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Abstract

This thesis presents a method to compute soft shadows from environment maps and local light
sources on dynamic height fields, extending the work of Snyder et al. [29]. While direct illu-
mination in static scenes is very common in video games and 3D applications, real-time global
illumination methods supporting dynamic scenes and lights are still an active field of research.

In this work, a short general introduction to global illumination and spherical harmonics is
presented as well as an overview of the state of the art methods in interactive global illumination
for height fields.

In our method, visibility at each receiver point of a height field is determined by the visible
horizon, which can be approximated efficiently using a multi-resolution sampling approach. Lo-
cal light sources are represented by spherical lights and the incident radiance at receiver points
is projected into the spherical harmonic basis. Hence, this method produces convincing shadows
on dynamic height fields more efficiently than global illumination methods for general geome-
try.
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Kurzfassung

Das Ziel dieser Diplomarbeit ist es, weiche Schatten von Umgebungslichtern und lokalen Licht-
quellen auf dynamischen Höhenfeldern zu berechnen. Diese Arbeit erweitert die Arbeit von
Snyder et al. [29] um lokale Lichtquellen. In heutigen 3D Anwendungen und Video Spielen
werden üblicherweise direktionale Lichtquellen und Punktlichter für teils statische und dyna-
mische Szenen verwendet. Die Entwicklung komplett dynamischer Szenen und dynamischer
Lichtquellen stellt daher eine große Herausforderung dar.

Diese Diplomarbeit, gibt einen generellen Überblick über globale Beleuchtungsverfahren.
Spherical Harmonics werden als Überblick im Kapitel State of the Art eingeführt, gefolgt von
aktuellen interaktiven globalen Beleuchtungsverfahren für Höhenfeldern.

Der Kern dieser Arbeit ist für jeden Punkt auf dem Höhenfeld den sichtbaren Horizont zu
berechnen. Dieser kann mittels einer Textur-Pyramide effizient angenähert werden. Die lokalen
Lichtquellen werden mittels sphärischer Lichtquellen angenähert. Weiters wird die eingehende
Strahlung von einer Lichtquelle an einem Punkt auf Kugelflächenfunktionen (Spherical Harmo-
nics) abgebildet. Im Gegensatz zu generellen globalen Beleuchtungsverfahren berechnet unsere
Methode weiche Schatten auf Höhenfeldern effizient und überzeugend.
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CHAPTER 1
Introduction

Development of realistic shadowing algorithms for real-time computer graphics has been a major
research topic in the past few years by the research community. Scenes without shadows look
very poor and flat. Shadows help us perceive the shape of an object and the spatial relationship
between objects in a 3D scene. We distinguish between two common shadow types, hard and
soft shadows. Hard shadows are produced from infinitely small light sources, e.g. point lights,
which do not exist in the real world. In case of hard shadows, a receiver point can either see the
light source and is therefore unshadowed, or the receiver point is blocked by the geometry and
is therefore fully shadowed, which gives a rather unrealistic look to an image. Soft shadows on
the other hand are produced from extended light sources, e.g. the sky, resulting in soft shadows,
because a receiver point can have a partial view of the light source. The area where a receiver
point has partial view of the light source is called penumbra, and the area where the receiver
point is totally occluded is called umbra (see Figure 1.1, comparing hard- and soft-shadows).

Figure 1.1: The image on left shows the geometry of hard shadows from a point light. In the
right image, we can see that an extended light source casts soft shadows.
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Soft shadows are especially important in large, open scenes like terrains. In our daily expe-
rience, we only see these types of scenes lit by large area lights like the sun and the sky, and we
are therefore only used to seeing these scenes with soft shadows. In computer graphics, these
scenes are usually represented by height-fields and used in many different applications like map
visualizations (e.g. Google Earth [10]), movies, games and architectural visualizations, among
others.

For instance, we could approximate the glow of a few buildings or an entire city at night-
time with several local light sources. Or a scene with houses and mountains could be lit by an
environment map for the sky light and several local lights for the houses (see Figure 1.2). In
a mapping visualization, shadows can provide visual cues that help the viewer understand the
geometry of the terrain. The additional contours introduced by hard shadows can be confusing,
therefore soft-shadows might be preferable. Height fields can also model smaller-scale surfaces,
like panel surfaces in a car. When designing these surfaces, it might be interesting to get a quick
approximation of their appearance when lit by local bright elements, e.g. LED lights or the light
from a display (see Figure 1.2). A few lighting setups for height-fields can be seen in Figure 1.3.

1.1 Problem Statement

In real-time applications, soft shadows have to be computed very efficiently. In scenes with dy-
namic geometry or moving light sources, this is a significant challenge and an area of ongoing
research. Using global illumination methods for general geometry would be either too slow or
too inaccurate to solve this problem (in Chapter 3 we present some current global illumination
methods for general geometry). In the special case of height-field geometry, simplifying as-
sumptions can be made that result in increased efficiency to allow real-time soft shadows from
dynamic geometry. A method that achieves this has already been developed by Snyder et al. [29],
but only for infinitely distant light sources.

In our work, we want extend the method of Snyder et al. [29] to remove the limiting as-
sumption of infinitely distant light sources, i.e. we want to compute soft shadows from local
lights in dynamic height-fields. This goal presents us with additonal challenges, which can be
broken down into two main research questions: namely, how to compute the following functions
efficiently in real-time:

1. The unshadowed incident radiance from local light sources at receiver points on the
height-field, i.e. unshadowed shadowed incident radiance that might be different for each
point on the height-field.

2. The visibility of multiple local light sources, i.e. visibility of light sources that might only
be occluded by a part of the height-field geometry.

To answer these research questions, our task was to develop methods and proof-of-concept im-
plementations that compute these quantities. The real-time requirement is dependent on the
complexity of the input scene. In this work, we take the scene complexity used by Snyder et
al. [29] as reference, i.e. methods that are real-time on scenes of similar complexity are consid-
ered real-time methods.
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(a) Lighthouse at night time (scene A)

(b) Panel surfaces in a car (scene B)

Figure 1.2: The images show two sample scenes (A and B). In both scenes, the geometry
can be approximated by height-fields, the glow in scene A and the LED lights or light from
display in scene B can be approximated by local light sources. Image courtesy of xdesk-
topwallpapers (scene A) - www.xdesktopwallpapers.com [3] and tutorialcenter (scene B) -
www.tutorialcenter.net [2].
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1.2 Contribution

This document presents a method to calculate real-time soft shadows from large, low-frequency
area light sources like environment map and local light sources on dynamic height-fields based
primarily on the work by Snyder et al. [29]. More specifically, we extend the work of Snyder
et al. [29] for soft shadows on height-fields from infinitely distant light sources to handle local
lights. For this purpose, we contribute two important methods:

1. A method to efficiently compute the projection of a spherical local light source on the
hemisphere of a receiver point in the Spherical Harmonics basis, approximating the inci-
dent radiance from the local light at the receiver point.

2. A method to efficiently compute the projection of the geometry blocking a local light on
the hemisphere of a receiver point in the Spherical Harmonics basis, approximating the
visibility of the local light.

Using these methods, we are able to calculate soft shadows from one environment light and up
to three local light sources. The height-field geometry and local light position, size and intensity
can be changed at run-time.

1.3 Structure

The structure of this document is as follows: In the following chapter, we will give a brief
introduction to global illumination 2. Chapter 3 summarizes related methods to compute global
illumination and gives a detailed description of spherical harmonics, which are commonly used
in current state-of-the-art global illumination methods. In Chapter 4, we explain how to calculate
soft shadows on dynamic height-fields lit by an environment map followed by our extended
method which calculates soft shadows lit by local light sources. In Chapter 5, we show how
to implement relevant parts of the method on the GPU. Finally, in Chapter 6 we show results
generated with our method.
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(a) Environment light only - unshadowed (scene A) (b) Hard shadows only (scene B)

(c) Environment light only - shadowed (scene A) (d) Local light + environment light - shadowed (scene A)

Figure 1.3: A set of images from two different dynamic height field scenes (A and B), rendered
with two different shadowing methods: The top left image shows scene (A) lit by the environ-
ment map without shadows, the top right image shows scene (B) with hard shadows from a
directional light source (Image courtesy of Sakalauskas [22]). The bottom left image shows the
scene (A) with shadows from environment lighting and the bottom right image shows the scene
(A) with shadows from one local light and environment lighting. Note how the terrain rendered
with hard shadows introduces additional contours at the shadow borders that do not look natural
and make it more difficult to understand the geometry of the terrain.
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CHAPTER 2
Global Illumination

Figure 2.1: The fist image shows diffuse and specular reflections, rendered with a raytracer.
In the second scene, soft shadows are added. The third image shows caustics, and in the last
one, we can see indirect illumination. Image courtesy of http://graphics.ucsd.edu/
~henrik/images/cbox.html

In this chapter, we want to give an overview of some of the concepts from global-illumination
that are relevant for our method, including the light transpot notation, material properties and
the light transport equation. Our method is not a global-illumination method in the true sense
of the word, since we do not compute indirect illumination. However, we make use of the
mathematical tools and terminology commonly used in global-illumination methods.

Intuitively, global-illumination can be described as a general scene being illuminated by
lights (e.g. a room with mirrors, tables and chairs in it). We follow photons, emitted by the
light sources. Photons while bounce around can be reflected, absorbed and refracted in different
combinations.

Compared to local lighting algorithms (direct illumination), where photons travel from the
light source to a surface and then to the eye, global-illumination algorithms take into account
more complex cases, where photons emitted from the same light source are reflected by other
objects, those reflected ones can then again be reflected by other objects and so on, until they
reach the eye. Images generated by global-illumination algorithms will greatly increase realism
compared to direct illumination algorithms.
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A variety of photon path combinations exist where photons travel along a path from the light
source, hitting zero or nearly an infinite number of diffuse or specular surfaces until they reach
the eye along these more complicated paths. It would be nice to have a uniform scheme for
describing the path combinations. This leads us to Paul Heckbert’s [9] notational scheme, which
he introduced in 1990 at SIGGRAPH.

2.1 The Light Transport Notation

Figure 2.2: Example light paths in light transport notation

If we follow a photon walking through the scene from the light source to the eye, we can dis-
tinguish between a specular and a diffuse interaction a photon makes (see Figure 2.2). Moreover,
additional surface types can be added, such as glossy surfaces to further refine the categories. To
summarize all different kinds of interactions, regular expressions are mainly used. See Table 2.1.

Operator Description Example Explanation
+ one or more D+ one or more diffuse reflection
* zero or more S* zero or more specular reflection
? zero or one S? zero or one specular reflection
| or DD|S two diffuse reflections or one specular reflection
() group (D|S)* zero ore more diffuse ore specular reflections

Table 2.1: Light Transport Notation - D ... Diffuse, S ... Specular

Photons can take different paths from the light source to the eye, a various set of light paths
exists therefore. The most general equation in global-illumination literature that describes the
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energy transported along all kinds of light paths is called the light transport or render equation,
which was formulated by Kajiya [14] in 1986. Using the light transport notation, we can sum
up all relevant light path combinations by the expression L(S|D)*E to render a realistic image.

In the next section we will take a look at the material properties before explaining the render
equation in detail.

2.2 Material Properties

The material properties describe how light is reflected and refracted at a surface, this function
is called the bidirectional scattering distribution function (BSDF) and normally subdivided into
reflected and transmitted parts, each of them are calculated separately. Reflection and Transmis-
sion of a surface is called surface scattering. As the name of the function implies, it is a function
describing how light is scattered from a surface.

