
Caustics, Light Shafts, God Rays

Anna Frühstück∗

Vienna University of Technology
0626930

Stefanie Prast†

Vienna University of Technology
0727540

Abstract

Lighting effects, such as caustics and light shafts are an important
component of the rendering of global illumination images. The cor-
rect depiction of the interaction of light with different surfaces is
crucial to the realism of any rendered scene. Dealing with the com-
plexity of global illumination has long been among the biggest chal-
lenges in computer graphics, a problem that is even more promi-
nent when it comes to rendering interactive environments. Particu-
larly the simulation of caustics is a difficult task since they can only
be rendered satisfactorily through techniques which trace the light
from the illuminants.
Several different techniques to speed up the process of rendering
realistic global illumination effects have been developed. Among
those are path tracing, ray tracing and photon mapping. Most state-
of-the-art rendering techniques rely heavily on the computation
power of the GPU. We wish to present a survey of current render-
ing techniques for approximating physically exact representations
of caustics, light shafts and god rays.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Radiosity;

Keywords: GPU, rendering, real-time, caustics, god rays, light
effects, refraction, reflection

1 Introduction

In computer graphics, the usage of well-simulated lighting effects
plays a decisive role in the degree of realism of the global illumi-
nation of a rendered scene. For the accomplishment of satisfactory
results, several different approaches have been proposed. Since the
current state of hardware technology does not yet allow for the trac-
ing of each particle of light in a scene in a reasonable amount of
rendering time, the different techniques try to achieve excellent re-
sults through simplification and approximation while keeping the
computation cost as low as possible. The necessity of minimizing
the rendering time is even more significant in interactive environ-
ments, where the simulation of realistic lighting effects has to be
computed in real-time.
Ever since powerful rendering devices such as GPUs have been
developed and can be utilized in the graphics pipeline, significant
gains in rendering speed have been achieved, evermore facilitating
more complex operations performed in real-time, constantly draw-
ing nearer to photorealism.
The purposes for renderings are manifold and lie, among others, in
architecture, video games, simulators or special effects for movies.
Since the research in rendering attempts to achieve as realistic im-
ages as possible, many sorts of physical behavior and natural phe-
nomena formed by the interaction of light with objects are taken

∗e-Mail: anna.fruehstueck@student.tuwien.ac.at
†e-Mail: stefanie.prast@gmx.at

Figure 1: (image courtesy of Rob Ireton)
One of the the most prominent occurrence of caustics are the pat-
terns that form on the floor of shallow water when sunlight is re-
fracted by the moving water surface. The fascination of humans
with this physical phenomenon has led to many attempts of simu-
lating underwater caustics in computer graphics.

into account in a rendering pipeline. These effects include shadows,
transparency, depth of field, motion blur and participating media.
The interest of this report is focused on three of these light effects
(caustics, light shafts and god rays) and the manifold attempts to
achieve realistic simulation of these effects in three-dimensional
scenes.
This paper wishes to give an overview of the different rendering
techniques used to simulate the following effects.

2 Light effects

When light interacts with matter, different sorts of optical phenom-
ena may be observed. To some of them, we are so accustomed we
hardly notice them in daily life. Others are less frequently to be seen
and are considered natural spectacles. In the quest of achieving the
highest degree of realism in a rendered scene, it is indispensable to
take these effects into account when computing the scene’s global
illumination. However, when it comes to rendering, due to compu-
tational constraints, the nature of some of the lighting effects poses
a challenge.
In the following, we introduce the lighting effects that will be dis-
cussed in this paper.

2.1 Caustics

Caustics are patterns of light, such as those formed by sunlight on
the floor of a swimming pool (See figure 1), that originate from
a focusing of light through reflection or refraction by a specular
surface. They occur whenever rays of light get reflected or refracted
by some optical medium and converge at a single point on a diffuse
surface, thus forming areas of above-average brightness.

Figure 2: (image courtesy of Shah et al.)
This illustration demonstrates how several light rays, refracted
through a curved object, converge at the same point on a non-
specular surface, thus generating caustic patterns.

The origin of the terminus ’caustics’ is derived from the Latin
’causticus’ (which itself borrows from the Greek ’kaustikos’),
signifying ’corrosive, burning’.

Another common occurrence of caustics can be perceived when
bright light shines on a glass object, e.g. a wine glass. While
the glass will cast a shadow, there is also a pattern of bright light
formed where the light rays, refracted through the concave body of
the glass, concentrate in specific regions.
Distinction is made between catacaustics and diacaustics.
Catacaustics develop through directional reflection from a curved
specular surface. Such an effect can be observed at the base
of a cup of coffee when light shines onto the inside of the cup
diagonally.
The more spectacular form of caustics are diacaustics, produced
by refraction through a transparent medium. The effects in the
swimming pool and next to a glass object described above are
examples for diacaustics.
In 3D computer graphics, the simulation of caustics has long
been one of the most difficult tasks because they can only be well
approximated by tracing the light forward from its origin.

2.2 Light shafts

The term light shafts describes an optical phenomenon that is per-
ceived as beams of light in a shadowed environment, radiating from
the light source. The reason the penetrating light can be distinct as
beams from the darker ambiance is that small particles in the air
like dust, mist or smoke reflect and scatter the light. Figure 3 shows
an example of very strong light shafts caused by the sun breaking
in through some windows.
Any small particles can provide the participating media required
to make the light’s path, otherwise not perceptible, visible, for in-
stance, the smaller, the more continuous is the perception of the
beam.
Typical situations where light shafts can be perceived include the
observation of flashlights or light houses, but also natural forma-
tions where light incides through an opening into a dusk environ-
ment.
On some purposes, light shafts are not only an interesting sideef-
fect, but are generated purposefully for the reason of the dramatic
effect the light shafts brings about: Laser beams and searchlights

Figure 3: (image courtesy of flickr user somebody)
The effect of perceiving light inciding into a darkened environment
as shafts of bright light is caused by minuscule particles suspended
in the media through which the light is passing that scatter the
light, thus visualizing not only the general brightening of the setting
caused by the light but also the path it describes through the scene.
Since occurrences of these light shafts give a very dramatic look
to the scenario, many applications of rendering try to incorporate
this effect, thus inspiring some academic and industrial research
interest in the area.

are exemplary for this objective, on occasions, their effect is even
enhanced by the use of fog machines to provide for the participat-
ing media.

2.3 God rays

God rays, or crepuscular rays, is a more specific expression for
light beams mostly used for the light shafts that occur when the sun
is partly covered by some shadow-inducing object (mostly clouds,
but also trees, buildings, or any other object). The sunlight breaks
through gaps in the obstacle and produces the light rays through
reflection on particles in the atmosphere. The seemingly diverg-
ing rays are virtually parallel, but perspective makes them look like
they were ascending. (See figure 4 for an illustration of the phe-
nomenon)
Crepuscular rays are also frequently to be observed in underwater
scenes when looking up toward the water surface and the sun above.
The principle, of course, is the same; in this case, the water particles
serve as scatterer.

3 Fundamentals

This chapter serves as a quick introduction to several fundamental
physical principles that are indispensable to every algorithm that
attempts to simulate caustics or god rays.

3.1 Geometrical optics

3.1.1 The rendering equation

The rendering equation, proposed by James Kajiya [Kajiya 1986]
in 1986, is based on the physics of light and describes the law of

Figure 4: (image courtesy of flickr user san sci)
As the term ’God rays’ evidently suggests, the phenomenon of light
beam occurrences in natural environments has fascinated man and
was inspiration to a whole number of imaginative names and stories
with the same effect: Jacob’s Ladder (originating from the biblical
story), Ropes of Maui (descending from and old Maori tale) and
many more.

conservation of energy during the flow of light through the rendered
scene. As it theoretically provides perfect results, various rendering
techniques try to approximate the rendering equation and it has thus
served as a fundamental basis for all algorithms simulating global
illumination.

The following representation of the equation describes the amount
of light that is reflected from the surface point x in direction of the
vector ~w:

Lo(x,~w) = Le(x,~w)+
∫

Ω

fr(x,~w′→ ~w)Li(x,~w′)(~w′ ·~n)d~w′

In words:
For the position x and direction ~w, the radiated light Lo is equal to
the sum of the self-emitted light Le (in case the point at x is an emit-
ter) plus the reflected light.
This reflective part is an integral over the whole of all inward direc-
tions within a hemisphere; each integrand consists of the incoming
light Li from the direction ~w′ multiplied by the extinction of light
due to the incident angle (~w′ ·~n) as well as the surface reflection fr
with incidence ~w′ and emergent angle ~w.
The surface reflection component fr is a bidirectional reflectance
distribution function, which will be explained in detail in sec-
tion 3.1.4.

3.1.2 Refraction

In optics, refraction occurs when a light wave’s direction is changed
due to an alteration of its speed. Upon passing from one medium
with a given refractive index η1 into another with the index η2
where the propagation velocity is different, the course of the light
ray is altered according to the proportion of the two indices.
Occurrences of this phenomenon can easily be observed when light
enters and leaves some sort of transparent medium, e.g. glass or
water.
The angle of incidence θ lies between the light ray as it approaches
the surface ri and the surface normal~n, the angle of refraction θt is
measured between the inverse normal~nt and the emergent refracted

Figure 5: illustrations to the principle of refraction (left) and reflec-
tion (right)

ray. These parameters are illustrated in the left part of figure 3.1.2.

Snell’s law states that the ratio of the sines of the angles θ and θt
equals the ratio of the wave speeds v1 and v2 in the respective media
as well as the ratio of the opposite refractive indices.

sinθ

sinθt
=

η1

η2

sinθ

sinθt
=

v1

v2

The refracted angle θt may be calculated using the pythagorean
trigonometric identity sin2θt + cos2θt = 1.
To substitute sin2θt , a transformation of Snell’s equation is used.

cos2
θt = 1− sin2

θt

= 1−
(

η1

η2

)2
sin2

θ

= 1−

((
η1

η2

)2
(1− cos 2

θ)

)

3.1.3 Reflection

The effect in which the light wave’s direction at striking the surface
of a medium with a different refractive index is altered such that
the course of the ray will return into the medium where the wave
originated, is termed reflection.
For the reflection off a specular surface, e.g. a mirror, the law of
reflection states that the angle θ of incidence between the incoming
light ray ri and the normal vector~n to the interface equals the angle
of reflection θr between the ~n and the outgoing light ray rr. (See
figure 3.1.2 on the right)

3.1.4 The bidirectional reflectance distribution function

The bidirectional reflectance distribution function (BRDF) is a
function that defines the reflecting behavior of a surface from arbi-
trary incidences. For any ray striking the surface at a specified angle
of incidence, the BRDF specifies the ratio between the radiance re-
flected in direction ~w and the irradiance incident from direction ~w′.

fr(x,~w′→ ~w)≡ Lr(x,~w)
Ei(x,~w′)

≡ Lr(x,~w)
Li(x,~w′)cos(θi)d~w′

where Ei denotes the irradiance, i.e., the amount of flux hitting the
surface, and Lr is the radiance, or differential flux density emitted
from the surface.
The BRDF is an integral part of the rendering equation, represent-
ing the surface reflection component fr.

