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Shape primitives are a valuable input for reconstructing 3D models from point clouds. In this paper we

present a method for clipping simple shape primitives at reasonable boundaries. The shape primitives,

e.g. planes or cylinders, are 2D manifolds which are automatically detected in unstructured point

clouds. Shape boundaries are necessary for generating valid 3D models from multiple shape primitives,

because shape primitives possibly have dimensions of infinite extent or they are only partially present

in the scene. Hints for reasonable boundaries of shape primitives are indicated by different input

sources and constraints. Point clouds and range images provide information where shape primitives

coincide with measured surface points. Edge detectors offer cues for surface boundaries in color images.

The set of shape primitives is analyzed for constraints such as intersections. Due to an iterative

approach, intermediate results provide additional constraints such as coplanar boundary points over

multiple shape primitives. We present a framework for extracting and optimizing shape boundaries

based on the given input data and multiple constraints. Further, we provide a simple user interface for

manually adding constraints in order to improve the results. Our approach generates structurally

simple 3D models from shape primitives and point clouds. It is useful for reconstructing scenes

containing man-made objects, such as buildings, interior scenes, or engineering objects. The application

of multiple constraints enables the reconstruction of proper 3D models despite noisy or incomplete

point clouds.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in scanning technologies allow the acquisition
of point clouds from a large variety of scenes. Laser scanners are
able to capture point clouds of real-world scenes, ranging from
small objects to whole cities. Photogrammetric tools generate
dense point clouds from a set of images [1], which works well
for outdoor scenes. For interior scenes, Microsoft Kinect provides
a cheap and simple possibility to generate point clouds [2].
Although capturing methods have different advantages and draw-
backs, the generated point clouds usually share the same problems
of noisy and missing data, e.g. due to a limited area of capturing
viewpoints.

These artifacts make it very difficult to apply direct surface
reconstruction methods [3,4], where the point cloud is approxi-
mated by a large number of triangles. It has been shown that
shape priors are a valuable input for surface reconstruction [5,6].
Some scenes, such as engineering objects or interior rooms, can be
represented to a large extent with only a few shape primitives.
Reconstructing a point cloud with a set of primitive shapes
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provides advantages for many purposes. The resulting 3D model
has a low number of vertices, it is well-defined and can be easily
edited. The shapes provide further knowledge about the scene
which can be used for automatically analyzing and editing the
structure of a scene. For example, it is easier to separate an
interior scene into walls and furniture based on primitive shapes
than in a large set of triangles.

Many shapes, e.g. planes or cylinders, have an infinite extent in
one or two dimensions. Also, surfaces do not always occupy the
full extent along finite dimensions. Thus, generating a valid 3D
model requires an additional step where the boundaries of the
shapes are extracted. Most algorithms so far deal only with the
detection of shapes, and create the final 3D model by intersecting
nearby shapes [7], or combining all shapes to a closed model [8].
These approaches may fail if a scene is only partially recon-
structed, contains large holes, or some shapes have been wrongly
detected due to noise. In case of thin objects, such as table tops or
doors, it is usually not possible to robustly estimate the thin sides
just from a noisy point cloud. Especially in interior scenes, point
clouds can only be captured from a limited space of viewpoints.
Hence, only the front faces of an object are well defined by the
point cloud.

In this paper we present a new algorithm for finding reason-
able boundaries of shape primitives. We provide a generic
optimization framework which works for a wide range of input
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sources. The system allows to automatically create well-defined
models from a set of shapes by incorporating high-level informa-
tion. Additionally, the optimization framework is also open for
user input in order to interactively edit the reconstructed model.

1.1. Input data

Our reconstruction system requires a point cloud as input, which
can be obtained by different techniques such as laser scanners,
range cameras or photogrammetry. Optionally, information from
depth maps or color images can be included, provided that they are
registered to the point cloud.

In our initialization step, shape primitives are fit to the point
cloud with a RANSAC approach [5]. If the point cloud is repre-
sented by multiple range images, we use a graph-based initializa-
tion to handle the large amount of redundant data [9]. Optionally,
the shapes are optimized with GlobFit [7] in order to have parallel
directions as well as equal distances and angles.