First of all, we will look at surface reflectance, which is described by the bidirectional re-
flection distribution function (BRDF), denoted fr. It is defined as the ratio of reflected radiance
dLr along direction ωo to the irradiance dEi entering at the surface normal n from an incident
direction ωi.

fr(p, ωi, ωo) =
dLr(p, ωo)

dEi(p, ωi)
(2.1)

This function depends on the incident light direction ωi and the exiting light direction ωo. Each
direction is parametrized through an elevation angle Θ and a rotation angle φ, both defined with
respect to the surface normal n and a tangent vector t (see Figure 2.3). Further, for a surface
point p the BRDF is a four-dimensional function and can be measured by a gonioreflectometer
or described by empirical models like Phong, Lambertian, Ward, Oren-Nayar, Cook-Torrance
and more elaborated ones.

n

t

ωiωo
Θi

Θo

φiφo

Figure 2.3: Rotational angles are given with respect to a given tangent vector t.

If we fix a particular direction ωi with an infinitely small cone around ωi, which occupies an
infinitely small solid angle dσ(ωi), the irradiance dE(wi) is the light entering through that cone
at the surface point p.

dE(ωi) = Li(ωi)dσ⊥(ωi) (2.2)
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Where dσ⊥(ωi) is the differential projected solid angle and is defined by

dσ⊥(ω) = cosΘdω (2.3)

Thus we can re-write Equation 2.1 as:

fr(p, ωi, ωo) =
dLr(p, ωo)

dEi(p, ωi)
=

dLr(p, ωo)

Li(p, ωi)cosΘdωi
(2.4)

Transmissive surfaces are defined by the bidirectional transmittance distribution function (BTDF),
denoted ft. Since transmissive surfaces are hard to measure, perfectly specular reflection is often
considered (see Figure 2.4).

Figure 2.4: Different diagrams representing BRDFs and BTDF - Image courtesy of http:
//randomcontrol.com

When light interacts on a surface of an object, we can find different kinds of scattering. For
instance, light can be reflected and refracted (see Figure 2.4). Further more, we can distinguish
between different types of reflection and transmission called diffuse, specular and glossy reflec-
tion or transmission. For diffuse reflection or transmission, the BRDF or BTDF is constant,
meaning radiance is equally distributed in all outgoing directions, specular reflection or trans-
mission on the other hand, is scattered directionally over a narrow solid angle. Glossy reflection
or transmission describes materials that are neither diffuse nor specular, it is still directional but
more light is reflected on a restricted part of the hemisphere (see Figure 2.4).

Finally, the bidirectional scattering distribution function (BSDF), denoted by fs, is the union
of two BRDFs, one for each side of the surface, and two BTDFs describing the light transmis-
sion in each direction. With the BSDF its easier to define different kind of surfaces since it is
defined over the whole sphere and we only have to deal with one function. In our context, BSDF
functions are rarely needed because they are too complex for real-time applications.

2.3 The Light Transport Equation

This section presents the important light transport equation or rendering equation, which plays
a major part in computer graphics, it describes the light transport in a scene. In general, the light
transport equation can be described as follows. If we want to shade a surface location p we want
to know the outgoing radiance at that location in view direction, which is equal to the sum of

10

http://randomcontrol.com
http://randomcontrol.com


Ω

p

ωiωo

eye

Figure 2.5: The light transport equation describes the total amount of radiance emitted from a
point p along a particular viewing direction ωo, given a incoming radiance and a BRDF

emitted, reflected and transmitted radiance (see Figure 2.5). In the following text we will use the
BRDF to specify the surface properties, which excludes transmittance. Since we are interested
in the extant part of radiance Lo, we can calculate the incident radiance Li from

Li(p, ω) = Lo(Raycast(p, ω),−ω) (2.5)

That means, incoming radiance arrives at location p coming from direction ω is equal to out-
going radiance Lo arriving from some other surface location p in the opposite direction −ω.
This other point is defined through a raycasting function, by shooting a ray from location p in
direction ω returning the location of that point, which is visible from p. As we can see, the
Lo(Raycast(p, ω),−ω) states the fact that incoming radiance arriving at a point must be equal
to outgoing radiance from some other point. Now we can express Lo as emitted radiance Le
plus reflected radiance Lr by using this formula:

Lo = Le + Lo,reflected (2.6)

Le(p, ω) is a radiance function which represents all light emitted from a surface location p in
direction ω in the scene and Lo,reflected is defined through

Lo,reflected(p, ωo) =

∫
Ω
fr(p, ωi, ωo)Li(p, ωi)cosΘdωi (2.7)

Ω is the hemisphere located above p. The term fr(p, ωi, ωo) is the BRDF, for incoming direction
ωi, and outgoing direction ωo, Li(p, ωi) is the incoming radiance at the surface point p coming
from direction ωi. Furthermore Θ is the elevation angle between the incoming direction ωi
and the surface normal n at location p. If we put Equation 2.5, Equation 2.6 and Equation 2.7
together we can re-write the equation in its commonly used form:

Lo(p, ωo) = Le(p, ωo) +

∫
Ω
fr(p, ωi, ωo)Lo(Raycast(p, ωi),−ωi)cosΘdωi (2.8)

11



which is the light transport equation. As we can see, the light transport equation is recursive
since the outgoing light intensity function appears on both sides of the equation. This makes it
hard to compute for real-time applications.
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CHAPTER 3
State of the Art

3.1 Monte Carlo Integration

In Section 2.3, the light transport equation was introduced, which describes the outgoing light
intensity. One way to solve the integral of the light transport equation is called Monte-Carlo
integration, where random numbers are used to approximate the integral, which we will need
when computing spherical harmonic coefficients (later on described in section 3.4). In this
chapter, we will give a brief overview of Monte-Carlo Integration in the context of Computer
Graphics. Readers interested in a more in-depth work should read: State of the art in monte
carlo ray tracing for realistic image synthesis [13].

What we are looking for in Monte-Carlo integration is an estimate of the integral of a func-
tion. Basically, we take a large collection of samples of a function to estimate the integral, this
estimate can be calculated by the Monte-Carlo estimator. It is defined by

∫
f(x)d(x) ≈ 1

N

N∑
i=0

f(xi)w(xi), (3.1)

where
∫
f(x)d(x) is the integral, which we want to approximate, N is the number of samples

we take, f(xi) represents one sample of the function, and w(xi) is a weighting function for
each sample. The weighting function is 1/p(x), where p(x) is the probability distribution of the
samples. If we increase the number of samples, we can lower the approximation error.

Since we want to integrate over the surface of a sphere, we have to map the random num-
bers into spherical coordinates. To achieve an even distribution over the sphere, we take pairs
of independent uniformly distributed random numbers ξx and ξy and map them into spherical
coordinates by using this formula

(2 arccos(
√

1− ξx), 2πξy)→ (Θ, φ). (3.2)

13



If our points are evenly distributed, our weighting function w(xi) is a constant value and Equa-
tion 3.1 becomes: ∫

f(x)d(x) ≈ w

N

N∑
i=0

f(xi). (3.3)

Finally, when sampling uniformly over the unit sphere the probability p(x) is always 1
4π since

the integral of the probability density has to result in one and the area where we integrate over
is 4π, which is the area of the unit sphere.∫

f(x)d(x) ≈ 4π

N

N∑
i=0

f(xi) (3.4)

Figure 3.1: 10.000 samples generated using jittered stratification. The left image shows (Theta,
Phi) angle space and on the right we can see the 3D projection. Image courtesy of [7].

To lower the variance from the sample distribution, we could generate a grid of jittered points
(see Figure 3.1). This technique is called Jittered Stratification, where an input cell is divided
intoNxN cells and a random point is picked in each cell. The sum of variances of each cell will
never exceed the variance of random samples over the whole sphere, and is often much lower.

3.2 Orthogonal Basis Functions

In this chapter, we will describe how a function f(x) can be approximated by another function
Bn(x), which is a linear combination of basis functions. Orthogonal basis functions allow us to
express a continuous function over a given domain as a linear combination of basis functions.
These functions can be thought of as little pieces of information that when scaled and combined
can produce an approximation of the original function f(x). Since there are a lot of basis
functions, which can be used, a good choice for basis functions are orthogonal polynomials.

14



They have a very important property, if we integrate the product of two orthogonal polynomials
and they are different we get zero, if they are equal we get a constant value.∫

Ω
Bm(x)Bn(x)dx =

{
0 if n 6= m

cn if n = m
(3.5)

Where Ω is the domain of the basis functions and the polynomials Bk(x), k = 0, 1, 2, ..., are
orthogonal. Examples for families of orthogonal polynomials are the Legendre, Chebyshev,
Laguerre, Jacobi and Hermite polynomials [1, 30]. If cn = 1 hold for all n, which is a stronger
requirement, then the basis functions are also called orthonormal.

Figure 3.2: The left half of the image shows the projection of the polynomial into the first three
coefficients. The right half of the image shows the reconstruction of the original function by the
scaled coefficients. Image Image courtesy of [7].

An arbitrary function can be approximated by a linear combination of basis functions (see
Figure 3.2):

f(x) ≈
N∑
i=0

cibi. (3.6)

Where c is a vector of coefficients with one component ci for each basis function. In the case of
orthonormal basis functions, the coefficients ci can be found by integrating the product:∫

Ω
f(x)bi(x)dx = ci. (3.7)

For basis functions that are not orthonormal, finding the coefficients is more complicated, how-
ever we will only deal with orthonormal basis functions in this work. The process of finding
the coefficients is called projection and the process of re-constructing a function with a linear
combination of basis function is called reconstruction.

Another important operation is integrating the product of two arbitrary functions C and D.
Using symbolic integration is not real-time friendly. The key is projection, where the functions
C and D are projected into some orthonormal basis. We get the projected coefficients ci and di
and the orthonormality of the basis allows us to transform the integral into a simple dot product.
This can be computed very fast. ∫

C̃(x)D̃(x)dx =

N∑
i=0

cndn (3.8)
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An interesting family of polynomials orthonormal in the interval −1 to 1 are the Legendre Poly-
nomials, usually they are denoted by Pm and the Associated Legendre Polynomials Pml , which
are generalizations of the Legendre Polynomials Pm. The Associated Legendre Polynomials re-
turn real numbers, in contrast to the Legendre Polynomials, which are defined over the field of
the complex numbers. We will focus on the Associated Legendre Polynomials:

Pml (x) =
(−1)m

2ll!

