
relationships (Figure 1.1). The graph shows which neurons have arborizations in which
brain regions, while a heatmap (Figure 1.2) depicts the amount of overlap between ar-
borizations per brain region (neuropil). Yu’s wiring diagram was created manually in
Adobe Illustrator in multiple iterations over a couple of months. The positive response
towards Yu’s drawing within the group of researchers and the scientific community mo-
tivated the creation of a tool that should replicate the features of the graph and further
expand on them - thus neuroMap was born.

1.2 Requirements
neuroMap is being developed with the goal to supply the scientists at the IMP with a
two-dimensional representation of their accumulated neuronal data in order to support
and facilitate their research by fulfilling the following requirements:

• Easier, more intuitive neuron connectivity hypothesis-formation: By combining
the information of heatmap and wiring diagram into a single automatically gener-
ated graph neuroMap visualizes arborizations as nodes and the potential connec-
tions between them as edges, thus letting scientists grasp all potential connections
of the analyzed data at a single glance.

• Visual exploration of the accumulated neuronal data: Having a static graph that
depicts user-specified data is helpful, but the real power of a visualization is un-
locked once it offers the user a way to interact with it. Features like arborization-
overlap filters and context menus for loading related or overlapping objects allow
the user to extend the graph in directions of interest and thus interactively explore
the neuronal database.

• Fast generation of neural-circuit-graphics for presentation purposes: Researchers
use circuit diagrams of neural structures like in Figure 1.1 to demonstrate scien-
tific findings in papers or presentations. Creating these diagrams manually is a
laborious, time consuming process. neuroMap generates these structures auto-
matically while offering a variety of different layout algorithms to achieve results
that are meaningful and visually pleasing. Editing of the graph structure as well as
export to various picture and graph formats are supported to allow further usage
and manipulation of the graph.

Using two-dimensional graphs to visualize biological networks is not a new idea. A
variety of software solutions already exist [29]. Nevertheless, the two fields of graph
drawing and network biology are still largely disconnected, as stated by Albrecht et
al. [3] who identified seven open problems in biological network visualizations. Prob-
lems relevant to our approach are: the visualization of multiple attributes (object type,

3

overlap amount, gender, neuron association), location constraints (assignment of nodes
to specific brain regions), visualization of flows and paths (highlighting of intercon-
nected entities), exploration of hierarchical networks (extending and reducing the graph
in desired directions). The fact that existing tools tackle some of these problems but not
in a combination that is desirable for our approach, as discussed in chapter three of this
thesis, and the requirement to integrate the visualization into an existing framework led
to the development of our proprietary solution.

The contributions of this thesis lie in the design and evaluation of a system that
implements a new approach of visualizing potential neuronal connections and offers
a new way of exploring neural overlap data by fulfilling the stated requirements and
handling the above mentioned open problems in biological network visualization in a
way that is tailored to the application-specific context and data.

1.3 Thesis Overview
In the next chapter more detailed background about our clients’ research and the exist-
ing infrastructure is given. Chapter three discusses related work in the areas of neural
and biomedical network visualization. In chapter four the basics of the techniques that
went into neuroMap’s design and implementation are explained. Chapters five and six
describe the visual encoding and interactive functionality that are implemented in neu-
roMap. Chapter seven gives an overview of the system architecture and relevant imple-
mentation details; followed by an evaluation and discussion of results in chapter eight.
The conclusion of the thesis and an outlook on future work is given in chapter nine.

4

CHAPTER 2
Background

In this chapter the research area of our clients at the IMP is introduced in more detail,
followed by a discussion of Drosophila’s characteristics and the data that forms the
center of the scientists’ research. Finally the software infrastructure in which neuroMap
was integrated is presented.

2.1 Circuit Neuroscience
Circuit Neuroscience can be regarded as the understanding of the computational func-
tion of neural circuits, as linking the function with the circuit micro-structure. Yuste
describes the goal of this field as the reverse-engineering of biological circuits [79]. In
order to do so, knowledge about their structure and logic is needed, so that their com-
putational algorithms can be understood. To completely solve a neural circuit would
require the scientists to (i) describe a behavior whose neural circuit mechanisms they
seek to understand, (ii) identify which neurons are involved, (iii) determine what drives
activity in each type of neuron and how the related signals are transformed through
the circuit, (iv) discover the cellular, synaptic and circuit mechanisms underlying these
neural transformations, and finally (v) understand why these neural transformations are
useful intermediates in producing this behavior [52]. Science is still at the beginning of
this formidable task which is perhaps the biggest neuroscience breakthrough solvable
within our lifetimes. What the genome project was for molecular biology, the circuit
connectivity project could be for neuroscience [79].

Imaging techniques, in spite of their relative novelty, are already responsible for a
significant push ahead of many areas of circuit neuroscience. The complete connec-
tomic reconstruction at the synapse level is currently possible for small brain volumes
using electron microscopy techniques, but technically not yet feasible for volumes of

5

Figure 2.1: Drosophila’s brain and VNC: a) schematic view in anatomical context [73],
b) a confocal staining image depicting a Gal4/UAS neuron in green and stained synapses
in magenta [23].

the size of a cortical column. Approaches on the human brain have mainly documented
the connectivity between brain regions of living subjects. For this, MR scans are used
as reference for further measurements. Then a time series of brain activity in differ-
ent voxels or regions is derived for establishing functional connectivity (between brain
regions, not at single cell resolution) [38].

Deciphering the human brain would be the ultimate goal but since it is the most
complex of all existing organisms, researchers use model organisms as small scale ex-
amples in its place. Model organisms are specific types of plants or animals that can
be relatively quickly and cheaply bred in large numbers and serve as scientific study
objects without raising (too many) ethical concerns. The genomes of model organisms
were therefore among the first to be completely sequenced. Popular examples of such
species are the Escherichia coli bacterium, the Caenorhabditis elegans worm, the zebra
fish or the common mouse.

The C. elegans was the first species to have its complete neural wiring (connectome)
documented at single cell resolution by researchers in the 1970s and 1980s. They im-
aged extremely thin slices of this organism using serial electron microscopy, virtually
reconstructed each neuron by finding all its cross-sections in the images, and found
every synaptic connection between neurons [62]. The C. elegans is one of the most sim-
ple organisms to exhibit neural wiring structures. It has only 302 neurons and is only 1
millimeter in length. The behavioral repertoire of this species is therefore less extensive.

2.2 Drosophila Melanogaster
Compared to C. elegans, the fruit fly is already a much more complex organism. Mea-
suring a length of only 2.5 mm, it possesses a nervous system that consists of a brain

6

with two halves and a ventral nerve cord (VNC) with a total of approximately 250.000
neurons [64] (Figure 2.1). Compared to the human brain with its billions of neurons, this
is still tiny. Nevertheless the Drosophila already possesses „the rudiments of conscious-
ness“ and can perceive sound, vision, and smell. Drosophila exhibits a rich repertoire
of complex traits, some of which have clear human homologs; e.g. circadian rhythm,
sleep, drug responses, locomotion, aggressive behavior, and longevity. In addition it
possesses high enough intelligence to express learning and memory abilities. All of
these traits make this species a capable study object [64].

Deciphering every neural circuit in every species would be impossible and point-
less [52]. A detailed comparison of several circuits in different species, however, should
help reveal what features of neural circuits are fundamental and which are specializa-
tions. Many neuroscientists believe that Drosophila is a species worth including in this
research program. One reason is the power of the Drosophila genetic toolbox, although
mouse neurogenetic tools are beginning to rival those of the fly. Still, there are 1000-
fold fewer neurons in the brain of the fruit fly which makes it a simpler test subject.
Another advantage are stereotyped neurons that can be located (in theory) in every fly.
Many Drosophila neurons are identifiable in this way. Through these properties the fly
represents a useful compromise between tractability and richness [52].

The importance of Drosophila as a model organism in genetics has already been
documented by Mackay et al. [44]. Between flies and humans there is considerable
evolutionary conservation of genes and pathways affecting key biological processes,
including human disease genes. More than 60% of all genes that are known to affect
human disease have Drosophila orthologs. More than 50% of all Drosophila protein
sequences are similar to those of mammals. Several studies validate the use of the fruit
fly as powerful genetic model system for studies of human disorders like alcoholism,
sleep disorders, and neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease. In each instance, genomic approaches with flies can
be used to describe disease mechanisms at the genetic level. For these types of studies,
large numbers of genetically identical individuals need to be reared under controlled
environmental conditions. A single fly can lay up to 400 eggs and the development from
egg to adult only takes 7 days under optimal conditions. Fast generation of large sample
sizes is an essential factor for the construction of replicated „designer“ genotypes.

As mentioned above, the deciphering of neural circuits generally begins with an
observable behavior that the neuroscientists seek to understand [52]. Dickson and his
team study neural functionality on the model of the fruit fly’s courtship behavior [23].
Behavior unfolds as animals select specific actions on the basis of sensory input, inter-
nal physiological states, and individual experience. Upon encountering another fly, a
male may or may not choose to court. He estimates his chances of success primarily on
the basis of pheromone signals and previous courtship experience. The female decides
whether to accept or reject the male, depending on her perception of his pheromone and

7

Figure 2.2: Drosophila mating decisions. The male (left) decides whether to court
based on perceived female pheromones and experience. The female decides whether
to mate based on the male pheromones, courtship song and current mating status. The
boxes indicate the relevant neurons or brain regions for decision making [23].

acoustic signals, as well as her own readiness to mate. Figure 2.2 shows elements of
the Drosophila male and female mating decisions. This simple and genetically tractable
system provides an excellent model to explore the neurobiology of decision making.
The goal is to understand how information processing and storage in neural circuits
guides such selection, and thus behavior. An important first step toward this goal is
to trace the neural pathways that mediate a complex instinctive behavior, from sensory
input through to motor output. Dickson therefore set out to define the neural circuitry
that governs male courtship behavior in Drosophila. Genetic approaches in model or-
ganisms greatly facilitate the identification, characterization, and manipulation of indi-
vidual circuit elements and can thereby establish causal relationships linking cellular
biochemistry, circuit function, and animal behavior. These neural mechanisms are also
accessible to both genetic and physiological investigation at the level of single iden-
tifiable neurons. The research is still in an early stage, but work on the fly’s mating
decisions has the potential to reveal fundamental mechanisms of action selection - to
teach us how the brain maps sensory input, internal states, and individual experience
onto moment-to-moment behavioral choices [23].

8

2.3 The Drosophila Nervous System
As already stated, the nervous system of Drosophila consists of brain and ventral nerve
cord. Figure 2.1 b) shows the cervical connective between both regions as fine green
fibers. The nervous system is composed of neural cells (or neurons) which in turn can
be partitioned into cell body, arborizations and projections. The cell body contains the
cell’s nucleus, the control center of the cell. Arborizations are terminal branchings
of nerve fibers that form synapses where communication with other neurons occurs.
Synapses (connections) between two overlapping arborizations can only exist if one ter-
minal is dendritic and the other is presynaptic. In vertebrates the dendrite is close to the
cell body and axon terminals sit at the end of a projection. In common invertebrates like
the fruit fly, the cell bodies are situated at the outer regions of the brain; all arboriza-
tions are therefore linked to their cell body by a projection [11]. The terminal type is
therefore not definable by the existence of a projection. Neuropils are functional brain
regions. Brain and VNC are partitioned into 60 neuropils. Neurons in a specific region
are associated with certain tasks, like the optical lobes close to the eyes for example.

Peters’ Rule
The relationship between the connection of two neurons and the overlap of their ar-
borizations can be described by Peters’ rule [12]. Basically Peters’ rule states that the
probability of the existence of a structural synapse between two neurons can be esti-
mated based on the size of their arborizations’ mutual overlap. The bigger the overlap,
the more structural synapses may occur, and the higher the ’strength’ of the connection.
Although Peter’s rule makes no explicit inference about the functional strengths of con-
nections, it provides a blueprint of the implied functional circuit if the synaptic strength
per unit of axon-dendrite overlap (per potential synapse) is assumed to be constant on
average [63]. Peters’ rule can therefore be used to calculate connection strengths be-
tween different classes of neurons and to generate neuronal circuit diagrams based on
anatomy alone [63] [12].

2.4 Data Acquisition
The neuroscientists use the Gal4/UAS system [13] to highlight specific neurons in
Drosophila’s brain. With this approach, a targeted subset of neuronal tissue can be
genetically manipulated so that it produces green fluorescent proteins (GFP). Two lines
(genetically identical groups) of flies, one carrying the Gal4 protein, the other the UAS
target gene, are crossed. In the child line the Gal4 protein expresses (activates) the UAS
GFP gene. The resulting fluorescence effect makes the targeted neurons stand out from
the remaining tissue. High resolution 3D volume images showing brain tissue in one

9

Figure 2.3: Example of a segmented neuron shown as outlines on a 2D section of its
source image and in a 3D context together with the standard brain.

channel and the highlighted neurons in a second channel are generated with confocal
microscopy. For this, the fly’s brain and VNC must be carefully dissected and separated
from the remaining body. The acquired scans are registered by applying a non-rigid
registration method [60] to a standard brain template using the first channel. The tem-
plate is an average image of a set of representative scans that were registered against a
reference scan. The neurons visible on the second channel of the images consist of three
elements: a single cell body, a set of arborizations and a neural projection (see Figure
2.3). Cell bodies are recognizable as small spots with high density; projections as tube-
like structures that traverse the brain; and arborizations as treelike terminal branchings
that can cover large areas. Neurons are classified based on the morphology or shape of
these features. Neurons that share similar cell bodies, projection patterns, and arboriza-
tions, as well as expression of the same Gal4 drivers are considered to belong to the
same type. Neurons that belong to the same type may perform similar functions.

After successful registration, interesting neurons are segmented semi-automatically
using Amira [67]. Cell bodies, projections and arborizations are segmented separately
and stored as binary masks and geometry. Each object can have multiple instances
and is assigned to a single neuron. These relations, references to the object’s reference
image and origin, binary masks and generated surface geometry are stored in a relational
database.

An indicator for communication between two neurons is the existence of an overlap
between one or more arborizations of these neurons, whereas a connection can only oc-
cur between synapses of opposite polarity (dendritic and presynaptic). The overlap of
an arborization or an arborization-arborization overlap with a specific synaptic neuropil
gives information about the potential function of the neuron(s). The absolute amount
and percentage of overlaps for arborization-arborization overlaps, arborization-neuropil

10

Figure 2.4: Screenshot of neuroMap integrated into BrainGazer. neuroMap and the
BrainGazer Views share the same Workspace. Thus highlighting, editing, deletion and
adding of objects is instantly propagated.

overlaps and arborization-arborization-neuropil overlaps are precomputed and stored di-
rectly in our clients’ database. Since these values are precomputed they can be accessed
efficiently for visualization and exploration purposes. Although light microscopy can
provide much higher throughput than other methods, synapses are still smaller than the
diffraction limit and cannot readily be assigned to particular presynaptic and postsynap-
tic cells without specialized labeling methods [76]. Synaptic information is therefore
not included in the supplied dataset.

2.5 Existing Infrastructure
BrainGazer, into which neuroMap was added as an additional view in the course of
this thesis, already offers means for exploring the available neuronal data. Figure 2.4
shows a screenshot of one possible configuration of BrainGazer’s user interface with
neuroMap.

11

Figure 2.5: Details of BrainGazer views: a) the 3D viewport rendering seven arboriza-
tions together with their cell bodies and projections of four different neurons, b) a
heatmap generated from the same four neurons, showing overlaps between the seven
arborizations.

A textual query interface allows semantic queries on the database. Results can be
further explored on the items’ detailed information pages with related database entries,
preview images and links to source image, surface file and segmentation mask of the
respective object are accessible. These links already offer a textual way to explore
the database. Additionally each info page enables the user to search for and retrieve
a list of similar objects in the database. The advanced search also offers a parallel
coordinate view that can be used to find images that have similar staining values in
different neuropils. Also, a heatmap of selected arborization objects can be generated,
visualizing the overlaps between them (Figure 2.5 a)).

Query results can be added to BrainGazer’s workspace from where they can be
added to or removed from the 3D view (Figure 2.5 b)). In the 3D view visual queries can
be issued on the displayed objects by drawing a path on them. The resulting query then
tries to find objects that are close to the specified 3D path. This allows the user to search
the whole set of available data based on spatial relationships. BrainGazer therefore al-
ready offers information about object overlaps on object info pages and heatmap, as
well as in the visual query results. Neuropil pages list the contained arborizations of the
respective neuropil; arborization pages point to the neuropils as well as to the other ar-
borizations that they overlap. Similarly the visual queries return all overlapping objects
sorted by shortest distance/overlap. Overlap between workspace items is encoded by
color in the heatmap. However, when exploring potential connectivity between multiple
arborizations, each existing view has its shortcomings. The info pages just give textual
information about the overlap of a single object; the 3D view offers a spatial context
to the displayed overlaps but can get visually cluttered quickly when many overlapping

12

objects are rendered. In the heatmap, big overlaps are instantly recognizable through
color coding, but all spatial context is lost and overlaps are not partitioned between
brain regions (neuropils).

The inclusion of neuroMap as an additional overlap-centric way to visualize and
explore potential neuronal connectivity, that offers visual abstraction as well as spatial
context and direct interaction, is therefore reasonable.

13

CHAPTER 3
Related Work

This chapter discusses the state-of-the-art methods that are relevant to this thesis, namely
the visualization of neural networks but also approaches in biomedical network visual-
ization. The chapter concludes with a discussion of open challenges in this active re-
search area and a justification for the implementation of our own approach in the context
of existing approaches.

3.1 Visualization of Neural Networks
Even though a wide range of brain atlases for the exploration of collected neuroscientific
data on various species are available [4] [73] [46], the depiction and exploration of
neural network structures especially at single cell resolution is not very wide spread yet.
Circuit neuroscience is a relatively young field and the means for acquiring connection
data at high resolution are still very limited.

The FlyBrain Project was one of the first neuronal online atlases [4]. It features Java
applets for 3D and slice viewing of the brain. FlyBase is a database and web portal
for genetic and genomic information on the fruit fly [73]. Neuronal connectivity is not
covered. The Virtual Fly Brain web interface allows users to explore the morphological
structure of the Drosophila brain by browsing 3D images of a brain with subregions
displayed as colored overlays [46]. An integrated query mechanism allows searches of
underlying anatomy, cells, expression and other data from community databases. Neu-
rARt II [15] provides a 2D visualization interface to different neuroanatomical atlases. It
allows the exploration, comparison and manipulation of images from different sources
in a single framework. The CoCoMac-3D Viewer [9] implements a visual interface
to two databases containing morphology and connectivity data of the macaque brain
for analysis and quantification of connectivity data. XANAT allows graphical searches

15

Figure 3.1: FlyCircuit’s wiring diagram depicting connected brain regions [16].

within neuroanatomical atlases to study, analyze, and store neuroanatomical connec-
tions [57]. Users perform searches by graphically defining regions of interest to display
the associated connectivity information.

FlyCircuit is a web service that grants access to a public database of the fruit fly’s
neurons. It has been published by a group of researchers that work on a similar goal
as our clients [16]. The page offers a static wiring diagram that displays which brain
regions are connected by drawing straight lines between the centers of the respective
regions. The color of a line indicates the functional module. The user is offered a view
of the brain in the form of three slices that picture the different neuropils highlighted by
color on the left side and the complete wiring diagram on the right (Figure 3.1). Upon
clicking on one neuropil, a wiring diagram that shows only the connections of the se-
lected neuropil is added to the view below the complete diagram. A tract finding feature
offers the same illustration of neuropils with the difference that here two neuropils have
to be selected in order to receive a prerendered view of the neuronal tracts that connect
these regions.