3.1.5 The Fresnel equations

As light, traveling through a medium with refractive index η1, hits
another medium with refractive index η2, reflection may occur as
well as refraction. The Fresnel equations give a quantitative defini-
tion of the reflection and refraction of light off an interface. Thus,
given the incident angle θ and the refractive indices η1 and η2, the
intensity of the reflected (reflectance R) as well as the transmitted
light rays (transmittance T) can be determined.
Distinction is made between s-polarized light and p-polarized light,
the two of which differ in the proportion of the polarization of the
waves to the plane of incidence, which is spanned by the surface
normal and the propagation vector of the incoming ray; the polar-
ization of p-polarized waves runs parallel to the plane of incidence,
whereas s-polarized waves are perpendicular to the plane of inci-
dence. For p-polarized light, the reflectance R is given by

Rp =

(
n1 cosθt −n2 cosθ

n1 cosθt +n2 cosθ

)2
=

[
tan(θt −θ)

tan(θt +θ)

]2

If the incident light is s-polarized, the reflectance R is given by

Rs =

(
n1 cosθ −n2 cosθt

n1 cosθ +n2 cosθt

)2
=

[
sin(θt −θ)

sin(θt +θ)

]2

Due to the law of conservation of energy, the transmission coeffi-
cient is calculated by

Tp = 1−Rp Ts = 1−Rs

If the polarization of the incident light consists of an equal share of
s- and p-polarizations, the coefficients are calculated by summing
the coefficients for p-polarization and s-polarization and dividing
the result by two.

4 Caustics

When first attempts were made to integrate caustics simulation
into rendering systems, caustics only used to be rendered offline
employing either photon mapping or backward ray-tracing tech-
niques; the generation of realistic looking results necessitates the
tracing of a very large quantity of either rays or light particles, a
process which could not be executed in real-time with the limited
computational power of the early 1990s.

James Arvo [Arvo 1986] developed the backward ray-tracing (or
light ray tracing) method and observed early that effective algo-
rithms for caustic generation always consist of at least two passes:
the first pass identifying the locations of the final hits of the light
rays or photons, the second pass rendering the result into an image
as seen from the camera position, taking into account the number
of photon hits for each non-specular surface point.

By the late 1980s, different approaches to render global illumina-
tion and therefore lighting effects, had over the years been devel-
oped. At that time, the most realistic technique to light a scene was
a combination of ray tracing and radiosity [Wallace et al. 1989].
Despite various attempts to optimize them, both methods had an
excessively high computation time and were memory consuming;
additionally, they also produced inaccurate and deficient results.

A big breakthrough came with the development of photon mapping
by Henrik Wann Jensen in 1995. A year later he published a more

advanced approach [Jensen 1996] with two distinct photon maps;
a technique that generates caustics implicitly, whereas previous
methods had always demanded intricate computation for caustics
calculation.
The photon mapping approach is basically an extension of ray
tracing-based techniques, which provides means for calculating
a scene’s global illumination more efficiently, thus permitting to
render greater realism at the same or less expense.

4.1 Backward Ray-Tracing

The motivation for Arvo’s backward ray-tracing method [Arvo
1986] was to generate an indirect illumination algorithm that can
also deal with half-shades.
The first of two passes implements a path tracing algorithm, during
which rays are emitted from the light sources into the scene. When-
ever one of the rays hits a diffuse surface, it’s radiance is reduced
according to the reflection and the energy difference is saved in the
so-called illumination map at the location of the light ray’s collision
with the scene geometry.
The second pass carries out conventional ray tracing, with the illu-
mination maps adding to the calculation of the surfaces’ illumina-
tion.
Thus, one pass is calculated from each light source and another
from the camera. The illumination map, which is applied to
compute the value at the surface to which both passes’ informa-
tions contribute, consists of a two-dimensional raster of data points
(scalar values for white light or RGB triplets for colored light). It
is connected to the object’s surface by a function T (u,v)← (x,y,z).
This function’s inverse provides the necessary informations about
the locations of the light rays’ intersections with the scene geome-
try as well as the energy that they contain.
When a ray hits a surface that is connected to an illumination map,
the respective coordinates u and v are calculated and a part of the
ray’s energy is stored in the illumination map at the corresponding
location. The contribution is divided among the four adjacent data
points through bilinear separation and added to their current values
(closer points receive a higher quota).
At this point, the illumination map represents solely the accumu-
lated energy of each surface point, but not the direction the light
ray came from. The energy that is stored in the illumination map
in the course of this process has to be converted to the adequate in-
tensity by dividing the energy E(u,v) at a specific data point by the
corresponding area.
Up to this point, the backward ray tracing technique is independent
of the view point.
The procedure is extremely costly because the illumination map has
to have a very high resolution, also, a large number of rays in the
path tracing pass is required to achieve good results.
Backward ray tracing is a method that can deal with caustics, how-
ever it only qualifies for scenes with punctiform light sources, ex-
tensive illuminants can only be approximated.

4.2 Path tracing

The path tracing approach is a generalization of ray tracing and
therefore follows the path of viewing rays from the viewpoint
through the scene, taking into account the interaction of the view-
ing rays with the scene geometry. Through the nature of the path
tracing technique, light effects such as caustics, ambient occlusion
or shadows are inherently generated in the course of the rendering
process and do therefore not have to be added manually.
Images rendered with path tracing feature a superior quality to

most other rendering techniques, at the cost of greater demands
on computation power. The accuracy that path traced images pro-
vide makes the results this approach generates a reference for the
evaluation of other rendering techniques. However, the rendering
requires a large number of view rays in order to achieve results
without noise.
The path tracing approach was first described by James Kajyiya
[Kajiya 1986] in 1986 in his presentation of the rendering equation,
which quickly became a benchmark in computer graphics. Op-
posed to backward ray tracing, path tracing does not aim to follow
the paths of the light, instead it attempts to trace the paths from the
camera into the scene, pursuing them as they bounce off surfaces
and to find out whether the view ray intersects a light source. Due
to the fact that the probability of such an intersection is rather low
for a random ray emitted into the scene, most traced paths will not
contribute to the final image, causing high computational expense.
The main difference between path tracing and conventional ray
tracing is that in the ray tracing procedure, on detecting an inter-
section between a ray and a non-specular surface, the lights are
sampled directly. Contrary to this, in path tracing, as the ray hits
the surface, the ray’s new direction is calculated randomly. It is
chosen among all possible direction within the hemisphere over
the surface at the incident point, using BRDFs. The thus generated
ray is then traced further around the scene, interacting with other
surfaces and potentially reaching a light source.
Several attempts have been made to delimitate the inefficiency of
this algorithm that lies in the number of rays that are traced even
though they never reach a light source.

4.2.1 Bidirectional Path Tracing

Among these, particularly bidirectional path tracing is notable.
This technique attempts to combine the respective advantages of
both path tracing and backward ray tracing, first pursuing the light
rays through the scene, then applying the above described path
tracing algorithm, but this time checking whether the light paths
strike one of the previously calculated light rays until either a hit is
detected or the predefined number of permitted light bounces has
been exceeded. This technique causes the algorithm to converge
much faster than any single-directional tracing method can hope to
achieve.

4.2.2 Metropolis Light Transport

Eric Veach and Leonidas J. Guibas [Veach and Guibas 1997]
proposed a modification to the basic bidirectional path tracing
method called Metropolis Light Transport (MLT).
The Metropolis Light Transport technique employs the bidirec-
tional path tracing algorithm at first to determine the paths from
the camera to the light source but then modifies the resulting paths,
applying the Metropolis-Hastings algorithm (a variant of the Monte
Carlo Method).
Said algorithm that is applied for the calculation of the final distri-
bution of light among the scene geometry can, once a path from
the view point to the light has been detected, explore and create
potential nearby light paths which may otherwise be difficult and
costly to determine wherein lies the advantage compared to basic
bidirectional path tracing.
This method may, but does not necessarily result in a faster calcu-
lation of the final light distribution.

4.3 Photon mapping

A photon is defined as a single light particle that transports a certain
radiant flux, a large number of which is emitted into the scene from
each light source. Geometrically, this approach is equivalent to ray
tracing, emanating from the light source.
Photon mapping [Jensen 1996] generates global illumination in two
passes. At the heart of the photon mapping algorithm lies the con-
struction of the photon maps which store the location of the final
photon hits on non-specular surfaces.

4.3.1 Emission Of The Photons

The first pass concerns the construction of said photon maps. For
this purpose, a light source emits a very large number of photons
into the scene. The ultimate image quality is heavily dependent on
the quantity of photons, which has to be traded off against the pho-
ton number’s direct impact on the algorithm’s running time. The
photons represent light particles (in Jensen’s publication labeled
”energy packages”), each featuring its respective radiance and di-
rection. The radiance of the photons depends on the type of the light
source. Since different types of light sources emit different amounts
of energy, it is important that the physical law of power conserva-
tion should be considered, and the respective energy of each light
source has to be divided between the amount of its individual pho-
tons to get a realistically looking illumination of the scene. The out-
going direction of the photons depends on the volume, the surface
and the geometry of the light source. These photons are pursued
through the scene employing a technique similar to path tracing,
called photon tracing. As stated in chapter 3, in physics, light
which hits a surface can be absorbed, reflected, refracted, scattered
or a combination of the previous. Since it would be virtually im-
possible to compute physically correct light behavior, it has to be
simplified.
When a photon hits a surface, a Monte Carlo method called ’Rus-
sian roulette’ is used to decide whether it will be reflected or ab-
sorbed. Calculating the reflected photon’s new direction, the bidi-
rectional reflectance distribution function is employed (See chap-
ter 3.1.4). Reflected photons are traced further until they are ab-
sorbed. Every reflection and absorption is stored in a photon map.

4.3.2 Construction Of The Photon Maps

Two different kinds of photon maps are applied in the photon map-
ping algorithm: the global photon map and the caustic photon map.
For the creation of a caustic map, photons are only aimed at objects
that can cause caustics, i.e., transparent and specular objects. Re-
flected photons are stored in this map whenever they hit a diffuse
surface. Thus, the caustic map contains all photons which under-
went specular reflection or refraction.
As for the global photon map, photons are emitted into the whole
scene and are stored when they hit a diffuse surface, photons that
reflect from a specular surface are not traced any further. This map
is responsible for the indirect illumination of nonspecular surfaces.
The degree of precision of the caustic map is important to gener-
ate accurate caustics. The radiance of the scene is approximated
through the global map. Since the global map is not directly visual-
ized, less photons are needed for the estimation of the lighting than
for the caustic map.
The application of two photon maps greatly improves the speed and
accuracy of the results, and it reduces the memory consumption of
the technique.
To manage the huge mass of gathered information, the key to
an acceptable computing time lies in the choice of the right data

Figure 6: For the estimation of the surface point’s local irradiance
a hemisphere that is positioned over the surface point x is expanded
until it holds n photons. The surface area that the hemisphere cov-
ers approximates the average of photon reflections.

structure. The best structure to store a photon map is a balanced
k-dimensional tree, which enables fast neighborhood searches, is
compact and efficient. One photon can be stored in only 20 bytes.

4.3.3 Rendering Of The Scene

Out of these two photon maps we create a lighted scene, by running
through the second pass, the rendering pass:
For each pixel of the projection plane a form of Monte Carlo ray
tracing follows the path from the viewer through the plane right
into the scene. At the first intersection point of a ray and a surface
the radiance can be estimated by the rendering equation (See chap-
ter 3.1.1). By using the information stored in the photon maps, the
results of a BRDF and the incoming light, we are able to speed up
the process.