√
(1− x2)m

dl+m

dxl+m
(x2 − 1)l. (3.9)

As we can see, the Associated Legendre Polynomials take two arguments m, l where l ∈ N0

is the band index and m takes any integer in the range of [0, l]. The band index is used to
split the set of basis functions into bands, where inside a band the polynomials are orthogonal
with respect to a constant. Between bands they are orthogonal with a different constant. Since
Equation 3.9 is not computation friendly, we can also define a set of recurrence relations by

Pmm (x) = (−1)m(2m− 1)!!(1− x2)
m
2 (3.10)

Pmm+1(x) = x(2m+ 1)Pmm (x) (3.11)

(l −m)Pml (x) = x(2l − 1)Pml−1(x)− (l +m− 1)Pml−2(x). (3.12)

To evaluate Pml , we start the recursion by the term 3.10 since it needs no previous values, making
our start condition P 0

0 = 1 and generating the Pmm with highest possiblem. Afterwards, if l = m
the final result has been computed or we have to raise a band for all remaining cases where
l < m. For this purpose, Equation 3.11 is used to calculate the next band once until condition
l = m+ 1 is meet. Finally Equation 3.12 is iterated until the answer is found depending on two
previous bands l − 1 and l − 2.
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3.3 Spherical Coordinates

Because we will deal with spherical functions, it is useful to work in spherical coordinates rather
than Cartesian coordinates. Normally, the spherical coordinate system is defined by two angles
Θ and φ. Θ represents the elevation angle and is constrained to 0 ≤ Θ ≤ π and φ, the rotational
angle, is constrained to 0 ≤ φ ≤ 2π. If we want to convert between coordinate systems the
following relations are used:

r =
√
x2 + y2 + z2 (3.13)

φ = tan−1(
y

x
) (3.14)

Θ = cos−1(
z

r
). (3.15)

We can use these formulas to obtain the spherical coordinates (r,Θ, φ) of a point from Cartesian
coordinates (x, y, z) and vice versa we can use these formulas:

x = r sin Θcosφ (3.16)

y = r sin Θsinφ (3.17)

z = r cos Θ. (3.18)
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3.4 Spherical Harmonics

Spherical harmonics lighting is a technique to render realistic looking images in real-time and
was introduced by Sloan, Kautz and Snyder at Siggraph 2002. In this chapter, we will explain
the definition of the spherical harmonics and some very important properties. Further on, we
will describe the rotation of spherical harmonic functions including zonal harmonics, which
is a restricted class of spherical harmonic functions. In this document, we are covering Real
Spherical Harmonics only, since in computer graphics real-valued functions are mainly used.

3.4.1 Definition

Figure 3.3: This figure illustrates the first 4 spherical harmonic bands l = 0...3. Green indicates
positive extents and red negative extents. Image Image courtesy of [23]

Usually the spherical harmonic function is denoted by y. To parametrize a point on the unit
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sphere, we will use spherical coordinates as explained in subsection 3.3.

yml (Θ, φ) =


√

2Nm
l cos(mφ)Pml (cosΘ) if m > 0

N0
l P

0
l (cosΘ) if m = 0√

2Nm
l sin(−mφ)P−ml (cosΘ) if m < 0

(3.19)

Nm
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
(3.20)

Where N is a scaling factor to normalize the functions and P the Associated Legendre Polyno-
mials explained in Section 3.2. Spherical harmonic functions are orthonormal and are basically
a normalized adaption of the Legendre Polynomials mapped onto the unit sphere. For conve-
nience, it is useful to distinguish three types of spherical harmonic functions: The set of spherical
harmonics, which are latitudinally partitioned along the unit sphere and m = 0 are called zonal
harmonics. The second class is called sectoral harmonics, which are of the form ym|m| and are
divided along the meridian. All other sets of spherical harmonics are called tesseral harmonics
and are partitioned in longtitude and latitude. (see Figure 3.3).

When looking at Equation 3.19, we see that the function depends on two parameters m, l.
For convenience, it is sometimes useful to flatten the two parameters m and l into one parameter
i when generating the spherical harmonic functions. The ordered sequence is defined by

yml (Θ, φ) = yi(Θ, φ), (3.21)

where the index i = l(l + 1) + m. To speed up the calculation when generating the basis
functions, the factorial calculation can be precalculated into a table.

3.4.2 Properties

In the next four sections, we will explain the most important properties and operations of spher-
ical harmonics functions, projection, convolution, products and rotational invariance.

Projection and Reconstruction

With a given function, it is simple and straight forward to project the function into coefficients,
as we have seen in Section 3.2. If we replace the arbitrary polynomial basis bn of Equation 3.7
by the real spherical harmonics basis function yi(s). We can then integrate the product of the
function f(s) and the SH function yi(s) to calculate the spherical harmonic coefficients.∫

S
f(s)yi(s)ds = ci (3.22)

f(s) could be the incident light at a point in the scene, then the coefficient vector ci provides a
compact representation of this incident light. As we have already introduced the Monte Carlo
Estimator 3.1, we are able to calculate a numerical solution for Equation 3.22 and it can be
re-written as:

4π

N

N∑
k=1

f(xk)yi(xk) = ci. (3.23)
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Figure 3.4: Projection of spherical functions with increasing order. Image courtesy of Green [7]

The result will be a band-limited approximation of the original function because the basis func-
tions itself are band-limited, where band-limiting means to limit a deterministic signal to zero
above a certain finite frequency. The quality of the approximation depends on the number of
basis functions used, where (n+ 1)2 coefficients are used for order-n harmonics. Using order-3
spherical harmonics will generate sixteen coefficients, which will in our case be sufficient to
produce acceptable results (see Figure 3.4).

Convolution

It would be nice to apply filters to spherical functions as we know it from the Fourier theory,
where convolution is a central concept. The main idea is that by using the spherical harmonics
projection of a function f and a kernel function k instead of the original functions, the con-
volution can be computed more efficiently. A precondition is that the kernel function has to
be circular symmetric since a non-symmetric convolution is not defined on the sphere. The
spherical harmonic convolution can be defined in frequency domain by

(k ∗ c)ml =

√
4π

2l + 1
k0
l c
m
l , (3.24)

where k is the coefficient vector of the kernel function and c the coefficient vector of f . (k∗c) de-
notes the coefficient vector of the convolved function (k∗f). As we can see from Equation 3.24,
we scale each band of c with each band of k where m = 0.

Products

This property is very important for calculating visibility and/or lighting. For interested readers,
Green gives a detailed explanation in his paper [7]. For example, it would be nice express the
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product of the visibility function and the incident light at some point in the spherical harmonics
basis. This would reduce the triple product integral of light, BRDF and visibility often encoun-
tered in Global Illumination methods to the product of incident light and visibility followed by
a simple dot product with the BRDF (recall from Section 3.2 that the product integral of two
functions can be approximated by a dot product in any orthonormal basis). The goal is to com-
pute an order-n coefficient vector c • d by projecting the product of two reconstructed functions
f̃ and d̃ back to spherical harmonics.

(c • d)i =

∫
S
f̃(s)d̃(s)yi(s)ds (3.25)

=

∫
S

(

N∑
j=0

cjyj(s))(

N∑
k=0

dkyk(s))yi(s)ds (3.26)

=
∑
kj

cjdk

∫
S
yj(s)yk(s)yi(s)ds (3.27)

=
∑
kj

cjdkΓjki (3.28)

Where Γjki is called the Triple Product Tensor [26], a sparse, symmetric order-3 tensor. Since
there is a lot of room for optimization when working with the sparse tensor, Snyder [28] wrote
an article on optimizing low-order spherical harmonic products, where he explains in detail how
to write a code generator. If one of the two functions, say f , is known in advance, it is possible
to precompute a transfer matrix for that function

(M)ij =

∫
S
f(s)yi(s)yj(s)ds (3.29)

This matrix transforms a coefficient vector d of a second function d to the coefficient vector of
the product of both functions

(c • d)i =

N∑
j=0

Mijdi. (3.30)

For example, it is possible to map the projection of a light source into the projection of a shad-
owed light source through a transfer matrix if the visibility function is known in advance. The
light function need not be known in advance and can change in each frame for the cost of a
matrix product.

Rotational Invariance

A very interesting property of spherical harmonic functions is that they have rotational invari-
ance, which describes the fact that if we take a copy c of an arbitrary rotated function d the
following relation can be defined:

c̃(x) = d̃(R(x)). (3.31)
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Where R is a arbitrary rotation. This relation implies that projecting a rotated function c has the
same result as projecting the original unrotated function d and rotating the input. This property is
very important when we rotate or move lights, because it prevents the light source from causing
artifacts like fluctuations in the computed shading.

3.4.3 Rotation

Since there are many ways to implement efficient spherical harmonic rotations [11] [17], we
will give a short overview of spherical harmonic rotations based on Blanco’s [4] paper and on
Green’s [7] supplementary notes. From the last section, we know that for each coefficient c that
describes a function f there is a second coefficient vector d that exactly describes the function f
rotated on the sphere. It would be nice to have a matrix that transforms c into d, like we know
from Euler’s rotation.

Since spherical harmonics are orthogonal, it is possible to find a linear transformation on the
SH coefficients that transforms the coefficients of the unrotated function to the coefficients of the
rotated function. Furthermore, because of the orthogonality property, we get a block-diagonal
sparse matrix when compositing a SH rotation matrix (see Equation 3.32).

M =



1 0 0 0 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
...

...
...

...
...

...
...

...
...

. . .


(3.32)

It turns out that constructing a rotation matrix efficiently is not simple. However, for low order
spherical harmonics it is still feasible to use symbolic integration on the product of a rotated
spherical harmonic function with its unrotated copy.

Mij =

∫
S

yi(Rs)yj(s)ds (3.33)

In order to compose the rotation R it is useful to find the minimal number for rotations. An
elegant approach is to use a ZYZ rotation, with its angular components (α, β, γ), which can
be decomposed into a rotation of 90◦ about the x-axis, a rotation around the z-axis by β and a
final rotation of −90◦ about the x-axis. The x-axis rotation is fixed in terms of the angle and
therefore the matrix components ofM can be precomputed (see Equation 3.34 for a 90◦-rotation
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example).

M =



1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1
2 0 −

√
3

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

3
2 0 1

2


(3.34)

The matrix for an arbitrary rotation can be calculated by

M(α, β, γ) = MγM−90MβM90Mα (3.35)

The next topic will cover a subset of spherical harmonic functions called the zonal harmonics,
which can be rotated more efficiently.

3.4.4 Zonal Harmonics

Zonal Harmonics are the class of spherical harmonics basis functions, which are rotationally
symmetric around the z-axis, and were first used in the context of computer graphics by Sloan [26]
(see Figure 3.3). The zonal harmonics are denoted by y0

l . Since we have only one non-zero entry
per band a zonal harmonic function with the order n only has n coefficients. Zonal harmonics
are very important when modelling light sources and are used later on in this document. Com-
pared to the general spherical harmonic rotation, zonal harmonics are easier to rotate, because
we only need to evaluate the spherical harmonic basis functions in the new direction v.

cl =
∑
l

zl

√
4π

2l + 1

∑
m

yml (d)yml (v) (3.36)

and cl are the coefficients of the rotated function. zl are the zonal harmonics coefficients of the
unrotated function that is symmetric about the z-axis, d is the direction of the z-axis and v is the
direction being rotated to.

3.5 Ambient Occlusion

Ambient occlusion is a soft shadowing technique, which adds more realism to a scene. Generally
speaking, the ambient occlusion term describes how much of the hemisphere of a surface point
is occluded. We want to give a short description on two methods, which extend previous papers
on ambient occlusion by calculating the ambient occlusion term at run-time on the GPU. The
method developed by Bunnell [5] can be used to compute the diffuse light transfer between
surfaces in addition to the occlusion term for animated objects and scenes. The second method,
presented here, was introduced by Mittring [18] and is called Screen Space Ambient Occlusion.
The ambient occlusion is calculated in screen space.
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Figure 3.5: The images from left to right show: A scene using environment lighting only, soft
shadows using ambient occlusion and indirect lighting. Image courtesy of Bunnell [5]

Dynamic Ambient Occlusion and Indirect Lighting

Bunnell et al. [5] approximates a polygon mesh by surface elements. A surface element is an
oriented disc, which has a position, normal and area. Each surface element can cast, reflect and
transmit light. Surface elements are placed at each vertex and the area of the disc is calculated
by adding one third of the area of each triangle shared by the vertex.

Figure 3.6: The image on left shows a polygon mesh, the image on the right shows the same
mesh represented by surface disks. Image courtesy of Bunnell [5]
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For calculating the ambient occlusion, we have to find out how much a receiver point is
occluded by all other surface elements. This can be done based on the solid angle 3.7 between
an emitter disc and receiver point. This determines how much the receiver point is occluded by
the surface element.

