
Master- /Diplomstudium:
Medieninformatik

Diplomarbeitspräsentation

Irrational Image Generator

Simon Parzer

Technische Universität Wien
Institut für Computergraphik und Algoithmen

Arbeitsbereich: Computergraphik
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Dipl.-Ing. Christoph Traxler
Kurt Hofstetter

contact: simon.parzer@gmail.com

1. Problem Statement

Inductive Rotation (IR), invented by artist Hofstetter Kurt, is an approach for creating seemingly nonperiodic patterns on the 2D plane by
recursive translations and rotations of a single prototile. The point of the thesis is to create a tool that automates the generation process
to a degree where the user only has to insert a prototile and can instantly see the patterns resulting from the IR approach.

IR has never been addressed in scientific publications before, so a formal proof of the nonperiodicity of the generated patterns is still
missing. Future work in the field of geometry will be needed to formally define the properties of the generated patterns.
Currently, there are three variants of the IR method:

3-way Inductive Rotation
90°

5-way Inductive Rotation
60°

2-way Inductive Rotation
120°

2. Methodology/Development Process

Proto

Pr
ot
o

Proto

Proto

Proto

Proto

Proto

Proto

Pr
ot
o

Proto

Proto

Pr
ot
o

Proto

Proto

Pr
ot
o

Proto

Proto

Pr
ot
o

Proto

Proto

Proto Proto

Pr
ot
o

Pr
ot
o

Proto

Proto

Proto

Proto
Pr
ot
o

Proto

Proto

Proto

Proto

Pr
ot
o

Proto

Proto

Proto

Proto

Pr
ot
o

Pr
ot
o

Proto

Proto

Proto

Pr
ot
o

Pr
ot
o

Proto

Proto

Proto

Pr
ot
o

Pr
ot
o

Proto

Proto

Proto
Pr
ot
o

Pr
ot
o

Proto

Proto

Proto

Pr
ot
o

Pr
ot
o

Proto

Proto

Proto

Proto

Proto

Pr
ot
o

Proto

Proto

Proto

Proto

Pr
ot
o

Proto

Pr
ot
o

Proto

Pr
ot
o

Proto

Proto

An iterative development process with a user-
centered approach was chosen. At the end of
each iteration, a prototype showing new
functionality was evaluated together with
Hofstetter Kurt, and results were used to
improve upon subsequent iterations.

All programs are implemented in C++ and use
OpenGL for rendering. The final
implementation uses the QT4 library to display
GUI elements and increase portability.

3. Implementation
The iterative development process has led to two different implementations that
are both included in the final program.

The grid-based generator splits the prototile into sub-tiles that can be aligned
on a regular grid. The type and rotation of each sub-tile is encoded as an
integer value. The regular grid is represented by a two-dimensional array of
integers internally.

The sprite-based generator treats the prototile as a textured rectangle. Each
rectangle is defined by the x,y coordinates of its center point and its rotation.
The data representation is a list of such rectangles sorted by their z values.

Each implementation generates a list of textured polygons that are then passed
to OpenGL for rendering.

4. Results
The maximum iteration count is limited by memory and run-time constraints.
As it turned out, both run-time and memory usage grow exponentially with the number of
iterations.
Nonetheless, the program is able to generate patterns large enough for the use cases it was
designed for. Since the generation algorithms work on geometry instead of bitmap data, it is
possible to switch between different prototile graphics without having to re-calculate the IR
pattern.

prototile

pattern for iteration 2

(0,0)

(0,-3)

0 1

2 3

6 4

5

-1 -1

-1-1

10

89

1412

-1 -1

-1 -1-1

-1 -1

-1 -1-1 -1-1-1

-1 -1

-1

-1

-1

-1-1-1

-1

11 10

9 8

15

14

13

12

2

5

2

14

9

570

6 4

10

8 4

1

13

12 14

8

grid-based data

(1.0, 1.0) 0
(2.0, 0.0) 90
(3.0, 1.0) 180
(2.0, 2.0) 270
(4.0,-2.0) 90
(5.0,-1.0) 180
(4.0, 0.0) 270
(3.0,-1.0) 0
(7.0, 1.0) 180
(6.0, 2.0) 270
(5.0, 1.0) 0
(6.0, 0.0) 90
(4.0, 4.0) 270
(3.0, 3.0) 0
(4.0, 2.0) 90
(5.0, 3.0) 180

sprite-based data

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

100

200

300

400

500

600

memory (MB)

2-way sprite-based IR
memory consumption

iteration count