The rendering equation’s integral, here denoted Lr, has to be split
up into four components regarding the different light sources. Li,l is
the light from caustics, Li,c the light from indirect soft illumination,
and Li,d the diffuse reflected light. f was split into a diffuse fr,d and
a specular part, fr,s. All parameters have been disregarded due to
clarity:

Lr =
∫

Ω

frLi,l(~w
′ ·~n)d~w′ (1)

+
∫

Ω

fr,s(Li,c +Li,d(~w
′ ·~n)d~w′

+
∫

Ω

fr,dLi,c(~w′ ·~n)d~w′

+
∫

Ω

fr,dL,d(~w
′ ·~n)d~w′

where fr = fr,s + fr,d and Li = Li,l +Li,c +Li,d

The first integral represents direct illumination, the second specu-
lar reflection, the third is responsible for the generation of caustics
and the last produces soft indirect illumination. All these compo-
nents are approximated through the photon maps. The result of the
equation is the light radiating from a surface.

Lr(x,~w)≈
n

∑
p=1

fr(x,~w′,~w)
∆Φp(x,~w′p)

πr2 (2)

Equation 2 estimates the radiance at a point x on a surface. It in-
cludes the photon map’s information into the rendering equation.

Figure 7: (image courtesy of Henrik Wann Jensen)
An image rendered in 1996 with the then new photon mapping tech-
nique by Henrik Wann Jensen.
Rendering time for a resolution of 1280x960 was 56 minutes.

For that purpose imagine a hemisphere (c.f. image 6) over x ex-
panding to the radius r until it holds n photons p. ∆Φp is the energy
radiated from each photon p in direction ~w′p. fr is the BRDF.

On some occasions the result may be a bit blurry, a weighted con-
filter can be used to regain accuracy. The weight represents the
distance between the intersection point and a neighborhood pho-
ton. An example result of Henrik Wann Jensens photon mapping is
shown in picture 7.

Photon mapping has all advantages of bidirectional ray tracing; it is
able to to simulate all possible light paths and even render caustics.
No aliasing problems arise as would for instance through texture
mapping or working with graphic primitives. Monte Carlo methods
cause high-frequency grain noise, but this can prevented through
the con filter.
As long as the surfaces are locally flat, the equation to estimate
radiance delivers good results.

5 Real-time and interactive caustic render-
ing

Since it is sufficient for most interactive applications to render the
scene with considerable simplifications to the global illumination
model rather than attempting to achieve physical accuracy through
costly GPU-based ray tracing, several methods for rendering plau-
sible results through approximation have been developed.
As stated earlier in this chapter, most approaches for the efficient
rendering of caustics operate in two passes; In the first pass,
particles or rays are emitted from the light source into the scene,
in the second pass the occurrences of the particles in the scene are
counted for each position as seen from the eye. When attempting
to render in real-time, most approaches opt for passing the majority
of the calculation load of one or preferably both of the passes to the
GPU in order to keep the CPU available for other tasks.

The calculation of the position and intensity of caustics is on
principle a question of visibility, that is, the number of times a
point can be reached from the light source. A basic algorithm for
determining the visibility of a surface point from the light source is

Figure 8: (image courtesy of Szirmay-Kalos et al.)
A distinction can be made among several possibilities of storing the
locations of the photon hits. Among these are image space methods
(illustrated on the left) in which the photon locations are stored
according to their pixel coordinates, whereas the middle image il-
lustrates texture space techniques that store the photon hits’ texel
coordinates. Cube map texel directions are used in the approaches
that employ cube map space methods (on the right).

shadow mapping as proposed by Lance Williams in 1988 [Williams
1988], however, this technique produces only a binary result for
the visibility and can thus not be employed directly for caustic
generation. Several approaches ([Wyman 2007], [Shah et al.
2007]) are predicated on the principle of shadow mapping and have
augmented the shadow mapping technique to not only determining
whether a point is visible, but instead counting the numbers of rays
reaching the point, thus being able to render caustics and shadows
in a single step.

5.1 Calculating the Photon Buffer

When the photon buffers that are used for the computation of the
light distribution in the scene in the second rendering step are
calculated, it must be taken into consideration that the final hit of
a photon on the scene geometry should not only affect that very
surface point, but should also be distributed to a certain region also
the surface neighborhood of the point of impact. This distribution
of photon energy may cause light leaks and even though this artifact
cannot be completely suppressed, the unwelcome occurrences can
be mitigated if the individual spreading among the neighboring
particles also depends upon the visibility of the particle from the
caustic generating object.
Many approaches have been proposed for both the determination of
the photon hits as well as the calculation of how the photon power
will be distributed among the affected surface points. We will cate-
gorize these techniques by the selection of the representation of the
photon hits’ locations. Therefore, we will first list the techniques
according to their choice of representation (see image 8) and then
give an overview over the existing approaches to optimize the
calculation of the photon’s influence on its neighboring regions.

5.1.1 3D Grid

The most obvious solution to the photon storage problem is to save
the photon hits regardless of the surface they intersected with in
a 3-dimensional grid. Since this method is prone to produce light
leaks, storing the surface normal alongside with each photon hit
can greatly help to reduce artifacts; with this enhancement, for the
determination of the local irradiance, only the hits that have sim-
ilar normal vectors as the respective surface point are taken into
account. The stored surface normal permits also the negligence of

the photons that arrive from the back face of the surface.
This storage form has been employed by Purcell et al. [Purcell
et al. 2003] who developed algorithms for the determination of the
nearest photons in the photon grid, thus allowing the estimation of
the irradiance corresponding to the neighboring photon hits at any
surface point of the scene geometry.

5.1.2 Screen- or Image-Space

In image-space techniques, the specific location of any point
of the scene geometry can be indicated by the two-dimensional
coordinates of the point when projected onto the view plane as
seen from the camera, and the depth from the image plane, hence
the term ”‘screen space”’. Several techniques use this principle to
store the photon hit locations. A huge advantage of image-space
approaches is that the photons can be splatted onto the surface of
the non-specular caustic recipient directly without further calcula-
tions. The downside is, however, that the results of image-space
techniques are susceptible to light leaks and the BRDF for the
photon hit’s location is hard to determine. A further limitation of
these approaches is that caustic appearances can only be rendered
in such cases when not only the caustics, but also the caustic
generating object in the scene is visible from the viewpoint.

Augmenting Shadow Mapping
The image-space caustics algorithm proposed by Wyman [Wyman
2007] is based on photon mapping [Jensen 2001], which natually
renders in two passes, the first pass determining the position of pho-
tons emanating from the light source, and the second pass joining
adjacent photons from the first pass to calculate the point’s actual
color.
As with all algorithms, a decisive factor for the speed is the choice
of photon storage method. Most photon mapping approaches opt
for balanced kd-trees, the downside of which is that their generation
is at best achieved at a runtime of O(NlogN). To bypass this incon-
venience, a third rendering pass is added. This pass runs through
all points visible in the shadow map and generates a caustic map
which stores the number of photons reaching the respective point in
the shadow map.
For the determination of the photon’s location, the scene is ren-
dered from the light’s origin using an approximate refraction algo-
rithm that supports up to two refractions along the light ray’s path
through the geometry. The algorithm computes most of the neces-
sary calculation steps on the GPU.
Wyman’s [Wyman 2007] trade-off between the limited amount of
rendering time and a maximum of realism employs a simplification
of permitting a maximum of two refractions of the light rays in the
scene. In spite of this limitation, the algorithm achieves satisfactory
results for real-time applications.
This approach follows the observation that the crucial point in cal-
culating light passing through two refractive interfaces is the calcu-
lation of the location of the second refraction: the first ray-object
intersection can be calculated through standard rasterization and a
pixel shader can be applied to find the direction of the refraction.

Determining The Distance
The main challenge lies in the determination of the distance be-
tween the first and the second refraction point. The direction of the
refracted ray is, of course, established by the ratio of the densities
of the environment and the refractor. The distance d̃1 is, according
to this circumstance, interpolated between the distances to the sec-
ond refractive surface in two extreme cases of the proportion of the

Figure 9: (image courtesy of Chris Wyman)
The first ray-object intersection point P1 and the surface normal N1
at point P1 can be determined by the rasterizer, the refraction that
occurs at this point is implemented employing pixel shaders which
compute the transmitted vector T1 according to Snell’s law.
The second intersection point P2 between the refracted ray and the
geometry is calculated using the approximated distance P1 +d1T1,
the refraction itself can again be computed employing pixel shaders
to determine the second transmitted vector T2. Finally, the twice
refracted ray P2+d2T2 is intersected with the background geometry
to identify P3.

refractive indices, the first of which being the distance d~V in direc-
tion of the refracted ray in case the indices of refraction are equal,
the second distance d~N following the negative surface normal −N1
which is the limit of the refracted direction for high refractor and
low environment density. (See figure 9) This method for the dis-
tance calculation is evidently not physically correct since the topol-
ogy of the second surface is completely disregarded, however, the
value is easily calculated and the results are sufficiently plausible.
Arising from the inaccuracy of the distance value d̃1, it is unlikely
that the thus computed point P2 actually lies on the surface of
the second refractor. This necessitates a precalculation of possi-
ble back-facing surface-normals; the appropriate surface-normal is
then selected for point P2 through projection.
The second refraction can then, in turn, be computed through pixel
shaders. For the intersection of the then twice refracted ray with
the background geometry, which also is a challenging task, sev-
eral existing techniques have been employed to achieve adequate
results. The output location P3 of the refracted ray is stored in the
photon buffer. If the algorithm should support both reflection and
refraction corresponding to the Fresnel effect, two separate photon
buffers must be constructed.
In the course of this rendering pass, additional information might be
obtained in separate buffers to produce more complex effects (e.g.
colored glass or caustics on non-diffuse surfaces).
In the second rendering pass, the photons that hit the surface indi-
rectly, that is, after one or more reflection or refraction, are stored
in the caustics map.
Every photon in the buffer storing the photon locations is treated
as a point primitive. This poses the problem that the photon’s en-
ergy is accumulated in a single point rather than spreading some of
its energy over its adjacencies. This problem becomes even more
prominent when a smaller number of photons is used because more
energy is aggregated in each individual photon.

5.1.3 Texture Space

The basic approach to texture space methods is that a photon hit’s
resulting reflected radiance is composed from the local BRDF mul-
tiplied by the photon’s intensity. The photon hit’s depiction should

hence feature both the surface point and its BRDF; these may be
identified by the pair of texture coordinates of the photon’s inter-
section with the scene geometry. Following these considerations, a
single entry in the photon hit storage structure consists of the two
texture coordinates of the referenced photon hit and the luminous
intensity carried by the photon, which is calculated from the illumi-
nant’s intensity and the entrance angle. Light leaks are an issue with
this approach as well, since the adjoining points in texture space
might comprise points that are actually occluded from the viewing
direction.

5.1.4 Ray Space

A method that will theoretically provide per-pixel accuracy and can
render without light-leaks is to store the light ray after the last per-
mitted reflection or refraction rather than the surface intersection
point. However, for the final projection of the caustics, the hit of
the ray with the scene geometry has to be determined which is not
trivial and requires the trace of many photons unless some filtering
is applied. For simplification, some approaches therefore disregard
visibility issues.