O(r, e) = 1− drecosΘemax(1, 4cos(Θr))√
Ae
π + d2

re

(3.37)

Where Θe is the angle between the normal of the surface element and the vector from the center
of the surface element to the receiver point on the receiver disc. Θr is the angle between the
receiver normal and the vector from the receiver point to the center of the surface element. The
term max(1, 4cos(Θr)) is used to restrict occluding surface elements to the upper hemisphere.
der is the distance from the receiver point to the center of the surface element and Ae is the area
of the disc.

d

e

r

e

r
Figure 3.7: This image depicts a receiver disc and an surface element at distance der. Image
courtesy of Bunnell [5]

The algorithm executes two main passes to calculate the ambient occlusion values. In the
first pass, the ambient occlusion term of each disc in the upper hemisphere above a receiver
point are summed up. After the first pass some surface areas are going to be too dark, since the
overlap between surface elements is not accounted for. This problem is corrected by running a
second pass with the same procedure, but now reducing the occlusion caused by each disc by a
factor proportional to the occlusion of the disc itself. That results in shadows, which may be too
light in some areas. To get a good estimate of the ambient occlusion values, a weighted average
based on pass one and pass two is computed.

Indirect lighting can be added in an additional render pass. Bunnell [5] uses a slight modi-
fication of the ambient occlusion term mentioned before to calculate a single diffuse bounce of
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indirect lighting. For this purpose, the solid angle function is replaced by a radiance transfer
function calculated from disk to disk.

Additionally the disc is two-sided, the front face is used to emit and reflect light and the
back face is used to transmit light and to cast shadows. All information like normal, position
and area are stored in a texture map, which can easily be accessed by the GPU. To dynamically
change geometry during animation, Bunnell [5] suggests using a fragment program to compute
the animation and transformation of the surface elements.

Screen Space Ambient Occlusion

Figure 3.8: This image shows the effect of ambient occlusion on a video game scene. Image
courtesy of Mittring [18]

Mittring et al. [18] introduced an improved Screen Space Ambient Occlusion technique
(SSAO), which is currently used by state-of-the-art game engines. It is a method, where the
ambient occlusion value is calculated for each pixel of a framebuffer. No pre-computation is
needed and the method is therefore adequate for rendering dynamic scenes. Furthermore, the
performance is independent of the scene complexity and only depends on the framebuffer reso-
lution.

This technique uses a fragment program on the depth buffer. For each Pixel of the depth
buffer nearby points are sampled. Afterwards those points are projected to screen space. The

26



depth of the sample is then compared against the depth of the pixel to identify if the surface at a
sample occludes the surface at the pixel or not. The occlusion value for each pixel is computed
by averaging the distances of the occluding samples. To speed things up, the authors developed
a fast importance sampling to method to optimize sample placement.

3.6 Precomputed Radiance Transfer

Figure 3.9: The image on the left depicts a head rendered with environment lighting only, the
right image shows the head with self-shadows and interrefelctions using precomputed radiance
transfer. Image courtesy of Sloan et al [27]

Precomputed Radiance Transfer (PRT) is a method to approximate global illumination ef-
fects. In PRT, the linear transformation (or transfer function) between radiance from a lighting
environment and the incident radiance on a surface lit by this environment after a few indi-
rect bounces is precomputed. Sloan et al. [27] use Spherical Harmonics (SH - see Section 3.4)
to encode the huge amount of data resulting from the pre-computation. The basic idea is to
approximate the incident radiance and the precomputed transfer function in the SH basis. Dur-
ing runtime the generated SH coefficients are used to approximate the render equation under
changing environment lighting. With this method it is possible to calculate soft shadows and
interreflections on diffuse and glossy objects in static scenes.

If we assume an infinitely distant light source like an environment map, we can rew-rite the
incident light Equation 2.5 for an unshadowed surface point:

Li,unshadowed(p, ωi) = Lenv(p, ωi). (3.38)
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For the shadowed case, we add a visibility function V , which evaluates to 1, if we hit the light
source and 0 otherwise.

Li,shadowed(p, ωi) = Lenv(p, ωi)V (p, ωi) (3.39)

If we include indirect lighting, we replace V by the functionR(p, ωi) describing how much light
from Lenv reaches p through reflection.

Li,indirect(p, ωi) = Lenv(p, ωi)R(p, ωi) (3.40)

If only diffuse objects are rendered then the light transport equation is simplified since light is
reflected equally in all directions. In this case, the BRDF (see Equation 2.1) degenerates into a
constant factor ρ with values ranging from 0 to 1 and we can re-write the light transport equation
(see Equation 2.8) as

Lo,∗(p, ωo) =
ρdiffuse

π

∫
Ω
Li,∗(p, ωi) cos(θ)dωi, (3.41)

where Li,∗ is one of the three terms described in Equations 3.38 to 3.40. Notice how we can pull
out the constant BRDF ρdiffuse(p)

π (see Equation 2.7) and integrate only the cosine term. The
emittance term has been removed, because we assume the environment light is the only light
source.

A key observation is that the function V and R only depend on the geometry of the scene.
Therefore, in static scenes and for perfectly diffuse materials the product of the visibility func-
tion and the cosine term can be pre-computed, which results in a transfer function. At run-time,
we now have two functions, the lighting function and the transfer function. To compute Equa-
tion 3.41, we need to quickly integrate the product of those two functions. For this purpose,
we represent the lighting function and the transfer function in the spherical harmonic basis (see
Section 3.4). The lighting function can be approximated by

Lenv ≈
∑
k

lkyk (3.42)

The spherical harmonics projection of the functions V and R are more involved (see [27] for
details), but since they only depend on the scene geometry, they can be precomputed if the
geometry is assumed to be static. The outgoing radiance Lo,∗ can be computed very quickly
because the integral of the product of two functions can be expressed by a simple dot product in
the spherical harmonics basis (see Equation 3.8).

In summary, Sloan [27] demonstrated a technique which can compute dynamic lighting and
viewing changes in static scenes.

3.7 Real-time Rendering of Dynamic Scenes under All-frequency
Lighting using Integral Spherical Gaussian

Iwasaki et al. [12] introduced a new method for rendering dynamic scenes under all-frequency
environment lighting in real-time.
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Figure 3.10: The two images show scenes which are completely dynamic and are rendered with
all-frequency lighting. Image courtesy of Iwasaki [12]

To calculate outgoing radiance at a surface point the triple product integral of incident light-
ing, visibility and BRDF is computed. The authors approximate all three terms of the triple
product integral by sums of Spherical Gaussians (see Section four in their paper [12]). A Spher-
ical Gaussian is a type of spherical radial basis function suited for approximating low-frequency
functions on the sphere. Environment lighting is approximated by the sum of Spherical Gaus-
sians and diffuse BRDFs (including the cosine term) are represented by a single Spherical Gaus-
sian. Glossy BRDFs need multiple Spherical Gaussians for a sufficiently accurate approxima-
tion. The visibility function for a receiver point is represented in the Spherical Gaussian basis as
well.

To reduce the effort of calculating the visibility for a receiver point, the authors approximate
all geometry by a set of spheres. Hence, it is easy to calculate the solid angles of an occluded
region and represent it by a sum of Spherical Gaussians. To efficiently compute the product
integral of the visbility function and the other terms of the triple product integral the authors
introduce the Integral Spherical Gaussians. Integral Spherical Gaussians are an extension of the
integral image defined over the 2D image domain to the Spherical Gaussians defined on the unit
sphere. For a complete definition of the Integral Spherical Gaussians, see section four of the
paper [12].

To calculate the integral of the Spherical Gaussians over the occluded regions, the hemi-
sphere over a receiver point is discretized into small patches (see image (a) in Figure 3.11).
Within an area limited by the angle γ the hemisphere is subdivided uniformly. Occluded areas
on the hemisphere are determined by patches overlapping the projection of the blocking spheres
(see image (b,d) in Figure 3.11). Finally the Integral Spherical Gaussian of the occluded regions
are calculated representing the integral of the product of the visibility function, the incident
lighting and the BRDF.

The authors demonstrated rendering dynamic scenes with changeable viewpoints and BRDFs
under dynamic all-frequency lighting in real-time. Furthermore, they showed how to efficiently
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Figure 3.11: The four images show coordinate systems for integral spherical Gaussian. Image
courtesy of Iwasaki [12]

calculate the triple product integral in the Spherical Gaussian basis using Integral Spherical
Gaussians. However, due to the approximation of blocking geometry with spheres, their method
is limited to relatively simple or sparse geometry. Approximating a complete height field accu-
rately with spheres would be prohibitively expensive.

3.8 Cascaded Light Propagation Volumes for Real Time Indirect
Illumination

Figure 3.12: The images show a scene rendered with indirect illumination in real-time. The
complete scene, including lights, camera and geometry are fully dynamic. Image courtesy of A.
Kaplanyan & C. Dachsbacherr [15]

Anton Kaplanyan and Carsten Dachsbacher [15] introduced a new technique to approximate
direct and indirect illumination for fully dynamic scenes. Their method does not need any pre-
computation and can handle single and multiple bounce indirect illumination.

Radiance in a scene is sampled on a 3D-lattice, called light propagation volume (LPV). Each
cell of the lattice stores the directional radiance distribution at the center of the cell represented in
a spherical harmonic basis. Radiance is iteratively propagated from cell to cell until the radiance
has travelled through the entire light propagation volume.

The method proceeds in four major steps. In the first step, the light propagation volume is
initialized with the radiance distribution from a set of virtual point lights [16] representing direct
and indirect light sources. In the second step a coarse approximation of the scene geometry is
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Figure 3.13: Left: The approximated radiance is propagated to adjacent cells. Center: The flux
from the source cell through the destinations faces is calculated. Right: Blocking potentials are
interpolated between cell centers of the geometry volume. Image courtesy of A. Kaplanyan &
C. Dachsbacher [15]

computed which is needed for blocking information in the following step. Then radiance is
propagated through the volume. During the final step the surface lighting is reconstructed using
the final radiance distribution in the cells.

Initialization of the Light Propagation Volume

When initializing the LPV, direct and indirect light is converted into a set of virtual point lights
(VPL), based on the work of Keller et al. [16]. VPLs representing the direct and indirect lighting
contribution of each light source are created. Afterwards, the contribution of each VPL is used
to compute the initial radiance distribution in each cell of the light propagation volume.

Scene Geometry Approximation

This step computes an approximation of the scene geometry for occlusion computation. This,
done by sampling the scene surfaces and representing them as surfels (surface element). The
authors model occlusions in the spirit of Sillion [25]. An accumulated blocking potential of the
surfels is computed for each cell. This blocking potential tells us how much of the radiance
passing through a cell is blocked in a particular direction. It is stored at the corners of each cell
and is reconstructed to a spherical function that blocks the radiance flow between cells in the
propagation step.

Iterative Light Propagation

This step computes the radiance distribution for the light propagation volume by iterating small
local propagation steps until the light has travelled through the entire volume. In one iteration
light can only travel to neighboring cells. Radiance is propagated from a source cell to its
destination cells in six axial directions (see leftmost image in Figure 3.13). The amount of
radiance transferred is determined by integrating the source intensity over the solid angle of the
shared face f giving the flux across face f of the destination cell (see image two from the left of
Figure 3.13). The radiance distribution at the center of the destination cell is updated with the
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transferred radiance. This process is computed for all faces of a destination cell and the resulting
SH coefficients are accumulated for the next iteration.