The optimization framework uses a set of shape primitives
together with the segmentation of the point cloud. It is necessary
that the shape primitives are parameterized in a two-dimensional
map. In our implementation we use planes, cylinders and cones,
but the optimization framework and most of the proposed
constraints can also be extended to other shapes, like spheres
and tori (Fig. 1).

1.2. Related work

Many reconstruction algorithms assume that models can be
completely reconstructed and shape boundaries are implicitly
generated by creating closed meshes [8]. In this case, shape boun-
daries originate from intersections between neighboring shapes.
This is the preferred approach for fully reconstructed data,
but shapes may be wrongly connected in case of too much
missing data.

A simple approach for finding boundaries for a single shape is
to rasterize a point cloud in the 2D domain of a shape [5]. If color
images are available, the uniform raster grid can be replaced by a
grid formed from strong images lines [10]. While this extension
can fill holes from missing data, it is mainly useful for buildings or
other objects containing rectilinear structures.

Alpha shapes [11] are an extension of the convex hull for
generating concave shapes. A global parameter defines the gran-
ularity of cavities. The l1-sparse reconstruction method [12]
creates piecewise smooth boundaries that preserve sharp fea-
tures. Given a set of oriented points, the algorithm starts with
aligning nearby point orientations, which are then used to recover
consistent positions. Chen and Chen [13] detect boundary points
of a two-dimensional point set and cluster them to line segments.
Similar to rasterization, artifacts from the original point cloud,
such as missing data, will be transferred to the final shape
boundaries.

Jenke et al. [14] propose an optimization algorithm for shape
boundaries based on similar input data to ours, namely a point
cloud segmented into shape primitives. Boundary points are
extracted for each shape and iteratively optimized. The boundary
Fig. 1. Reconstructing a point cloud with shape primitives (from left to right): segmen

boundaries, additional shapes due to coplanarity.
points are attracted to nearby shapes while they keep a low
distance to points assigned to their original shape and neighbor-
ing boundary points are smoothed. The algorithm generates sharp
edges between nearby shapes and smooth boundaries where no
neighboring shapes are available. In contrast to our algorithm, no
additional constraints from other input data are included.

Some reconstruction algorithms have strict assumptions on
the model, which simplifies the task for finding shape boundaries.
Manhattan world reconstructions assume that scenes can be
modeled with axis-aligned planes [15,16]. Furukawa et al. [17]
use the Manhattan world assumption for reconstructing a
scene from multiple images. Shape boundaries, i.e. intersections
between planes, are optimized such that they are aligned with
strong image edges. Sinha et al. [18] reconstruct piecewise-planar
3D models from images and provide a user interface for editing
the polygonal outline of a planar shape. The modified vertices and
edges are snapped to main directions given by vanishing points in
the input images. Schindler and Bauer [19] reconstruct buildings
from images by first creating a coarse piecewise-planar model,
and then fitting pre-defined shapes for windows and doors.
Arikan et al. [20] present an interactive optimization system for
fitting planar polygons to point clouds and snapping neighboring
polygon elements together. The user can sketch modifications
on the model, which are exactly computed by the optimization
system.

In Section 3 we present possible constraints for our optimiza-
tion framework. We use similar ideas as presented in previous
work, such as intersection lines or rasterization. The main
advantage of our algorithm is its flexibility in combining different
constraints depending on input data and scene properties.
2. Optimization

The primary goal of our optimization framework is to find
good surface boundaries for shape primitives, i.e. dividing shapes
into inside and outside areas. This task is very similar to image
segmentation techniques, where an image is divided into fore-
ground and background. Inspired by popular image segmentation
algorithms [21], we solve the problem of shape boundary opti-
mization with graph cuts.

We parameterize the surface of a three-dimensional shape
primitive in a two-dimensional space and uniformly rasterize it
into a set of pixels I. The binary segmentation of the 2D space is
obtained by minimizing the cost function defined in Eq. (1),
containing a regional and a boundary term:

E¼
X
pA I

RðpÞþ
X
ðp,qÞAN

Bðp,qÞ � dðAðpÞaAðqÞÞ ð1Þ

The result of the minimization is a labeling A(p), where each
pixel p is marked either inside or outside. pA I denote all pixels in
the 2D shape parameterization, N contains all pairs of neighboring
pixels under a standard 4-neighborhood system. Function d
denotes the Potts model, which returns 1 if the argument is true
and 0 otherwise.