Neuron Navigator is a visual query interface to FlyCircuit’s database, focused on ob-
serving and discovering potential connections within the fruit fly’s neural network [43].
Neuron Navigator offers interactive exploration of neural connectivity in 3D as it al-
lows users to visually query for connected entities in specified regions. Neurons are not

16

Figure 3.2: Neuron Navigator displaying neurons that pass through a user defined re-
gion (yellow circle) [43].

rendered as volumes but as tracing lines in a color according to their neuron-transmitter
category (Figure 3.2). This avoids occlusion through overlapping volumes but at the
same time confers no volumetric information. Bhatla created a web application that
displays the neural network of the C. elegans as an interactive graph [10] in an attempt
to offer scientists easy exploration and navigation of the worm’s neuronal data (Fig-
ure 3.3). The graph displays neurons as nodes and the connections between them as
edges. Nodes are split into sensory-, inter- and motor-neurons as well as non neuronal
cells. Edges are visually represented as chemical synapses (gray arrows) or gap junc-
tions (yellow brackets). The size of the arrows is proportional to the number of chemical
synapses made between the neurons. Similarly, the size of the orange bar is proportional
to the number of gap junctions made between the two neurons. The graph is displayed
in a circular layout with the selected neuron in its center. The standard setting shows
only the connections to direct neighbors of the selected cell. All indirect neighbors are
shown on the outer layers of the circular graph; the layer level depending on each node’s
distance to the center node. The farther zoomed out the camera is the more layers and
nodes are displayed. Optionally the representation of nodes can be switched between
individual neurons and neuron groups; further all additional connections in the visible
network can be rendered. Depending on the number of nodes and connections that are
shown, the view can become very cluttered (Figure 3.4) and the performance decreases
significantly. When the user hovers the pointer over a node, the cell name and type
are displayed as a tooltip. A frame that gives detailed information about the selected
neuron is situated on the left side of the webpage. Post- and presynaptic neighbors are
listed as well as genes that express the respective neuron and additional information like

17

Figure 3.3: The interactive interface for the neural network of the C. elegans [10].

scientific papers and links to external infopages related to the neuron. A query interface
lets the user specify a second neuron to display the shortest path to the center neuron.
The graph shows only anatomical connections; functional information is not included.
The WormWiring Project [20] is a webpage that tries to compliment the anatomical
descriptions of WormAtlas and WormImage [32] with interactive tools for exploring
synaptic connections. The Partner Tree tool (Figure 3.5) displays all partnerships for
a given neuron, similarly to Bhatla’s web application. The nodes are again distributed
to radial hierarchy layers around a selected neuron in the center. Here the layers have
a different meaning though. The first level divides partnerships into synapse classes
(presynaptic, post synaptic, and gap junction). Each class is distinguishable by its color
coded edge type. The second level shows the neuron partners and the third level holds
the individual synapses. The width of an edge corresponds to edge weight, i.e., the
number of synapses for a given partnership. Upon mouse-over on a node a tooltip dis-
plays the edge weight as well as the synapse type and the name of the neuron partners.
A new graph can be generated by typing the name of the desired neuron into a query
interface on the top of the webpage. Irimia et al. developed a circular representation
of human cortical networks for the exploration of the central nervous system archi-
tecture [36]. This connectogram (Figure 3.6), as they dubbed it, should help to classify

18

Figure 3.4: A cluttered display when rendering all connections in Bhatla’s tool [10].

neuron connectivity relationships. The visualization is generated with Circos [41] which
was originally created for visual genome comparison and analysis. The outermost ring
of the connectogram shows the various brain regions as a circular array of 165 radially
aligned elements arranged by lobe and further ordered anterior-to-posterior. The five
inner rings are circular heat maps, each encoding a structural measure associated with
the corresponding parcellation (Figure 3.7). The links represent the computed degrees
of connectivity between segmented brain regions. Links shaded in blue represent trac-
tography pathways in the lower third of the distribution, green lines in the middle third,
and red lines in the top third. This allows visual comparison and analysis of the degrees
of similarity and variability between the connectivity profiles of different subjects.

Jianu et al. created a tool for visualizing tractography datasets as two-dimensional
paths that, in contrast to 2D point representations, preserve anatomically meaningful co-
ordinates while possessing the advantages of abstract representations, i.e., visual clarity
and easier tract-of-interest selection [37]. These two-dimensional neural maps should
help explore and analyze connectivity in the human brain. The design of the visual-
ization was inspired by illustrations in medical textbooks (Figure 3.8). The 2D view
offers three perspectives (axial, sagittal, coronal) and is linked with a 3D view for refer-
ence. Individual tracts can be selected by brushing in each view. The number of visible
tracts is dependent on the zoom level. Selected tracts can be used to retrieve additional

19

Figure 3.5: The Partner Tree displaying neuron partnerships. One of two analytic tools
on the WormWiring webpage [20].

20

Figure 3.6: The connectogram depicting connectivity between brain regions [36].

information and links to external resources as well as for computation of statistical in-
formation. Selections can also be stored for future analysis and comparison.

Li et al. implemented a tool for facilitating quantitative analysis of brain connectiv-
ity in order to improve the understanding of how brain functions are integrated [42].
The tool relies on the identification of regions of interest (ROIs) for brain network
construction (Figure 3.9 a)). The software allows neuroscientists to integrate multi-
modal neuroimaging data, including structural volumes, cortical surfaces, fiber tracts
and fMRI signals, for visual construction and assessment of functional ROIs. An ROI
is a brain region that is functionally specialized as one unit. ROIs provide the substrates
for measuring the structural and functional connectivities within individual brains and

21

Figure 3.7: Detailed legend of the connectogram’s layers [36].

for integrating data across populations. The software implements two types of brain
networks: functional connectivity networks and effective connectivity networks. In the
functional network, connectivity is defined by the Pearson correlation between signals.
ROIs are represented by spheres. Connectivity strength is represented by the width and
the opacity of the edges (a thin and transparent edge marks a weak connection). White
edges mean positive correlations and green ones signify negative correlations (Figure
3.9 b)). In the effective network connectivity is defined using the Granger causality.
Arrows represent causality directions. The width and the opacity of the edges stand for
connectivity strength (Figure 3.9 c)).

3.2 Biomedical Network Visualization
While network visualization of neural structures is still in a relatively early stage, a
wide range of biomedical network visualization tools has been published in other ar-
eas as discussed in previous work [29], [54], [3]. Many of these tools are very spe-
cialized and focus on tasks like handling protein interaction [7] [50], gene expres-
sion [35] [6] or metabolic profile data [49] [47] and connect directly to associated public
databases [21] [35], some allow a more general use [66] [77] [5].

Judging by its number of citations Cytoscape [66] seems to be the tool with the
biggest userbase. Even though its initial purpose was the visualization of molecular
interaction networks, it is capable of handling other types of data, as it is open-source
and can be extended by a variety of plugins. These plugins provide additional functions
like analysis tools and interfaces to scientific databases. Cytoscape allows the user

22

Figure 3.8: 3D view and two-dimensional neural maps of in vivo tractograms of the
human brain [37].

to customize the graph’s appearance and to choose between different graph drawing
libraries for the layout of the network.

Cerebral [7] is a Cytoscape plugin developed for analyzing protein interactions. It
allows the user to pose location constraints on the graph’s structure by assigning the
graph’s nodes to different layers according to the value of a selected attribute. Us-
ing this approach it tries to emulate the visual style of traditional pathway diagrams
(Figure 3.10). Cerebral allows comparison of different experimental conditions by dis-
playing abstract overviews of the different graphs. Nodes of interest can be assigned
to individual groups. Currently Cerebral only supports structures that follow a linear
hierarchy.

Tulip is an information visualization framework and graph drawing API dedicated
to the analysis and visualization of relational data [5]. It is designed for handling large
graphs and supports automatic cluster creation. Tulip is a very powerful software as it
can be extended by user made plugins in order to add features like additional compatible
file types, applicable layouts, visual encoding and interaction types.

Oeltze et al. published a tool built in the SimVis framework to visualize and analyze
toponomics data [50]. It utilizes a graph view with a circular layout as an interaction
network to supplement the 3D view of the data. Graph nodes represent affinity reagents
and edge bindings between them. VisANT [35] is a network visualization and analysis

23

Figure 3.9: a) The workspace of Li et al.’s brain network analysis tool, b) the functional
connectivity network, c) the effective connectivity network [42].

tool for gene ontology that offers data mining in standard databases like KEGG [51].

24

Figure 3.10: Cerebral within the Cytoscape workspace [7]. The large view in the mid-
dle shows the layered graph, while the small views to its left show different experimental
conditions. A parallel coordinate view for data exploration is situated at the bottom of
the window.

Arena3D is a tool for visualizing interaction networks in a layered three-dimensional
space where each type of data is assigned to a specific layer [53]. Kojima et al. pro-
posed a layout algorithm that provides meaningful layouts for the depiction of biological
regulations in a cell by incorporating spatial constraints for the graph’s elements [39].

3.3 Open Challenges in Biomedical Network
Visualization

Network visualization in general still faces some challenges that are relevant also to the
visualization of biomedical networks, e.g., displaying and interacting with large graphs.
There are some challenges though that are relevant especially in the context of biomed-
ical graph visualization. In their survey Albrecht et al. state that the visualization of
biological networks does not typically apply state-of-the-art graph drawing techniques

25

and that graph drawing tools do not respect the drawing conventions of the life science
community [3]. They note that the layout of networks should be in agreement with
generally accepted or standardized biological drawing conventions and constraints that
originate from recognized textbook and poster layouts. This way the user’s attention
should be drawn to relevant system properties that might remain hidden otherwise.

A part of these visualization and interaction challenges arises from the variety of
data types that occur in biological networks. The data can be encoded in the structure
of the network as well as represented by the network layout, or as graphical or textual
annotations. Data can be primary (i.e., directly measured), secondary (i.e., derived,
inferred, or predicted), or a mixture of both. Albert et al. list three types of biological
networks (gene-regulatory, protein interaction and metabolic); neural networks are not
mentioned in their survey. Still, some of the open problems they describe are also
relevant in the context of neuronal network data.

Incorporating Spatial Constraints
Many biological entities that can be represented in a network have properties like their
position in their surroundings that are of high relevance to (or at least help to understand)
their meaning in the context of the whole network, e.g., the different parts of a cell, or
in this case the positions of neurons in the brain. When this is disregarded, a network’s
implicit information is lost. If neurons are placed without considering their location, it
is not possible anymore to observe flows of information between sections of the brain.
It is therefore essential for the understanding of a network’s function to integrate this
spatial information into the layout. Tulip supports fixed node positions and the tool
of Li et al. uses the actual positions of the defined ROIs. However it is sometimes
necessary to define flexible regions, that reposition themselves when the network grows,
e.g., to avoid node overlaps. Cerebral allows the specification of flexible constraints
along hierarchical layers, though only in one dimension.

Visualization of Multiple Attributes
Analyzing data in a life-science context often requires the consideration of multiple
data attributes. It is therefore often a challenge to visualize them in a way that does
on one side not hide important information and on the other side not confuse the user
with too much information. The simplest and most straightforward way would be to
map all given data onto nodes and/or edges. Depending on the number of attributes
the visualization of a node can become quickly overloaded. An alternative would be to
use additional views combined with brushing and linking techniques. From the above
discussed techniques most use simple node representations with just a text label (e.g.,
FlyCircuit) and color coding (e.g., the interactive C. elegans neural network). Irmia et
al. encoded a variety of attributes in each slice of their circular connectogram. Li et

26

al.’s brain network analysis tool offers multiple linked views on the data, as does Tulip
which additionally allows the inclusion of custom node mappings via plugin extension.
However, the optimal information encoding depends heavily on the underlying data and
the intended purpose of the visualization. Visual encoding is discussed in more detail in
the next chapter of this thesis.

Visualization of Flows and Paths

The visualization of signal flows is an inherent part of network visualization. In the
context of life sciences though these flows have to be visualized with consideration of
uncertainties in the data, e.g., the uncertainty of a connection depending on specific at-
tributes. In the context of this thesis the uncertainty of a connection lies within the over-
lap between the two examined neurons. Users are in these cases primarily interested in
the main or most certain paths through a network, i.e., paths that possess a considerable
load of the overall network flow. Especially in mixed graphs standard shortest-path or
nearest-neighbor highlighting is not sufficient to emphasize the connections between se-
lected elements. Neuron Navigator possesses no means to communicate the certainty of
a connection. WormWeb’s tool varies the arrow size of edges according to the number
of synapses between neurons. Irimia et al.’s connectogram signifies degrees of connec-
tivity by color and transparency. In Li et al.’s brain network analysis tool the degree
of connectivity is signified in the width and opacity of edges. None however imple-
mented special highlighting techniques for emphasizing connections between selected
elements.

Exploration of Hierarchical Networks

The exploration of hierarchical networks mainly concerns networks that are so large
that they need to be broken up into hierarchies in order to be able to reasonably interact
with and visualize them. In other cases the network possesses a natural hierarchy, i.e.,
subgraphs that represent the inner structure of parent compartments. Albrecht et al.
state that in the context of biomedical networks, biologically meaningful visualization of
selected subsets and their interrelations, as well as techniques for the navigation within
the network are needed. Layout changes resulting from user interaction, i.e., expand
and collapse mechanisms for hierarchies, should preserve drawing conventions and the
mental map of the graph as well as predefined or relative positions of graph elements. Of
the discussed approaches, only Tulip offers proper support for specifying and interacting
with node hierarchies.

27

Figure 3.11: Comparison of visual features of KiCad [69] (a), and Yu’s diagram (b).
Yu draws the arrow tips of incoming edges on the inside of the target node; different
arrow categories communicate the type of the incoming component.

3.4 Parallels to Circuit Design
Electronic design automation (EDA) is a category of software tools for designing elec-
tronic systems such as circuit boards. EDA tools, such as Cadence [70] or KiCad [69],
assist in designing, testing and verifying integrated circuits. These tools aid in achieving
logical correctness, efficient routing of clock signals, and maximizing circuit density.
Circuit neuroscience on the other side is defined as the understanding of computational
functions of neural circuits in general, and about visualizing potential neural connectiv-
ity in the case of neuroMap. While Yu’s diagram borrows some visual aesthetics from
EDA tools (as can be seen in Figure 3.11), the tasks of the target users and the semantics
of the data in this field are quite different. EDA software solutions were therefore not
considered for the implementation of neuroMap.

3.5 Conclusion
The presented tools and frameworks are either geared towards specific domains or serve
general purpose network visualization. Domain specific tools often do not apply state-
of-the-art methods in layout and interaction. General purpose network visualization
frameworks like Tulip on the other side offer a broad range of state-of-the-art features.
An effective tool though needs to be tailored to the respective data and task.

28

Neuron Navigator [43] is able to query for neurons and connections in user defined
regions of the Drosophila’s brain. Though due to the absence of overlap information
(visually as well as in the database) the result only returns objects that are in the same
defined region. There is also no way to filter or query for specific overlaps or distances
between objects.

Bhatla’s interactive neural network of the C. elegans [10] shares a lot of common
ground with neuroMap, in that the focus of the application lies on the visualization
and exploration of neuronal connections. In this species though all neurons and their
connections are already identified and annotated. The interaction is therefore geared
towards browsing the database for neurons of interest and retrieving associated infor-
mation, and not towards discovering new potential connections. Similarly the Partner
Tree [20] gives an overview of neuron partnerships in C. elegans but offers only a textual
query interface to interact with the underlying data.

The connectogram [36] is a static visualization that depicts the connectivity between
brain regions, e.g., not at single cell resolution. Because the generated image is static,
further exploration of the underlying data is not possible.

Jianu et al.’s two-dimensional tractography visualization [37] does not display a
network of nodes and links but rather paths that connect brain regions. The layout is
fixed since the paths represent an abstraction of actual neural tracts. At the time of
writing the amount of visible data is only adjustable by changing the zoom level which
can be problematic when displaying many closely located tracts.

Li et al.’s brain network analysis tool [42] renders the ROI nodes at their actual three-
dimensional spatial positions. This has the advantage of giving a direct reference to the
linked 3D brain model view but since the graph occludes itself, the whole network is
never displayed at once and can only be comprehended by rotating the view accordingly.

Of the discussed systems only the work of Li et al., Neuron Navigator (both in 3D),
and Jianu et al.’s neural maps consider the spatial attributes of the displayed data in ab-
stract or accurate form. Only WormWeb’s tool, the Partner Tree and Neuron Navigator
use single cell resolution data. All of them offer limited means of interacting with or
exploring the displayed data.

The integration of neuroMap into Cytoscape [66] or Tulip [5] as a plugin would
have been theoretically possible. However, one of the design requirements for our tool
was a tight integration into the existing framework that our clients are using during their
research. Integration into a third party tool was therefore not considered the optimal
solution.

The approach that we took with neuroMap in the context of single cell resolution
neural networks and graph visualization/interaction is therefore completely new, as will
be documented in the following chapters of this thesis.

29

CHAPTER 4
Methods

In this chapter the basics of the techniques that went into neuroMap’s design and imple-
mentation are explained. The main focus lies on graph drawing and the related infor-
mation visualization aspects like encoding and interaction. The terminology discussed
in this chapter builds the foundation for the understanding of the following sections.

4.1 Graph Drawing

Definition
A graph in general describes relationships between entities [59]. These entities are
represented by nodes (vertices), the relationship between two nodes is represented by
an edge. A graph is thus defined as a pair G = (V,E);E ⊆ [V 2], where elements of V
are nodes and elements of E are edges. When these elements hold additional information
like type or weight (depending on the application) the graph is also called a network.
Since in the context of this thesis both terms apply, we use the terms graph and network
interchangeably.

Classification

Depending on the character of the relationships between nodes, graphs can either be
classified as directed or undirected [22]. For a directed graph the edge vertices e =
(v1, v2) are ordered, for an undirected graph respectively unordered. When a graph
contains both directed and undirected edges, it is classified as mixed.

A sequence of connected nodes is called a path of length s and is defined as
pathG (v1, vs) = v1, v2, ..., vs where vi ∈ V and (vi, vi+1) ∈ E. If a graph G contains
a closed path (or cycle) with a1 = as, it is called cyclic. If no such paths exist within

31

Figure 4.1: Graph classification by structure and time-dependence [74].

G, it is called acyclic. A tree is defined as a connected undirected graph without cycles.
A tree T is called rooted when one node r is specified as root node: T = (V,E, r).
A rooted tree can represent a hierarchy where the length of the path from node to root
node specifies the node’s level in the hierarchy. A hierarchy is therefore a directed
acyclic graph.

A compound graph is a graph where nodes are subdivided into different groups [59].
It is defined as C = (G, T) with graph G = (V,EG) and rooted tree T = (V,ET , r) that
share the same set of nodes. T describes the relationships between nodes, as two nodes
that share a common parent in the tree belong to the same group. Compound graphs can
be created from regular graphs by aggregating nodes, i.e., new super- or group-nodes
are created and nodes of the original graph are added as their children. The attributes
of these group-nodes can be calculated from the attributes of the aggregated nodes and
edges.