Rendering

Finally, incident radiance at a surface point is computed by trilinearly interpolating between the
SH coefficients of neighboring cells. Outgoing radiance is computed by a product integral of
the BRDF function and the incident radiance, approximated by a dot product in the spherical
harmonics basis.

3.9 Fast Soft Self-Shadowing on Dynamic Height Fields

Figure 3.14: The images show different lighting and shadowing settings. The leftmost image
shows a height field without shadows. The second image shows shadows from an environment
light source. The third image shows a height field shadowed from a key-light. On the last image
key light and environment light are combined giving a more natural look. Image courtesy of J.
Snyder & D. Nowrouzezahrai [29]

John Snyder and Derek Nowrouzezahrai [29] present a method for calculating realistic soft
shadows from large area light sources on dynamic height field data. This technique is the basis
for our method.

To calculate soft self-shadowing on a height-field lit by an environment light, we have to
find the directions in which the environment is visible from each receiver point. The visibility
function is constructed by finding the maximum elevation angle in each azimuthal direction, i.e.
the horizon at the receiver point. To reduce sampling overhead a multi-resolution pyramid of
the height field is computed. The maximum blocking angle (horizon angle) in each azimuthal
direction is found by sampling from finer to coarser levels with increasing distance from the
receiver point. A continuous horizon function for a given receiver point can be reconstructed by
finding the horizon angle in discrete, uniformly-spaced set of azimuthal directions and interpo-
lating linearly in between. A visibility functions with values of 1 above the horizon and 0 below
is projected to the spherical harmonics basis to get the total spherical harmonic visibility vector
at a receiver point.

The method support two types of light sources. Key lights, which are similar to directional
light sources (e.g. sunlight) and environmental lights (e.g sky). To calculate visibility for a given
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Figure 3.15: The images show a visibility wedge determined by adjacent blocking angles
(ωi, ωi+1) and their corresponding azimuthal direction (ϕi, ϕi+1). Image courtesy of J. Sny-
der & D. Nowrouzezahrai [29]

key light, we only need to sample in a narrow range of azimuthal angles compared to environ-
mental lights, where we have to sample the complete azimuthal extent ranging from 0 to 360
degrees. To obtain better soft shadows the authors compute finer transitions between neighbor-
ing pyramid levels resulting in extra levels between power-of-two reductions, also helping to
decrease aliasing artefacts.

Finally, shading a point on the height field is done by computing the SH triple product
integral of environment light, visibility and the BRDF. Since only diffuse surfaces are handled,
the BRDF reduces to the clamped cosine function on the hemisphere. The triple product integral
can be approximated by the dot product of environment light SH coefficient vector and the
transfer vector. The transfer vector is the spherical harmonic product between the total visibility
vector and the clamped cosine over the hemisphere.

In practice, the projection of the visibility function is the bottleneck of the method. To allow
for real-time performance, the authors precompute a table of visibility function wedges between
pairs of adjacent azimuthal directions. These wedges are only parametrized by the two adjacent
horizon angles (Figure 3.15) and the coefficients of their SH projection can be precomputed and
stored efficiently for all combinations of horizon angle pairs. At run-time the authors do a table
lookup using the pairs of adjacent horizon angles to retrieve the SH coefficient vector followed
by a fast z-rotation in the spherical harmonic basis to a given azimuthal direction. This can be
done for all pairs of adjacent horizon angles and the sum of all rotated coefficient vectors is the
projected visibility function.

In summary, we can say that with this method it is possible to render soft-shadows from
key-lights and environment-lights. We will extend this method to render soft shadows from
local lights, as explained in detail later in the text.
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3.10 Scalable Height Field Self-Shadowing

Figure 3.16: The images show, from left to right, a height-field lighted by environment-lights
with increasing size. We can see sharper shadows for small environment-lights and softer shad-
ows for large environment. Image courtesy of Timonen et al. [31]

Timonen [31] introduced a different approach to calculate soft-shadows on dynamic height
fields. A main advantage compared to the method of Synder [29] is that they are able to ren-
der shadows with sharper edges, i.e. full-frequency visibility while still maintaining a good
performance level.

Snyder et. al. [29] sample along discrete azimuthal directions for each receiver point on the
height field. This is a redundant sampling strategy because the same positions on the height field
can get sampled multiple times for different receiver points. Instead of processing each point on
the hight field independently, Timonen et. al. [31] traverse the hight-field in parallel lines (see
the leftmost image in Figure 3.17). Along each line one hight sample after another is added to
the hight function to derive the horizon angle. The authors construct a convex hull iteratively,
which represents the possible candidates for the horizon (points not on the convex hull can not
be part of the horizon of any receiver point). The horizon angle at each height field sample is
then determined by its direct neighbours in the convex hull (as illustrated in the middle image of
Figure 3.17).

Figure 3.17: The left image shows, how many sampling directions are created and how many
samples are processes in each directions for a given hight field resolution. The middle images
depicts that for a new sample the horizon angles is calculated by the previous occluders in
the convex hull. The rightmost image shows how lighting can be tabulated as a function of the
horizon angle Θh and the angle Θn of the projected normal ~Np. Image courtesy of Timonen [31]
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Arbitrary low-frequency and high-frequency environment-light sources can be handled by
the method, allowing it to capture more shadow details than to the method of Snyder [29]. For
a given sample point in direction d the sample point normal is projected onto the azimuthal
plane and radiance incident from one azimuthal direction can be precomputed as a function of
the maximum blocking angle θh and the angle θn for the projected normal (as illustrated in the
rightmost image of Figure 3.17). The precomputed incident radiance can be stored in table in the
form of SH coefficient vectors and looked up at run-time with the given blocking angles. Finally
the complete incident radiance from all directions is approximated by accumulating the pre-
calculated light function for each azimuthal direction times the magnitude of the corresponding
projected normal Np.

In summary we can say, that this is a very fast implementation of soft and hard shadows for
dynamic height-fields running entirely on the GPU but not capable of rendering soft-shadows
from local lights.

3.11 Fast Global Illumination on Dynamic Height Fields

Figure 3.18: The images compare different scenes with global illumination and direct illumina-
tion only. Image courtesy of Nowrouzezahrai [19]

Nowrouzezahrai et al. [19] extended their previous method [29] presented in Section 3.9 to
compute indirect lighting and to support glossy surfaces.

To compute direct shadowing and indirect lighting two multi-resolution pyramids are gener-
ated. One is used as in their last method for shadows of direct lighting and the other to calculate
indirect lighting. In contrast to their previous method, where only the maximum blocking angle
is captured, they compute visibility and incident radiance from the entire height-field (not from
the environment light only) in discrete azimuthal directions, representing the binary visibility
function and the incident radiance function of a single azimuthal direction analytically in the
Normalized Legendre Polynomial (NLP) basis (see Section four in the paper [19]). Normal-
ized Legendre Polynomials are used instead of spherical harmonic basis functions since they are
used to describe the incident radiance and visibility of a single azimuthal direction, i.e. a one-
dimensional function of the elevation angle, not a spherical function. Additionally, the order-n
NLP basis only contains n basis functions compared to order-n SH basis containing n2 basis
functions.
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Since visibility and incident radiance are stored in the NLP-basis for each azimuthal direc-
tion, the authors introduce blending matrices from NLP to SH to convert the 1D visibility and
radiance functions to 2D visibility and radiance wedges on the sphere. This eliminates the need
to precompute a 2D-table of wedge SH coefficient vectors for all combinations of pairs of hori-
zon angles as they did it in their previous work. The total visibility vector can then be computed
by summing over all wedges.

In summery we can say, this method represents visibility and incident radiance efficiently
using the Normalized Legendre Polynomials. Furthermore, even sharper shadows are possible
for key lights than in their previous method. However, it is still not possible to compute soft
shadows from local light sources.
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CHAPTER 4
Realistic Local Lighting in Dynamic

Height Fields

Figure 4.1: The images show different scenes and settings rendered with the method described
in the following chapter. The scenes, including lights, camera and geometry are fully dynamic.

In the following chapter, we present a new method to approximate soft shadows and diffuse
direct lighting from local lights and environment light sources on dynamic height-fields. The
method extends the work of Snyder et al. [29], which we summarized in Section 3.9.

In our method, soft shadows from environment and local light sources are computed in two
separate passes. To calculate soft shadows from environment light sources, the method described
by Snyder et al. [29] is used. In our work, we extend this method to handle soft shadows from
local light sources. We will describe our method in detail in this chapter.

This chapter is structured in two parts: In the first part 4.2, we explain how the authors [29]
calculate soft shadows lit by an environment map. In the second part, we describe how to extend
the method by Snyder et al. [29] to calculate soft shadows lit by local light sources and how to
calculate total outgoing radiance at a receiver point from an environment light source and local
light sources.
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Figure 4.2: The image on the left shows the horizon angle at receiver point p for a single az-
imuthal direction lit by an environment map. The image on the right shows the horizon angle at
receiver point p for a single azimuthal direction lit by a local light source L.

4.1 Overview

To calculate soft self-shadowing on a height-field lit by an environment light, we have to find the
set of directions on the hemisphere in which the environment is visible from each receiver point.
To do this, we find the maximum elevation angle of the height-field along each azimuthal direc-
tion, effectively defining the horizon as visible from a receiver point. A brute force approach
requires sampling height differences between each receiver point and all height-field samples.

To reduce sampling, a multi-resolution pyramid is computed on the original height-field
data. The multi-resolution pyramid is a stack of filtered versions of the original height-field data
with increasing filter size. We sample detailed levels closer to the receiver point, and as the
distance to the receiver point increases we sample from successively coarser levels. For each
azimuthal direction from a given receiver point, the maximum elevation angle of the height-
field is computed (see Figure 4.2) yielding a set of elevation angles, one for each azimuthal
direction. A continuous horizon function is reconstructed from these elevation angles, describing
the visibility of the environment from the receiver point. For efficiency, this function is stored in
the spherical harmonics basis.

To compute the visibility of local lights, we have to find the maximum elevation angle for
all azimuthal directions in the interval between the receiver point and the position of the light
center, as shown in Figure 4.2.

Shading a point on the hight field is done by computing the spherical harmonics triple prod-
uct integral of the lighting function – either the emittance of the environment or of the local
lights – the visibility function and the BRDF, in our case a clamped cosine over the hemisphere.

4.2 Soft Shadows from Environment Lights

To calculate soft shadows from an environment light source, we use the method described in
[29]. In this section, we will describe this method in detail, including how to calculate self-
visibility for all receiver points on the height-field and how to calculate the final shading.
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Figure 4.3: Images rendered using the method of Snyder et al. [29]

4.2.1 Self-Visibility of Height fields

A height-field is represented by a tabulated grid of scalar height values in two dimensions and is
defined by {

(x, y, h(x, y)) | (x, y) ∈ R2
}

(4.1)

where p = (x, y, h(x, y)) is a three-dimensional point on the height-field and h(x, y) ∈ R is a
scalar height value at location (x, y).

To compute the visibility of the distant environment at a receiver point, we need to recon-
struct the complete horizon, which is equivalent to finding the horizon angle in each azimuthal
direction parametrized by (cos(ϕ), sin(ϕ)), ϕ ∈ [0, 2π]. The horizon angle represents the max-
imum angular elevation of the horizon above 0 degrees in one azimuthal direction ϕ from the
receiver point p and is defined:

ωx,y(ϕ) = max
d∈(0,∞)

atan

(
h(x+ d cos(ϕ), y + d sin(ϕ))− h(x, y)

d

)
(4.2)

where ωx,y(ϕ) represents the horizon angle or maximum elevation angle and d is the continuous
distance along a azimuthal direction ϕ away from the receiver point (x, y).