The regional term R(p) provides penalties on labeling a pixel
inside (Rin) or outside (Rout). The boundary term Bðp,qÞ puts a
ted input point cloud, detected shapes bounded by convex hull, optimized shape



Fig. 3. Snapping the computed boundary to original constraint lines. The original

boundary is located on the rasterization grid (red sample points). The final

boundary is snapped to nearby constraint lines (blue sample points). On the left

side (green circle) a corner point will be inserted, while at the right side (green

ellipse) a smooth transition between the constraints is achieved. (For interpreta-

tion of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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penalty on a discontinuity between the pixels p and q, i.e. when
they are assigned to different labels. Boundary constraints will set
the boundary term to a low value, when the line between
neighboring pixels is a good position for the shape boundary.

Performing the optimization in a discrete space allows the
application of an efficient graph-cut algorithm [22]. However,
discretization introduces the problem of rasterization artifacts.
We successfully handle this problem by automatically snapping
grid-aligned boundaries to input constraints (see Section 2.2)
after the binary segmentation. The lower limit of the resolution is
defined by the minimum size of features that should be included
in the reconstruction. The upper limit depends on the maximum
amount of time as an increased resolution leads to longer
optimization times.

The optimization is applied only to a limited space of the
shape defined by an oriented bounding box. The boundary will be
wrongly clipped if the bounding box is selected too small, while a
large bounding box will simply increase computational time. In
our experiments, we found a good compromise by initializing it as
the bounding box of the initial point cloud assigned to a shape,
enlarged by 20%. After each optimization step, the bounding box
is extended according to the new shape boundary if necessary.
The size can also be manually increased in our interactive user
interface.

Each shape is optimized separately, but many constraints are
computed based on information from the whole model. For
example, intersections are computed between pairs of shapes
and each 3D intersection curve is projected onto two shapes.
Thus, the shapes are optimized locally under global constraints.
Some constraints depend on the current shape boundary, e.g. the
coplanarity constraint tries to find dominant planes in all shape
boundaries. Therefore, multiple optimization steps are executed,
interleaved with an update of all constraints, as illustrated in
Fig. 2.

2.1. Constraints

A wide range of input sources can be used as constraints for
the boundary optimization. For example, the final polygon should
contain all points used for estimating the shape, the boundary
Fig. 2. Overview of our reconstruction pipeline: based on an input point cloud

our system performs automatic shape detection and then shape boundaries are

optimized iteratively until the user is satisfied with the results.
should match edges in images, or parallel lines are preferred (see
Section 3 for detailed information). These constraints either
influence the regional term R(p) or the boundary term Bðp,qÞ of
Eq. (1).
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conflicts when they vote for different labels. For this reason it is
necessary to make some constraints more important than others.
These conflicts can be easily solved by weighting the constraints
with different impact factors which are editable by the user.
The relative differences between impact factors are the impor-
tant information, not the absolute values. For example, con-
straints from user input are always weighted higher than other
constraints.
Fig. 8. These images illustrate, which line segments are extracted and accepted from on

the color image, (b) is the depth image, (c) displays accepted line segments in blue. Line

as constraint. (For interpretation of the references to color in this figure caption, the r

Fig. 9. Line segments from six input frames (a) have been projected onto a plane shape (

are merged (c).

Fig. 6. Left: Input depth map and color image. Right: Visualization of costs for the

plane representing the table top. The blue area is inside the plane surface while

the red area is outside. For the white area no information is provided by the depth

map. (For interpretation of the references to color in this figure caption, the reader

is referred to the web version of this article.)
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Fig. 7. For surfaces with normals that form an obtuse angle with the view

direction of a range camera, no accurate measurements can be taken from the

depth map. The corresponding pixels in the depth map would cover a large area on

the surface, as can be compared between the red and green surfaces. We prune all

measurements with normals having an angle larger than 701. (For interpretation

of the references to color in this figure caption, the reader is referred to the web

version of this article.)
2.2. Rasterization artifacts

The pixel-based approach introduces the problem of raster-
ization artifacts. The polygon positions are aligned along the main
directions of the rasterization grid and hence they are not exactly
positioned on the constraint lines. For scenes with planar surfaces
a lot of artifacts can be removed by aligning the local coordinate
systems on planes with the major directions of the scene. A higher
resolution would reduce the rasterization errors, but at the cost of
higher computation times. We propose a constraint snapping
algorithm for generating exact boundaries for all types of shapes
which also works well for low resolutions (see Fig. 3), as follows:

The original line segments from all boundary constraints, which
generally have a higher precision than the rasterization grid, are
taken as input. The polygon created from the rasterization grid is
sampled with the desired output tesselation. The sampling distance
defines the precision of the final polygons and has to be smaller than
the tesselation of curved objects. A graph cut optimization is applied
for aligning the sample points with nearby constraint lines.

The cost for assigning a sample point p to a constraint line c is
defined in Eq. (2). It is based on the distance between the point
and line distðp,cÞ, the constraint line’s weight wc and the angle
between the direction of the polygon at point p (dirp) and the
constraint line direction (dirc). This has the effect that points are
snapped to nearby lines with corresponding directions and that
lines with higher weights are preferred. For sample points that
are not snapped to a constraint line, we choose a constant cost
value of 2.25. This means that constraint lines with highest
weight and perfect direction have a maximum distance of
1.5 pixel for having a lower cost value than leaving a point on
its original position:

Eðp,cÞ ¼ distðp,cÞ2þexp
�w2

c

ðwmax=4Þ2

 !
þð1�/dirp,dircSÞ ð2Þ

Neighboring sample points are preferably assigned to the same
constraint line, especially to avoid oscillating between two nearby
e image for a planar shape representing the table top. (a) shows all detected lines in

segments that originate from surfaces above or beneath the table top are not used

eader is referred to the web version of this article.)

b). They do not overlap exactly due to inaccuracies, therefore nearby line segments
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constraint lines. Additionally, the transition between two differ-
ent constraints should be located where the constraint lines are
closest to each other. Eq. (3) shows the cost function for assigning
point pi to constraint ck and point pj to cl. The function clpðp,cÞ
returns the closest point on line c to point p:

Eðpi,pj,ck,clÞ ¼ Jclpðpi,ckÞ�clpðpi,clÞJþJclpðpj,ckÞ�clpðpj,clÞJ ð3Þ

The optimization snaps point to nearby constraint lines and
provide smooth transitions between different constraints. Corners
are extracted from intersections between constraint lines or
neighboring lines with sharp angles. The corners are inserted into
the final polygon between the closest points on the according
constraint lines.
3. Constraints

In this section we present some example constraints that can
be used by our optimization framework. Constraints are either
generated from input data such as point clouds or images or they
Fig. 11. (a) shows the input point cloud and the boundaries of the table in Fig. 18 after

(b) the colored lines are constraints calculated from the initial boundaries. Next, in (c),

After another constraint calculation and optimization step, (d) shows an improved resu

referred to the web version of this article.)

Fig. 10. Left: Input model with coplanar sample points highlighted in red. Right:

Result after optimization with coplanarity constraint. The detected plane has also

been added to the model and is shown in red. (For interpretation of the references

to color in this figure caption, the reader is referred to the web version of this

article.)
are derived from the shapes themselves or from the current shape
boundaries.

Generally, the input data for detecting shapes is included into
the optimization. This is either a point cloud (Section 3.1) or a set
of oriented depth maps (Section 3.2), which additionally provide
information on occlusions over point clouds. Intersection con-
straints (Section 3.3) are important for generating closed meshes
where the individual shape boundaries exactly meet each other.
Optionally, edges from color images can be included, when
images are available and contain visible object boundaries
(Section 3.4). We present two constraints, which analyze the
current shape boundaries for coplanar segments (Section 3.5)
respectively for dominant two-dimensional shapes (Section 3.6).
These constraints are often combined with manual inputs
(Section 3.7), where the user pushes the boundary towards
the favored shape which is then exactly computed by other
constraints.

In our system individual constraints provide costs in the range
of zero to one. This guiding principle facilitates the task of
assigning different impact factors to constraints in order to favor
important constraints over others (see Section 2.1).