Graphs can also be categorized into static and dynamic (time-dependent) [74]. For
dynamic graphs, structure and attributes may change over time, while for static graphs
they are constant. These changes can be visualized via animation or time-series for
example. Figure 4.1 shows a classification of graphs according to structure and time-
dependence.

Additionally certain graphs have elements with geographic reference, which means
that nodes and/or edges have an inherent geographic location that needs to be considered
when generating a layout [74]. These positions can pose more or less strict constraints
on a layout algorithm (depending on the visualized data), like city locations on a world
map for example.

32

Topological Properties

Graphs can also be classified by their topological properties like the number of nodes,
the density of the graph and the connectivity [59]. When choosing the optimal visual-
ization method (layout) for a graph of a certain composition these properties are taken
into account.

The graph size (|V |) is represented by the number of nodes, while the density is
the actual number of edges relative to the maximum potential number of edges D =

2|E|
|V |(|V |−1) . A graph is denoted as sparse when its number of edges is in the range of
O(|V |) < |E| << O(|V |2), while dense graphs have density values close to one. If the
density of a graph is one (which means that the maximum number of edges is reached),
the graph is called complete. The degree of a node is the number of connected edges,
respectively neighbors (in- and out-degree for in and out going edges if the graph is
directed). When there is a path from every node to every other node in the graph, it
is called connected. If just a subset of a graph is connected, it is called a connected
component. A graph is called biconnected if it has no node that would disconnect the
graph upon removal. A spanning tree of a connected graph G can be defined as a
maximal set of edges of G that contains no cycle or as minimal set of edges that connect
all nodes.

The drawing of a graph is planar if no edges intersect; the graph itself is planar if it
permits a planar drawing. According to Euler a graph with n nodes can have no more
than 3n− 6 edges to remain planar.

Although there is no standardized definition, graphs are often referred to as large,
medium or small; depending mainly on the graph size (|V |) but also on density and
connectivity. Large graphs in general provide many challenges: when visualizing them
(cluttered displays), when processing them (computational times and memory footprint)
and also when interacting with them (e.g., selection of overlapped elements).

A classification of the graphs generated by neuroMap is given in section 5.2, based
on the abstraction of the neural data to graph elements and on the composition of these
elements.

Graph Visualization
The proper visualization of a graph requires the appropriate type of visual graph rep-
resentation, efficient placement of graph elements according to the representation type
and efficient visual attribute mapping (i.e., the design of the graph’s elements) [74].

Drawing Concepts

Battista et al. introduce three graph drawing concepts to describe the requirements for a
„nice“ drawing: drawing conventions, constraints, and aesthetics [22].

33

Drawing conventions specify basic rules that a drawing must satisfy to be accept-
able. Examples for such conventions would be straight-line drawing (each edge is drawn
as a straight line segment), orthogonal drawing (each edge consists solely of horizontal
and vertical segments), or planar drawing (no two edges are allowed to cross).

In contrast to drawing conventions, constraints do not refer to the entire graph but
rather to specific elements or subregions. For example they place certain nodes at the
center/boundary of the drawing area, they place a given subset of nodes close together
(clustering) or draw it in a predefined shape.

When visualizing a graph there are certain aesthetic criteria that an algorithm aims
to adhere as much as possible in order to achieve readability. Aesthetics are usually
optimization problems that are implemented as objective functions. These problems
are often computationally hard; therefore many approximation strategies and heuristics
have been devised [22]. Standard criteria comprise edge-crossing minimization, sym-
metry maximization and minimizing the total drawing area. Additionally each type of
representation comes with its own aesthetic criteria [58]. A single layout algorithm can-
not optimize all of these criteria equally, since some criteria like minimizing the drawing
area while minimizing the number of edge crossings contradict each other. Trade-offs
are therefore necessary. The optimal layout for a graph thus depends on the application
data and the graph’s properties. The class of the input graph is also an essential param-
eter since several graph drawing algorithms work only or work better on certain graph
classes. The class, application data and properties of neuroMap’s graphs and the result-
ing advantages and disadvantages of the available layouts are discussed in section 5.4.

Representation Types

Von Landesberger et al. divide graphs into the three categories (trees, (un-)directed
graphs and compound graphs) that have already been described above; each can be rep-
resented with multiple visualization techniques [74]. The node-link technique is the
most relevant in the context of this thesis, since it is the representation form that was
chosen for the design of neuroMap. It is also the technique that can be applied to all
three graph types. As the name suggests, relationships between nodes are depicted by
links in the form of straight or bent lines (Figure 4.2 a)). For this type of representa-
tion there exist a variety of layout algorithms that try to place nodes and edges while
adhering to the above mentioned drawing concepts. The most important algorithms will
be discussed in the next subsection. According to Pohl et al. [56] the main advantages
of node-link diagrams are their intuitiveness, compactness and suitability for path fol-
lowing tasks. Additionally most node-link layout algorithms have linear complexity in
time and memory for trees and are therefore computationally scalable. The drawbacks
are that by design node-link representations leave significant background space empty
which leads to scalability problems when applied to larger graphs; they also suffer from
increased edge-crossings in large dense graphs. Node-link techniques are therefore bet-

34

Figure 4.2: Graph representation types: a) node-link, b) space-filling (enclosure) [80],
c) space-filling (adjacency) [71], d) matrix, e) combined [33].

ter suited for smaller and sparse graphs. In case of strong overplotting of edges in large
dense graphs, edge bundling can be used to improve the readability of the display (Fig-
ure 4.3) [34].

Another technique applied to trees are space-filling techniques. Here the maximal
area of the display space is used to visualize the tree hierarchy. Relationships between
nodes are not represented by links but via enclosure (for example Treemaps [65], Fig-
ure 4.2 b)) or adjacency (Figure 4.2 c)) of child nodes. An advantage is the efficient use
of the available display space. Disadvantageous for the enclosure approach is a more
difficult distinction of hierarchy structures through overlapping parent nodes. This does
not apply for the adjacency approach although at the same time it is not as dense. Ad-
ditionally there are hybrid approaches of node-link and space-filling techniques that
present a certain part of the hierarchy as a Treemap and the rest as a node-link diagram,
combining the space efficiency and flexibility of the respective approaches. Matrix-
based representation techniques visualize the adjacency matrix of a given graph as an
N by N grid where N is the number of nodes. Position (i, j) represents the existence of
a link between nodes i and j (Figure 4.2 d)). If the graph is undirected, this technique
results in a symmetric matrix. Additionally there exist different reordering strategies for
the rows and columns of the matrix to reveal structures like clusters within the graph [8].
The advantage of matrix representations is that they overcome node overlaps as well as

35

Figure 4.3: A dense graph a) without and b) with edge bundling [34].

edge-crossings, one of the biggest problems in node-link representations, and therefore
offer better readability for denser graphs. On the other hand this method does not scale
well to large graphs (with thousands of nodes) since each additional node increments the
N by N grid. Also paths are harder to follow compared to other representation types and
the matrix might prove unintuitive to read to the unaccustomed user. For this method
hybrid approaches with node-link techniques exist as well (Figure 4.2 e)).

Layouts

In their survey von Landesberger et al. classify layout techniques for node-link repre-
sentations according to the type of node placement in the respective algorithm [74]:

• Force-based layouts guide node placement by simulating mechanical laws. Re-
pulsive forces push nodes away from each other while attraction forces act be-
tween the end-points of edges. Node positions are iteratively refined until the
overall energy or stress of the system is minimized. The quality of the layout
can be computed based on the sum of the magnitude of forces on a given con-
figuration [75]. The seminal work by Eades models node repulsion by an elec-
tric force between charged particles and edge attraction by spring forces between
edge endpoints [24]. Fruchterman and Reingold further improved the node dis-
tribution by adapting force models [27]. Force-directed approaches give highly
symmetric drawings as well as evenly distributed nodes. Due to its complexity
though, this type of layout does not scale well to large graphs of thousands of
nodes. To overcome these shortcomings, an efficient GPU implementation [30]

36

or the deployment of heuristics [26] were proposed. According to Pohl et al. [56]
force-directed layouts outperform orthogonal and layered layouts on various user
tasks.

• Constraint-based layouts extend the force directed approach by allowing con-
straints on node positions, like the horizontal and vertical alignment of nodes
or the specification of edge directions. Orthogonal layouts fall into this cate-
gory. Constraint-based layouts greatly improve the power of expression but have
a slightly higher execution time than force-directed layouts.

• Multiscale approaches partition a graph into simpler nested subgraphs. At first a
coarse graph is layouted and then more nodes are included with each detail level.
Different techniques can be used for creating the node hierarchy as well as for
the layout of the resulting layers. An advantage of these methods is that they are
typically faster than traditional force-directed methods.

• Layered/hierarchical layouts place nodes on parallel horizontal layers and are
typically based on the approach by Sugiyama et al. [68]. The approach consists
of four steps: 1) cycle removal, 2) assignment of nodes to layers, 3) reduction of
edge crossings and 4) assignment of coordinates to nodes. They are described in
more detail below. The standard implementation is already quite fast in practice
and scales well to graphs of several thousand nodes.

• Non-standard layouts combine existing techniques or use new approaches to
graph layouting. LGL [1] for example simplifies the graph by computing a span-
ning tree and then iteratively computes the layout in depth order with a force-
directed algorithm. Due to the initial decomposition it scales well to very large
graphs with billions of vertices.

In their book [22], Battista et al. specify graph drawing methodologies that are either
used by specific layout types or are general purpose techniques that can be applied in
various graph drawing algorithms. The most relevant in the context of this thesis are
described below (the force directed approach has already been covered above).

The Topology-Shape-Metrics Approach belongs to the constraint-based layout
family and produces orthogonal grid drawings while allowing homogeneous treatment
of a wide range of aesthetics and constraints. In this method the orthogonal drawing is
characterized by the three name-giving properties topology, shape and metrics that are
defined as equivalence classes between orthogonal drawings of the same graph. Two
orthogonal drawings have the same topology if one can be obtained from the other by
continuous deformation without altering the sequence of edges that contour the faces
of a drawing. The drawings share the same shape if they have the same topology and
one can be transformed into the other just by modifying the lengths of the orthogonal

37

Figure 4.4: The three steps of the topology-shape-metrics approach: a) planarization,
b) orthogonalization, and c) compaction [22].

edges. They have the same metrics if they are congruent up to a translation and/or
rotation. Equivalent to these three properties there are three steps that incrementally
refine the drawing: the planarization step (Figure 4.4 a)) determines the topology of the
graph by minimizing the number of edge-crossings, for example by extracting a planar
subgraph of the existing graph, followed by successive reinsertion of non-planar edges.
The so formed crossings are represented by dummy nodes to keep the final topology
planar. The orthogonalization step (Figure 4.4 b)) determines the shape of the drawing
by transforming the planar representation into an orthogonal representation of the graph.
Here nodes do not have coordinates, instead each edge is assigned a list of angles that
describes the bends of the orthogonal edge representation. The compaction step (Fig-
ure 4.4 c)) finally tries to find the coordinates of nodes and edge bends that produce
a drawing with the smallest possible area. Through the sequence of these steps this
approach favors topological constraints and aesthetics like node positions and crossing
minimization before shape constraints and aesthetics like specific bend sequences and
bend minimization, and lastly metrics constraints and aesthetics like vertex coordinates
and total drawing area.

The hierarchical approach: If the graph contains cycles, the first step removes
these cycles by temporarily reversing a subset of the edges. In the layer assignment
step a layered directed graph (digraph) is formed by assigning all nodes to a layer Lh

so that if (u, v) is an edge with u ∈ Li and v ∈ Lj , then i > j. Next a proper layered
digraph is formed by inserting dummy-nodes along the edges that span more than two
layers such that i = j + 1 holds true. In the crossing reduction step the vertices on
each layer are ordered in such a way that the number of edge-crossings is minimized.
The x-coordinate assignment step assigns the final x-coordinate to each node while

38

preserving the ordering computed in the previous step. Each edge is then represented
with a straight-line segment and finally long edges are represented as polygonal lines
by removing the dummy-nodes. Through the fixed step order this approach as well
implicitly establishes an ordering among aesthetics. During the x-coordinate assignment
step aesthetics like bend minimization can be achieved through alignment of dummy-
nodes. Further nodes can be positioned accordingly to emphasize symmetries or to
reduce the drawing area. Also constraints like the vertical alignment of vertices are
supported during this step.

Operations on Graphs

Von Landesberger et al. categorize graph interaction into view-, visual abstraction-
and data-interaction [74], depending on whether the user action affects the data, the vi-
sual display of the data or the view. Preprocessing is listed as a non-interactive graph
operation in this context. Von Landesberger et al. further distinguish between topology-
based tasks like finding adjacent nodes or determining connections between nodes, and
attribute-based tasks like searching for nodes or edges of specific values or types. In-
teraction in general helps users solve tasks that are connected to the exploration of a
graph. Especially interactions with immediate feedback support exploration for cog-
nitive reasons: exploration requires several hypotheses to be maintained in short term
memory. Planning complex operations without feedback or using textual syntax already
occupies the short-term memory and therefore significantly hinders exploration [2]. It is
also efficient to help users preserve their mental map of the structure. The mental map
is the image that the user keeps in his mind. It plays an important role in applications
where the structure of the graph often changes, either due to exploration or due to the
graph’s dynamic nature. In an ever changing graph the mental map helps the observer
to mentally carry over an image of the previous state into the next state. This enables
him or her to easier spot changes between developing states.

Preprocessing

Graph preprocessing is used to simplify the graph by removing elements while main-
taining the overall structure, or to highlight certain parts of a graph upon creation by
analyzing the element’s properties (for example through grouping or color coding of
elements with the same attribute). The reduction of the graph structure can be achieved
either by filtering or by aggregation. Graph filtering can either be stochastic or deter-
ministic (based on node/edge attributes). Graph aggregation does not remove elements
but instead merges them into single nodes and edges before displaying them, thus ren-
dering a compound graph. Through the merging the graph size is reduced and at the
same time the relationships between groups of nodes are revealed.

39

Figure 4.5: Examples of different lens types: a) view without a lens, b) local edge lens,
c) neighbor-clustering lens, and d) composite lens with integrates [72].

View Interaction

View interactions allow the user to incrementally build a mental model of the scene’s
objects and their interrelations. They comprise standard interaction techniques like pan-
ning and zooming but also specialized approaches like focus+context techniques and
guided panning. Panning and zooming is necessary when the entire data set cannot be
presented at a desired resolution. Focus+context techniques like magic lenses (or fish-
eye views) show more detail of or allocate more display space to the elements in the
focused area of the lens while maintaining the context of the overall graph structure
(Figure 4.5). Guided panning allows automatic fly-throughs along the edges of a graph.

Visual Abstraction Interaction

Visual abstraction interaction changes the type of the visual presentation and its pa-
rameters. These parameters are often adjusted indirectly via sliders, check boxes and
radio buttons. Direct adjustment, although more intuitive, is only implemented in few
systems [74]. The change of visual parameters comprises techniques like highlighting,
brushing and linking, and semantic zooming. Changes of the visual scheme consist of
layout change and change of the visual representation type. Highlighting emphasizes

40

interesting graph elements and their relationship upon selection. Brushing and linking
transfers changes in the visualization (like highlighting for example) from one view
to all other coordinated perspectives on the data. Semantic zooming decreases or in-
creases the level-of-detail (LoD) of the displayed data depending on the zoom-level.
Layout changes do not only comprise the change of the layout type but also the manual
adjustment of the layout and the adjustment of layout parameters. Changing the visual
representation type can mean adjustment of visualization parameters but also switching
to a different mapping that reveals features of the data that were hidden or less obvious
with other mappings.

Data Interaction

Interaction on the data level affects which part of the data will be displayed (data fil-
tering) as well as how values and structure are changed. Filtering can be approached
from three directions. Top down starts with the complete data and then removes the
elements of the graph that do not correspond to selected criteria. This has the advantage
of first giving an overview of the whole data from where more interesting parts of the
graph can be explored while uninteresting parts can be discarded. Bottom up filtering
starts from one selected node and then successively shows more elements on demand -
either based on the graph structure or on a degree-of-interest function. This way only
the most relevant part of the data is visualized but it is difficult to find a good starting
point without knowing the complete data. The middle-out approach starts with a coarse
graph that can be either increased or reduced in the desired direction.

The change of values comprises graph editing (deleting and adding elements to the
graph) and interactive graph aggregation (merging of nodes as described above) but
also selective hiding. Selective hiding allows the user to temporarily remove or reduce
structures of the graph that are currently of no interest, thus providing more space and
attention to more interesting regions.

Graph Analysis
Graph analysis comprises algorithms for analyzing a graph’s structure as well as for
automatically comparing two or more graphs.

Analysis of Graph Structure

The analysis of a graph’s structure not only examines the global structure but also the
relationships between the graph’s single elements. Important nodes owe their specific
role to the properties of their metrics within a network (e.g., centrality). These metrics
can be highlighted within the graph or displayed in additional linked views in order
to explore a network by filtering or highlighting specific nodes. The connections be-

41

Figure 4.6: Graph comparisons: one-on-one node matching between two graphs with
VisLink [19].

tween two nodes are typically analyzed by calculating and highlighting the shortest path
between them. Substructure analysis tries to uncover a graphs’s structural design prin-
ciples by searching for specific types of substructures (so called motifs [45]). Distinct
types of networks (like genetic networks or social networks) have a different configu-
ration of motifs. These networks can therefore be defined and distinguished by their
composition of motifs. The significance of a certain motif in a network is determined
by its frequency of occurrence. The frequency of occurrence of different motifs around
a node is called the motif fingerprint of that node. In some scenarios also the identifi-
cation of the impact of graph changes on structural properties can be of interest to the
user.

Analysis of Neural Networks

In neuroscience topological measures have been developed to characterize connectiv-
ity in brain networks on a global, regional, and local level [38]. Examples for global
measures are characteristic path length, degree distribution, clustering coefficient, and
modularity. Modularity for example refers to functional segregation in the brain. Other
measures characterize functional integration, which is the ability to rapidly combine

42

Figure 4.7: Graph comparisons: visualizing differences by overlapping two networks
[28].

information from distributed brain regions [61]. The degree distribution can be seen
as a measure of network resilience, which describes how well a neural network can
withstand damage (caused by strokes for example). The aforementioned network mo-
tifs are typical regional measures. Single node features like in- and out-degree or the
local clustering coefficient are used for characterizing networks on a local level. The
anatomical and functional connectivity in brain networks exhibit small world properties,
which means that functionally separated modules are combined with a robust number
of intermodular links [14].

Graph Comparison

Graph comparison tries to find the similarities and differences between multiple graphs,
mainly in terms of their structure. One-to-one node comparison matches the individ-
ual nodes of one graph to the nodes of a second graph, for example by drawing lines
between corresponding nodes (Figure 4.6) [19]. Similarly one node can be matched to
many nodes in another graph. Structural differences between two graphs can be found
by identifying which elements of the graphs correspond or differ from each other, for
example by overlapping them while highlighting the common structural parts (Figure

43

4.7) [28]. Structural differences between multiple graphs can be calculated by compar-
ing their topological properties like size, density and connectedness. According to these
properties the analyzed graphs can for example be assigned to different groups.