Warped Volumes For 3D Caustics
A recent approach proposed by Manfred Ernst et al. [Ernst et al.
2005] that uses a ray space storage approach considers caustics as
the intersection planes of warped volumes with receiver surfaces.
The nature of this approach also supports the rendering of volumet-
ric caustics.
The basic steps of this technique will be described in the following
passages.
In contrast to previous algorithms using caustic volumes, which
assumed that caustic volumes could be described through prisms,
Ernst’s approach chooses not to adapt this simplification. Instead,
each side of the caustic volumes utilized in this method is repre-
sented by the specular triangle’s vertices and their corresponding
refractive or reflective vectors. In the right part of figure 10, the
corner points of the volume’s specular triangle are depicted by the
vertices v0 and v1, their respective vectors are r0 and r1.
Each side surface of the caustic volume that is defined by two points
from the specular triangle and two points of the caustic triangle
forms a bilinear patch which is a quadrilateral formed by four ver-
tices in three dimensional space. The linear interpolation of the
vertices’ positions defines the surface of the patch, whereby bilin-
ear interpolation is a generalization of linear interpolation.
For the calculation of a point p inside the caustic volume, a caustic
triangle that contains the point p must be determined. On principal,
it is irrelevant which plane is chosen for the caustic triangle as long
as the triangle contains the point p. However, if an arbitrary plane
is chosen and intersected with the bilinear patch, the resulting cut
surface is a quadratic curve with curved edges. To prevent this, the
normal of the plane for the caustic triangle is set equal to the nor-
mal of the caustic triangle, thus ensuring that the caustic triangle
containing point p will have straight edges.

Point-In-Volume-Testing
The most performance-intensive part of the warped volumes
method is the testing whether each pixel inside the caustic vol-
ume’s bounding volume lies inside the caustic volume.

In the basic method of determining whether a point p is contained
by a volume V , the coordinates of p are transformed to a point
p′ that lies in the coordinate system of volume V . As described

Figure 10: (image courtesy of Ernst et al.)
Figure a) displays an example of the caustic volumes employed in
this method.
The caustic volumes are stored in a 2-dimensional coordinate sys-
tem as depicted in figure b)

above, an intersection plane containing the transformed point p′
is constructed in the volume’s coordinate system, resulting in the
calculation of the intersection points c0, c1 and c2 of the intersection
triangle of the plane and the caustic volume. Checking whether p′ is
inside the intersection triangle is trivial and can be done employing
any point-in-triangle test that provides for sufficient performance.

5.1.5 Cube Map Space

When rays leaving the caustics generating object are traced, a dis-
tance map is employed whose coordinate system can be directly
adapted to represent the photon hits’ locations. In this approach, a
photon hit is therefore specified by the direction and the distance
from the referenced texel in the cube map. This reference is used as
the projection center when a neighborhood for filtering is specified
by the surface points that are projected onto adjacent texels who
also feature similar distances according to the distance map.
Light leaks are not an issue in this approach which is related to
shadow testing.

5.1.6 Shadow Map Space

In shadow map space, each photon hit location is specified by
the direction of the ray emanating from the light source that hit
the surface point and the calculated depth, the illuminant lying
in the origin of the coordinate system. Since rendering from the
light source is needed in many rendering techniques anyway, this
method of photon hit identification can easily be integrated in to
the rendering pipeline. However, light leaks may cause artifacts in
this storage approach as well and as in the image-space approaches,
it is not possible to simulate caustics that originate outside of the
illuminant’s frustum.

An algorithm by Musawir A. Shah et al. [Shah et al. 2007] that
stores photon hits in shadow map space and that resembles shadow
mapping closely in general will be described in the next passages.

Figure 11: (image courtesy of Shah et al.)
The intersection is estimated through the initial point of on the ray,
v, a normalized vector~r pointing in the direction of the refraction
and the previously generated texture ’positionTexture’

in a first step, the receiver geometry is rendered into a 3-
dimensional texture labeled ’position texture’ is generated. The po-
sition texture stores the 3D-world coordinates of each pixel and is
required in the next step for the performance of ray-intersection-
estimations.
Subsequently, the 3D-world coordinates and the surface normals
are rendered for each pixel as seen from the light source. Thus, tex-
tures are generated which represent the refractive object during the
further progress of the algorithm. The texture is basically a map-
ping of each vertex in a grid of vertices to a pixel on the texture.
The crucial part of the algorithm lies in the assembly of the caustic
map. The vertex grid texture is rendered from the light’s position in
a vertex shader, the distance of the resulting vertices from the light
has to be estimated and the vertices are placed along the light direc-
tion according to the distance information. To allow multiple ver-
tices at a single location of the receiving surface (thus, generating
caustics), each vertex contributes its respective intensity through
additive alpha blending.
For the accomplishment of the non-trivial task of calculating the in-
tersection point between light ray and scene geometry, Shah et al.
propose an iterative technique that renders at less cost than conven-
tional intersection calculation that cannot perform in real-time.
Any position along the refracted light ray can be defined as

P = v+d ∗~r (3)

d being the distance from the current vertex v and~r a normalized
vector pointing in the direction of the refracted ray. (These param-
eters are illustrated in figure 11)
Now according to this consideration, an initial value is assigned to
the distance d, thus computing a position P1. In the first iteration,
the initial value will be set to 1, for all other iterations, the distance
between v and the last estimated intersection point will be used as
new estimation for the value of d.

P1 = v+1∗~r (4)

When P1 is projected onto the light’s view space, the previously
computed position texture map is used to lookup the position of
the point P1 pro jection on the light’s view space. The distance d′
between the thus computed point P1 pro jection and the vertex v is
appointed as an estimation for the calculation of another point P2
which is subsequently projected into the light’s view space as well,
finally calculating the estimated intersection point.

Figure 12: (image courtesy of Szirmay-Kalos et al.)
A bad choice of splatting filter size will usually result in the rendering of unsatisfactory caustic depictions. Whereas the image on the left was
generated using a too small splatting filter and the right one with a too large filter, the filter for the middle image had to be adjusted manually
to optimize the results.

5.2 Photon Hit Filtering

Regardless of the storage structure of the constructed photon maps,
the photon hits are now represented as a discrete structure, which is
insufficient for the final rendering, thus filtering is required to con-
vert this discrete texture into a continuous pattern which can then
be applied onto the receiver surfaces.
In the original photon mapping technique [Jensen 1996], this filter-
ing was performed during the last rendering pass when rendering
from the view point. The filtering method of the photon mapping
algorithm was explained in image 6.
However, the filtering can be significantly simplified if it is not im-
plemented in camera space but instead in the coordinate system
where the photons are stored. This observation suggests the intro-
duction of a filtering pass that is executed between photon tracing
and final gathering, which generates a texture, the caustic intensity
map. During the third rendering pass, the caustic intensity map is
then projected onto the affected surfaces.

5.2.1 Photon Splatting

Passing through the previously generated photon map, the photons
that have been reflected or refracted are selected and rendered into
the caustic map using additive alpha-blending to count the number
of photons per pixel.
Especially at a smaller photon count, it is advantageous for the im-
age quality to treat each photon as a splat and accordingly distribute
the photon’s energy over multiple texels, for instance with Gaussian
weights. The weight of the Gaussians must sum to 1 in order to pre-
serve the energy. The smaller the splats are, (and thus, the sharper
the caustics) the more splats must be calculated to obtain a high-
resolution caustic-map with a minimum of noise. It depends on the
application whether it is sufficient to generate blurry caustics with
a smaller number of large splats or very crisp caustics at a higher
resolution of the caustic map.
Essentially, photon splatting is a filtering pass during which the
filter radius is invariable, but more photons are averaged in high-
density regions. As figure 12 illustrates notably, the choice of a
splat size is not trivial since a choice of one uniform size does not
consider the irregular distribution of the photons on the surface in-
herent to the caustic pattern. Furthermore, the orientation of the
receiver surface is not incorporated in the photon splatting algo-
rithm. This may cause unrealistic results in extreme cases.
During the execution of photon splatting on the GPU, a quadriliter-
als is employed for each photon in the photon map. The rectangle
is rasterized and processed by the fragment shader, subsequently a
filter texture is assigned to the rectangle and with the use of addi-
tive alpha-blending, the contribution of all splats to the energy of

one single surface point is calculated.
The splatting procedure can be performed in screen space, but also
in any other of the above described photon storage spaces.

5.2.2 Caustic Quads Or Triangles

The caustic triangles algorithm follows the idea of beam tracing
[Watt 1990] which is based on the proposition that adjacent rays
emanating from an illuminant form a beam. Every single beam is
defined by its corner rays and usually has a triangular profile, thus
a beam-surface-intersection can also be approximated to a triangle.
This idea is pursued in this technique where three neighboring pho-
ton hits are assumed to form a caustic triangle, which are additively
blended together. A filter should be applied before projection to
avoid sharp triangle boundaries.
An advantage of this approach over photon splatting methods
is that unlike photon splatting, this technique always provides
continuous textures.

In caustic volume approaches like in the method by Ernst et al.
[Ernst et al. 2005], it is absolutely necessary for obtaining satisfac-
tory results that the caustic intensities inside the caustic triangles
are interpolated so as to prevent visible block artifacts and guaran-
tee smooth caustic presentation. A comparison of a scene with and
without triangular interpolation can be found in figure 13.

5.3 Projecting Caustics And Composing The Scene

Projection of the caustic pattern onto the receiver surfaces may an
issue before the rendering of the scene depending on the choice of
photon storage in the last rendering step.
If the photons are stored in screen space, obviously no projection is
needed.
The projection of the caustic patterns from texture space is per-
formed at one go in a normal texturing step.
In shadow map space or cube map space, an algorithm similar to
shadow mapping can be applied for the projection; during the gath-
ering pass each point is transformed to the cube map coordinate
system. A comparison is made between the distance value stored in
each of the cube map texels and the distance of the currently pro-
cessed point. For similar values, it is assumed that the point is vis-
ible from the caustics generating object. This method helps mini-
mizing light leaks artifacts on the cost of one extra texture lookup in
the shader. For ray space techniques, the individual photon-surface-
hits are projected onto the receiving surface through an auxiliary

Figure 13: (image courtesy of Ernst et al.)
This is a characteristic example of how the interpolation of the
caustic intensities inside the caustic triangles improves the result-
ing image. The top image and the bottom image display the same
scene, but the caustic effects of the top image have not been inter-
polated, which evidently results in a discernible and undesirable
triangular pattern.

function in image-space. For each photon, a line is drawn in screen-
space, after which it is examined whether the current pixel is similar
to the point depicted by the line. If this is the case, an intersection
can be located by rendering the ray into a separate row of a texture,
where the first hit is subsequently calculated.

Finally, the scene is rendered using one of the existent rendering
techniques, adding the caustic contribution to the results of the
diffuse surfaces.
Wyman’s approach only updates the caustic map whenever either
the light or the scene geometry changes. Since both the first
and third pass of this approach use the reflection and refraction
algorithm, this method must be fast enough to run at least twice per
frame to maintain a fluent handling of the interactive application.
By choosing the resolution for photon buffer, caustic map and final
screen size, a trade-off between cost and quality can be individually
adjusted.