3.1. Point cloud

In our reconstruction system, shapes are initialized from a
segmented point cloud, i.e. a subset of points is assigned to each
shape. An obvious constraint is that these points are located
inside the shape boundary. The points are projected onto the two-
dimensional bitmap of the shape. The point size is automatically
computed by the average point density such that neighboring
points touch each other (see Fig. 4).

Small holes in the initial bitmap are removed by applying a
morphological close-operation. The border is not well-defined by
the projected points and will usually be optimized by boundary
constraints. Therefore, the bitmap is eroded by a few pixels to
relax the point cloud constraint at the boundary. The default
the initial optimization step according to the point cloud and intersection lines. In

a new boundary is computed from the point cloud using the constraints from (b).

lt. (For interpretation of the references to color in this figure caption, the reader is
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value is set to three pixels, but can be adapted by the user. If the
assigned point set has a low confidence, e.g. due to large noise,
better results can be achieved with a larger erosion. On the other
hand, if the final reconstruction should stick close to the assigned
point set, a smaller erosion is chosen. In the final bitmap, all pixels
which should be labeled inside the shape have the value one.
Thus, the values can be directly used as cost Rout.

The cost for labeling pixels inside Rin is on the other hand not
clearly defined, because parts of the surface might be missing in
the point cloud, e.g. due to occlusion. Nevertheless, it is necessary
to define parts as being outside of the shape. Otherwise, the shape
will be extended to the whole bounding box as long as no other
constraints are defined.

We take the inverse of the initial bitmap and erode it by the
same amount of pixels as defined above. This bitmap is used as
Rin, but it is weighted much lower. In our experiments we use a
constant value of 0.1 for labeling these pixels as inside. This value
is sufficient for restricting the shape boundary when no other
constraints are used, but it does not have much influence in case
of more confident constraints.

3.2. Depth maps

Multiple depth maps provide the same information as point
clouds when they are available together with their camera infor-
mation. Additionally, it is possible to compute where a shape has
been occluded by other geometry. Conversely, it can be deter-
mined, where a shape is not valid because it would have been
visible in any camera. The maximum cost value is used when
these areas are labeled as inside.

Each depth map provides three possibilities for each pixel in
the shape parameterization, which are illustrated in Figs. 5 and 6.
The pixel has to be outside of the surface, when the corresponding
3D position is inside the depth camera’s view frustum, but a more
distant point has been captured by the depth camera. Rin is set to
the maximum value 1 for this pixel. The pixel is inside the surface
when the corresponding 3D position approximately coincides
with the measured value in the depth map. Rout is set to the
maximum value 1 for this pixel. No constraint can be created
Table 1
The table shows the computation times (in seconds or minutes) for shape detection an

input (Tui). Additionally, the times for updating constraints (Tcstr) and optimizing shap

namely the number of Kinect RGB-D images (Nframes) or the number of input points (Npo

the average number of raster points per shape primitive (Ncells), and the average numb

Dataset Tpre (s) Tinit (s) Tui (m) Tcstr (s)

Kitchen 1 (Fig. 16) 26 1.3 6.3 36.2

Kitchen 2 (Fig. 17) 57 7.6 12.7 105.2

Bar table (Fig. 18) 51 1.3 3.1 4.5

Church (Fig. 19) 53 20.1 12.9 124.6

Lans le Villard (Fig. 19) 178 27.9 16.0 230.6

Ballroom (Fig. 19) 528 36.3 26.9 247.2

Fig. 12. User input: red pixels mark areas as outside, and blue as inside. The right

image shows the result after another optimization step. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)
when the shape position is occluded by a closer point in the depth
map or when it is not projected onto a depth map pixel with a
valid measurement. Both regional terms, Rin and Rout, are set to
zero in this case to indicate there is no constraint.

When multiple depth maps are available, constraints are
created as soon as they occur in one depth map. Care has to be
taken for areas that are nearly parallel to the view direction of the
depth map. These pixels cover a large area on the shapes and thus
do not provide accurate measurements (see Fig. 7). Therefore we
apply a simple pruning step and consider only depth map pixels
whose normals form a maximum angle of 701 with the camera
direction. Usually, only a few pixels are affected by these pruning
step which can be compensated by more accurate measurements
from other range images.
3.3. Shape intersections

Intersections with nearby shapes provide very strong cues for
surface boundaries. Intersection lines are computed for each pair
of shapes and projected into 2D space. The lines have to fall at
least in one of the shapes’ bounding boxes in order to be accepted.
The intersection lines are weighted inversely proportional to the
distance between the shapes such that neighboring shapes will be
preferred.