4.2 Abstraction and Visual Encoding
The advantage of images over text is that they permit several pieces of information to
be communicated simultaneously, while textual or numerical information has to be read
and processed sequentially [8]. A successful visualization conveys the desired informa-
tion efficiently and accurately to the targeted audience while bearing in mind the task
or purpose of the visualization. To efficiently encode information into visual signs, it
is necessary to know how observers can read (or decode) the given graphical informa-
tion [40]. Certain visual encodings can be understood almost instantly (due to elemen-
tary perceptual tasks), while others create visual puzzles due to being too complex, too
confusing or too distorted. Even aesthetics can influence the effectiveness of a visual-
ization as a visually unappealing picture may reduce the audience’s willingness to look
at it. Therefore abstraction (mapping data components to graphical entities) and visual
encoding (mapping data properties to graphical properties) have to be chosen carefully.
Especially since the capacity of human perception concerning how many different stim-
uli and variations of stimuli we can accurately perceive and measure is limited and
dependent on the type and combination of stimuli. When designing a visualization it
is therefore important to consider these limitations in order to avoid situations where
pictures are ambiguous, misleading or difficult to interpret.

Visual Alphabet for Networks
Krempel defines a visual alphabet for networks that consists of shapes (and lines), size
and color [40]. These overlap with the eight visual variables defined by Ward et al. [75]
that additionally include position, orientation, texture and motion.

• Shapes & Lines: To distinguish between different classes of nodes, they can be
rendered using shapes, icons or symbols. Symbols or icons cannot only serve the
discrimination of different node classes but can also convey additional meaning,
although they are sometimes limited to specific cultural domains. It is important
to consider how well the chosen symbols can be differentiated from each other.

Lines can be encoded by width and line type (for example solid or dotted). Width
can lead to overlapping edges in dense graphs, which can be compensated to a
certain degree by importance driven edge-sorting.

• Size: Size determines how small or large a shape will be drawn. It easily maps
to interval and continuous attributes because it supports gradual increments over

44

some range [75]. The relationship between the magnitude of a physical stimulus
and its perceived intensity is described by a power law that depends on the type of
stimulus. Steven’s Law states that concerning size the human perception of length
is almost linear with an exponent between 0.9 and 1.1. For the perception of area
size the exponent lies between 0.6 and 0.9; and for volume features between 0.5
and 0.8. This shows that as the dimensionality of an attribute increases, so does
the degree with which we underestimate it.

• Color: Colors can be used for encoding both interval and continuous data vari-
ables. Additionally colors can convey aesthetic impressions, cultural meanings
or physiological reactions [40]. The human perception of color can be separated
into three dimensions: hue, lightness and saturation. This provides three layers to
communicate information by color. The Munsell color system is a color system
that encodes these three channels perceptually uniform and equidistant. Uniform
means that the change of one parameter does not affect the other two parame-
ters. Equidistant means that a human observer perceives the distance between
neighboring colors as equal. Color systems with these properties are able to com-
municate ordered and quantitative information. When choosing colors for graph
elements also the background needs to be taken into account as the impressions
of a color scheme vary greatly in contrast to the surrounding area. Color blind-
ness should as well be considered as it affects a considerable number of people.
Generally color should be used with caution since it can add visual appeal to a vi-
sualization but can also decrease the effectiveness of the communication process.

• Position: The position of elements allows to map their properties (e.g., category)
but also to reveal properties of the underlying data (e.g., certain structures or
clusters). In the context of graph drawing, the position is seldom a customiz-
able variable since it is usually automatically calculated by the layout algorithm.
Exceptions are layout algorithms that allow constraints on node positions.

• Orientation: Orientation or direction describes how a symbol is rotated according
to its associated attribute. Orientation is directly tied to preattentive vision and
best used on symbols with a natural single axis (e.g., arrows).

• Texture: Texture is a combination of other visual variables, like the symbols in
texture elements, the color of a texture or the orientation of a pattern.

• Motion: Motion encodes information in the way one or more of the above men-
tioned variables change over time; for example by varying the speed at which a
change in position or opacity is occurring.

With these elementary graphic attributes multiple sets of information can be commu-
nicated independently of each other at the same time. Research in human perception

45

showed that the different variables are perceived with individual error rates. The rank-
ing (with increasing error) by Cleveland [18] is ordered as follows: position along a
scale, length, angle, area, volume, color (hue, saturation). Attributes should be prior-
itized accordingly. Care should also be taken with the variations of a single graphical
attribute, since the human perception only allows accurate judgment of about 7 values.
One solution to overcome this limitation is to use more than one stimulus simultane-
ously. In their book [75] Ward et al. suggest to use redundant mappings (e.g., mapping
one attribute to both color and size) when possible to improve the chance of the infor-
mation being communicated accurately. Further they advise to design a visualization
in a way that relies on relative judgment rather than absolute judgment (detection of
differences rather than extraction of numeric values), since it is less prone to errors. The
variables should also be chosen according to the purpose of the visualization - according
to how the user should perceive the information (e.g., ordinal, nominal, quantitative).
Of the listed visual variables, neuroMap uses shapes and lines, size, color, and posi-
tion. Which graph and data attributes are mapped to these variables will be discussed in
chapter 5.

Mapping Data Properties
To create the most effective visualization for a particular application, it is essential to
consider the semantics of the data and the user’s domain-specific mental model. One of
the most common and intuitive mappings in visualization is the mapping of spatial at-
tributes to screen position. Other mappings become intuitive when their particular con-
text is considered, like mapping temperature to color for example. Often color already
has specific interpretations in different fields (e.g., cartography, geology). Therefore the
application domain of the visualization already may dictate a logical use for the color at-
tribute. In general when selecting a mapping it is important to consider the compatibility
of the scale of the data field and the graphical entity or attribute. For ordered attributes
like temperature it would not be intuitive to select a non ordered graphical attribute like
shape. Respectively, unordered attributes like sex should not be represented by ordered
attributes like length. Ward et al. though state that sometimes interesting results can
emerge from using non-intuitive mappings [75]. They therefore conclude that default
mappings should be based on the most intuitive selection but for exploratory tasks user
customization should also be permitted.

Mapping Graph Properties
Additionally to the attributes of network elements (like type or weight), also the inherent
properties of a network can be visualized by encoding them into graphical variables
like the node size for example. Encoding the node degree makes nodes with more
relationships stand out. When closeness is encoded, the node size signifies which nodes

46

can reach many other nodes by short paths. Encoded betweenness informs the user
which nodes control a larger number of the shortest linkages to adjacent networks. This
mapping of graph properties allows the observer to intuitively discover patterns and
therefore provides orientation within a network.

Labeling
Proper labeling in a visualization is essential to allow the viewer to understand what is
being shown. A plot without some sort of legend for defining its elements would be
difficult to read. In graph drawing the problem of labeling can be more complex, not
only because of the potential for many nodes but also because it might be necessary
to label edges as well. If there is only a small number of distinct labels that show the
type of a link or a node, non-textual labels like color or shape are sufficient. However,
if a graph contains more than a small number of distinct elements (e.g., five or six), it
becomes necessary to include textual information besides the above described attribute
mapping for proper interpretation. This information is displayed in the form of node-
and edge-labels. For small graphs it is common to put the labels within the nodes,
using rectangular or round node shapes. To avoid distorted node sizes, the size of the
nodes should be dictated by the length of the longest label. Similarly for edges the
labels can be placed near the center of the edge. To avoid confusion the placement
should be consistent, for example always left or on top of the edge depending on its
orientation. In larger graphs, displaying all labels quickly becomes ineffective, either
due to label overlaps with nodes, edges or other labels, or due to decreased readability
when zooming out. Several strategies exist to cope with this problem [75]. One solution
is to only show labels in a small region of the graph, for example near the cursor position
or on mouse-over. If the density is too high, fish-eye views can be additionally deployed.
Another approach is to alternately show random subsets of the labels. Also semantic
viewing can be deployed to de-/activate or resize node labels at certain zoom levels.

47

CHAPTER 5
Visual Encoding

In this chapter the decisions that went into the visual design of neuroMap are discussed.
Starting with a more detailed presentation of Yu’s wiring diagram, section 5.2 explains
which parts of the neuroanatomical information are visualized and how they are ab-
stracted into graph elements. Section 5.3 then discusses how these elements are visually
designed to encode the associated information, and in section 5.4 the available layout
types are presented.

5.1 Yu’s Drawing
The motivation for and starting point of neuroMap’s design process was Yu’s wiring
diagram of a courtship behavior related neural circuit (Figure 5.1 b)) [78]. The drawing
depicts neural pathways of a certain group of neurons that extend from sensory input to
motor output. The diagram was used to present the findings that were discussed in the
paper to the scientific community and to inspire hypothesis formation about potential
functional neural connections.

The visual elements of the graph are cell bodies, projection edges and neuropils. Cell
bodies are depicted as colored circles with a label of the neuron name. The color de-
pends on the neuronal type. From each cell body projection edges lead to each neuropil
where the neuron has a synaptic terminal (innervation). The edges are represented by
solid or dotted black lines, for neurite or contralateral neurite projections. Sensory affer-
ent neurons are visually distinguished from the other neurons by having pink cell bodies
and projection edges. The arrow tip of the projection edge gives information about the
type of terminal. Presynaptic terminals are represented by pink triangles, dendritic ter-
minals by green ones, and unresolved terminals by a black diamond shape. Neuropils
are white or gray boxes that contain the terminal symbols. A connection between two

49

Figure 5.1: a) The heatmap depicts the overlap of arborizations in Yu’s wiring diagram,
clustered by neuropil. The color scale encodes the amount of overlap and ranges from
blue (no overlap) to brown (complete overlap). b) A partition of Yu’s drawing, depicting
Drosophila’s brain [78].

neurons can only occur if their arborizations overlap in the respective neuropil (since
only then their terminals can form a synapse), and if both have corresponding terminal
types in the same neuropil (i.e., one presynaptic and the other dendritic). The actual ex-
istence and amount of overlap between arborizations is indicated in a separate heatmap
(Figure 5.1 a)). Each grid cell of the heatmap encodes the amount of overlap by neuropil
between each pair of arborizations in its color.

Semantics of the Displayed Data
Yu’s wiring diagram gives a clear schematic overview of potential connections between
multiple neurons that allows scientists to trace signals from sensory input to motor out-
put while depicting the neurons in the context of the whole neural circuit. The semantics
of the displayed data, for our clients, lie in the potential connections that are represented
in the overlap between arborizations and their terminal distribution across neuropils.
Judging this information would be much more cumbersome in an anatomically correct
three-dimensional view, even with only a fraction of the above presented data, as can be
seen in Figure 5.2. Still, the separation of connectivity and overlap information is a clear

50

Figure 5.2: 12 arborizations from Yu’s diagram visualized in the volume renderer (a),
and in neuroMap (b). Even with only 12 arborizations displayed, it is difficult to judge
overlaps in 3D.

drawback of Yu’s abstract representation format, since it is laborious and unintuitive to
search the heatmap for the specific grid cell that contains the overlap value. neuroMap
therefore includes this information directly within the visualization, thus striving to ad-
here to the semantics of the data. The focus of the visualization is therefore to convey
potential connectivity while distracting as little as possible from it.

5.2 Abstraction to Graph Elements
Similarly to Yu’s graph, a neuron’s abstract representation is partitioned into a single cell
body and one or more projections that lead to the attached arborizations. The overlap
between arborizations that was visualized in a separate heatmap in [78] is represented
directly within the graph in neuroMap. The fly’s brain and VNC are represented by the
60 neuropils that they are composed of. An arborization can overlap and therefore lie in
one or more neuropils. neuroMap offers a Simple View on the data where neuropils are
omitted and arborizations are not split up, and a Standard View that displays neuropils
and partitions arborizations between them accordingly. Figure 5.3 displays neuroMap’s
graph elements in comparison to Yu’s diagram and their anatomical counterparts.

Like in Yu’s graph, cell bodies are represented by nodes. Projections are drawn as
edges that denote the relation between cell body and arborization.

In contrast to Yu’s drawing, arborizations are represented as actual nodes. By giving
the arborization its own representation the multitude of associated information (like size,
neuropil overlap, or the fly’s sex) can be directly encoded within the visualization. An
overlap between two arborizations is represented in the form of an edge that connects

51

these two arborizations. Neuropils are represented as super nodes that accommodate all
innervating arborizations.

Figure 5.3: Direct comparison of neuroMap’s elements with their anatomically accurate
counterparts and representation in Yu’s graph.

Simple View

The purpose of the Simple View is to reduce the displayed information to a minimum
and to set the focus on the overlaps between arborizations. This is achieved through the
omission of neuropils. Since the brain is not partitioned into neuropils, arborizations do
not have to be partitioned as well, and are rendered as single nodes (Figure 5.4 a)). The
overlap between two arborizations is therefore represented in a single edge. Projection
edges lead directly from cell body to arborization node. The number of projection edges
that originate from a cell body node therefore only depends on the number of displayed
arborizations that belong to the neuron. This results in a graph with a reduced number
of nodes and edges in comparison to the Standard View, and a simpler, more direct
overview of potential neuronal connectivity. However, the tradeoff of the simpler view,
is the loss of all locational and semantic information that is encoded through neuropils.

52

Figure 5.4: Simple View (a), and Standard View (b): Abstraction of a single neuron
with and without innervations into specific neuropils.

Standard View

The Standard View should give the user the whole range of available information. The
neuropils that overlap with the loaded arborizations are therefore included. In contrast
to arborizations, the positions of neuropils across test subjects does not vary (as they are
part of the standard brain template). Neuropil nodes can therefore be assigned to fixed
compartments and give locational context to the displayed data. Also, neuropils are
often associated with a certain type of functionality and can therefore give implicit in-
formation about the neurons that overlap with them and about the potential connections
within them.

Since arborizations can overlap with multiple neuropils, in this view a single ar-
borization is represented by multiple nodes, one in each overlapping neuropil (Figure
5.4 b)). Overlap edges are therefore split up between the neuropils that contain the
corresponding arborizations, as well. Projection edges lead from the cell body to the
neuropils that encapsulate these arborizations. The number of projection edges that
originate from a cell body node therefore depends not only on the number of displayed
arborizations but also on the number of neuropils with which these arborizations over-
lap. Through the inclusion of additional nodes and edges, the resulting graph is more
complex than its equivalent in Simple View but at the same time gives more detailed
information about the displayed data.

53

Classification
Summarized, the basic elements of neuroMap are cell body and arborization nodes,
projection and overlap edges, and neuropil super nodes. Using the terminology from
chapter 4, the graphs rendered by neuroMap can be classified as static mixed compound
graphs. Static, since the graph’s content and structure does not change over time. Mixed,
because the graphs contain both directed edges: projections lead from cell body to ar-
borization or neuropil; and undirected edges: overlap edges connect two arborizations
but do not indicate source or target. The classification as compound graph stems from
the neuropil super nodes that contain arborization nodes and therefore subdivide the
graph structure into different groups. neuroMap’s graphs are generally sparse with a
density D < 0.1. When regarding the subgraphs within neuropils separately though, the
density can be higher if many arborizations overlap each other. Due to the low density
the overall graph structure is planar. Subgraphs though can be non-planar due to their
potential high density.

5.3 Visual Encoding
In general the visual design of graph elements has been geared to adhere to the semantics
of our clients’ data. Elements that are more likely to be part of a connection between
neurons have therefore more visual presence than elements that are less likely to be part
of a connection. The assessment of this likeliness follows Peters’ rule (introduced in
Chapter 2.3). Following this rule, bigger overlaps between objects are deemed more
important than smaller ones. How this is manifested in the design of the individual
graph elements is described in the following.

Cell Bodies
Like in Yu’s drawing, cell body nodes are depicted as circles. In neuroMap however,
the node size is not uniform but scales with the number of connected projection edges to
indicate neurons with a bigger number of innervations. The scaling is capped to avoid
nodes that are too large or too small. Nodes are large enough for labels to be drawn
across instead of beside them. This saves space on the canvas and avoids overlaps with
other graph elements.

Arborizations
The visual design of arborization nodes depends on the selected viewing mode. In
Simple View, arborizations are represented as squares. Since in this mode each node
represents an entire arborization, the node size is scaled by the arborization’s actual vol-
ume. Because arborization volumes differ quite dramatically in size, with the smallest

54

Figure 5.5: Comparison of all three arborization encoding types: Simple View (a),
Standard View (b), and detailed encoding (c) on the same dataset. In Simple View and
detailed encoding the node size represents the total volume of an arborization, while in
Standard View the size represents the overlap percentage with the respective neuropil.
The overlap percentage is still present in detailed encoding within the node filling.

one measuring only 202 cubic microns, and the largest one 679722 cubic microns, the
applied scale is logarithmic. This way the differences in size are still visually judgeable
while the smallest and largest node size are kept within a reasonable area.

In the Standard View, arborizations are split between their overlapping neuropils. To
let the user easily grasp the distribution of an arborization over its overlapping neuropils,
the node size of each partition is scaled according to the arborization’s overlap with the
respective neuropil. The more percent of an arborization overlap with a neuropil, the
bigger the innervation node is drawn within the neuropil node. A drawback of this
encoding method is that the node size does not convey information about the actual
volume of the partition in each neuropil. A small partition of a very large arborization
will therefore appear smaller than a large partition of a very small arborization, even
though the former is a few times larger than the latter. This can be misleading in some
scenarios (see Figure 5.5 a) and b)). Even though the arborization of the green colored
neuron is much smaller than the arborization of the turquoise colored one, it appears
larger in neuropils SOG and L_V because its overlap with these neuropils is bigger.

To eliminate this potential confusion, detailed encoding was added to the Standard
View (Figure 5.5 c)). Here nodes are represented as vertically oriented rectangles. The
rectangles are scaled vertically according to the total arborization volume, and filled
according to the arborization-neuropil overlap volume. The view thus simultaneously
encodes the information of the Simple View (total arborization volume) and of the Stan-
dard View (arborization-neuropil overlap). The same scaling as in Simple View is ap-
plied. Here only the height of the nodes is scaled, since (as described in chapter 4.2)
variations in one dimension are better judgeable than variations in two dimensions, es-

55

pecially when multiple attributes are visualized simultaneously. Similarly to cell body
nodes, arborization node size is capped to avoid too large or pixel-sized nodes.

If objects from male and female subjects are visualized simultaneously, arboriza-
tion nodes are framed by a sex specific color to visually distinguish them from each
other. Additional information about an arborization is made available through semantic
zooming and tooltips, both of which will be discussed in the next chapter.

Projections
Projection edges tie a cell body and its associated arborizations together. In Simple
View projection edges are colored using the cell body color (Figure 5.5). For a graph
with neuropils there are two selectable encoding types. The first uses the same encoding
as the Simple View. This visually links a path on the canvas to its associated cell body
and therefore makes orientation within the graph easier. The second encoding mode is
designed to visually enforce the arborization’s overlap with the neuropil by applying a
grayscale encoding: the more percent of an arborization overlap with a certain neuropil,
the more saturated the line will appear. Small arborization partitions will therefore
always be related to less saturated projection edges. Through the scaling between black
and gray, large overlaps that are more likely to form a connection will rather catch the
viewer’s attention than smaller overlaps that blend in with the background. In a graph
with a lot of arborizations this helps to direct the user’s attention towards more probable
signal flows. The grayscale encoding is pictured in Figure 5.6.

In the initial version of neuroMap projection edges connected directly to their re-
spective arborization node within a neuropil. However, in combination with the overlap
edges between arborization nodes, the interior of neuropil super nodes appeared clut-
tered and confusing. In favor of a clean and visually appealing image, projection edges
were set to terminate at the border of the respective neuropil super node.