5.4 Simplified Caustic Generating Algorithms

Several algorithms that try to achieve visual attractiveness or simu-
late caustic effects without regard to the physical correctness of the
caustic calculation have been proposed over the course of years of
caustics research. Perhaps most notably the simulation of underwa-
ter caustics has received particular attention due to the large visual
enhancement and increased degree of realism that the integration of
caustic simulation in underwater scenes brings about.
In 1996, Jos Stam [Stam 1996] precomputed random caustic tex-
tures and projected them onto the receiving surfaces in the scene.
This technique renders caustics very quickly because little compu-
tation is involved and physical correctness is disregarded. However,

this method is only sufficient in cases where the caustics cannot be
perceived very clearly and the scene geometry is simple since both
water surface and receiver geometry do not influence the caustic
pattern.
The same limitation applies to Trendall and Stewart’s caustic algo-
rithm [Trendall and Stewart 2000] which computes refractive caus-
tics through integration of the caustic intensities numerically on a
flat receiver surface. Like Stam’s algorithm, this technique is not
applicable to arbitrary receiver surface and moreover cannot handle
shadows.
The interactive caustics rendering technique by Wand and Strasser
[Wand and Straßer 2003] samples points on the caustic-forming
object explicitly. The caustic intensity contribution of each of the
points on the caustic-generating object are taken into account with-
out testing for visibility. This intensity of these sample points is
composited by the entries in a cube map which embody the visible
light sources in the reflection direction.
This method supports both reflective and refractive caustics. The
explicit sampling poses a disadvantage of this algorithm: the scal-
ability is restricted since the runtime is directly proportional to the
sample points count.

6 God Rays

For the accomplishment of physically correct rendering results of
god rays, the process of the scattering of light would theoretically
have to be reproduced; while travelling through the scene, on the
impact on a particle, a light ray gets scattered, thus creating more
rays, which in turn get scattered on their next impact, and so further.
This recursion would be, with current computational capabilities,
impossible to compute which is why, once again, good approxi-
mations of the complex physical process will bring more effective
results.

The air is always full of small particles; in nature there are even
special weather phenomenons which accumulate the air with solids
or fluids, such as morning fog and sandstorms. When light hits
these particles, the path of the light, normally not perceptible, is ren-
dered visible: god rays occur. Differently from the previously dis-
cussed caustics depiction which produce a two-dimensional pattern
on a surface, the simulation of god rays always has a 3-dimensional
character.
Caustics could actually be regarded as the final intersections of mul-
tiple (god) rays with a surface, a consideration which is taken in ac-
count by some god ray rendering techniques that produce caustics
and god rays simultaneously. From this point of view, god rays can
be looked upon as a sort of three-dimensional caustics.

6.1 Volume Photon Mapping

With the paper Efficient simulation of light transport in scences
with participating media using photon maps [Jensen and Chris-
tensen 1998] photon mapping was extended into 3-dimensional
space. This is necessary to trace light traveling through partici-
pating media. Volume photon mapping is able to handle lighting
effects that other methods have to neglect: Anisotropic scattering,
multiple scattering, color bleeding, god rays and light radiating
through nonhomogeneous media are easily obtained.

Bidirectional Monte Carlo ray tracing with photon maps is used to
generate the scene’s illumination, and it is the base to create illumi-
nation in participating media.

Figure 14: (image courtesy of Szirmay-Kalos et al.)
The left figure depicts a low-res photon map of a 3-dimensional scene, on the middle, the same scene is seen already featuring the photon
hits, but yet without blending. On the right side, the final scene with blending, displaying beautiful caustic effects.

To approximate the light’s path through participating media, the
underlying physics have to be examined:

6.1.1 Light Transport In Participating Media

The following equation 5 describes the change in radiance at the
point x in the direction ~w. L(x,~w) is composed of emission, in-
scattering, absorption and out-scattering of light. Some rearranging
results in the following formula:

L(x,~w) =
∫ x

x0

τ(x′,x)α(x′)Le(x′,~w)dx′ (5)

+
∫ x

x0

τ(x′,x)σ(x′)
∫

Ω

f (x′,~w′,~w)L(x′,~w)dw′dx′

+ τ(x0,x)L(x0,~w)

with Le being the emitted radiance.

τ(x′,x) = e−
∫ x

x′ κ(ξ)dξ (6)

τ is the light transfer along x′ to x.

κ(x) = α(x)+σ(x) (7)

κ(x) is composed of the absorption coefficient α and the scatter-
ing coefficient σ . If these coefficients are constant throughout the
medium, the medium is called homogeneous or uniform.

The light transport in the participating media equation describes a
general case, several simplifications can be accomplished for ho-
mogeneous media or isotropic scattering.

6.1.2 The Volume Photon Map

In addition to the caustic map and the global map, a volume map is
built. This map serves as storage of the photons which interact with
the participating media, and it is only used to create illumination in
the participating media. The density of photons in space can serve
as a measurement of the intensity of the illumination. Furthermore,
we save the incoming direction of each photon for the computation
of isotropic scattering.

In this approach, the direct illumination is computed through ray
tracing although volume photon mapping might achieve the same
results. The reason is that ray tracing causes lesser computational
cost in exchange for speed. Hence the volume photon map is only
used for indirect illumination, i.e. only photons reflected of a sur-
face or photons that are scattered at least once, are stored.

When light travels through a medium it can either collide with a
particle or pass straight through the medium without collision. The
probability of collision on position x is described by the cumulative
probability density function:

F(x) = 1− τ(xs,x) = 1− e−
∫ x

xs κ(ξ)dξ (8)

The position where the light ray enters the medium is xs, τ(xs,x) is
calculated with ray marching.

If the light hits a particle it can be either absorbed or scattered. The
Russian roulette method chooses between either possibilities, the
probability of scattering is defined by σ(x)/κ(x).
A modification of the phase function eventually computes the new
direction of the light ray.

6.1.3 Estimating The Radiance

The volume map’s information is necessary to compute the in-
scattered radiance Li(x,~w) at point x in direction ~w .

Just like for the estimation of the photon mapping’s radiance 4.3 we
assume a hemisphere over the point x, see figure 15. Out of all pho-
tons gathered in this sphere the in-scattered radiance is computed
with the following formula.

Li(x,~w) = Li,d(x,~w)+
σ(x)
κ(x)

Li,i(x,~w) (9)

where Li,d denotes the direct illumination, and Li,i the indirect illu-
mination.

6.1.4 Rendering The Scene

To render the scene the same method as shown at 4.3 is used with a
little modification. For a proper adaption those light rays have to be
taken into consideration that went straight through the participating

Figure 15:
Photon hemisphere in a volume:
Over a point x a hemisphere is presumed. The irradiance at point x
is calculated out of all photons in this hemisphere.

media while calculating the global illumination.
The radiance is calculated iteratively along a ray with a ray march-
ing implementation. In each step, the radiance of the ray’s previous
section diminishes. This is accomplished with the approximation
stated in equation 12.

L(xk, ~ω) = α(xk)Le(xk, ~ω)∆xk (10)
+σ(xk)Li(xk, ~ω)∆xk∆ (11)

+e−κ(xk)∆xk L(xk−1, ~ω) (12)

where ∆xk = |xk− xk−1| is the step size.

Examples of images rendered with volume photon mapping are pre-
sented in figure 16 and 17.

6.2 Line Space Gathering

The paper Line Space Gathering for Single Scattering in Large
Scenes [Sun et al. 2010] refrained from the idea of lighting simula-
tion through photons. It examines the light ray as a whole instead.
The light rays near the viewing ray are gathered and their illumina-
tion is summed up.
The simplifications that are conduct in the presented technique are
single scattering and the assumption of homogeneous media. It is,
however, possible to display reflective and refractive objects, and
different light interactions such as occlusion and multiple specular
bounces. The only other method which is able to calculate these
light effects is volume photon mapping, a technique with consider-
ably higher computational and memory costs. The algorithm intro-
duced in [Sun et al. 2010] cuts those costs significantly. For a direct
comparison between photon mapping and line space gathering see
figure 18.

6.2.1 Radiance Estimation

The radiance calculation is based on equation 5 from 6.1, where
the change of radiance at a point x in direction ~w is computed. But
instead of gathering all the in-scattering light of photons within a
square (see equation 9) of sample points along ~w, the radiance is
approximated through beam gathering, equation 13. L(x,x0) is the
sum of the illuminations Lr, of the lighting rays which pass through

Figure 16:
This cloud is modeled as a non-homogeneous, anisotropic medium.
In the upper image, the cloud is rendered with direct illumination
and single scattering, below with global illumination and multiple
scattering.

Figure 17:
To render the god rays in this underwater scene as many as three
million photons were used.

Figure 18:
The scene was rendered twice on the same computer (dual Intel
Xeon X5470 3.33 GHz quad-core CPUs and a NVIDIA GeForce
GTX 280 graphics card). The left image used line space gathering,
it was calculated in 26 min on the CPU, 3.7 min on the GPU and
took 404MB (CPU), ¡800MB(GPU) memory. The right image was
done with volume photon mapping in 729 min (CPU) and at 7.1 GB
(CPU) memory costs. The image had a resolution of 512 x 512 with
2x2 supersampling.

Figure 19:
Passing of a lighting ray through a space near a viewing ray:
The lighting ray l passes through a cylinder with the radius r that is
assumed around the viewing ray. x′′ is the nearest point on l toward
the viewing ray, passing at a distance of d.

a space along the viewing ray, defined as a cylinder with radius r,
see figure 19.

L(x,x0)≈
n

∑
l=1

Lr(x,x0, l) (13)

Lr is estimated by assuming the flux of the ray to be constant and
the media to be homogeneous.

Lr(x,x0, l)≈ ω(x′′,x, ~ω ′, ~ω)φl(x
′′, ~ω ′)

(r2−d2)1/2

sin(θ)
(14)

ω(x′′,x, ~ω ′, ~ω) =
τ(x′,x)σ(x′) f (x′, ~ω ′, ~ω)

πr2 ‖x− x0‖
(15)

The vertices x and x0 describe a line segment on the viewing ray.
x′′ is a point on the lighting ray l with minimal distance d to this
line segment. θ is the angle between these two rays. φl(x′′,~w′)
describes the flux at x′′ flowing in direction ~w′ along a lighting ray
l. For a reference see figure 19.

As illustrated in figure 20, equation 13 enables direct illumination
transfer between lighting rays and viewing rays completely without
the representation of light particles or media particles.

Figure 20:
First lighting and viewing rays are generated. For the generation of
the final image the radiance of lighting rays intersecting or nearing
a viewing ray are summed up, resulting in the final radiance value
of the corresponding pixel.

6.2.2 Gathering Lines

The main challenge of this method is the gathering of lines that
nearly intersect. Since there is no efficient spatial hierarchy in 3D
space to do this job, the line gathering will be performed in a 6-
dimensional parametric space of Plücker coordinates and coeffi-
cients.

The procedure will be described in the following passage:
Initially, the scene geometry’s spatial hierarchy is constructed as a
kd-tree. Subsequently, the lighting rays are computed, a step which
includes their refractions, reflections and their radiance.

The next step is responsible for transforming the lighting rays l to
Plücker coordinates π(l) and the viewing rays l′ to Plücker coeffi-
cients ϖ(l′). In this 6D space every line from 3D space is repre-
sented as a point π(l) or a hyperplane ϖ(l′) which goes through the
origin of the 6D space.

Finding the nearest light rays to a viewing ray is equivalent to find-
ing the nearest points to the corresponding hyperplane. Equation 16
defines which points are adjacent, in this case d is the lower bound
of the distance between two lines.

d ≥
6V(a,b,a′,b′)

c2 =
|π(l)•ϖ(l′)|

c2 , (16)

where c is a fixed distance between the lines (a,b) and (a′,b′) and
accordingly l and l′. The correlation between the two equal parts
of the equation is that a 1

6 of the determinant’s magnitude of π(l)•
ϖ(l′) is the volume of the tetrahedron hoisted by the two line’s
vertices, see figure 21.