The usage of shape intersections is necessary for generating
closed models. Additionally, more distant shapes also provide
useful information, e.g. when parts of a shape are missing in the
point cloud.
3.4. Images

Color images provide valuable information about the location
of surface boundaries. For this it is necessary that an object is
clearly distinguishable from its background, e.g. by luminance,
color or texture. Unfortunately, such changes often occur inside
an object too, which makes it hard to extract edges. Therefore we
apply some additional conditions to avoid cluttering from too
many image edges.
d fitting (Tpre), initial automatic boundary optimization (Tinit), and complete user

es (Topt) are given. Finally, some statistics on the input and output data are given,

ints), as well as the number of shape primitives before and after user input (Nshapes),

er of optimization steps per shape primitive (Nsteps).

Topt (s) Nframes Npoints Nshapes Ncells Nsteps

5.9 8 12/17 21 763 5.4

10.8 13 16/26 32 765 6.2

1.9 5 7/9 8937 6.1

15.2 29 600 18/25 36 139 6.5

22.3 44 187 27/32 43 758 5.6

50.5 61 699 44/40 44 978 5.5

Fig. 13. Reconstruction of block shape with missing data. Left: original mesh used

for sampling. Middle: reconstruction with equal impact factors for point cloud and

intersections. Right: high impact factor for intersections.
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We use a state-of-the-art line segment detector [23] for
detecting line segments in all input color images. The restriction
to line segments is useful as we focus on interior scenes and other
man-made objects where mainly straight line segments occur.
Nevertheless, other shape boundaries are approximated by con-
catenating multiple lines, provided their visual cue is strong
enough (e.g. the table in Fig. 8(a)).

Another restriction is based on depth maps registered with the
color images, which are available when an RGB-D sensor was
used for capturing. For each shape, only line segments which
are located on the shape’s surface are used as constraint. Line
segments where the associated depth values do not meet the
shape are removed (see Fig. 8). Lines along surface boundaries are
usually located along large depth discontinuities, but usually they
are slightly off due to registration or rasterization errors. There-
fore, it is important to look for corresponding depth values in a
slightly increased test area. In our system we empirically set this
offset to 1.5 pixels which works well for depth maps captured
with Microsoft Kinect.

Line segments are detected in all available color images
and projected onto the 2D parameterization of a shape. Due to
inaccuracies in camera pose estimation, shape detection and line
extraction, lines are usually projected with small offsets next to
each other. Therefore, we merge nearby lines with a line segment
clustering algorithm [24], as can be seen in Fig. 9.
3.5. Coplanarity

Coplanarity provides boundary constraints in areas where
points from multiple shape boundaries are located approximately
on the same plane. This plane provides a joint limit in one
Fig. 14. A synthetic dataset of a table with three holes has been reconstructed: (a) samp

on detected 2D shapes, (d) detailed view of initial and final results.
direction for multiple shapes. Such limits are valuable for incom-
plete models, e.g. to restrict walls of an interior room where the
ceiling has not been scanned. Furthermore, the detected planes
are often useful for extending the existing model.

The coplanarity constraint is computed based on the current
set of shape boundaries and is updated after each optimization
step. We restrict the search to planes perpendicular to global
directions of the model, e.g. to plane normals or cylinder axes.
This restriction is based on the assumption that shapes in man-
made objects are often positioned with orthogonal angles to each
other [7]. Otherwise, undesired constraint lines would affect
the optimization because planes are detected in unrelated shape
boundaries. Sample points are extracted together with their line
directions from all current 3D shape boundaries. For each global
direction, all sample points with a perpendicular direction are
selected. The points are projected to one-dimensional ray coordi-
nates along the global direction. The ray coordinates are clustered
in order to find dominant planes.