The continuous visibility function on the hemisphere of a receiver point (x, y) with horizon
angles ωx,y(ϕ) is then

Vx,y(θ, ϕ) =

{
1, if θ > ωx,y(ϕ)

0, otherwise
(4.3)

where θ ∈ [0, pi/2] is the altitude angle and ϕ ∈ [0, 2pi] the azimuthal angle. Informally, the
environment is visible on those parts of the hemisphere that have an elevation angle above the
horizon.

A brute-force sampling of the horizon angle function would require evaluating a prohibitive
amount of samples. To reduce sampling, Equation 4.2 can be approximated using a multi-
resolution pyramid.

Multi-resolution image pyramid computation

To reduce the sampling overhead along an azimuthal direction we sample more densely close to
the receiver point and less densely as the distance away from the receiver point increases. We
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sample more densely close to the receiver point because geometry closer to the receiver point
has more influence to the final result. To avoid aliasing artefacts the original height-field data
is pre-filtered with a bicubic b-spline [24] filter with a kernel size inversely proportional to the
sampling density.

To reduce the processing overhead for each receiver point, the aforementioned filtering steps
are computed once in each frame, resulting in a multi-resolution image pyramid.

The multi-resolution image pyramid represents a stack of filtered versions of the original
height-field data with increasing filter size. Each level of the multi-resolution pyramid is denoted
by hi(x, y), i ∈ {0, 1, ..., n− 1} where i is the level index and n the total number of pyramid
levels. The multi-resolution pyramid is constructed by iteratively decimating the original height
data with a bilinear filter from finest to the coarsest level, which is called the reduction step,
followed by bicubic b-spline reconstruction of each level back to the original resolution. We
will give a detailed description on the bicubic b-spline interpolation method [24] in chapter 5.

The total number of pyramid level is

n =

⌈
ls

(
ln br

ln 2

)⌉
+ 1 (4.4)

where ls is called level step and br is the resolution of the original height-field. The level step
is used to compute finer transitions between subsequent pyramid levels resulting in extra levels
between power-of-two reductions. The reduction in resolution between two pyramid levels is
given by sr = 2(1/ls). A level step of 1 gives power-of-two reductions, other values for the level
step increase or decrease the reduction between consecutive pyramid levels.

In the next sections, we will describe how to use the multi-resolution image pyramid to
approximate the horizon angle for one azimuthal direction at a receiver point.

Horizon angle approximation

When sampling the height-field along a single azimuthal direction away from a receiver point,
the samples are placed at a fixed set of distances d1, ..., dn from the receiver point. The spacing
between the sample points increases with the distance from the receiver point. To avoid aliasing
from undersampling, one sample is taken from each pyramid level. The sample closest to the
receiver point is taken from the finest pyramid level, while the sample farthest away is taken
from the coarsest level. The sample spacing ssi = di+1−di and the reduction between pyramid
levels is directly related by ssi = sr−i = 2(−i/ls). This ensures that each sample is taken
from an optimally pre-filtered version of the height-field. Setting ls = 4 produces visually fine
transitions for soft shadows.

The elevation angle is approximated using the multi-scale directional derivative introduced
by Snyder et. al. [29]. The multi-scale directional derivative is defined in the discrete setting
using finite differences:

Dx,y,i(ϕ) =
hi(x+ dicos(ϕ), y + disin(ϕ))− hi(x, y)

di
(4.5)

where i is the a pyramid level, hi the height value at (x, y) for pyramid level i, ϕ the azimuthal
direction and di the sample distance.
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Figure 4.4: The top row shows filtered versions of the original height-field where height differ-
ences are sampled along the azimuthal direction at distance di. The bottom row shows pyramid
slices of the filtered versions of the original height-field along with the associated samples along
the azimuthal direction.

The elevation angle for a pyramid level i is defined by

ωx,y,i(ϕ) = atan(Dx,y,i(ϕ)) (4.6)

and is computed at each pyramid level i, resulting in a set of elevation angles for each azimuthal
direction of a height-field point (x, y). The authors compute the inverse tangent because it is
much better to interpolate in the space of angles since the tangent is an unbounded function. If
we would interpolate it directly, it would overaccentuate shadowing.

The next section explains how to reconstruct a continuous function of elevation angles from
the computed samples ωx,y,i.

Continuous elevation function

To find the maximum elevation angle in a given azimuthal direction, we first reconstruct a one-
dimensional continous function from the elevation angle samples, then we find the maximum of
the function. A linear reconstruction would result in noticeable discontinuities in the shadows,
therefore we reconstruct the continous function using splines resulting in smoother transitions
(see Figure 9 in Snyders paper [29]).

For a given azimuthal direction ϕj , uniform cubic B-spline interpolation is used to recon-
struct a continuous 1D elevation angle function denoted ωx,y(d̂, ϕ) from a set of elevation angle
samples ωx,y,i(ϕ) at each pyramid level i. d̂ is the negative log distance away from the receiver
point d̂ = −logsrd, where sr is the reduction in resolution between two pyramid levels (see
Section 4.2.1) and d is the continous distance from (x, y). The set of elevation angles is denoted
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Ω = {ωx,y,0(ϕj), ωx,y,1(ϕj), ..., ωx,y,n−1(ϕj)} (4.7)

for one azimuthal direction. To reconstruct the continuous elevation function, each sequence of
four subsequent samples (ωx,y,i−1, ωx,y,i, ωx,y,i+1, ωx,y,i+2) is interpolated using the following
equation:

ωx,y(d̂, ϕ) = b0(t)ωx,y,i−1 + b1(t)ωx,y,i + b2(t)ωx,y,i+1 + b3(t)ωx,y,i+2, (4.8)

where the B-spline basis or filter weights bi for cubic B-Splines consist of the following basis
functions:

b0(t) =
(1− t)3

6
(4.9)

b1(t) =
3t3 − 6t2 + 4

6
(4.10)

b2(t) =
−3t3 + 3t2 + 3t+ 1

6
(4.11)

b3(t) =
t3

6
(4.12)

The value t = d̂− bd̂c ∈ [0, 1] is the blending distance between the values at i = bd̂c and i+ 1.
For cubic B-splines with uniform knot-vector, the blending functions can be precalculated and
are equal for each segment.

The maximum elevation angle over all d for a receiver point along a single azimuthal direc-
tion is then approximated by

ωx,y(ϕ) ≈ max
d̂∈[0,n−1]

(ωx,y(d̂, ϕ)) (4.13)

Equation 4.13 is approximated by taking the maximum of a number of sample points on the
B-Spline (for details see Section 5.2).

We constrain the function above to be non-negative, i.e. we disallow the horizon to be on
the lower hemisphere of a receiver point. This reflects the fact that we assume the height-field
to extend to infinity, just like real terrain seems to extend to infinity from the point of view of an
observer.

To control the sharpness of the shadows, an additional parameter lo called level offset is
introduced to bias the pyramid level access when evaluating Equation 4.5. Height values are
now looked up in finer pyramid levels, i.e. the pyramid level hi in Equation 4.5 is replaced by
h[i+ls∗lo] where ls is the level step which we already mentioned in section 4.2.1.

[i+ ls ∗ lo] = min(di+ ls ∗ loe , n− 1) (4.14)

With increasing lo, the shadow gets less blurred at the cost of increased aliasing. Values between
2 and 4 produce nice results in terms of shadow sharpness.
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Figure 4.5: The figure shows a complete visibility swath, where the gray lines emanating form
the center are representing the azimuthal sampling directions.

Visibility function

We now describe how to approximate total visibility at a receiver point p. In the last section, we
described how to compute the horizon angle for a single azimuthal direction ϕ. Since we want
to calculate the complete horizon for a receiver point p, in this section we first describe how to
approximate the complete horizon at a receiver point p from a small set of horizon angles ωi.
Then we explain how to compute the complete visibility function from the horizon function.

To approximate the complete horizon at a receiver point, we compute the horizon angle for
a small set of azimuthal directions ϕi, resulting a discrete set of horizon angles. This is done
to minimize sampling overhead. To reconstruct the complete horizon, we linearly interpolate
between adjacent pairs of horizon angles. The complete domain of azimuthal directions Φ =
[0, 2π] is partitioned into nϕ equally spaced azimuthal directions

{
ϕ1, ϕ2, ..., ϕnϕ

}
with spacing

∆ϕ = ϕi+1 − ϕi = Φ/nϕ (see Figure 4.5). The interval between two consecutive azimuthal
directions is called partial swath. The complete swath is the union of nϕ partial swaths.

For each azimutahl direction ϕi, we compute the horizon angle ωi as described in Sec-
tion 4.2.1. Given a partial swath [ϕi, ϕi+1] and the corresponding horizon angles ωi and ωi+1, a
continous blocker function ω(ϕ) can then be reconstructed in the partial swath by

ω(ϕ) = ωi +
ϕ− ϕi

∆ϕ
(ωi+1 − ωi). (4.15)

Next we define the spherical visibility function. Because we deal with spherical functions, we
first define the space of directions on the unit sphere S. A unit direction vector û is parametrized
by the complete azimuthal angle ϕ ∈ [0, 2π] and the elevation angle θ ∈ [−π/2,+π/2]. The
space of directions is defined by

ûS(ϕ, θ) = (cos(ϕ)cos(θ), sin(ϕ)cos(θ), sin(θ)). (4.16)

A spherical wedge (see Figure 4.6) is the set of directions between two consecutive azimuthal
directions {ûs(ϕ, θ) : ϕ ∈ [ϕi, ϕi+1], θ ∈ [0, π]}. The spherical visibility function for a single
visibility wedge determines if a ray emanating at receiver point p in a direction of the wedge is
occluded by the height-field or if the environment is visible. The visibility function vi(ϕ, θ) for
spherical wedge i is defined as
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Figure 4.6: The visibility wedge geometry. The visibility function on a single hemispherical
wedge is parameterized by two azimuthal directions (ϕi, ϕi+1 and its corresponding horizon
angles (ωi, ωi+1). It is constructed by linearly interpolating the horizon function between two
samples and projecting the directions onto the sphere.

vi(ϕ, θ) =

{
1, if ϕ ∈ [ϕi, ϕi+1] and θ > ω(ϕ)

0, otherwise
(4.17)

and evaluates to 1 if the environment is visible otherwise to 0. To approximate the complete
visibility function Vx,y, we accumulate the visibility functions vi(ϕ, θ) for each azimuthal direc-
tion.

The approximated total visibility Vx,y at receiver point can now be projected to the spherical
harmonic basis. In a pre-computation step, the spherical harmonic projection v1 of the visibility
function defined on the first wedge is precomputed for all possible combinations of angles ωl and
ωr, where ωl represents a discrete horizion angle sample along direction ϕ0 and ωr a discrete
horizion angle sample along direction ϕ1. In practice we sample n angles from ωl and ωr, for
a total of n × n combinations. We denote the table of resulting spherical harmonic coefficients
vωl,ωr , each entry can be computed as:

vωl,ωr =

∫
H
vωl,ωr(ϕ, θ)y(s)ds (4.18)

where vωl,ωr(ϕ, θ) is the visibility function defined in 4.17 for a given pair of horizon angles
ωl and ωr. v is a spherical harmonic coefficient vector and y are the spherical harmonics basis
functions yi arranged into a vector. We will give a detailed description in Section 5 on how this
tabulation is implemented on the GPU.