Out of the points π(l) and the distance information a 6-dimensional
space hierarchy is constructed as a perfectly balanced octary tree.
Finding the nearest lighting rays along a viewing ray then takes
only a search through the tree. To get the final radiance along the
viewing ray the radiance of these nearing lighting ray segments are
summed up.

This method is not fixed to a certain type of light path or volumes
of fixed resolution. It can be implemented on the GPU and is there-
fore much more efficient than volume photon mapping. Various
ray tracing techniques can be combined with line space gathering.
This technique is able to generate a lot of advanced lighting effects

Figure 21:
The 3-dimensional coordinates of the viewing ray l and the lighting
ray l′ construct tetrahedron. d is the distance between l and l′. This
distance is the measurement for the proximity of these two lines.

among others caustics and god rays. Observing the rapid GPU com-
putation developments, [Sun et al. 2010] expects their technique to
be capable of achieving real-time implementations in the future.

6.3 Creation Of Atmospheric Lighting Effects

This method [Hura and Hall 2006] was designed specifically for
the rendering of god rays caused by clouds. It aims for realis-
tic and highly aesthetic results. Therefore it introduces an algo-
rithm with pseudo-physical faithfulness to simulate a quite authen-
tic light-cloud interaction.

6.3.1 The Cloud Model

For this approach clouds are constructed by a hybrid model of parti-
cle systems and metaballs (blobs). Particles are interpreted as points
in 3D space with different properties such as size density and color.
Since real clouds consist of tiny droplets of water this would be
the physically correct simulation of clouds. Metaballs are volumes
with deformed boundaries; each ball has a center, a radius and a
density. Through intersection with other metaballs, their surfaces
deform accordingly to their properties, simulating a natural behav-
ior of clouds.
These two models are combined by using the Metaballs as macro-
structure for the particles. This allows us to comfortably model
light shafts caused by gaps in the clouds as well as light scattering
in participating media.

6.3.2 Illumination Approximation

To calculate the lighting, a variation of the Light Transport Equation
is used (equation 17).

dL(x,ω)

ds
= Ks(x)

∫
4π

P(x,ω,ω ′)L(x,w′)dω
′−K(x)L(x,ω) (17)

There a several new terms in this equation: Ks(x) is the scatter-
ing cross section per unit volume. P(x,ω,ω ′) is a phase function
describing the probability density of light coming from ω and scat-
tering into direction ω ′. To solve the phase function the Henyey-
Greenstine method is used 18. K(x) is the extinction coefficient, it
is the sum of absorption K(a) and scattering coefficient K(s), de-
scribing light attenuation per volume unit.

PHG(φ) =
1

4π

1−g2

(1+g2−2gcosφ)
3
2

(18)

The LTE is normalized to get a value between 0 and 1. 0 indi-
cates no light and 1 maximal lighting. In [Hura and Hall 2006] four
different approaches to solve LTE were discussed: Monte Carlo,
discrete ordinations, spherical harmonics, and the finite element.
The conclusion drawn by Hura et al. was that the modified Monte
Carlo delivers best results in regard to physical correctness. Monte
Carlo shoots a large number of photons from the light source into
the scene in random directions, calculating a random sample of the
integral domain of the LTE. The Monte Carlo method can cause
aliasing if too little samples are used; Henrik Wann Jensen [Jensen
and Christensen 1998] showed a way to prevent aliasing.

This method imposes standards on aesthetic and realism, it has high
computing costs, but since its an offline algorithm, this factor is not
as relevant as in real-time applications.

7 God Rays In Real-Time

Same as in caustics simulation, a minimization of computation cost
is imperative to the success of an algorithm.

For the accomplishment of real-time rendering, an optimal physical
simulation of the scattering effect immanent to god ray creation
is not possible. The physical lighting model has to be simplified
and satisfactory and visually appealing results are achieved through
simplification, filtering and interpolation.

7.1 A Post-Processing Pipeline To Render Sunlight
With Volumetric Light Rays

To render light beams that are caused by a direct glance at the partly
occluded sun, Pawel Rohleder and Maciej Jamrozik [Rohleder and
Jamrozik 2008] propose a post-processing approach on the GPU.
The fundamental principle of their approach is to bloom and blur
parts of the scene around the position of the sun to simulate over-
exposure.

This method requires three render targets and seven post-processing
steps to render the final image using simple post-processing opera-
tions.
The main render target holds the image of the rendered scene in full
resolution. The two other render targets (Temp0, Temp1) contain
the same imagine a smaller size with one-sixteenth resolution of the
original image.
The post-processing pipeline is shown in figure 22.

1. In the first step the scene is rendered into the main render
target.

2. The main render target is down-sampled into Temp0.

3. Temp0 is horizontally blurred into Temp1 as shown in Mi-
crosofts HDRLighting sample, in which Bloom-Effect, Star-
Effect and tone-mapping are added.

4. Temp1 is Vertically blurred into Temp0 again like Microsofts
HDRLighting sample.

5. Steps five and six are the main steps of the method.
In step five a Radial Glow Mask is calculated (see figure 23).
The purpose of this mask is the simulation of pixel glowing,
at which pixel farther away from the sun exhibit little to no
glowing. The mask is applied to the blurred image of Temp0
by positioning a greyscale gradient texture on the blurred im-
age at the sun’s position. The texture’s and Temp0’s pixels
are then multiplied and saved in Temp1.

Figure 22:This image shows the seven steps of the post-processing pipeline introduced at 7.1.

Figure 23:
This is an example grey scale texture used to compute the radial
glow mask.

By scaling the texture’s size or intensity different appearances
of the final effect can be achieved.
The Radial Glow Mask is implemented with a vertex and pixel
shader. The source code can be obtained at Appendix A of
[Rohleder and Jamrozik 2008].

6. Subsequently we calculate the Radial Glow Illumination from
Temp1 and save it in Temp0. This is done by means of a
gather operation. For each pixel, a line connecting it to the
sun’s screen-space position is computed. Along this line n
samples are placed. These samples are weighted according to
the sun’s distance. The highest value is at the sun’s center, it
decreases with increasing distance from the sun. The output
of this operation is the weighted sum of the radial glow mask’s
texels at the sample points. This way the pixel intensities are
blurred from the sun’s center outward.
The source code of the vertex and pixel shader to calculate
the Radial Glow Illumination are shown in Appendix B of
[Rohleder and Jamrozik 2008].

7. To get the final image Temp0 has to be added to the main-
render target.

The complexity of the scene has no relevance for computational
cost since this method is post-processing. It is also easily integrated
in an existing post-processing pipeline. The technique is only able
to simulate god rays caused by a direct glance into the sun, i.e. if
the illuminant does not lie beyond the image borders.

7.2 Shadows Inside God Rays

[Tóth and Umenhoffer 2009] introduces a method to render god
rays in real-time by using shadow maps to detect the occlusion in
the light beams and interleaved sampling to reduce the computation
cost. The algorithm is limited to single scattering in non-emissive
homogeneous media but able to manage solid dynamic occluder
objects (figure 24) and dynamic light sources. It is based on classic

Figure 24:
An object blocks the lighting rays path and causes a shadow inside
the god ray.

ray marching with some extensions and implemented in a single
fragment shader as a post-process operation on the GPU.

7.2.1 Radiance Estimation

The lighting is calculated with the radiative transport equation,
which is based on the render equation(3.1.1) and introduced by [Ka-
jiya 1986]. It computes the change in radianceL(~xs, ~ω) along a ray
~x(s) = ~x0+~ωs connecting a point at a surface and the eye, in which
s stands for the ray parameter.
After simplifying the equation by assuming single scattering, it is
approximated through a finite Riemann summation, see 19.

L(~x(s), ~ω)≈ L(~x(ln), ~ω)e−τs +
N

∑
n=0

Li(~x(ln), ~omega)e−τ(s−ln)∆l

(19)
∆l = s/N is the step size, which is proportional to the length of the
ray and inverse proportional to the number of sample points N. τ is
the density describing the probability of collision.

The in-scattering light Li is described in 20.

Li(~x, ~ω) = τα
φ

4πd2 v(~x)eτdP(~ωl , ~ω) (20)

φ is the power of the light source. α describes the albedo equaling
the probability of scattering, P(~ωl , ~ω) is the Phase function, d is the
distance between the point and the light source. v(~x) indicates the
visibility of the sample point from the light source.

The principles of these calculations are illustrated in figure 25

Figure 25:
A viewing ray ln travels until it hits a surface. Along this ray the
values of Li are calculated iteratively with a certain step size.

The ray marching algorithm approximates equation 19 iteratively.
The underlying principle is to determine the radiance at a visible
surface point without taking into account the participating media
and use it as a boundary condition for the volume radiance. The
participating media causes a decrease of the radiance between the
surface and the eye. To determine the final value we iterate N times
along the ray and calculate the in-scattering light Li and the ab-
sorption factor e−τ(s−ln) for each segment. The final illumination is
composed by the sum of their products.

The number of steps N along a ray is proportional to the computing
time. Too many steps cause slow rendering, however, too few
samples cause image artifacts: A compromise must be found.

A good way to solve this problem is to use interleaved sampling for
the ray marching algorithm. This is possible because the surface
and the scattering are similar in the neighboring pixels.

7.2.2 GPU Implementation

If any occluders lie in the light beam’s way, we take them into ac-
count by means of ray marching. The visibility factor can be calcu-
lated in every step along the ray, using regular shadow maps gener-
ated from the light source position.

The final radiance is stored in every pixel of the scattering image.

The following shader code calculates the radiance and the visibility
for every line segment.

L = L0 * exp(-s* tau);
for{float l= s - dl; l<= 0; l-= dl){
x += viewDir * dl;
float v = shadowMC(shadowMap,x);
float d= length(x);
Lin = exp(- d * tau) * v * Pi/ 4 M_pi/d/d;
Li = Lin * tau *albedo * P(x, viewDir);
}

The visibility indicator v is computed through the shadow test func-
tion shadowMC. The ray marching algorithm can be applied as
during post-processing.

8 Underwater Lighting Effects

The realistic rendering of water is an essential part to create realis-
tic images of natural scenes. Due to water’s transparent character,
the water surface can be perceived from two directions, from above
looking down and from below, looking up.

Figure 26: (image courtesy of Jason Slaughter)
This is an exceptionally beautiful example for underwater lighting
effects.

In nature, water is never a homogeneous media. It is always mixed
with small particles or organisms, causing light to scatter while it
travels through. As a result of the presence of these particles, the
god ray phenomenon is ubiquitous in underwater scenes. Other im-
portant effects which add to a rendered scene’s realism are under-
water caustics and shadows. In natural environments catacaustics
occur when observing the water from above and diacaustics below
the water surface.

Underwater szenarios are not only fascinating and visually at-
tractive (see figure 26) but also gain importance in real-time 3-
dimensional applications. Real-time underwater lighting effects are
particularly difficult to achive because they depend on the light re-
fraction at the animated water surface. This adds another step in
computation, making real-time yet harder to accomplish.

In the following several approaches to generate underwater god rays
will be discussed.