The clusters are accepted only if the points originate from at least
two different shapes and if the points are not approximately
collinear. Clusters which are consistent with already existing planes
in the model are also removed. The final planes are moved to the
median value of all ray coordinates. This ensures that the plane is
snapped to dominant boundaries, since averaging over all ray
coordinates would be influenced too much by outliers. Fig. 10 shows
an example for optimizing a model with coplanarity constraints.
3.6. 2D shapes

Similar to finding shapes in 3D, local boundaries can be enhanced
by approximating them with two-dimensional shapes such as
led point cloud, (b) initial result without 2D shapes constraint, (c) final result based
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circles or lines. Using two-dimensional shapes generally simplifies
the existing polygon. Noisy curves are straightened and small
features are removed, while at the same time sharp corners between
Fig. 15. Reconstruction of the joint model with decreasing point density (100%,

10%, 5% and 1%). The images show from left to right: input point set, reconstructed

model, point cloud constraint. Note that the shape primitives were not auto-

matically fit in this example, in order to compare only the boundary optimization.

(a) 69 544 points, 12 correct shape boundaries. (b) 6954 points, 10 correct shape

boundaries. (c) 3477 points, 8 correct shape boundaries. (d) 695 points, 2 correct

shape boundaries.

Fig. 16. This point cloud from eight Kinect range images has been reconstructed with 1

the final model after some user inputs. The second rows show the user input for some
different shapes are generated. Fig. 11 shows an example, where a
circle and multiple lines are detected in the existing boundary and
used as constraint for the next optimization step. As can be seen, the
detection of 2D shapes usually needs some iterations of alternating
constraint updates and shape optimizations.

The detection of 2D shapes is based on current boundaries,
as we already have seen with the coplanarity constraints. Points
and directions are sampled for a RANSAC-based detection of 2D
shapes. Candidate shapes are generated and tested against all
sample points. The candidate shape which is supported by the
largest number of points is accepted and further shapes are
detected in the remaining sample points.
3.7. User input

Fully automatic reconstruction systems not always deliver the
result desired by a user. Especially, if large areas of the original
scene are missing in the captured data, it is generally not possible
to reconstruct these missing parts automatically. Therefore it is
essential to provide a possibility for manually editing the recon-
struction results and including additional information and crea-
tivity provided by a human user.

In our reconstruction system, the user can add optimization
constraints by explicitly defining pixels as inside or outside.
Similarly, it is possible to manually define good boundary posi-
tions. These user constraints are weighted with a very high
impact factor so that they overrule other constraints.

We provide a user interface, where the user can directly draw
constraints on shape surfaces in 3D (see Fig. 12). This is very easy
to use because no knowledge about 3D modeling is needed. In
the following optimization step, areas will be filled or deleted
according to this new input and surface boundaries will snap to
appropriate boundary constraints.

Some other constraints (coplanarity, 2D shapes) depend on the
current shape boundary. A good strategy is therefore to push the
shape boundary approximately to the desired location with user-
defined constraints. Afterwards, the constraints are updated in
order to get exact borders from other relations.

We have included the optimization system into a complete
reconstruction application, which provides the whole pipeline for
loading point clouds, detecting shape primitives, and reconstructing
7 shapes. The top row shows the input point cloud, the initially reconstructed and

shapes.



Fig. 17. A point cloud from 13 range images has been reconstructed with 26 shapes. Both rows show the input point cloud, the initially reconstructed and the final model

after some user inputs from different viewpoints.
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the shape boundaries. The application contains the following features
for direct user interaction:
�
 Draw constraints on shape surfaces for defining areas as inside
or outside, and for defining boundary edges.

�
 Select appropriate constraints and adjust impact factors as

well as individual constraint parameters.

�
 Optimize shape boundaries for a single shape primitive or for

the whole model.

�
 Create new shape primitives based on a set of selected points.

�
 Delete wrongly detected shape primitives.

�

Fig. 18. Reconstruction of a bar table. The table leg and the flower pot have been

inserted by fitting the shapes to the according points. The right picture shows how
Create additional shapes based on coplanarity constraints.

4. Evaluation

We have tested our framework on a variety of synthetic and
real-world datasets. The real-world datasets have either been
captured as multiple depth maps with Microsoft Kinect (Figs. 16–18),
created with photogrammetric reconstruction from multiple
images (Fig. 19), or acquired with a laser scanner (Fig. 19). Table 1
summarizes the performance statistics and the necessary amount
of user input for each dataset.
the boundary is restricted by the 2D shape constraint.
4.1. Synthetic datasets

Fig. 13 shows how our algorithm can deal with missing data. If
the boundaries are optimized under equally weighted constraints
for point clouds and intersections, the reconstructed model is
approximately consistent with the input mesh. On the other hand,
if the impact factor for intersections is largely increased by a
factor of 20, the shapes extend to their nearest intersection lines
and a closed model is generated. Note that this solution can only
be applied when a closed model is desired. Another solution in
this case is user input, where the missing areas can be filled just
with a few simple brushing operations.