At runtime, given two adjacent horizon angles ωx,y(ϕi), ωx,y(ϕi+1), we look up the spheri-
cal harmonic vector vωl,ωr in the wedge table with ωl and ωr as close as possible to ωx,y(ϕi) and
ωx,y(ϕi+1). Then we rotate v to direction ϕi in the spherical harmonic basis (see Figure 4.7).
Sloan et al. [27] demonstrate that a z rotation in the spherical harmonic basis can be computed
more efficiently. We do this for all azimuthal directions ϕi and accumulate the rotated vectors.
The resulting total visibility coefficient vector Vx,y is then represented by

Vx,y = Rϕ0(vωl1,ωr1) +Rϕ1(vωl2,ωr2) + ...+Rϕn−1(vωln,ωrn) (4.19)
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Figure 4.7: The visibility wedge geometry. On this image, we show that one spherical harmonic
vector vωl,ωr (represented by the green wedge) from the wedge table is z-rotated to a given pair
of horizion angle with their corresponding azimuthal directions.

where vωl,ωr is the spherical harmonic vector for a pair of horizon angles and ωli and ωri are
as close as possible to ωx,y(ϕi) and ωx,y(ϕi+1), Rϕi denotes the z-rotation in the spherical
harmonic basis of vωl,ωr to direction ϕi.

4.2.2 Calculate shadowed outgoing radiance at receiver points

In this section, we describe how to calculate the shadowed outgoing radiance for each receiver
point p lit by a environment map. Assuming we use only diffuse BRDFs, the shadowed exit
radiance at each receiver point can be expressed via:

Lex,y =
ρ

π

∫
H
Lenv(υi)Vx,y(υi)C(nx,y, υi)dυi (4.20)

where Lenv is the radiance from the environment light source as a function of direction υi ∈
ûs(θ, φ) which is defined on the hemisphere, H the upper hemisphere sphere, Vx,y(ωi) is the
visibility function at receiver point (x, y) and nx,y denotes the unit normal vector. The diffuse
BRDF term is a constant factor ρ and the clamped cosine hemisphere C(nx,y, υi) = max(nx,y ·
υi, 0).

We efficiently evaluate this integral in the spherical harmonics (SH) basis. The SH repre-
sentation of Vx,y is already known (see Section 4.2.1). The environment lighting SH coefficient
vector Lenv is computed once each frame from the given environment light source Lenv. The SH
coefficient vector C(nx,y) of the clamped cosine hemisphere is precomputed for a single normal
direction and rotated at run-time to the actual normal direction using zonal harmonic rotation
rules (see Section 3.4.4). The zonal harmonic coefficients for the clamped cosine function for a
single normal direction can be computed using the method by Ramamoorthi et al. [20].
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Figure 4.8: Images are rendered using our method for local lights.

The main challenge in dynamic scenes is finding the visibility function Vx,y for each receiver
point (x, y). In Section 4.2.1, we described how to approximate total visibility at receiver point
(x, y) efficiently. The integral in Equation 4.20 can be approximated as

Lex,y ≈ ρ ∗ (Lenv · (Vx,y • C(nx,y))) (4.21)

where the binary spherical harmonic product (Vx,y • C(nx,y)) (see Section 3.4.2) is called the
transfer vector. The final outgoing radianceLex,y is the dot product between Lenv and the transfer
vector.

Since this form of equation 4.20 can be evaluated at run-time, all terms, including the envi-
ronment lighting, can change dynamically.

4.3 Soft Shadows from Local Lights

In this section, we will describe how to extend the method of Snyder et al. [29] presented in
the last chapters to calculate soft shadows from local light sources. We use spherical lights as
local light sources and explain how to approximate the horizon angle and the total visibility
at a receiver point for these spherical lights. Then, we show how to approximate incoming
radiance from a spherical light source at receiver point. Finally we describe how to calculate the
shadowed outgoing radiance for all receiver points on the height-field.

4.3.1 Self-Visibility of Height-fields

The visibility of a local light is determined by the height-field geometry between the receiver
point and the local light. Geometry at a larger distance from the receiver point than the local
light can not occlude the local light. Therefore, we define the visibility function for a local light
just as the visibility of the environment (see Equation 4.3) but only taking the geometry between
the receiver point and the local light into account. The horizon angle for a local light is then
the maximum elevation angle of the horizon for a single azimuthal direction ϕ from the receiver
point to the local light position (x, y)l and is expressed via:

ωlix,y(ϕ) = max
d∈[0,dli ]

atan

(
h(x+ d cos(ϕ), y + d sin(ϕ))− h(x, y)

d

)
(4.22)
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Figure 4.9: The top row shows filtered versions of the original height-field with height differ-
ences sampled along the azimuthal direction at distance di between the receiver point and the
light source. The green dl is the distance to the local light source. The bottom row shows slices
of the filtered versions of the original height-field along with the associated samples along the
parameter di between the receiver point and the local light source. Samples behind the local
light source are not used.

where ωlix,y(ϕ) is the horizon angle and d is the distance between the receiver point and the local
light source position along a azimuthal direction ϕ. In contrast to Section 4.2, the elevation angle
can now take on values below zero degrees if the receiver point has a larger height than all other
points on the azimuthal direction. This is due to the fact that the blocking geometry between the
receiver point and the light source is no longer assumed to extend to infinity (see Section 4.2.1).

The continuous visibility function is defined on the sphere at a receiver point (x, y) in con-
trast to Section 4.2.1 where it was defined on the hemisphere. We define the continuous visibility
function with horizon angles ωlix,y(ϕ) via

V li
x,y(θ, ϕ) =

{
1, if θ > ωlix,y(ϕ)

0, otherwise
(4.23)

with the altitude angle θ ∈ [−π/2, π/2] and ϕ ∈ [0, 2π] the azimuthal angle. Because the
altitude angle is in the range of −π/2 and π/2, we can also capture radiance from a local light
sources beneath a receiver point.

Horizon angle approximation

To approximate the horizon angle for a local light source, the multi-resolution image pyramid
described in Section 4.2.1 is used. When computing the continous elevation function (see Sec-
tion 4.2.1), the set of elevation angle samples Ω in Equation 4.7 is reduced to the samples having
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Figure 4.10: The visibility wedge geometry. The visibility wedge is parametrized by the az-
imuthal directions (ϕi, ϕi+1) and its corresponding horizon angles (ωi, ωi+1). By linearly inter-
polating the visibility function between the horizon angles ωi and ωi+1 followed by projecting
the interpolated values along the directions onto the sphere, we define a single visibility wedge.

a smaller distance to the receiver point than the local light. The distance dli of the local light and
the distance dj of the elevation angle sample are both computed in the plane of the height-field
(i.e., without taking height differences into account) and the distance dli is computed from the
center of the local light.

Let dki denote the smallest sample distance in {d1, ..., dn} larger than the local light distance
dli . The set of elevation angle samples for this local light is then

Ωli =
{
ωlix,y,0(ϕ), ωlix,y,1(ϕ), ..., ωlix,y,ki(ϕ)

}
(4.24)

i.e. the elevation angle samples closer to the receiver point than the local light. The last sample
ωlix,y,ki(ϕ) has a distance larger than the light, so the continous elevation function is defined at
the distance dli of the local light.

To reconstruct the continuous elevation function ωlix,y(d̂, ϕ) for one azimuthal direction ϕ,
we use the uniform cubic B-spline interpolation scheme described in Section 4.2.1 using the set
of elevation angles from Equation 4.24 as input.

The maximum elevation angle for a local light source li along a single azimuthal direction
is then approximated by

ωlix,y(ϕ) ≈ max
d̂∈[0,d̂li ]

(ωlix,y(d̂, ϕ)), (4.25)

where d̂ is the negative log distance away from the receiver point p as described in Section 4.2.1
and d̂li is the negative log distance of the local light. As described in Section 4.2.1, we ap-
proximate the continous maximum by taking the maximum of a set of samples of the B-Spline
function. For details see Section 5.2. As explained in Section 4.2.1, the sharpness of the shadows
can also be controlled by biasing the pyramid level access when evaluating Equation 4.25.

48



Figure 4.11: The spherical light source geometry. θ represents the half angle between the re-
ceiver point p and the spherical light source. Where sin(θ) = r

d and c is the center of the
spherical light source.

Visibility function

The visibility function is constructed from the elevation angles ωlix,y,j(ϕ) analogous to the en-
vironment lighting case (see Section 4.2.1), with the difference that the visibility function is
defined on the complete sphere instead of the hemisphere. The visibility wedges are also de-
fined on the complete range of elevation angles (see Figure 4.10) and the coefficient table for the
wedges is precomputed as:

vliωl,ωr
=

∫
S
vliωl,ωr

(ϕ, θ)y(s)ds (4.26)

where vliωl,ωr
(ϕ, θ) is now defined on the sphere. Then at runtime we compute final total visibility

coefficient vector Vli
x,y for a local light source exactly as described in Section 4.2.1.

Spherical light source

In our extended method, we model local lights as spherical lights sources. The spherical light
source is parametrized by the center cli and radius rli (see Figure 4.11). We want to calculate
the amount of incident radiance arriving from the light source at a receiver point. The incident
radiance at the receiver point can be approximated by projecting the light source onto the unit
sphere centered around the receiver point. This results in a function that is always circularly
symmetric, therefore it can be approximated with a zonal harmonic vector that is rotated at run-
time to align with the direction vector from receiver point to the light source using rotation rules
for zonal harmonic vectors (see Section 3.4.4).

Sloan [26] computes the zonal harmonics coefficients in closed form as a function of the
angle θ:

zlik (θ) =

∫ θli

θ=0

∫ 2π

ϕ=0
y0
kdϕdθ, (4.27)

where k is the band index of the zonal harmonic basis function, zli is the zonal harmonic coeffi-
cient vector representing the spherical light source, θli = asin(rli/dli) the subtended angle, dli
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the distance of the local light from a receiver point and y0
k is a zonal harmonic basis function.

See Appendix A.1 for the symbolic integrals of equation 4.27. At run-time, the zonal harmon-
ics vector is rotated to the direction of the light source, resulting in the spherical harmonics
coefficient vector Lli , representing the radiance incident at a receiver point.

4.3.2 Calculate shadowed outgoing radiance at receiver points

In this section we compute shadowed outgoing radiance for each receiver point p lit by the local
light sources. Like in Section 4.2.2, we assume only diffuse BRDFs. The shadowed exit radiance
at receiver point can be expressed via:

Llx,y =
ρ

π

nl∑
j=0

∫
S
L
lj
x,y(υi)V

lj
x,y(υi)C(nx,y, υi)dυi (4.28)

where nl is the number of local lights, Lljx,y is the unoccluded incoming radiance as a function
of direction υi from local light source lj . V

lj
x,y is the visibility function corresponding to local

light source lj at receiver point (x, y). The clamped cosine hemisphere C(nx,y, υi) is calculated
as in Section 4.2.2 and the diffuse BRDF is a constant factor ρ.

In Section 4.3.1 we described how to approximate total visibility at receiver point efficiently
and how to approximate incoming radiance from a local light source lj at receiver point (x, y).
These spherical harmonics approximations of the visibility function Vlj

x,y and the incoming ra-
diance Lljx,y are then used to approximate the integral in Equation 4.28:

Llx,y =

nl∑
j=0

Lljx,y · (Vlj
x,y • C(nx,y)) (4.29)

where C(nx,y) is the clamped cosine hemisphere around normal nx,y. The spherical harmonic
product (Vlj

x,y • C(nx,y) are the transfer vectors for each light source lj and the total outgoing
radiance Llx,y is the sum of each dot product between the Lljx,y and the corresponding transfer
vectors.