Like in Yu’s drawing, the end point of a projection edge can convey the terminal
type. However, since the database does not yet actually include synaptic information,
all arrow tips are uniformly represented by a white diamond shape as placeholder for
the actual terminal information. Nevertheless, neuroMap is built with synaptic termi-
nals in mind. So the appearance of the graph can be adapted as soon as the necessary
information is available.

Overlap Edges
The overlap of two arborizations is depicted as a connecting edge between them (Fig-
ure 5.6). The overlap amount can range from 100% to 0.01% and is encoded as grayscale
value between black and light gray and as transparency between zero and 90%. An
overlap of 100% results in a solid black line, while an overlap of 10% will be rendered
in a highly transparent light gray. The scaling between black and gray will direct the

56

Figure 5.6: The encoding of different types of overlaps and their actual anatomical
appearance. The arborization-neuropil overlap is encoded in the size of the arborization
nodes and in the projection edge’s shade of gray The arborization-arborization overlap
is encoded in the connecting edge between two arborization nodes.

viewer’s attention towards bigger overlaps that are more likely to form a connection
according to Peters’ rule. The amount of an overlap is bidirectional, as the overlap-
ping volume holds a certain percentage of each arborization’s total volume. For a more
streamlined view and less visual clutter, only the larger of both overlaps is directly en-
coded in the graph since it is a better indicator for the plausability of a connection.

As an overlap between two arborizations can lie within multiple neuropils, each of
these neuropils holds a certain percentage of the arborizations’ total overlap volume. In
Simple View the overlap is not split up over neuropils and is therefore represented by a
single edge. In Standard View the distribution of the overlap across neuropils is encoded
in the thickness of an overlap edge. A thick line indicates that a big percentage of the
overlap lies in a certain neuropil, while a less significant portion of the total overlap is
indicated by a thin line. This makes it possible to quickly spot the areas of an overlap
where a connection is more likely to occur. By focusing on the bigger of both overlaps
and using grayscale, transparency and line thickness, the attention of the user is directed
towards relevant overlaps, regardless of the view mode, while still keeping the context
to the whole range of overlap information.

57

Neuropils
The visual design of neuropil super nodes is kept simple to distract from their con-
tent as little as possible. The nodes are represented as rounded rectangles with white
background and a colored frame. A label with the abbreviation of the neuropil name
is displayed in the bottom left corner and a state icon in the top right corner of each
node. The full name of a neuropil can be obtained from its tooltip window. A neu-
ropil node has two states, opened and closed. When opened, the neuropil node’s size
scales automatically to accommodate the size of its content. In closed state the node’s
content is hidden and its size is set to a value that depends on the number of contained
arborizations. The values for the size of closed neuropil nodes was chosen so that they
will always be smaller than in opened state in order to take less space on the canvas.
With this, users can hide unwanted details if they are not interested in the contents of a
certain neuropil, while neuropil size and incoming projection edges still unobtrusively
encode information about its content. Neuropils in both states can be seen in Figure 5.7.
Depending on the selected layout, the position of a neuropil can convey information
about its location in the brain. Neuropils that do not overlap with the displayed data are
omitted from the visualization.

Figure 5.7: Neuropil node containing the same data in opened state (a), and closed state
(b) with adapted node size.

Node Color
The color of all nodes is derived from their corresponding workspace items which in turn
are colored according to the selected color scheme and can be recolored individually.
The neuron based color scheme for example gives all items that belong to the same
neuron a uniform color. If no cell body objects were used for graph creation, the cell
body node receives the same color as the first arborization to which it is connected. If a

58

neuropil is not loaded in BrainGazer’s workspace, its frame is painted in light gray by
default. Color itself does not convey any information and is only used to visually link
associated elements and distinguish non related elements.

5.4 Layouts

Subgraph Layout

Visual clutter in neuropil group nodes has been a challenge, as neuropils should stay as
compact as possible while their content quickly increases when additional arborizations
are included in the graph. The content of a neuropil node, is therefore laid out with a
circular layouter which ensures compact node placement. Since the resulting layout
always forms a circle, this results in a more uniform look for all neuropil nodes.

Still, when there were many overlaps within a neuropil the overlap edges would
quickly occlude each other due to the circular positioning of arborization nodes and it
would become difficult to single out a specific overlap. To solve this occlusion problem,
a quadcurve edge router was deployed with bends in the middle of the circle for each
edge. The resulting curved edges occlude each other much less than the original straight
edges (Figure 5.8).

Additionally, to avoid occlusion of important overlaps, the overlap edges in each
neuropil are sorted by their overlap amount. The additional use of transparency makes
it easier to trace the path of partially occluded edges.

Figure 5.8: Comparison between circular arborization layout within neuropils with (a)
and without (b) bends. By bending the edges towards the center of the circle, the layout
appears more ordered than with the crisscross look without bends. Edges still occlude
each other but more towards the center of the circle.

59

Graph Layout

neuroMap offers five different layout modes for positioning a circuit graph’s nodes and
edges on the canvas: circular, organic, orthogonal, hierarchic and anatomical.

Figure 5.9: neuroMap’s circular layout assigns biconnected elements to the same cir-
cular partition.

60

Circular Layout

The circular layouter produces layouts that emphasize group and tree structures within
a network. It creates node partitions by analyzing the connectivity structure of the net-
work, and arranges the partitions as separate circles. Each partition represents a bi-
connected component of the graph. Nodes that belong to more than one biconnected
component are assigned exclusively to one partition. Concerning the semantics of the
data, this layout visually separates entities that have little or no interaction with each
other, as can be seen in Figure 5.9. In this example the main partition circle consists
only of interconnected neuropils from the brain’s left hemisphere while the remaining
smaller partitions are part of other brain regions.

Figure 5.10: neuroMap’s organic layout is a force based layout approach.

61

Organic Layout

The organic layouter is based on the force-directed layout paradigm. Resulting lay-
outs often expose the inherent symmetric and clustered structure of a graph, show a
well-balanced distribution of nodes and have few edge crossings. Similar to the cir-
cular layouter, tightly interconnected elements tend to form clusters while components
with fewer connections are more isolated, as can be seen in Figure 5.10. Due to its
heuristic optimization the organic layout produces slightly different results each time it
is executed.

Orthogonal Layout

The orthogonal layout algorithm is based on the topology-shape-metrics approach. It is
well suited for medium-sized sparse graphs and produces compact drawings that have
a circuit diagram look through their orthogonally routed edges (Figure 5.11). However,
because the orthogonal layouter strives to produce planar graphs, the distance from one
node to another one does not convey any intrinsic information, like in the circular or
organic layout.

Figure 5.11: neuroMap’s orthogonal layout tries to produce planar graphs.

62

Figure 5.12: neuroMap’s hierarchic layout emphasizes hierarchies within structures.

Hierarchic Layout

The hierarchical layout follows the layered/hierarchical approach. By revealing the
intrinsic hierarchies of the displayed data, it produces cleanly structured layouts (Figure
5.12). The graphs in neuroMap generally produce flat hierarchies, since edges only lead
from cell body to arborization or neuropil node, which means that there are only two
hierarchy levels. Since this results in a rather flat graph, the two levels are broken down
into multiple layers to achieve a more visually pleasing result.

Anatomical Layout

The node positions in the four described layouts have no relation to their actual loca-
tions in the brain. The anatomical layout addresses this shortcoming and partitions the
canvas into 19 different compartments that represent actual brain regions. The layout
of these compartments and the assignment of neuropils to them has been provided by
our clients. Figure 5.13 shows the sketch that was supplied to us. Figure 5.14 shows
the resulting layout. The VNC is represented by a single compartment that houses all of
its 5 neuropils. The neuropils in the VNC are layered to match the anatomically correct
order that is also present in Yu’s drawing.

The compartments of the anatomical layout form an abstract representation of the
actual brain and VNC. Because neuropil positions are restricted to their assigned com-
partments in this layout, the graph visualizes signal flows through this representation of
the brain. For the neuroscientists this makes the neural circuit more visually intuitive
and meaningful than a graph without anatomical relevance. Another advantage of the
anatomical layout is that the fixed compartment positions help preserve the mental map

63

Figure 5.13: The sketch of brain compartments that served as blueprint for the anatom-
ical layout.

of the graph. This is not the case in the other available layouts since node positions
can change with each new configuration of the graph. The anatomical layout is only
applicable to graphs with neuropils, since arborizations sometimes overlap with multi-
ple neuropils in different brain regions. Arborization nodes can therefore not always be
assigned to a single brain region.

A compartment in neuroMap is represented by a blue area that surrounds the asso-
ciated neuropils. Some compartments like the left and right optical lobe are labeled to
facilitate the users’s orientation. The left and right brain halves are switched to match the
scientists accustomed view on the data. If the number or size of the displayed neuropils
within a compartment increases, the compartments scale automatically to accommodate
their content. All cell body nodes except those of sensory afferent neurons are placed
in the center of the graph. This has two advantages: on the one hand additional en-
largement of compartments is avoided, on the other hand it results in a much clearer
view of the signal flow as all projection edges originate from the center of the graph.
Although there is no way to distinguish sensory afferent neurons from other neurons in
the database, neuroMap flags some known sensory afferent neurons internally. Like in
Yu’s graph these cell body nodes are then placed separately outside the graph, to the left
of the assembled brain compartments. This placement visually suggests the information
flow from outside into the brain and distinguishes these neurons from non-sensory af-

64

Figure 5.14: neuroMap’s anatomical layout emulates an abstract view of the fly’s brain.

ferent ones. The underlying algorithm of the anatomical layout is a hierarchic layouter
that helps to highlight the main direction of the flow within a directed graph. To reduce
the amount of edge clutter in this layout, all projection edges of a neuron are bundled at
the cell body node and drawn on top of each other instead of parallel to each other, until
they split to connect to their respective neuropil nodes, much like in Yu’s graph. This
results in an overall cleaner view.

65

CHAPTER 6
Interaction

In this chapter neuroMap’s user interface and the various interactions that it enables
are discussed. neuroMap’s design is aimed to make the user’s tasks of graph creation,
manipulation and exploration as easy and intuitive as possible in consideration of the
semantics of the data. The design is therefore central to the aspect of visualizing and
exploring potential connectivity between neurons (e.g., arborizations and their over-
laps).

Section 6.1 introduces the elements of the interface, section 6.2 describes how graphs
can be created in neuroMap, section 6.3 then explains how data and the visible structure
of an existing graph can be manipulated, and section 6.4 describes how the structure of
a graph and its underlying data can be explored.

6.1 Interface Overview
The neuroMap user interface consists of a toolbar, three retractable windows on the
canvas, and context menus that popup upon right click on certain graph elements (Fig-
ure 6.1). The three retractable windows contain an overview of the entire graph, the
selectable layout modes, arborization filter options and general settings. The overview
helps the user to keep the orientation by displaying the entire graph together with a
rectangle that indicates the zoomed-in area. The options menu consists of five switch-
able tabs. The first two contain sliders to adjust the arborization-arborization and the
arborization-neuropil overlap thresholds as well as buttons to toggle between absolute
and relative threshold. The remaining tabs let the user adjust the zoom factor, hit-test
sensitivity and graph export format. The context menus are for editing node labels and
deleting graph elements, and also offer node type specific functionality that will be elab-
orated later in this chapter.

67

Figure 6.1: The neuroMap user interface: a) toolbar, b) overview, c) layouts, d) filters
and options, and e) context menu. The toolbar: 1) generate, 2) clear, 3) export, 4) toggle
Edit Mode, 5) delete, 6)7) zoom in/out, 8) fit to screen, 9)10) open/close all neuropils,
11) reroute, 12) toggle layout orientation, 13) toggle sex filtering, 14) re-layout, 15)
toggle Simple View, 16) toggle detailed encoding, 17) toggle edge encoding, 18) show
all instances.

6.2 Graph Creation

To generate a graph, users have two options: the whole content of the workspace can be
directly imported into neuroMap by clicking the generate button . If users want to
create a graph from just a subset of the workspace’s content, they can select the desired
items with the mouse and drag and drop them onto neuroMap’s canvas. By dragging
and dropping additional items, an existing graph will be extended.

Graph generation is arborization centric, since potential connections between neu-
rons are of main interest to the neuroscientists. This means, that the arborization forms
the basic building block of a graph. Depending on what type of item is used as input
for graph generation, the associated arborizations will be queried and used as building
blocks. The basic building block, as generated from a single arborization, will consist
of the cell body node, the arborization node(s) and all neuropil nodes in which the ar-
borizations reside. When more than one arborization is loaded, the overlaps between
all of them are calculated and visualized as overlap-edges. When a neuropil is used as
input for graph creation, all arborizations that reside within the specified neuropil will
be used as building blocks. This means that also all cell bodies and other overlapping
neuropils of the contained arborizations will be loaded and displayed. When a cell body
is used as input, the graph is constructed from all arborizations belonging to the cell
body’s neuron.

68

6.3 Graph Manipulation

Filtering

As the content of the database steadily increases, there will be more and more objects
that overlap each other. Using a single neuropil that overlaps with lots of arborizations as
input would already result in a graph of substantial size. It is therefore necessary to offer
filtering mechanisms for decreasing the amount of less relevant information in the view.
To accommodate this, filters for both types of overlaps in the data were implemented:
arborization-neuropil overlaps and arborization-arborization overlaps (Figure 6.1 d)).
By increasing the thresholds of these filters, arborization nodes and overlap edges with
smaller values than the specified thresholds will be omitted from the visualization. Each
threshold can be adjusted in two different modes, either by overlap percentage or by
overlap volume (measured in cubic microns). Both modes of threshold adjustment have
been implemented because the arborizations in the fruit fly’s brain can differ drastically
in size (see section 5.3). The percentage threshold allows relative filtering of object
to object relations, independent of the actual volume. The volumetric threshold allows
absolute filtering of arborization partitions and overlaps.

Filtering of female or male arborizations or deactivating sex-specific filtering is also
possible (through the toggle sex filtering button). This lets users for example quickly
switch between the view on the female and male brain without the need to assemble a
new graph from scratch.

Deactivating the „Show All Instances“ (Figure 6.1 18)) checkbox will filter all sec-
ondary instances from a graph. Primary instances are the designated representative
entities if multiple entries of the same object exist in the database. This feature allows
the quick comparison of related instances without the need of having to manually add
and remove them from the visualization.

Simplification

The complexity of the graph can be reduced by closing single neuropil nodes and hiding
their contents with a click on the state icon. neuroMap offers the user also the possibility
to open or close all neuropil nodes simultaneously. As mentioned in the visual encod-
ing section, the relative size of a closed neuropil node still gives information about its
number of overlapping arborizations. So even a graph with only closed neuropil nodes
shows, which neurons could be connected in which neuropil, although not to what ex-
tent.

Another feature for simplifying an existing graph is the merging of neuropil nodes.
The feature was requested since some groups of neuropils form functional units. If
scientists are more interested in analyzing the potential connections within such a func-

69

Figure 6.2: Neuropil merging: arborization nodes and overlap edges are combined in
the merged neuropil.

tional unit, rather than within multiple single neuropils, the merging feature enables
them to do so.

Merging cannot only be useful for building functional units from single neuropils,
though. If a partition of a graph does not necessarily need to be displayed in full detail,
the part of the circuit can be simplified with the merging feature.

By dragging and dropping one neuropil node on another in Edit Mode, both are
merged into a single new one that combines arborization nodes and overlap-edges from
the original nodes. If an arborization or overlap was present in both nodes, the visual
attributes are also combined, e.g., the thickness of the edges, the size or filling of the
nodes. Since a neuropil also stores information about arborizations that are not dis-
played because their overlaps fall below the filter threshold, a merging operation can
yield additional arborization nodes, that were not present in the original neuropil nodes,
when their combined values rise over the specified threshold. Figure 6.2 shows the
result of a merging operation.

Layout Manipulation
Basic operations for changing the visual appearance of a graph, are the application of
different layouts or changing the color of elements in BrainGazer’s workspace. The
layouts can be selected directly from the „Layout“ dropdown window (Figure 6.1 c)).
The layout orientation of anatomical and hierarchical layout can be changed from top-
to-bottom to left-to-right with the toggle layout orientation button . In some scenarios
this results in a better usage of screen space or a visually more appealing graph.

neuroMap’s internal list of sensory afferent neurons can be extended by selecting
from the right-click context menu on a cell body node. These

cell bodies are then placed outside of the graph in the anatomical layout to indicate
external neural stimuli, like described in section 5.4.

The reroute button gives the user the option to additionally reroute all projection
edges orthogonally, regardless of the selected layout. In contrast to the selectable layout

70

algorithms, this will only affect edges and not node positions. Orthogonal edge-routing
produces some interesting results, in combination with the organic layout for example,
since a circuit look is achieved while nodes are still clustered by the force directed algo-
rithm (as opposed to the orthogonal layout where node positions are chosen to achieve
minimal edge crossings). Another application for this button would be the rerouting of
edges after the manipulation of the graph in Edit Mode.

neuroMap’s Edit Mode provides several ways to fine tune the appearance of the
graph manually, e.g., for presentation purposes. The user can alter the size and position
of nodes and edit the text of node labels.

Deletion of graph elements is also only possible in Edit Mode and is context sen-
sitive, i.e., is differently handled based on the object’s type. When the user deletes
an arborization node, all associated nodes that the arborization is composed of will be
deleted. If the removal of this arborization leaves the cell body node without child
nodes, the cell body will be removed as well. If a neuropil node is left empty by the
removal of an arborization node, it is also deleted. Single arborization nodes can be
removed by deleting their associated projection edge. If the user deletes a cell body
node, all its associated arborizations are removed. If a neuropil node is deleted, only the
node and its content will be removed from the graph. Since the workflow is arborization
centric, it is assumed that neuropils will be removed by the user for lack of interest in
the specific neuropil rather than the intent to delete all arborizations that overlap with
the neuropil.

Exporting the Graph
When the user is satisfied with the graph’s structure and content, he or she can export
the graph to a selected format. Currently GraphML, GIF, JPG, PNG, BMP and SVG
formats are provided.

6.4 Exploration

Highlighting
To emphasize relationships between elements that could be difficult to grasp in a large
graph, a context-sensitive highlighting feature was implemented. A highlighted cell
body or arborization node is rendered with a thick orange frame and casts a shadow on
the canvas that gives it the impression of being elevated from its background. Both,
overlap edges and projection edges, are rendered with thick orange borders when high-
lighted. If a neuropil node or one of its contained elements is highlighted, it will cast a
shadow on the canvas and change its fill color to orange in closed state or highlight its
content in opened state.

71

Figure 6.3: Context sensitive highlighting of graph elements: a) double-clicking an ar-
borization node highlights all partitions of an arborization, b) double-clicking a neuropil
node highlights all connected cell bodies, c) double-clicking an overlap edge highlights
all partitions of this overlap as well as the involved arborization partitions.

Depending on the origin of the highlighting request, different relationships are ac-
centuated. A double-click on an arborization node will highlight all nodes that represent
the specific arborization, as well as the neuron’s cell body node and all associated pro-
jection edges (Figure 6.3 a)). In a large graph with many neuropils, this gives users a
clear view of the partitioning of a single arborization and lets them grasp at a single
glance where exactly these partitions lie (regardless of neuropil node states). Similarly,
double-clicking on a cell body node will give the user an overview of all the neuron’s
arborizations and their partitions over the graph. When a neuropil node is selected for
highlighting, directly connected projection edges and cell body nodes as well as the neu-
ropil itself or its content (depending on state) are highlighted (Figure 6.3 b)). This em-
phasizes, which neurons could be potentially connected through the selected neuropil.
When a projection edge is selected, only the cell body at its source and the arborization
node or neuropil at its target are highlighted. Highlighting an overlap edge will show the
user, in which other neuropils this overlap exists, and will also highlight both arboriza-
tions in each neuropil, regardless if there is an overlap between them (Figure 6.3 c)).
The initial implementation of overlap-edge-highlighting only highlighted arborization
nodes when they were actually connected by an overlap edge. Since the neuroscientists
were also interested in knowing where the two participating arborizations of an overlap
edge do not connect, this information was also included. Through this object-type de-
pendent highlighting, users can issue consecutive highlighting requests to explore the
graph’s connectivity.