8.1 Illumination Volumes on GPU

Iwasaki et al. [Iwasaki et al. 2002] introduced a viewpoint depen-
dent technique to render underwater optical effects offline on graph-
ics hardware. The method is able to generate caustics, god rays and
shadows of objects within the water volume. Caustics are obtained
by a stencil buffer, god rays make use of the hardware’s color blend-
ing functions and the shadow map technique is used to produce the
shadows.
Since caustics and god rays are the result of convergence and diver-
gence of refracted light at the water surface, it is important which
wave model was used to generate the surface. In this case a statisti-
cal wave model builds the surface.

8.1.1 Previous Work

The basic idea for this method is picked up at previous work
by Nishita and Nakamae [Nishita and Nakamae 1994]. In their
approach, the water surface is considered a mesh of triangles.
Through each triangle a light beam refracts and strikes the ocean
floor. These refracted light beams hoist a parallelepiped with the

height of the water’s depth, called illumination volume (see fig-
ure 27).
Nishita and Nakamae [Nishita and Nakamae 1994] calculate the in-
tensities of the illumination volumes and store them in a accumula-
tion buffer. Since this buffer was not implemented on the GPU, the
method was slow, the generation of underwater images took sev-
eral minutes. By using the GPU [Iwasaki et al. 2002] the process
could be speeded up significantly and was able to render in several
seconds.

8.1.2 The Method

In this model the light shining on the water surface consists of
direct sunlight and skylight. The skylight is considered to be
ambient light.

To calculate the light intensity Iv(λ) at the viewpoint Iv below the
water surface, reaching from a point at the water surface Q, the
following equation is used:

Iv(λ) = IQ(λ)e−αλ dist +
∫ dist

0
IP(λ)e−αλ l dl (21)

Iv(λ) depends on the wavelength λ of the light, the distance dist
between view point Iv and the the surface point Q, a light attenu-
ation coefficient −αλ , and the intensity of scattered light Ip at a
point between Q and Iv. The integral term describes the intensity of
the light scattering along the viewing ray.
This integral term is approximated through the illumination vol-
umes. Since light fades exponentially with the water’s depth, the
volumes are divided horizontally into subsections (c.f. figure 27).
For each of these sections the scattered light at a point IS

P in the sub-
volume is calculated with equation 22. A smooth change between
sections can be obtained by creating a sufficiently large number of
thin subsections near the water surface, where the light intensity is
still high. The GPU can take care of blending sections together.

IS
P(λ) = (Isun(λ)T

aS

aC
P(λ ,φ)e−αλ d + Ia)ρ (22)

Here Isun describes the intensity of the sunlight at the waters sur-
face, Ia is the ambient light. T stands for the transmission coeffi-
cient from the fresnel equation, d is the length of the light’s under-
water path, P(λ ,φ) is the phase function, ρ is the water density.
f racaSaC describes the ratio between the original water surface tri-
angle and the current subvolume triangle.

Light does not only diminish with depth, but also with range. The
farther away the light travels from the view point, the more it de-
creases. Therefore, the subsections are additionally split into tetra-
hedra, see 28. Because the intensity now depends on the view
point, the subsection vertices are weighted according to their dis-
tance from the view point, see equation 23. A viewing ray pen-
etrates the tetrahedra on their respective thickest spot through the
intersection points A and B. The light intensity along the ray is
finally interpolated by IC = IA+IB

2

∣∣∣ ~AB
∣∣∣.

IP(λ) = IS
P(λ)e

−αλ dist (23)

There is an example image rendered with this method in figure 29.
Iwasaki et al. [Iwasaki et al. 2002] also propose a variation of this
technique to generate under water caustics. It is the base of many
real time underwater god ray rendering techniques.

Figure 27:
creating illumination volumes:
The refracted light vectors and the water triangles compose illumi-
nation volumes.
Subsequently splitting illumination volumes:
An illumination volume is split horizontally into subvolumes

Figure 28:Subvolumes are further split into tetrahedra.

Figure 29:
This underwater scene of two dolphins shows that this method is
capable of rendering underwater scenes with complex objects. It
was generated on a desktop computer with a PentiumIII 1GHz CPU
and a Geforce2ULTRA graphics card. The resolution of the image
was 640x480, it was rendered within 5.1 seconds.

Figure 30:
At the intersected area of the projected water surface triangles,
caustics occur.

8.2 Underwater God Rays Via Texture Maps

8.2.1 Caustics

In Deep-Water Animation and Rendering [Jensen and Goliáš 2001]
an approach to render the phenomena of caustics in real-time is
proposed by using the standard graphic primitives only. This algo-
rithm also employs the concept of illumination volumes shown in
section 8.1.

There are several constraints to this method: light rays can only
be reflected or refracted once, no second order rays are considered.
Furthermore, the ocean floor is defined to be in one uniform depth,
without any possibility to add reefs or rifts - it is assumed flat. It
will be the projection plane of our caustics.

As in section 8.1 the water surface is considered a mesh of trian-
gles, through each of whom a light beam strikes the ocean floor.
The beam irradiates vertically from the sky and its edges extend to
the vertices of the water triangles. When it hits the water surface
it is refracted using Snell’s law (See chapter 3.1.2). The refracted
beam is then projected onto the ocean floor. Since the water surface
is not planar, the projected triangles are now partly intersected and
distorted from refraction, as seen in figure 30.

The irradiating light intensity on the ocean floor can be estimated
using the following equation:

Ic = Ns ·L(
as

ac
) (24)

where N is the normal vector of the water’s surface triangle, L the
vector along a light beam edge to the light, and the fraction describ-
ing the ratio of the water surface triangle’s area to the area of its
projection on the ocean floor.

The resulting intensities of the ocean floor triangles are now ras-
terized onto an texture, labeled caustic texture. White areas in the
texture represent a high intensity, black areas low intensity. To
reduce aliasing, the texture has to be filtered before further usage.
To apply the caustic texture onto objects underneath the surface, it
is parallel projected from the surface in direction of the refracted
light ray. For feigning light fainting with depth of the water the dot
product of the triangle’s surface normal and the light ray can be

used to measure the intensity in which the texture is applied.

8.2.2 God Rays

The real-time caustics rendering method introduced by [Jensen and
Goliáš 2001] and mentioned in section 8.2.1 can be extended to
render god rays. The previously generated caustics texture will be
used for the simulation of god rays in volume space.

The previously rendered caustic texture represents a single layer of
a god ray structure at a specific depth, in this case the ocean floor.
To obtain god rays throughout the whole body of water, caustic
textures at different depths are needed. These god ray layers are
then blended together with additive alpha-blending and rendered
into the scene in a post-processing step.

To prevent aliasing, the amount of textures near the camera has to be
higher. Since there are fewer textures in the distance, the god rays
seemingly disappear into the distance. A second way to improve
the quality of the rendered god rays, can be obtained by using the
multitexturing abilities of the GPU to increase the the amount of
samples.

Adding shadows of objects in the water via a shadow-buffer to the
scene will result in more realism.

8.3 Underwater God Rays On GPU Through Pixel
And Vertex Shaders

The algorithm proposed by Stefano Lanza [Lanza 2007] is a real-
time rendering approach for underwater god rays. The method uses
DirectX’s HLSL-shaders to achieve this goal. All the work is split
between two shaders, a vertex and a pixel shader.
To gain speed all second order physical lighting effects are ignored.
This includes multiple scattering, the contribution of sky light, and
the conservation of energy, when light shafts diverge or converge,
instead a constant intensity is assumed.

In this method several ideas from algorithms outlined in previous
sections are picked up. The light shafts take on a adapted form of
parallelepipes from 8.1. Here the water surface is not subdivided
into triangles but squares, see figure 31.

The pipes are represented by a indexed primitive consisting of two
sets of vertices, describing the top and bottom square centering
around a point (̂P)(0,0,0) with spacing 1, and a depth value. This
primitive is translated and scaled by a vertex shader according to
the viewers position E and his the depth. The first parallelpipe is
placed at the center of the sun’s reflection on the water surface ac-
cording to the viewers position. T refracts the light ray, h0 is the
water altitude, I is the incident sunlight, and N the water normal.

P̂ = E +T (h0−Ey)/Ty, (25)
T = re f ract(I,N,1/1.333) (26)

The spacing S to arrange the following god rays optimally is com-
puted by equation 27, where K is the adjustment factor (circa 0.8),
d the view’s depth, f ov the field of view and N the number of god
ray vertices along the grid.

S = K
2d tan(f ov/2)

N
(27)

Figure 31:
Parallelepipe of a godray
I is the incident light, Vi are the vertices of the water surface square
and Ti are the corresponding refracted vectors.

8.3.1 Vertex-Shader

The GPU handles the entire water animation, it is modeled as a
sum of Gerstner waves as proposed by Hinsinger[Hinsinger et al.
2002]. A vertex shader calculates the water surface normal, for the
HLSL-shader code see [Lanza 2007].

The vertex shader takes care of the water animation and refrac-
tion of light against the water surface. It calculates the new world
space vertices of the refracted parallelpipes, uses the fresnel equa-
tion 3.1.5 to get light intensity after refraction and computes the
water’s light absorption with 28.

IL(λ) = I0(λ)e−c(Λ)L (28)

λ is the light’s wavelength, c(λ) the extinction coefficient and L is
the length of the light’s underwater path.
The resulting light intensities are then interpolated over the par-
alellepipe’s polygons. By appointing these calculations to the ver-
tex shader instead of the pixel shader we can reduce the fill rate,
and therefore solve a great problem of god ray calculation. We also
sacrify physical accuracy for better performance.

Figure 32:
Central position and spacing of a pipe-primitive
I is the incident light,T the corresponding refracted vector in the
direction of the viewer E.(̂P) is the center point, S is the space to
optimal place the primitives, calculated with equation 27.

8.3.2 Pixel-Shader

The pixel shader is responsible for the rendering part, it is divided
into two steps.

1. All shadowed rays are computed and rendered into a tempo-
rary render target.

2. On each pixel of this render target the phase function is per-
formed in image space.

To get the final image the result of step two is blended onto the
rendered scene. For the pixel-shader code see [Lanza 2007].

8.4 God Rays and Caustics Through A Photon Grid

The process of photon mapping (section 4.3 and 6.1) provides phys-
ically accurate pictures at very high computational costs. [Pa-
padopoulos and Papaioannou 2009] adapts ideas of that approach
and approximates it to get it ready for real-time. The other base
for [Papadopoulos and Papaioannou 2009] is the image-space ray
scene intersection technique introduced in [Shah et al. 2007].

This new approach makes excessive use of render-to-texture tech-
niques and programmable GPU shaders.
Caustics are simulated through photon point primitives of variable
size while god rays are described by line primitives, which simulate
scattering between water surface and a point at the ocean floor. The
light intensities are calculated for each photon separately.

An overview over the whole algorithm is given in figure 33.

8.4.1 Preparations

As in photon mapping (c.f. section 4.3), the basic principle is to
shoot photons into the scene, however a much smaller number of
photon is used. Therefore we must ensure that each of the photons
hits a visible surface. That is achieved by binding the light frustum
to the camera frustum, see equation 30.

~l = pmid − plight (29)

pmid = pviewer +
znear + z f ar

2
∗ ~lviewer (30)

pmid describes the center of the camera’s frustum, calculated from
the viewers position pviewer, the camera’s clipping distances znear

and z f ar, and the viewer’s line of sight ~lviewer.~(l) is then the vector
pointing from the center of the camera frustum to the light source
plight .