The application of 2D shape constraints has been evaluated as
shown in Fig. 14. A table top with three circular holes has been
uniformly sampled. Fig. 14(b) shows the result when the bound-
aries are optimized only according to the point cloud and
intersections. The holes have been correctly preserved as the
surface is densely sampled without large artifacts or missing data.
But the surface boundary is not clean because it is just inter-
polated between the raster cells. After applying the 2D shape
constraint, all three circles are correctly detected and the next
optimization step produces a surface boundary with exact circles.

Fig. 15 shows how our algorithm performs with low point
densities. The models are reconstructed solely with intersections
and the point cloud constraint. The same parameters have been
used for all input point sets. As can be seen, good results are
obtained also in case of very few points. Only in the last case,
where only 1% of the original point set is used, there is not enough
information for extracting correct shape boundaries.

4.2. Real datasets

Figs. 16 and 17 show the results for two datasets containing a
kitchen. The models have been optimized using constraints from
the point cloud, intersections and coplanarity as well as user
input. In both scenes, large parts are missing in the point cloud.
While these parts are still missing in the initially reconstructed
point cloud, they can be easily filled in by the user. In the model of
Fig. 17 many additional planes have been inserted based on the



Fig. 19. Reconstruction of several datasets (from top to bottom): church (photo-

grammetry), church of Lans le Villard (laser scan), ballroom (photogrammetry).
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coplanarity constraint, e.g. the top and bottom sides of cupboards.
In this example it can also be seen, how the coplanarity con-
straints limits all shapes to the open front side.

Fig. 18 shows the reconstruction of a bar table. The result of
the automatic pipeline, including point cloud, intersection and
coplanarity constraints, produced good results for most of the
shapes. The wall and the floor needed some manual input in order
to generate nice outlines, because the point cloud was only
partially visible and there were no limitations by other shapes.
For the table top we applied the 2D shape constraint in order to
retrieve an exact circular boundary. Details about the 2D shape
fitting can be seen in Fig. 11. The shapes for the table leg and the
flower pot were not discovered by the automatic shape detection
algorithm, but our user interface provides the possibility to select
points from the input point cloud and fit a shape primitive to it.

Additional examples that have been generated with our
reconstruction system can be seen in Fig. 19. The input datasets
are point clouds, either generated by photogrammetric recon-
struction [1] or captured with a laser scanner.

As can be seen in Table 1, the Ballroom dataset contains a large
number of shape primitives, which can still be handled by our
system. Because each shape is optimized individually, the opti-
mization step of our algorithm scales linearly with the number of
shape primitives provided they have equal resolutions. Currently,
our system is limited by the computations needed for constraint
updates which are defined over all shape primitives of the scene
(e.g. intersections). This clearly limits the number of shape
primitives and therefore makes processing more complex scenes
tedious. However, reconstructing more complex scenes would be
possible if the computation of constraints is restricted to parts of
the scene, e.g. by computing intersections only between nearby
shape primitives.
5. Conclusions

We have presented a novel method for extracting and opti-
mizing reasonable boundaries for shape primitives. The optimiza-
tion framework supports many input sources and a wide range
of high-level constraints. We have shown that the automatic
algorithm provides a good initial reconstruction in many cases,
despite noisy or incomplete point clouds. For difficult cases we
provide a simple user interface which allows the user to push the
shape boundaries towards preferred locations.

While we only employed three types of shape primitives,
namely planes, cylinders and cones, the algorithm can easily be
extended to other 2D manifolds. The only requirement is that the
shape can be parameterized in a two-dimensional grid. Also
the range of constraints can be further extended. For example,
constraints could be inferred from approximate symmetries.

The main limitation of our system is that it depends on the
quality of the detected shapes. In the future, we would like to use
similar constraints also for generating new shapes or adapting
existing ones.
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