72

Linking
BrainGazer’s linked view feature displays the selection state of objects, synchronized
over workspace and volume renderer. By including neuroMap into the list of linked
views, an additional application-wide way of highlighting graph elements is provided,
that further strengthens the integration of neuroMap into BrainGazer’s infrastructure
and opens new ways for application-wide interactions with the neuronal data. Linking
works for multiple items simultaneously and in all directions, which means it can be
initiated from each view.

Selecting an item in the workspace will highlight it in the graph by framing all
corresponding arborization nodes with an orange border, and also in the volume renderer
by giving the object a surrounding shimmer. This helps users to spot selected workspace
items quickly and without effort even in large graphs. Figure 2.4) shows the linked
selection state of an arborization across BrainGazer’s views.

Similarly, when an item is selected in another view, it will be instantly focused
and selected in BrainGazer’s workspace. This speeds up the workflow by eliminating
the need to skim the entire list of loaded workspace items for the corresponding graph
element. By selecting an overlap edge, for example, the user can instantly review an
anatomically exact version of the graph’s abstract representation of this overlap and
initiate a spatial query on the region if desired. The result can then be added to the
workspace and included in neuroMap’s 2D visualization. The linking therefore enables
all views to supplement each other’s features for exploration and analysis of the supplied
data. neuroMap currently supports selection state linking of all graph items except
projection edges, since these are generated with each arborization node and not from
actual database information.

Extending the Graph Structure
For exploring the database directly from within neuroMap, the right-click context menu
offers the option to query for overlapping elements and load the results into the graph
as well as into the workspace. The command in the context menu
has different effects for each type of node. When issuing the command from a cell
body, all additional arborizations that belong to this neuron are loaded into the graph
and workspace. When starting from a neuropil all arborizations that overlap with this
neuropil are loaded. Similarly, when selecting the option from an arborization node, all
arborizations that overlap with this arborization are loaded. The query on the database
for loading the overlapping arborizations uses the threshold values from both types of
overlap filters. For a neuropil only arborizations with an overlap higher than the ar-
borization/neuropil overlap threshold will be loaded. For an arborization, only arboriza-
tions with an overlap higher than the overlap edge threshold will be loaded. The com-
bination of the „Load Overlapping Arborizations“ command with both filters gives the

73

user more control over the expansion of the graph.
The self explanatory command in the context menu saves the

user the hassle to query for a neuropil that is already loaded in the graph. Adding a
neuropil to the workspace enables the scientists to access its info page for direct com-
parison between database information and visual information; or to load the neuropil
into the render view where it can be used as reference frame to the displayed items.
Using this feature takes only two mouse-clicks, while querying for the desired neuropil
in the database view takes considerably more time and effort.

Figure 6.4: Levels of Detail (LoD): a) lowest LoD with thick edges and omitted labels,
b) second lowest LoD with enlarged labels, c) highest LoD with arborization labels and
primary instance icons.

Semantic Zooming
As a graph grows in size with the loading of additional elements, it becomes necessary
to zoom out and gain an overview of its entire structure and to zoom in to focus on
specific details. To supply the user with the most essential types of information for each
zoom level, zoom level dependent Levels of Detail (LoD) were added to neuroMap. The
lowest LoD is applied when the graph’s zoom level is smaller than 0.3 (Figure 6.4 a)).
Here the overall structure of the graph is more important than small details. All node
labels are therefore hidden, since enlarging them to readable sizes would occlude the
fine structures of the graph when zoomed out this far. Projection edges are enforced
by multiplying their line width with a factor of 5. Since important overlap edges are
significantly thicker than projection edges, their line width is only multiplied with a
factor of 2. The same principle is applied to the highlighted versions of both types of
edges. The selective enforcement of edges reassures their visibility at this zoom level.
When grayscale encoding is selected, especially darker and therefore possibly more
important edges are still clearly visible and distinguishable. The next level of detail

74

Figure 6.5: Tooltip windows of a) an arborization node, and b) an overlap edge.

is activated at a zoom level between 0.3 and 0.6 (Figure 6.4 b)). Here cell body and
neuropil labels, as well as the region descriptions in anatomical layout are enlarged, as
they would be hard to read in their original size. The graph is already zoomed in enough
so that enlarged labels do not occlude other elements. Overlap edges are clearly visible
at their original size and therefore not enforced anymore. The line width of projection
edges is still multiplied by a factor of 2 to ensure their visibility. The next LoD is applied
for a zoom level between 0.6 and 1.5. Here the graph is rendered in its original state.
For the close-up view in zoom levels above 1.5 the names of arborizations are displayed
beneath their nodes and a star icon that identifies primary instances is rendered in the
top left node corner of the respective arborizations.

Tooltips
Tooltips give additional information about each graph element that is not directly en-
coded within the visualization. They are accessed by hovering over the respective ele-
ment with the mouse pointer. The use of tooltips avoids cluttering the visualization by
encoding the most relevant information directly and offering details on demand. Fig-
ure 6.5 shows examples of an arborization tooltip and an overlap edge tooltip.

In the following the tooltip information available for each type of graph element is
listed. Cell body: neuron name. Projection edge: names of corresponding arborization
and neuropil. Neuropil: detailed name. Arborization: name, overlap percentage with
neuropil, overlap volume in cubic microns, total arborization volume in cubic microns.
Overlap edge: total overlap volume in cubic microns, overlap volume in the current
neuropil, percentage of overlap volume of first and second arborization’s volume.

75

CHAPTER 7
Implementation

In this chapter the software architecture and relevant implementation details behind neu-
roMap are presented. Section 7.1 gives an overview of the system architecture. Section
7.2 introduces yFiles AJAX, the graph drawing library and client-server-framework that
powers neuroMap, and section 7.3 presents the relevant aspects of BrainGazer’s under-
lying database and how this data is used as input for neuroMap’s visualization.

7.1 System Overview
neuroMap is built with the yFiles AJAX toolkit [77] as an additional web-based view
in BrainGazer. yFiles AJAX offers a JavaScript Dojo widget for graph display and
interaction on the client side and a Java Servlet interface to the yFiles for Java graph
drawing library on the server side. The yFiles for Java graph drawing library handles
creation, storage, manipulation, and rendering of the graph structure. Therefore most
user interactions are sent to and handled on the server side. The server queries the
database for information to construct the graph structure, modify the appearance of
the graph’s elements and annotate the elements with additional information. After the
graph is completely generated, it is laid out with the currently selected layout algorithm.
Finally the view of the graph is rendered and the tiles are sent to and displayed in the
client browser.

BrainGazer is implemented in C++ , the user interface was built with the Qt toolkit.
neuroMap runs in Qt’s webkit browser and communicates with BrainGazer through
Qt’s signal and slot system. By putting neuroMap’s interface in a browser window, it
is possible to seamlessly include it in BrainGazer’s infrastructure as an additional view,
while still having the option of releasing a standalone web service (which is planned for
future versions).

77

Figure 7.1: neuroMap’s system overview in the scenario of graph creation within
BrainGazer: 0) the user issues a query for a neuron of interest, 1) the database returns
the results, 2) the user adds a selection of the results to BrainGazer’s workspace, 3) a
selection of the workspace items are used to generate a graph, 4) neuroMap sends the
item IDs to the Java Server, 5) the server queries the database with the supplied IDs, 6)
the returned information is used to construct the graph, 7) the graph is rendered and the
tiles are sent to neuroMap’s view.

Figure 7.1 depicts a system overview of neuroMap and BrainGazer, as well as the
workflow for graph creation and the associated communication between system compo-
nents.

7.2 yFiles AJAX
For neuroMap’s implementation, it was decided to use a graph drawing library rather
than to extend an existing graph drawing application, since neuroMap should be inte-
grated into BrainGazer’s environment as an additional view. From the various graph
drawing libraries available on the market [17] [5] [25] [31], yFiles [77] is the one that
was deemed the most suited for the task.

yFiles is a powerful graph drawing library with customizable layout algorithms that
offer many features essential to neuroMap’s visualization style. These features include

78

support for nested graph structures with proprietary internal layout (i.e., for neuropil
nodes and their content), location constraints for graph elements (like in the anatomical
layout), and flexible orthogonal edge routing capabilities that are important for neu-
roMap’s „circuit diagram look“.

Also, the IMP intends to release a web-based version of some of BrainGazer’s fea-
tures and yFiles AJAX enables neuroMap to be used as both, an integrated part of
BrainGazer as well as a standalone web-application.

yFiles can be extended with proprietary layout stages, as well as custom renderers.
This way, the look of a graph can be tailored to the specific needs of an application.
The standard routing in the internal layout of neuropil nodes was replaced by a custom
layout stage to bend edges towards the center of the circular layout. The painters of
each node- and edge-type were adapted to support neuroMap’s look, LoD rendering,
and highlighting in neuroMap. A custom background painter was added for rendering
the partitions in the anatomical layout.

Client
For the web client the yFiles Graph Editor was extended to implement neuroMap’s
user interface and client-side functionality. Typically a user interaction triggers a server
request that contains the request name and the corresponding item IDs.

Server
As the server holds the actual graph, it is able to map the client item IDs to their actual
node or edge object representatives. Each object can hold arbitrary additional meta data
like tooltip infos or the parent neuron ID for example. The object(s) along with its meta
data are then used to perform the request, e.g., highlight related elements.

7.3 Database
For retrieving the information from the available database to generate the circuit dia-
gram, two queries are issued: one for the general graph structure which consists of cell
body, arborization, and neuropil nodes, as well as projection edges (main query), and
the other one solely for overlap edges (overlap query). The input parameter of the main
query is a list of arborization instance IDs. As already mentioned, an arborization as
an object can have multiple instances, one primary, the rest secondary. The database
requests query for the relations of specific instances (not objects). If the user supplies
other neuronal entities (cell bodies or neuropils), for each type another query is issued
before the general query, in order to retrieve the associated arborization instance IDs, as
described in section 6.2. The result of the query contains 20 fields. The most important

79

aspects are depicted in table 7.1 with an explanation of how each field is used in the
graph generation process.

The overlap query uses arborization instance IDs as well, and additionally the IDs of
the neuropils that overlap with these arborizations, in order to find the overlap between
each pair of arborizations per neuropil. The most important fields of this query with a
description of the usage of the retrieved information is given in table 7.2.

The central point of both queries is the neuropil_instanceoverlap table from the
database that contains the percentage of the overlap of each pair of instances per neu-
ropil. The overlap of an instance with itself therefore yields, how much of the whole
instance overlaps with the respective neuropil. Since in Simple View (without neuropils)
only the direct overlap between arborizations is needed, only the object_to_object table
is used in the overlap query.

When the user employs the context menu on a node to load its overlapping arboriza-
tions into graph space and workspace, a query for each type of neuronal object (ar-
borization, cell body, or neuropil) first determines the instance IDs of the overlapping
arborizations. These IDs are then used in the main query in order to add them to the
graph. Then the overlaps between the newly loaded instances from the main query
are calculated, as well as the overlaps between existing and newly added instances.
The same procedure is applied when an existing graph is extended with items from the
workspace.

80

Neuron Name Visible in cell body node labels and tooltip. Used for filter-
ing sensory afferent neurons.

Neuron ID Used for bundling projection edges in hierarchic layouts.
Identifies cell body nodes; links arborizations and cell bod-
ies to a neuron.

Cell Body ID Used for color lookup from workspace items and selection
state transfer for cell body nodes.

Neuropil Name The full name of a neuropil. Only visible in the neuropil
node tooltip window.

Neuropil Short Name Visible on neuropil node labels and projection edge tooltips.
Used for identifying and assigning neuropils to their respec-
tive partitions, and for layering VNC neuropils in anatomi-
cal layout.

Neuropil ID Identifies neuropil nodes. Used for color lookup and selec-
tion state transfer.

Arborization Name Displayed in arborization and projection edge tooltips and
as node label in the highest LoD.

Arborization Instance
ID

Identifies arborization partitions in combination with the re-
spective neuropil ID. Used for color lookup and selection
state transfer.

Model Instance ID Denotes the ID of the primary arborization instance ID.
Used for identifying the primary arborization instance.

Arborization-Neuropil
Overlap

Describes how much percent of the arborization overlap
with a neuropil. Used to calculate the arborization parti-
tion node size in Standard View, the node filling in detailed
encoding, and the shade of gray of projection edges. Used
to filter arborization partitions according to the threshold
percentage.

Arborization Volume Total volume of an arborization; used for node size scaling
in Simple View and detailed encoding; visible in tooltip.

Overlap Volume Calculated from Arborization-Neuropil Overlap and Ar-
borization Volume. Displayed in arborization tooltips; used
for filtering arborization partitions according to the volu-
metric threshold.

Arborization Sex Used for discerning and filtering male and female arboriza-
tions.

Table 7.1: The most important fields of the main query result.

81

Arborization & Neu-
ropil IDs

Used to identify both arborization partitions that are con-
nected by an overlap edge.

Overlap Volume The total overlap of both arborizations in voxels. Visible in
the tooltip; used to calculate the bidirectional overlap per-
centage with each arborization volume; used for filtering
overlap-edges according to the volumetric threshold.

Bidirectional Overlap Describes, how many percent of one arborization overlap
with the other one. The bigger of both overlaps is used to
calculate the gray scale value and transparency of the edge,
and for filtering overlap edges according to the threshold
percentage.

Neuropil Overlap Describes, how many percent of the total overlap volume
reside within the respective neuropil. Used to encode the
overlap edge thickness.

Table 7.2: The most important fields of the overlap query result.

82

CHAPTER 8
Evaluation and Results

This chapter covers the description of the evaluation process and its results. Section 8.1
introduces the applied method of evaluation, 8.2 presents the results of the discussions
of neuroMap’s features with our clients. Section 8.3 gives an evaluative comparison of
the visual features between Yu’s diagram and neuroMap. Section 8.4 points out how the
open challenges in biomedical network visualization that were mentioned in section 3.3
were handled in neuroMap. The chapter is concluded in section 8.5 with a summary of
the observed findings.

8.1 Evaluation Method
The evaluation of visualization is a major challenge at the moment, since traditional
evaluation metrics such as task completion time are insufficient to quantify the util-
ity of a visual analysis tool [55]. For the validation of neuroMap, the evaluation pro-
cess was adapted to the nested four layer model for visualization design and validation
that Munzner proposed [48]. A schematic of the four layers and their threats to va-
lidity is depicted in Figure 8.1. The four layers are domain problem characterization,
data/operation abstraction design, encoding/interaction technique design and algorithm
design. Each layer has its own threat to validity and two phases of evaluation: imme-
diate and downstream. Immediate evaluation, as the name suggests, should happen in
the design phase, before the implementation. Downstream evaluation can only be con-
ducted after implementation, with the functional product. For a scientific paper usually
only a subset of these layers is addressed. As the main focus of this thesis lies in neu-
roMap’s visual encoding and functionality in relation to the semantics of our clients’
data, the evaluation is based on the encoding/interaction technique design layer. The
threat for this layer would be that the chosen design is not effective at communicating

83

Figure 8.1: The four nested layers in visualization creation (a), and their threats with
immediate and downstream validation (b), as proposed by Munzner [48].

the desired abstraction. The immediate validation against this threat is a discussion and
justification of the selected visual design. Discussion and justification have been given
in chapter 5 (Visual Encoding). For the downstream evaluation that is done after the
implementation phase, qualitative discussions of result images and interaction features
with the neuroscientists were held.

To reassure that the development of neuroMap was always headed into the right
direction, regular evaluation meetings with our clients were arranged. These discus-
sions gave great insight into the scientists’ workflow and helped better understand their
mode of thought, which allowed the incremental improvement of neuroMap’s features
by adapting them to the scientists’ specific needs. These talks were especially necessary
since neuroscientists and computer scientists (or scientists of different fields in general)
have their own vocabulary and thus their own way of communicating domain specific
problems. The dialog between different groups can therefore be difficult and affected
by misunderstandings, especially in the beginning of such collaborations. For example,
the scientists were less interested in the sophistically laid out graphs that are produced
by the organic or orthogonal layouter, and more in the anatomical layout. The spatially
relevant positions of neuropil nodes are more helpful to them than node clustering or
minimized edge crossings. As a result of this, more time was spent on the improvement
of the anatomical layout. The initial version only separated the brain into four crude
regions; the current version features eighteen functional regions.

8.2 Discussion of Results
In addition to the regular evaluation meetings during the implementation phase, there
were two in-depth evaluative discussions at the end of neuroMap’s development cycle.
These discussions were held with each scientist individually, one time with four, the

84

other time with three members of our collaborating group. A questionnaire served as
checklist and guideline to structure the discussion. The participants, all male, consisted
of a post-doc researcher, two PhD students and a master student. For three of the four
participants the overlap of arborizations in the context of neuronal connectivity plays an
important role in their research; these three were already actively using neuroMap. For
the fourth one arborization overlaps will be of concern in future projects. He consid-
ered using neuroMap in later projects for comparing changes in overlap amount from
different genetic experimental conditions.

The first session included basic questions about the subject’s work in the context
of neuron connectivity, a walkthrough of neuroMap’s visual encoding and features, fol-
lowed by a discussion of the most important ones, and a comparison between neuroMap
and Yu’s diagram. In the second session the new features that were partially added from
the feedback of the first session were introduced and discussed.

View Modes
The discussion of the views with and without neuropils showed no direct preference
for one over the other. The prevailing opinion was that the neuropil-free graph in Sim-
ple View would be a good starting point for research since it shows overlaps directly
without splitting them up, and therefore also offers a simpler, less cluttered view. The
scaling of the node size according to volume makes the different arborizations easier
distinguishable and therefore helps orientation in the absence of spatial structuring.

The Standard View on the other side offers more detailed information about overlap
regions and a better structured view, and would therefore be more useful in scenarios
where the overlap in certain functional brain regions is of concern. When comparing
the standard against the detailed arborization node encoding, the detailed encoding was
considered an improvement since it eliminates misinterpretation of the node size in
Standard View. On the other side, for one of the participants the main interest lies in
the actual overlaps between arborizations, so for him the arborization node size is less
important in terms of exploring connectivity. He therefore favored the Standard View.
The second one preferred the detailed encoding since he preferred visual clarity over
simplicity. The third one could see himself using both, depending on the use case.
Summarized, it was agreed that it is good to have both options available.

Since some neuropils are split arbitrarily and have no functional meaning, one sci-
entist suggested the option to merge neuropils into single more meaningful group nodes.
The idea was also well received by the other participants and has been implemented for
the second evaluation session. The merging allows construction of combined neuropils
like in Yu’s graph which is useful since the full „neuropil resolution“ is not necessary
in each research scenario. Since neuroMap encodes more information and is therefore
visually more complex than Yu’s graph, the merging is also a measure for increasing
the visual simplicity, which according to one scientist is a necessary step when present-

85

ing findings to an audience that is not familiar with neuroMap’s graph design. For one
scientist who focuses more on total arborization overlap than overlaps per neuropil, the
merging feature also offers a great compromise between the Simple View and the view
with neuropils. The full resolution is more important in well researched neuropils where
the particular overlaps play a greater role.