For later use the scene geometry is rendered to a off-screen buffer,
and the z-buffer is saved for caustic and god ray generation.

8.4.2 Caustics

The emission of photons is modeled through a grid. That grid is
further subdivided with the GPU’s geometry shader to increase the
trace able number of photon positions. To get a photons final po-
sition pi on an underwater surface, we lay a ray ~ri through a grid
point. Next the intersection point between~ri and the water’s surface
point pi is calculated. A geometry shader computes ~ri’s refraction,
the result is the refracted ray ~rt .

Figure 33: Algorithm overview:
First the shadow map and the scene geometry are rendered. Based
on that, caustics and god rays are generated. To get the final image
all buffers are combined to a single image.

Figure 34:
The photon casting process:
A light source casts rays through a photon grid, which is subdivided
by a geometry shader in even finer parts. A ray ~ri hits the surface
an a point ps. There it is refracted as a vector ~rt and finally hits the
underwater surface point pi where the photon primitive is placed.

The values of ~rt , ps and the shadow map texture is delivered to the
image space intersection algorithm [Shah et al. 2007]. Our adap-
tion of that algorithm uses the Newton-Rhapson derived iterative
method for approximation. The result of this calculations is the
point pi. This process is visualized in figure 34.

At pi a photon point primitive of a specific size is emitted. The size
is important because it is relevant for calculating the final caustic
intensity. Photon point with constant size would cause the caustics
to be overexposed by large point size or to cause noise by small
point size. The solution is a variable point size depending on the
distance to the viewer as shown in figure 35. The photon point
primitive’s final size is calculated with following equation 33. The
light attenuation toward the view point’s direction is also handled
through the variable point size.

s f inal =
a+b

dpointFromViewer
(31)

a = smax−
z f ar ∗ (smax− smin)

z f ar− znear
(32)

b =
znear ∗ z f ar ∗ (smax− smin)

z f ar− znear
(33)

s f inal is the final point size, while smax is the maximal possible point
size and smin the minimal possible point size.
These point primitives are then transformed to camera space and
rendered into a high-accuracy render target. They are also com-
pared to the beforehand saved depth buffer.

The final light intensity of a photon primitive is calculated by 34.
The illumination diminishment according to the water depth is con-
sidered through γ , which is the medium attenuation parameter, and
d f romSur f ace, which is the distance between the water surface ps and

Figure 35:
The point size of the photon point primitive at an intersection point,
shrinks with distance to the viewer. This describes the light attenu-
ation in viewer direction. The photon point primitive’s final size is
calculated with equation 34.

the photons position pi.

I f inal = Iphoton ∗ e−γ∗d f romSur f ace (34)

8.4.3 God Rays

To generate god rays the same photon casting process which was
used to create caustics, is employed, (c.f. figure 34). Yet instead
of describing the light as a point primitive at a specific position on
the sea floor, the light is modeled as a line primitive from the water
surface point ps to the point pi.

Again the primitives are transformed, rasterized into a render-target
and Z-tested.
The illumination for each line primitive is calculated with 35.

I f inal = Iphoton ∗Mie(θ)∗ e−γ∗d f romViewer ∗ e−γ∗d f romSur f ace (35)

where Mie(θ) is the scattering phase function.

8.4.4 Further Treatment

The remaining steps are filtering and composing.
The filtering step prevents aliasing by applying a multitap low pass
filter with a rotating sampling kernel on the rendered images wait-
ing in the render-targets.
To create the final image, all images which were created in the dif-
ferent steps of the algorithm (color, reflection, refraction, god ray,
caustic buffers and the rendered scene geometry) are combined to a
single one.

This algorithm introduced by Papadopoulous[Papadopoulos and
Papaioannou 2009] can be implemented for common graphics hard-
ware, and can be easily integrated in modern 3D engines. It makes
high frame rates in real-time possible.

9 Conclusion

Lighting effects such as caustics, god rays and light shafts are very
important to render realistically appearing scenes. They add to the

mood of a scene and to its impression on the viewer.

The best results are obtained by sticking close to the physical cor-
rect descriptions of light and it’s behavior. Also the physical correct
specification of the participating media adds to the authenticity of a
scene.

We introduced several methods which can handle light characteris-
tics, which are normally hard to obtain, such as anisotropic scatter-
ing, multiple scattering, color bleeding, god rays and light radiating
through non-homogeneous media.
The price of this high accuracy are hight computing times and hight
memory costs. That’s why physically correct methods are only used
for offline rendering.

Nowadays most 3D graphic applications, for instance games and
visualizations, require real-time rendering.
This is always accomplished by simplifying and approximating the
lighting model. By implementing the methods on the GPU more
speed can be gained.

In the future the main task will be the realization of better approx-
imations and the improvement of the computing capabilities of the
GPU, to generate physical accurate lighting effects in real-time.

References

ARVO, J. 1986. Backward ray tracing. In Proceedings of the
13th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’86, 259–
263.

DMITRIEV, K., BRABEC, S., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2002. Interactive Global Illumination Using Selective
Photon Tracing. In 13th Eurographics Workshop on Rendering,
The Eurographics Association, P. Debevec and S. Gibson, Eds.,
21–34.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Interac-
tive Rendering of Atmospheric Scattering Effects Using Graph-
ics Hardware. In Proceedings of Graphics Hardware 2002, 99–
108.

ENGELHARDT, T., AND DACHSBACHER, C. 2010. Epipolar
sampling for shadows and crepuscular rays in participating me-
dia with single scattering. In Proceedings of ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games 2010, ACM
Press, New York, New York, USA, 119.

ERNST, M., AKENINE-MÖLLER, T., AND JENSEN, H. W. 2005.
Interactive rendering of caustics using interpolated warped vol-
umes. In In Proceedings of Graphics Interface, 87–96.

FLECK, B., 2007. Real-Time Rendering of Water in Computer
Graphics.

HINSINGER, D., NEYRET, F., AND CANI, M.-P. 2002. Interactive
animation of ocean waves. In ACM-SIGGRAPH/EG Symposium
on Computer Animation (SCA).

HU, W., AND QIN, K. 2007. Interactive Approximate Rendering
of Reflections, Refractions, and Caustics. IEEE Transactions on
Visualization and Computer Graphics 13, 1, 46–57.

HURA, J., AND HALL, R. 2006. Design of a simulation of at-
mospheric sunbeams. WSEAS Transactions on Computers 5, 10,
2466–2471.

IWASAKI, K., DOBASHI, Y., AND NISHITA, T. 2002. An Effi-
cient Method for Rendering Underwater Optical Effects Using
Graphics Hardware. 701–711.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient sim-
ulation of light transport in scences with participating media us-
ing photon maps. In Proceedings of 25th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’98,
ACM Press, New York, New York, USA, 311–320.

JENSEN, L. S., AND GOLIÁŠ, R., 2001. Deep-Water Animation
and Rendering.

JENSEN, H. W. 1996. Global illumination using photon maps.
Springer-Verlag, 21–30.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. AK Peters, Ltd.

KAJIYA, J. T. 1986. The rendering equation. In Proceedings of the
13th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’86, 143–
150.

LANZA, S. 2007. Animation and Rendering of Underwater God
Rays. In Shader X5, Charles River Media, W. Engel, Ed., 315–
327.

LIKTOR, G., AND DACHSBACHER, C. 2010. Real-Time Volumet-
ric Caustics with Projected Light Beams. In Proceedings of 5th
Hungarian Conference on Computer Graphics and Geometry.

MITCHELL, J. L. 2004. Light Shaft Rendering. In Shader X3,
W. Engel, Ed., 573–590.

MITCHELL, K. 2007. Volumetric Light Scattering as a Post-
Process. In GPU Gems 3, Addison-Wesley Professional.

NISHITA, T., AND NAKAMAE, E. 1994. Method of Displaying
Optical Effects within Water using Accumulation-Buffer. 373–
380.

PAPADOPOULOS, C., AND PAPAIOANNOU, G. 2009. Realistic
Real-time Underwater Caustics and Godrays. In Proceedings of
GraphiCon ’09, 89–95.

PURCELL, T. J., CRAIG, D., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, 41–50.

ROHLEDER, P., AND JAMROZIK, M. 2008. Sunlight with Volumet-
ric Light Rays. In Shader X6, Charles River Media, W. Engel,
Ed., 325–331.

SHAH, M. A., KONTTINEN, J., AND PATTANAIK, S. 2007. Caus-
tics Mapping: An Image-Space Technique for Real-Time Caus-
tics. IEEE Transactions on Visualization and Computer Graph-
ics 13, 2, 272–280.

SHENG, B., SUN, H., LIU, B., AND WU, E. 2009. GPU-based
refraction and caustics rendering on depth textures. In Proceed-
ings of 8th International Conference on Virtual Reality Contin-
uum and its Applications in Industry, ACM Press, New York,
139–144.

STAM, J. 1996. Random caustics: natural textures and wave theory
revisited. In ACM SIGGRAPH 96 Visual Proceedings: The art
and interdisciplinary programs of SIGGRAPH ’96, ACM, New
York, NY, USA, SIGGRAPH ’96.

STAMATE, V. 2008. Real-Time Photon Approximation on the
GPU. In Shader X6, Charles River Media, W. Engel, Ed., 393–
400.

SUN, X., ZHOU, K., LIN, S., AND GUO, B. 2010. Line Space
Gathering for Single Scattering in Large Scenes. In Proceedings
of ACM Transactions on Graphics (SIGGRAPH 2010).

SZIRMAY-KALOS, L., UMENHOFFER, T., PATOW, G., SZÉCSI,
L., AND SBERT, M. 2009. Specular effects on the gpu: State of
the art. Computer Graphics Forum 28, 6, 1586–1617.

TÓTH, B., AND UMENHOFFER, T. 2009. Real-time Volumetric
Lighting in Participating Media. Eurographics 2009.

TRENDALL, C., AND STEWART, A. J. 2000. General calculations
using graphics hardware with applications to interactive caus-
tics. In Proceedings of the Eurographics Workshop on Rendering
Techniques 2000, Springer-Verlag, London, UK, 287–298.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light trans-
port. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’97,
65–76.

WALLACE, J. R., ELMQUIST, K. A., AND HAINES, E. A. 1989.
A ray tracing algorithm for progressive radiosity. In Proceedings
of the 16th annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, SIGGRAPH ’89,
315–324.

WAND, M., AND STRASSER, W. 2003. Real-time caustics. Com-
puter Graphics Forum 22, 3, 611–620.

WATT, M. 1990. Light-water interaction using backward beam
tracing. SIGGRAPH Comput. Graph., 377–385.

WILLIAMS, L. 1988. Casting curved shadows on curved surfaces.
Computer Science Press, Inc., New York, NY, USA, 23–27.

WYMAN, C., AND DACHSBACHER, C. 2006. Improving image-
space caustics via variable-sized splatting. In Tech.Rep. UICS-
06-02, University of Utah.

WYMAN, C., AND DAVIS, S. 2006. Interactive image-space tech-
niques for approximating caustics. In In Proceedings of ACM
I3D, ACM Press. 2, 153–160.

WYMAN, C. 2007. Interactive Refractions and Caustics Using
Image-Space Techniques. In Shader X5, Charles River Media,
W. Engel, Ed., 359–371.

WYMAN, C. 2008. Hierarchical caustic maps. In Proceedings
of the 2008 symposium on Interactive 3D graphics and games,
ACM, New York, NY, USA, 163–171.