Edge Encoding
When considering the visual encoding of overlap edges, the scientists found the grayscale
encoding of the overlap intuitive but found the additional encoding of the arborization-
arborization-neuropil overlap as line thickness confusing. When asked if they would
prefer the removal of the thickness encoding, they reckoned that the feature would be
useful for more experienced users. One suggested a legend directly on the canvas to in-
dicate the method of encoding for inexperienced users. Currently these details are only
available on neuroMap’s help page.

Figure 8.2: Color (a) and gray scale (b) encoding of projection edges on the example
of a large graph. The color encoding facilitates orientation within the network while the
grayscale encoding emphasizes big arborization-neuropil overlaps.

In the direct comparison of both types of projection edge encoding (grayscale and
cell body color), participants uniformly preferred the color encoding because it helps
orientation especially in large graphs. Since the line has the same color as the cell body,
it is easily traceable to its origin. So even when zoomed out, it is instantly recognizable,
to which neuropils a cell body connects. If all lines in the graph are drawn with different
shades of gray, tracing a single or a bundle of lines becomes difficult. The usage of the

86

cell body color also adds to the visual simplicity of the graph which seems to be the
direction the scientists prefer. Also the grayscaling of projection edges was seen as
redundant, since the conveyed information is already encoded in the arborization nodes.
A comparison between both encodings can be seen in Figure 8.2. The option to encode
the projection edge according to arborization color instead of cell body color was not
well received since the differently colored lines can no longer be visually linked to their
cell body. The use of the cell body color is therefore the most effective way to convey a
graph element’s affiliation to a neuron.

Layouts
The layout that was uniformly considered the most intuitive for graphs with neuropils,
was the anatomical layout, due to its localization of neuropils to partitions that resemble
the anatomy of the brain. Organic and circular layout were also considered useful since
they cluster highly interconnected elements. The orthogonal layout was seen as the
least useful since the position of elements does not have much relevance. Concerning
the hierarchical layout, it was mentioned that Yu’s initial drawing was more along the
lines of a hierarchical graph before he began to place certain elements at anatomically
related positions.

For the Simple View, the circular layout was deemed the most efficient at conveying
neuronal connectivity. It clusters highly connected graph elements, similarly to the
organic layout, but at the same time is visually more pleasing through the arrangement
of nodes in circles.

For the anatomical layout the scientists would have preferred anatomically correct
positioning of cell bodies as well. Nevertheless, the necessary information is not avail-
able in the database yet, and not even all neurons have a segmented cell body object.
One scientist suggested that the name of a neuron actually encodes the general position
of the cell body and could therefore be used for positioning. pmP for example stands for
posterial-medial-protocerebral. This new insight could be used for cell body placement
in future versions of neuroMap. In the meanwhile the positioning of the cell bodies in
the middle of the graph was considered as a good alternative, since they form a central
point from which the flow of projection edges originates.

Concerning the edge flow direction (or the orientation of the layout) in the anatom-
ical layout, one scientist stated that the top down layout seemed more familiar, another
did not mind the direction since the projection edges do not convey any exact anatomical
information. Additional naming of compartments for easier orientation was requested
during the first evaluation session and has since been added to some compartments.
For labeling the remaining compartments additional feedback from our clients will be
needed. In general, even though the anatomical layout was the preferred one, the neu-
roscientists desired a look that is even more similar to the template of the brain in terms
of partition placement and size. This would make the layout even more intuitive for un-

87

trained persons, which would be beneficial especially for presentation and publication
purposes.

Exploration
The highlighting of graph relations was generally well received because it facilitates
orientation and exploration, especially in larger graphs. The highlighting of neural con-
nectivity generated the most interest, but also different enhancement requests. One
request was the option to select two or more cell bodies for highlighting their connec-
tions, which would be faster than searching explicitly through overlap edges. Another
suggestion was to highlight all overlap edges that connect to a selected arborization in-
stead of only highlighting the associated arborization partitions. A third suggestion was
the indication of indirect connections between two neurons through a third neuron. Ap-
parently there is room for expanding the highlighting feature that can be considered in
future versions.

Extending the graph through loading additional elements using the context menu
in combination with the two overlap filters was considered useful for finding potential
connection candidates to neurons of interest. Although, one scientist admitted that neu-
roMap’s linked view in combination with the 3D view’s visual queries was his preferred
way of searching for overlapping objects. The loading of neuropils or of the complete
set of arborization of a cell body serves as a quick alternative to querying for these items
in the database view.

neuroMap’s selection state highlighting in BrainGazer’s linked views was adopted
seamlessly since the neuroscientists seemed to use the feature already efficiently during
the second evaluation session to orient themselves within the different views.

Filtering was seen as a necessary means for controlling the minimal threshold for
data that is added to a graph when generating a new structure or extending an existing
one, thus avoiding visual clutter by omitting unwanted low resolution detail. The in-
clusion of both absolute and relative thresholds was deemed necessary due to the large
fluctuations in arborization size. The absolute threshold is typically only used in special
scenarios, as it bears the risk of filtering out entire arborizations due to their small size.

Scalability
The typical use case in neuroMap involves only a handful of arborizations. Yu’s draw-
ing displayed all involved neurons of the paper’s study, which amounted to about 80
of them. Nevertheless, a scenario where a user would want to look at all neurons in
the database cannot be ruled out. To evaluate the scalability of neuroMap’s graphs, a
stress test with a graph containing all 213 arborization items that were available in the
database at the time of writing was therefore conducted. This resulted in a graph with

88

Figure 8.3: Two neuropils from a graph that contains over 200 arborizations: a) the
overlap edges in the neuropil node are still distinguishable, b) a cluttered neuropil - it is
hard to make out individual edges.

625 nodes and 3850 edges. The main concern in this scenario is that the circular lay-
out of arborization partitions within neuropil nodes is so cluttered that overlap edges
occlude each other to a degree that makes it hard to discern individual edges.

In our test case the overlaps were distributed over neuropils in a way that it was still
possible to make out and select all individual edges when zooming in (Figure 8.3 a)).
Only few neuropils overlap with so many arborizations simultaneously that edge occlu-
sion was a problem (Figure 8.3 b)). Nodes themselves (of arborizations, cell bodies, or
neuropils) are never occluded since they are drawn on top of edges.

The organic layout is the most suitable for this case since it uses the screen space
so efficiently that even when looking at the entire graph, it is displayed at a zoom level
where individual nodes and overlap edges are still discernible (Figure 8.4). The other
layouts use too much screenspace to make the fine details of the graph recognizable
when displaying this amount of data. This is especially the case for the orthogonal
layout due to its planarization of projection edges. Nevertheless, the highlighting feature
is a helpful tool for keeping track of individual relationships in these situations.

It can be concluded that neuroMap’s weak point concerning scalability is the in-
creased clutter within highly overlapped neuropil nodes. For the stress-test scenario of
213 arborizations the organic layout still performs well, i.e., the graph remains readable
and connectivity information is extractable. Nevertheless, it can safely be assumed that
with increasing size of the database’s content, overlap edge occlusion will pose a chal-

89

Figure 8.4: A graph containing 213 arborizations, laid out with the organic layouter.

lenge that demands additional visualization methods, like fisheye lenses for example.

8.3 Comparison with Yu’s Drawing
Compared to traditional 3D visualization, Yu’s diagram has been regarded as an im-
proved way of viewing the brain’s wiring because it offers more information at a glance
through its abstraction of the examined data. In a talk with the scientists it was explained
that this form of representation is well suited for displaying bigger groups of neurons
that are not very well researched yet. The abstraction therefore provides an overview
that facilitates the formation of hypotheses about connections between the examined
neurons.

90

Since Yu’s diagram is laid out manually, it cannot be directly compared to the avail-
able layout algorithms in terms of graph drawing metrics, like efficient node placement
or edge routing, but rather in terms of the conveyed information and intuitiveness of
the resulting image. Yu’s drawing is a mixed approach of anatomically motivated spa-
tial constraints and arbitrary node/edge placement. The five neuropils of the VNC are
placed at the bottom of the graph, layered in anatomically correct order. The placement
of neuropils in the brain partitions favors convenient node placement over anatomical
correctness. In neuroMap’s anatomical layout the positions of neuropils are based on
their actual anatomical positions which enables a more intuitive understanding of the
image than in Yu’s graph.

Cell bodies in Yu’s graph are placed where convenient, i.e., have no relation to their
actual positions. If the cell body placement in neuroMap would be set according to the
name encoding like proposed in the previous section, the generated image would be
even more meaningful in comparison.

The opposite is true for projection edges. In neuroMap the edges are placed and
routed exclusively by the respective layout algorithm. In Yu’s graph the projections
are more accurate in terms of wiring, as the number of outgoing edges on a cell body
node complies with the actual number of individual projections that originate from an
anatomical cell body. The number of branchings on an edge complies with the actual
number of branchings on the anatomical projection. An anatomical projection can for
example go from cell body to an arborization and from the arborization again to another
arborization. This way the projection edges in Yu’s graph do not only visually connect
a cell body to its attached arborizations, but also help connection prediction and support
a more meaningful presentation of the wiring diagram. To automatically generate this
sort of wiring in neuroMap, the necessary information is not available in the database
at the time of writing. The actual position of projection edges in Yu’s graph, does not
convey any information though. The already mentioned absence of synaptic terminal
representation in neuroMap is due to the absence of the necessary information in the
database as well. To adapt at least the visual style of projection edges in Yu’s graph,
neuroMap bundles all outgoing edges of a cell body in the hierarchical and anatomical
layouts until their first bend. Just one line leaves the node in each direction and splits
up where it connects to a neuropil.

neuroMap’s hierarchical layout is visually the most similar to Yu’s graph because
it places the cell bodies at the left side of the canvas vertically aligned, and projection
edges flow from left to right. In the orthogonal layout, even though edges are rooted
orthogonally, there is no main flow direction. The anatomical layout shares the abstract
imitation of anatomical structure with Yu’s graph. In the first evaluation session, an
observed advantage of Yu’s diagram over neuroMap was a better indication of sensory
input through highlighting sensory afferent neurons and putting them on the left side
of the diagram. The special node positioning has since been included into neuroMap’s

91

Figure 8.5: A set of neurons innervating the VNC as pictured in Yu’s publication [78]
(a), and a similar constellation of neurons generated with neuroMap (b).

anatomical layout. Figure 8.5 shows a side by side comparison between Yu’s graph and
neuroMap.

The biggest advantages of neuroMap over Yu’s diagram that were brought up through
the discussion are the inclusion of overlap information and therefore the indication of
the probability of connections, as well as the automatic generation of the graph. In
general, neuroMap offers more precision through arborization nodes and overlap edges,
while Yu’s graph leaves much information unresolved but is also simpler and possibly
clearer for the same reason. Through the node merging feature, the graphs in neuroMap
now can be adjusted to a desired simplicity level in terms of arborization partitions.
Additionally, closing neuropil nodes hides arborization nodes and overlap edges which
brings neuroMap visually and in terms of simplicity very close to Yu’s graph, while
still offering the possibility to show more detailed information where required. Fil-
ter options like the possibility to limit arborization partitions according to a specified
threshold offer additional fine tuning of the displayed information.

In conclusion, the strengths of Yu’s graph lie in the clarity of its overview due to its
simplicity. neuroMap can match Yu’s graph in terms of simplicity while delivering more

92

precision in multiple stages of abstraction that allow the tuning of the visualization to a
desired level of detail. The areas where neuroMap cannot deliver the same information
as Yu’s drawing (synapse information and anatomically inspired projection edges) stem
from the absence of the necessary information in the database.

8.4 Tackling the Challenges
Since network visualization in bioinformatics is a relatively new area, and bioinformat-
ics itself a broad field, there are domain specific challenges that need special consider-
ation when designing a visualization. The four open challenges in biomedical network
visualization that were described in section 3.3 have been approached in the following
ways in neuroMap:

The challenge of incorporating spatial constraints to represent biological structures
has been handled in the anatomical layout by assigning neuropils and cell bodies to
predetermined positions as described above. This way the graph complies with the
mental image that the scientists have of the brain and therefore eases orientation.

The visualization of multiple attributes has been handled mainly in the visual en-
coding of nodes and edges but also information that is not encoded within the graph
is accessible simultaneously through the selection state linking of BrainGazer’s views.
The linking makes it for example possible, to simultaneously view abstract and anatom-
ically exact representations of the same items. The different visual encoding modes with
their abstraction levels allow the addition or removal of visual attributes.

The challenge of visualizing flows and paths in biomedical network visualization
lies in the handling of uncertainties and the accentuation of relevant structures within
a network. Uncertainty, the probability of a connection, is handled in the grayscale,
transparency and thickness encoding of overlap and projection edges. Relevant struc-
tures (e.g., more probable connections) are also accentuated through this encoding and
can be further emphasized with the highlighting feature that takes the graph’s intrinsic
dependencies into consideration, as well.

For handling the challenge of exploring hierarchical networks, Albrecht et al. sug-
gest a biologically meaningful visualization of the subsets of a network and their in-
terrelations. Further they suggest to preserve the drawing conventions and the mental
map of a graph as well as predefined or relative positions of graph elements after user
interaction. neuroMap possesses a natural hierarchy through neuropil nodes and their
content. Through considering the characteristics of the data, a biologically meaningful
visualization of these substructures is achieved. The anatomical layout preserves the
positions of graph elements by confining them to their assigned brain compartments.
Therefore adding, removing, and merging elements does not affect the relative posi-
tions of the compartments, only their size. Neuropil merging and state change allow
interactive simplification of the hierarchic structure. The LoD zooming enables the ex-

93

ploration of the hierarchic network at different zoom levels by adapting the detail for
each type of graph element in the hierarchy without changing the layout or structure of
the graph.

These solutions are of course tailored to the data that neuroMap operates on, and to
the message that the generated images should convey, as there is no all-in-one solution
for the presented challenges.

8.5 Performance
For the evaluation of neuroMap’s performance a PC with an Intel Core2 Quad Q6600
processor at 2.4 GHz per core and 4 gigabytes of RAM running Windows 7 64 bit was
used. The web application and the Java server were hosted on the same machine. The
database was hosted on a PC with an Intel Pentium 4 processor at 3 GHz and 2 gigabytes
of RAM running Ubuntu 11.04. Results may therefore vary not only with the configura-
tion of the user’s machine but also with the server, server load and internet connection.
The graph in Figure 8.6 shows the performance of neuroMap with graphs of differ-
ent sizes. A sample loading of overlapping arborizations by context menu (querying
for, generating, and laying out of additional elements) took approximately 2 seconds
and added 44 nodes and 281 edges to the graph and 17 arborizations to the workspace.
The only actions that scale badly are graph generation and orthogonal layout. The ap-
plication stays responsive for interactions like zooming and panning, highlighting, or
neuropil node closing, even in large graphs.

8.6 Summary
The evaluation sessions with our clients helped clarify, which features and encodings
in neuroMap are the most effective at communicating the intended abstraction, and
how future versions could be even more improved. The discussions also indicated that
the stated goal of providing means for easier hypothesis formation was met, as at the
time of writing neuroMap has already been adapted by our clients, i.e., to make biased
screenings. Biased screening means that certain candidates are dismissed from further
observations because of their absence of overlap with the inspected neuron. Especially
through neuropil merging and detailed encoding the scientists hope to tailor their graphs
to a representation that lets them explore their interests by applying complexity where
necessary and simplicity where possible.

Further, neuroMap was used for presentation purposes in meetings and will probably
be used in publications in the near future. One scientist considered to use a graph in
anatomical layout as a poster Figure, if the layout would be even more anatomically
correct. Before, anatomical renderings of overlaps in combination with the respective

94

Figure 8.6: Performance times for a small graph of 7 arborizations, 27 nodes and 22
edges; a medium graph of 50 arborizations, 167 nodes and 251 edges; a large graph of
93 arborizations, 321 nodes and 803 edges; and a graph of all 213 arborizations in the
database with 625 nodes and 3850 edges.

stained images were used to present findings. This takes a lot of time and work to
produce but is possibly still more suitable in scenarios where just a handful of well
known neurons are presented or discussed. In this case, a pairwise anatomical rendering
would be used for example. neuroMap is especially suited for presenting findings in a
circuit with lots of not so well known neurons, like in Yu’s graph.

Concerning the recreation of Yu’s visual style, the first approaches were naive, but
improved with the progressive feedback of the scientists as far as the available informa-
tion in the database allowed, until it offered the same visual simplicity but also extended
detail were it was desired. Generally each meeting with our clients (not just the two
evaluation sessions) brought new and interesting ideas in regard to the respective devel-
opment stages of neuroMap. The high interest and enthusiasm towards neuroMap show
that there is potential in its deployment that surely will be expanded through additional
feedback once it is introduced to the whole group of concerned scientists.

95

CHAPTER 9
Conclusion and Future Work

9.1 Conclusion
In this thesis neuroMap was presented, a new approach for visualizing potential neu-
ronal connections in the fruit fly’s brain as an interactive circuit-style wiring-diagram
that was integrated into BrainGazer as an additional view. neuroMap’s creation was
motivated by Yu’s manually constructed wiring diagram [78]. The desirable aspects of
this drawing are its two dimensional abstraction of complex volumetric data that enables
a clear overview and highlights features that would be lost in a three dimensional rep-
resentation. neuroMap’s aim is to support hypothesis formation, data exploration, and
rapid creation of graphs for presentation purposes by replicating the visual style and en-
coded information of Yu’s drawing in an automatically generated graph. neuroMap was
developed in collaboration with a group of neuroscientists and tailored to their specific
needs in an iterative refinement process.

The fly brain is partitioned into different regions (neuropils). Each arborization of a
neuron lies in one or more of these regions and overlaps with other arborizations where
potential connections occur. A graph generated with neuroMap depicts the arboriza-
tions of neurons as child nodes within neuropil super nodes. By encoding the overlaps
between arborizations as edges of varying grayscale value and size, all potential connec-
tions of the analyzed data are visualized in a clearly structured overview. Different lev-
els of abstraction offer the user an adjustable compromise between simplicity and detail
that allows the user to show more precise information where necessary. The decisions
that went into neuroMap’s visual and interaction design were discussed and justified. It
was explained, how the open challenges in biomedical network visualization, relevant
to the type and presentation of data in neuroMap, were solved. In qualitative discus-
sions with our clients the implemented visual and interaction features were evaluated.
The neuroscientists affirmed that the inclusion of neuroMap into BrainGazer facilitates

97

their research. It can therefore be concluded that neuroMap successfully fulfilled the
stated design goal of automatically generating a circuit diagram that replicates the fea-
tures of Yu’s graph while further expanding them. This resulted in a visualization that
eases connectivity hypothesis formation, and provides the generation of drawings for
the presentation of said hypotheses and scientific findings.

9.2 Future Work
The discussion with our clients showed which areas of neuroMap need improvement
in order to further increase its potential. Mainly the design of the anatomical layout
should be adapted to look even more like the brain template. Also the placement of
cell bodies according to their encoded position would result in a more recognizable and
therefore intuitive look. The highlighting options for graph structures could be extended
to emphasize also indirect connections between multiple selected neurons.

Additionally to the conclusions from our clients’ feedback, there are many ideas for
features that might broaden the usability of neuroMap or convey more useful informa-
tion. It is intended to add graph analysis algorithms that give the user information about
similarities and differences between two networks. Direct data exploration through neu-
roMap could be facilitated by allowing the user to directly show or hide graph objects
in the 3D view, or load item info pages from within the context menu. Tooltip informa-
tion could be improved by color coding text according to the item color and by adding
preview renderings of the specific objects to the tooltip info-boxes. Also, as soon as
the data is available, synaptic information and information about confirmed connections
will be included in neuroMap.

98

Bibliography

[1] A.T. Adai, S.V. Date, S. Wieland, and E.M. Marcotte. LGL: Creating a Map of
Protein Function with an Algorithm for Visualizing Very Large Biological Net-
works. Journal of Molecular Biology, 340(1):179–190, 2004.

[2] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic Queries for Infor-
mation Exploration: An Implementation and Evaluation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’92, pages
619–626, New York, NY, USA, 1992. ACM.

[3] M. Albrecht, A. Kerren, K. Klein, O. Kohlbacher, P. Mutzel, W. Paul, F. Schreiber,
and M. Wybrow. On Open Problems in Biological Network Visualization. In
Graph Drawing, volume 5849 of Lecture Notes in Computer Science, pages 256–
267. Springer Berlin / Heidelberg, 2010.

[4] J.D. Armstrong, K. Kaiser, A. Müller, K.F. Fischbach, N. Merchant, and N.J.
Strausfeld. Flybrain, an On-Line Atlas and Database of the Drosophila Nervous
System. Neuron, 15(1):17–20, 1995.

[5] D. Auber, D. Archambault, R. Bourqui, A. Lambert, M. Mathiaut, P. Mary, M. De-
lest, J. Dubois, and G. Mélançon. The Tulip 3 Framework: A Scalable Software
Library for Information Visualization Applications Based on Relational Data. Re-
search Report RR-7860, INRIA, January 2012.

[6] C.A.H Baker, M.S.T Carpendale, P. Prusinkiewicz, and M.G. Surette. GeneVis:
Visualization Tools for Genetic Regulatory Network Dynamics. In Proceedings of
the Conference on Visualization ’02, VIS ’02, pages 243–250, Washington, DC,
USA, 2002. IEEE Computer Society.

[7] A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing Multiple
Experimental Conditions on a Graph with Biological Context. IEEE Transactions
on Visualization and Computer Graphics, 14:1253–1260, 2008.

[8] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of
Wisconsin Press, 1983.

99

[9] G. Bezgin, A. Reid, D. Schubert, and R. Kötter. Matching Spatial with Ontological
Brain Regions using Java Tools for Visualization, Database Access, and Integrated
Data Analysis. Neuroinformatics, 7:7–22, 2009. 10.1007/s12021-008-9039-5.

[10] N. Bhatla. An Interactive Visualization of the C. Elegans Neural Network . http:
//wormweb.org/neuralnet#c=BAG&m=1, June 2009. Accessed: 07/2012.

[11] J. E. Blankenship and B. Houck. Nervous System (Invertebrate). McGraw-Hill’s
AccessScience, 2012.

[12] V. Braitenberg and A. Schüz. Cortex: Statistics and Geometry of Neuronal Con-
nectivity, volume 249. Springer Berlin, 1998.

[13] A.H. Brand and N. Perrimon. Targeted Gene Expression as a Means of Altering
Cell Fates and Generating Dominant Phenotypes. Development, 118(2):401–415,
1993.

[14] E. Bullmore and O. Sporns. Complex Brain Networks: Graph Theoretical Analysis
of Structural and Functional Systems. Nature Reviews Neuroscience, 10(3):186–
198, February 2009.

[15] G. Burns, W.C. Cheng, R. Thompson, and L. Swanson. The NeuARt II System:
A Viewing Tool for Neuroanatomical Data Based on Published Neuroanatomical
Atlases. BMC Bioinformatics, 7:1–19, 2006. 10.1186/1471-2105-7-531.

[16] A.S. Chiang, C.Y. Lin, C.C. Chuang, H.M. Chang, C.H. Hsieh, C.W. Yeh, C.T.
Shih, J.J. Wu, G.T. Wang, and Y.C. Chen. Three-Dimensional Reconstruction of
Brain-Wide Wiring Networks in Drosophila at Single-Cell Resolution. Current
Biology, 21(1):1–11, 2011.

[17] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and M. Schulz. The
Open Graph Drawing Framework. In 15th International Symposium on Graph
Drawing 2007, pages 23–26, 2007.

[18] W.S. Cleveland. The Elements of Graphing Data. Wadsworth Publ. Co., Belmont,
CA, USA, 1985.

[19] C. Collins and S. Carpendale. VisLink: Revealing Relationships Amongst
Visualizations. IEEE Transactions on Visualization and Computer Graphics,
13(6):1192–1199, nov.-dec. 2007.

[20] S. Cook, C. Brittin, D. Hall, and S. Emmons. The Worm Wiring Project . http:
//www.wormwiring.org/, June 2012. Accessed: 07/2012.

100

http://wormweb.org/neuralnet#c=BAG&m=1
http://wormweb.org/neuralnet#c=BAG&m=1
http://www.wormwiring.org/
http://www.wormwiring.org/

[21] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay, and
M. Ozturk. Patika: An Integrated Visual Environment for Collaborative Construc-
tion and Analysis of Cellular Pathways. Bioinformatics, 18(7):996–1003, 2002.

[22] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1st edition, 1998.

[23] B.J. Dickson. Wired for Sex: The Neurobiology of Drosophila Mating Decisions.
Science, 322(5903):904–909, 2008.

[24] P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium, 42:149–160,
1984.

[25] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz— Open
Source Graph Drawing Tools. In Graph Drawing, volume 2265 of Lecture Notes
in Computer Science, pages 483–484. Springer Berlin Heidelberg, 2002.

[26] A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm for
Undirected Graphs (Extended Abstract and System Demonstration). In Graph
Drawing, volume 894 of Lecture Notes in Computer Science, pages 388–403.
Springer Berlin / Heidelberg, 1995.

[27] T.M.J. Fruchterman and E.M. Reingold. Graph Drawing by Force-Directed Place-
ment. Software: Practice and Experience, 21(11):1129–1164, 1991.

[28] D.C.Y. Fung, S.H. Hong, D. Koschutzki, F. Schreiber, and F. Xu. Visual Analy-
sis of Overlapping Biological Networks. In Information Visualisation, 2009 13th
International Conference, pages 337–342, july 2009.

[29] N. Gehlenborg, S.I. O’Donoghue, N.S. Baliga, A. Goesmann, M.A. Hibbs, H. Ki-
tano, O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenenbaum, and A.C. Gavin.
Visualization of Omics Data for Systems Biology. Nature methods, 7(3 Suppl):56–
68, March 2010.

[30] A. Godiyal, J. Hoberock, M. Garland, and J. Hart. Rapid Multipole Graph Drawing
on the GPU. In Graph Drawing, volume 5417 of Lecture Notes in Computer
Science, pages 90–101. Springer Berlin / Heidelberg, 2009.

[31] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. A Dia-
gramming Software for UML Class Diagrams. Graph Drawing Software, pages
257–278, 2004.

[32] D. Hall, Z. Altun, and L. Herndon. Worm Image. http://www.wormimage.
org/, 2002-2012. Accessed: 07/2012.

101

http://www.wormimage.org/
http://www.wormimage.org/

[33] N. Henry, J.D. Fekete, and M.J. McGuffin. NodeTrix: A Hybrid Visualization of
Social Networks. IEEE Transactions on Visualization and Computer Graphics,
13(6):1302–1309, nov.-dec. 2007.

[34] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics,
12(5):741–748, sept.-oct. 2006.

[35] Z. Hu, J.H. Hung, Y. Wang, Y.C. Chang, C.L. Huang, M. Huyck, and C. DeLisi.
VisANT 3.5: Multi-Scale Network Visualization, Analysis and Inference Based
on the Gene Ontology. Nucleic Acids Research, 37(suppl 2):W115–W121, 2009.

[36] A. Irimia, M.C. Chambers, C.M. Torgerson, and J.D. Van Horn. Circular Repre-
sentation of Human Cortical Networks for Subject and Population-Level Connec-
tomic Visualization. NeuroImage, 60(2):1340–1351, 2012.

[37] R. Jianu, C. Demiralp, and D.H. Laidlaw. Exploring Brain Connectivity with Two-
Dimensional Neural Maps. IEEE Transactions on Visualization and Computer
Graphics, 18:978–987, 2012.

[38] M. Kaiser. A Tutorial in Connectome Analysis: Topological and Spatial Features
of Brain Networks. NeuroImage, 57(3):892–907, 2011. Special Issue: Educational
Neuroscience.

[39] K. Kojima, M. Nagasaki, and S. Miyano. An Efficient Biological Pathway Layout
Algorithm Combining Grid-Layout and Spring Embedder for Complicated Cellu-
lar Location Information. BMC Bioinformatics, 11:1–15, 2010. 10.1186/1471-
2105-11-335.

[40] L. Krempel. Network Visualization. In Handbook of Social Network Analysis,
chapter 37. Sage Publishing, 2009. Scott, J.and Carrington, P.J. (Eds.).

[41] M. Krzywinski, J. Schein, İ. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J.
Jones, and M.A. Marra. Circos: An Information Aesthetic for Comparative Ge-
nomics. Genome Research, 19(9):1639–1645, 2009.

[42] K. Li, L. Guo, C. Faraco, H. Zhu, D. andChen, Y. Yuan, J. Lv, F. Deng, X. Jiang,
T. Zhang, X. Hu, D. Zhang, and T. Miller, L.S.and Liu. Visual Analytics of Brain
Networks. NeuroImage, 61(1):82–97, 2012.

[43] C.Y. Lin, K.L. Tsai, S.C. Wang, C.H. Hsieh, H.M. Chang, and A.S. Chiang. The
Neuron Navigator: Exploring the Information Pathway Through the Neural Maze.
Visualization Symposium, IEEE Pacific, 0:35–42, 2011.

102

[44] T.F.C. Mackay and R.R.H. Anholt. Of Flies and Man: Drosophila as a Model for
Human Complex Traits. Annu. Rev. Genomics Hum. Genet., 7:339–367, 2006.

[45] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network Motifs: Simple Building Blocks of Complex Networks. Science,
298(5594):824–827, 2002.

[46] N. Milyaev, D. Osumi-Sutherland, S. Reeve, N. Burton, R.A. Baldock, and J.D.
Armstrong. The Virtual Fly Brain Browser and Query Interface. Bioinformatics,
28(3):411–415, 2012.

[47] B. Mlecnik, M. Scheideler, H. Hackl, J. Hartler, F. Sanchez-Cabo, and Z. Tra-
janoski. PathwayExplorer: Web Service for Visualizing High-Throughput Expres-
sion Data on Biological Pathways. Nucleic Acids Research, 33(suppl 2):W633–
W637, 2005.

[48] T. Munzner. A Nested Model for Visualization Design and Validation. IEEE
Transactions on Visualization and Computer Graphics, 15(6):921–928, nov.-dec.
2009.

[49] H. Neuweger, M. Persicke, S.P. Albaum, T. Bekel, M. Dondrup, A.T. Hüser,
J. Winnebald, J. Schneider, J. Kalinowski, and A. Goesmann. Visualizing Post
Genomics Data-Sets on Customized Pathway Maps by ProMeTra - Aeration-
Dependent Gene Expression and Metabolism of Corynebacterium Glutamicum as
an Example. BMC Systems Biology, 3(1):82–96, 2009.

[50] S. Oeltze, W. Freiler, R. Hillert, H. Doleisch, B. Preim, and W. Schubert. Inter-
active, Graph-Based Visual Analysis of High-Dimensional, Multi-Parameter Flu-
orescence Microscopy Data in Toponomics. IEEE Transactions on Visualization
and Computer Graphics, 17(12):1882–1891, dec. 2011.

[51] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. KEGG:
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27(1):29–
34, 1999.

[52] S.R. Olsen and R.I. Wilson. Cracking Neural Circuits in a Tiny Brain: New Ap-
proaches for Understanding the Neural Circuitry of Drosophila. Trends in neuro-
sciences, 31(10):512–520, 2008.

[53] G. Pavlopoulos, S. O’Donoghue, V. Satagopam, T. Soldatos, E. Pafilis, and
R. Schneider. Arena3D: Visualization of Biological Networks in 3D. BMC Sys-
tems Biology, 2:1–7, 2008. 10.1186/1752-0509-2-104.

[54] G. Pavlopoulos, A.L. Wegener, and R. Schneider. A Survey of Visualization Tools
for Biological Network Analysis. BioData Mining, 1(1):1–12, 2008.

103

[55] C. Plaisant, G. Grinstein, and J. Scholtz. Visual-Analytics Evaluation. IEEE Com-
puter Graphics and Applications, pages 16–17, 2009.

[56] M. Pohl, M. Schmitt, and S. Diehl. Comparing Readability of Graph Layouts Us-
ing Eyetracking and Task-Oriented Analysis. In Proceedings of Computer Graph-
ics International, volume 7, Victoria, British Columbia, Canada, 2009.

[57] W.A. Press, B.A. Olshausen, and D.C. Van Essen. A Graphical Anatomical
Database of Neural Connectivity. Philosophical Transactions of the Royal Society
of London. Series B: Biological Sciences, 356(1412):1147–1157, 2001.

[58] H. Purchase. Which Aesthetic Has the Greatest Effect on Human Understanding?
In Graph Drawing, volume 1353 of Lecture Notes in Computer Science, pages
248–261. Springer Berlin / Heidelberg, 1997.

[59] D. Reinhard. Graph Theory. Springer Verlag, 2005.

[60] T. Rohlfing and C.R. Maurer Jr. Nonrigid Image Registration in Shared-Memory
Multiprocessor Environments with Application to Brains, Breasts, and Bees. IEEE
Transactions on Information Technology in Biomedicine, 7(1):16–25, 2003.

[61] M. Rubinov and O. Sporns. Complex Network Measures of Brain Connectivity:
Uses and Interpretations. NeuroImage, 52(3):1059–1069, 2010. Computational
Models of the Brain.

[62] H.S. Seung. Neuroscience: Towards Functional Connectomics. Nature,
471(7337):170–172, 2011.

[63] G.M.G. Shepherd, A. Stepanyants, I. Bureau, D. Chklovskii, and K. Svoboda.
Geometric and Functional Organization of Cortical Circuits. Nature neuroscience,
8(6):782–790, 2005.

[64] T. Shimada, K. Kato, A. Kamikouchi, and K. Ito. Analysis of the Distribution
of the Brain Cells of the Fruit Fly by an Automatic Cell Counting Algorithm.
Physica A: Statistical Mechanics and its Applications, Statphys-Taiwan-2004: Bi-
ologically Motivated Statistical Physics and Related Problems, 7th Taiwan Inter-
national Symposium on Statistical Physics, 350(1):144–149, 2005.

[65] B. Shneiderman. Tree Visualization with Tree-Maps: 2-D Space-Filling Ap-
proach. ACM Trans. Graph., 11(1):92–99, January 1992.

[66] M.E. Smoot, K. Ono, J. Ruscheinski, P.L. Wang, and T. Ideker. Cytoscape 2.8:
New Features for Data Integration and Network Visualization. Bioinformatics,
27(3):431–432, 2011.

104

[67] D. Stalling, M. Westerhoff, and H.C. Hege. Amira: A Highly Interactive Sys-
tem for Visual Data Analysis. In The Visualization Handbook, pages 749–767.
Elsevier, 2005.

[68] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of Hier-
archical System Structures. IEEE Transactions on Systems, Man and Cybernetics,
11(2):109–125, feb. 1981.

[69] KiCad EDA Software Suite. http://www.kicad-pcb.org/display/
KICAD/About+KiCad, December 2012. Accessed: 10/2012.

[70] Cadence Design Systems. http://www.cadence.com/us/Pages/
default.aspx, December 2012. Accessed: 10/2012.

[71] T. Tekusova and T. Schreck. Visualizing Time-Dependent Data in Multivariate
Hierarchic Plots - Design and Evaluation of an Economic Application. In Infor-
mation Visualisation, 2008. IV ’08. 12th International Conference, pages 143–150,
july 2008.

[72] C. Tominski, J. Abello, F. van Ham, and H. Schumann. Fisheye Tree Views and
Lenses for Graph Visualization. In Information Visualization, 2006. IV 2006. Tenth
International Conference on, pages 17–24, july 2006.

[73] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. McQuilton, S. Marygold,
G. Millburn, D. Osumi-Sutherland, A. Schroeder, R. Seal, H. Zhang, and The Fly-
Base Consortium. FlyBase: Enhancing Drosophila Gene Ontology Annotations.
Nucleic Acids Research, 37(suppl 1):D555–D559, 2009.

[74] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. van Wijk, J.D.
Fekete, and D.W. Fellner. Visual Analysis of Large Graphs: State-of-the-Art and
Future Research Challenges. Computer Graphics Forum, 30(6):1719–1749, 2011.

[75] M. Ward, G. Grinstein, and D. Keim. Interactive Data Visualization: Foundations,
Techniques, and Applications. A. K. Peters, Ltd., Natick, MA, USA, 2010.

[76] I.R. Wickersham and E.H. Feinberg. New Technologies for Imaging Synaptic
Partners. Current Opinion in Neurobiology, 22:121–127, 2012.

[77] R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles - Visualization and Automatic
Layout of Graphs. In Graph Drawing Software, Mathematics and Visualization,
pages 173–191. Springer Berlin Heidelberg, 2004.

[78] J.Y. Yu, M.I. Kanai, E. Demir, G.S.X.E. Jefferis, and B.J. Dickson. Cellular Orga-
nization of the Neural Circuit that Drives Drosophila Courtship Behavior. Current
Biology, 20(18):1602–1614, 2010.

105

http://www.kicad-pcb.org/display/KICAD/About+KiCad
http://www.kicad-pcb.org/display/KICAD/About+KiCad
http://www.cadence.com/us/Pages/default.aspx
http://www.cadence.com/us/Pages/default.aspx

[79] R. Yuste. Circuit Neuroscience: The Road Ahead. Frontiers in Neuroscience,
2(1):6–9, 2008.

[80] S. Zhao, M.J. McGuffin, and M.H. Chignell. Elastic Hierarchies: Combining
Treemaps and Node-Link Diagrams. In Proceedings of the 2005 IEEE Symposium
on Information Visualization, INFOVIS ’05, pages 57–64, Washington, DC, USA,
2005. IEEE Computer Society.

106

	Introduction
	Problem Statement
	Requirements
	Thesis Overview

	Background
	Circuit Neuroscience
	Drosophila Melanogaster
	The Drosophila Nervous System
	Data Acquisition
	Existing Infrastructure

	Related Work
	Visualization of Neural Networks
	Biomedical Network Visualization
	Open Challenges in Biomedical Network Visualization
	Parallels to Circuit Design
	Conclusion

	Methods
	Graph Drawing
	Abstraction and Visual Encoding

	Visual Encoding
	Yu's Drawing
	Abstraction to Graph Elements
	Visual Encoding
	Layouts

	Interaction
	Interface Overview
	Graph Creation
	Graph Manipulation
	Exploration

	Implementation
	System Overview
	yFiles AJAX
	Database

	Evaluation and Results
	Evaluation Method
	Discussion of Results
	Comparison with Yu's Drawing
	Tackling the Challenges
	Performance
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