After the outgoing radiance at receiver points due to local lights Llx,y from Equation 4.21
and the total outgoing radiance due to environment lighting from Equation 4.29 are found, we
accumulate all contributions to get the final shadowed outgoing radiance at receiver point as

Lx,y = Lex,y + Llx,y (4.30)

In the next section, we give some implementation details on the important parts of the method
described so far.
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CHAPTER 5
GPU Implementation

In our implementation, we used the OpenGL graphics library and the OpenGL shading language
GLSL for rendering. The application code was written in C++ and compiled with the Visual Stu-
dio 2010 C++ compiler. A coarse overview of our implementation is given in Figure 5.1. In a
global pre-computation step, the visibility wedge tables (see Sections 4.2.1 and 4.3.1) are cre-
ated. Then, three steps are performed in each frame: A per-frame pre-computation step, creating
the spherical harmonics representation of the light sources, the height field pyramid and height
field normals, an environment lighting pass and a local lighting pass. For all spherical harmonic
coefficient vectors used in our method, we use n = 4 spherical harmonic bands, which results
in sixteen-component spherical harmonic vectors or four-component zonal harmonic vectors.
This produces good results for low-frequency lighting and visibility while keeping memory and
time requirements low. In the following sections, we describe important data structures which
are used in the implementation and details of the algorithms used. First we describe the pre-
computation step in Section 5.1, followed by the environment lighting and local lighting step in
Sections 5.2 and 5.3.

5.1 Pre-Computation Step

Two types of light sources are supported in our implementation. The environment light source
is sampled from a spherical High Dynamic Range (HDR) light probe [6] and represented as 3
spherical harmonic vectors, where each spherical harmonic vector represents one colour compo-
nent from the RGB triple. A local light source is represented as a 4-component zonal harmonic
vector. The local light source structure additionally stores the position and the radius of the light
source.

For each light source type, we precompute a corresponding visibility wedge table on the
CPU. We use Equation 4.18 to tabulate the low-order spherical harmonic projections of the
visibility wedge function for the environment map, Equation 4.26 is used to compute the table
for the local light sources. In our implementation, we pre-compute visibility wedges for 64 x 64
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Figure 5.1: The green rectangles show data structures for the generate tables and light sources.
Tables are stored in textures. The top left rectangle represents the pre-computation step of the
visibility wedge tables, computed once on the CPU. The rectangle on the right shows the neces-
sary steps to compute soft shadows from all light source types. This is done frame-by-frame on
the GPU.

combinations of elevation angles and the tabulated information is stored in a OpenGL 2D texture
of type RGBA float 32. Four texture layers are used to store four spherical harmonic coefficients
in each layer (see Figure 5.3) for a total of 16 coefficients per pixel across all layers. Normals
Nx,y are computed for each receiver point on the height field.

The height field pyramid is built from the original height field data. The texture size of the
original data was set to 256 × 256 with one 16-bit float colour component to store the height
value. The construction proceeds in two phases, a decimation phase and a reconstruction phase.
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Figure 5.2: The left pyramid shows the decimated versions of the original height data. The right
pyramid contains resampled versions using bicubic b-spline interpolation at each layer.

In the decimation phase, we iteratively run a bicubic down-sampling shader on the height field
data, taking the result of the previous iteration as input for the next one. OpenGL frame buffer
objects are used to render into the texture arrays. In OpenGL, a texture array can have one
or more image layers, where each layer has the same resolution. When we start constructing
the pyramid, we set the texture-array resolution to the original height field resolution, then the
original height field data is copied into the top layer. Each decimation iteration results in a
lower-resolution version of the data which is written at the beginning of the next image layer,
leaving the rest of the layer empty. In the second phase, a second texture array is used to store
the reconstructed smooth results from the first array. This is done using bicubic b-spline inter-
polation on each layer of the first texture array and storing the result in the second texture array
using OpenGL frame buffer objects (see the processing scheme in Figure 5.2). Bicubic b-spline
interpolation is used instead of bilinear interpolation, because this would produce discontinuities
in shadows (see Figure 9 in the paper of Synder [29]).

5.2 Environment-light shadowing pass

In the environment-light shadowing pass, we compute the outgoing radiance at each height field
point due to environment lighting. First, we construct the total visibility coefficient vector Vx,y

(see Eq. 4.19), then we apply this visibility vector to the environment light to get the shadowed
outgoing radiance.
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Figure 5.3: Four texture layers that store the visibility wedge table. Each pixel (RGBA float 32)
of each layer stores 4 coefficients of the visibility wedge SH coefficient vectors.

Maximum horizon angle computation

The horizon function is approximated by calculating a set of horizon angles, using Equation 4.13,
for a discrete set of azimuthal directions using the multi resolution height field pyramid. For
improved efficiency, the azimuthal distances di in Equation 4.5 and their reciprocals 1/di are
precomputed. To evaluate Equation 4.13, the b-spline function is evaluated at the elevation
angle samples ωx,y,i(ϕ) and at one additional point between every pair adjacent elevation angle
samples. We can precompute the uniform b-splines weights, which are {1/6, 2/3, 1/6, 0} for
the knot points (elevation angle samples ωx,y,i(ϕ)) and {1/48, 23/48, 23/48, 1/48} for the mid
points (elevation angle sample between adjacent samples ωx,y,i+1/2(ϕ)).

Visibility function construction

In our implementation, we use nϕ = 32 azimuthal directions for the environment map when
sampling visibility. The azimuthal directions (cos(ϕi), sin(ϕi)) are also precomputed. After
calculating the set of horizon angles, we look up the projected visibility wedges by pairs of
adjacent horizon angles and rotate them in the spherical harmonic basis using the zonal har-
monics rotation technique by Sloan et al [27] to align them with each azimuthal direction. The
16-component spherical harmonic coefficient vectors for a pairs of horizon angles (ωl, ωr) are
fetched from a texture array, where each texture layer stores four components of the spherical
harmonic vectors (see Figure 5.3). Then we accumulate the rotated wedges to compute the total
spherical harmonic visibility vector Vx,y.

54



Figure 5.4: The main calculation steps of the environment shadowing pass and the local light
shadowing pass (see Figure 5.1 for a complete overview).

Outgoing radiance

To compute outgoing radiance, we first align the clamped cosine function with the direction
vector Nx,y. The clamped cosine function is represented by the zonal harmonic vector [26]
1/π [0.886227, 1.02333, 0.495416, 0.0]. Then the spherical harmonic product is formed with
Vx,y, resulting in the transfer vector Tx,y. In the last step, the dot product of the spherical
harmonic environment map vector and the transfer vector Tx,y is computed (see Figure 5.4 for
an overview of the shader computation pipeline). The final shadowing is rendered to texture
using OpenGL framebuffer objects.

5.3 Local light shadowing pass

To calculate shadows from multiple local light sources, as described in Section 4.2, one pass for
each local light source is computed and rendered to texture using OpenGL framebuffer objects.
The result is accumulated in an additional pass. We decided to use one shader per local light
instead of a single shader for all lights, since at the time of writing the software, we were limited
by the number of available temporary GPU registers and multiple short shaders would usually
perform better than a single long one.

First, for each pass, i.e. each local light source, the azimuthal distance for each receiver point
to the light source position is computed. We use a dedicated shader to compute the distances
for each light source to all receiver points and store them to texture using OpenGL framebuffer
objects. Each colour component stores one distance between the light sources position and the
receiver point.
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The implementation of the visibility vector construction for a local light is very similar
to the visibility vector construction for the environment lighting. The only difference is that
the visibility wedges are defined on the complete sphere instead of the hemisphere. The total
visibility vector Vli

x,y is computed as described in Section 4.3.1 and stored in a 16-component
spherical harmonic vector.

To calculate incoming radiance from local light sources, the solid angle subtended by the
local light source on the sphere around the receiver point is computed as a function of distance
and radius (see Section 4.3). As described in Section 4.3.1, we find the spherical harmonics
representation of the incident radiance using a rotated zonal harmonics vector. We compute the
zonal harmonic coefficients analytically by evaluating the symbolic integral of zonal harmonics
basis functions and incident radiance as a function of the solid angle subtended by the light
source. The rotated zonal harmonics vector Llix,y and the visibility SH vector Vli

x,y are used to
compute outgoing radiance at a receiver point.

The outgoing radiance is computed from the environment map and from each local light
source in separate passes and rendered to texture using OpenGL framebuffer objects. The con-
tributions from all passes are accumulated in an additional shading pass to render the final shad-
owing from all light sources. Different lighting setups where tested and are shown in the results
chapter.
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CHAPTER 6
Results

We tested our method on a computer with an Intel Core i7 3.6Ghz processor, 16 Gb RAM and an
NVidia 560 GTX graphics card with 1 Gb RAM. We implemented our method in OpenGL and
used GLSL to do computation on the GPU. Frames where rendered at a resolution of 1920x1080.

The tests where performed on six scenes with varying amount of detail. The teddy, city and
eggtray are static scenes. The cones scene (both versions), sine grating and mountain scenes have
dynamically changing geometry. We used several different lighting configurations including
three local volume lights and an environment light in each scene. See the individual scenes for
more detailed information. All lights are fully dynamic.

To evaluate the influence of the level step ls and swath number nϕ on the computation time
and the quality of the soft shadows, we rendered the cones scene (version two) with different
parameter settings (see Figures 6.1 and 6.2). In the cones scene, cones with different sizes are
positioned on a circle, and a single light source is positioned at the center of the height field,
slightly above the ground. First, we changed only the level step value ls, which adds additional
levels to the multi-resolution pyramid, and left the number of partial swaths nϕ = 32 unchanged
(see Table 6.1). In the second test, we increased the number of partial swaths from 8 to 32 and
left the level step ls = 4 unchanged (see Table 6.2).

We can see that if we increase the number of partial swaths to 32 and the level step ls to 4,
we have smooth frame rates of more than 30fps and high-quality soft shadows (see Table 6.2).
A loss of quality is noticeable if we set nϕ to 8 or 12 and ls to one or two, which can be seen in
Table 6.1. Figures 6.1 and 6.2 compare results from the cones scene (version two).

The scenes in Figures( 6.3, 6.4 and 6.5) show all six test scenes with different lighting
conditions. The parameter ls was set to 4 and nϕ to 32. Table 6.3 shows the performance
in all scenes using only local lights, Table 6.4 shows the performance using local lights and
environment lighting. As a reference, Tabel 6.5, we show results from all scenes, rendered
without lighting. The timings for each step of our method in all scenes, exept the cones scene,
are shown in Table 6.6. Finally, Figure 6.6 compares results applying the different lighting types
(local light and environment map) to dynamic height fields.

57



Cones scene v2
ls = 1 ls = 2 ls = 3 ls = 4

nϕ = 32 80fps 62fps 47fps 34fps

Table 6.1: This table shows the Cones scene v2 with one local light with increasing level step
value.

Cones scene v2
nϕ = 8 nϕ = 12 nϕ = 16 nϕ = 24 nϕ = 32

ls = 4 94fps 85fps 75fps 62fps 34fps

Table 6.2: This table shows the Cones scene v2 with one local light with increasing number of
partial swaths value.

Test scenes rendered without environment lighting
1 Local Light 2 Local Lights 3 Local Lights

City 38fps 27fps 21fps
Cones v1 41fps 28fps 23fps
Moutains 38fps 27fps 23fps
Eggtray 37fps 27fps 25fps
Sine grating 38fps 26fps 23fps
Teddy 39fps 30fps 23fps

Table 6.3: This table shows scences rendered with different number of local lights in fps.

Test scenes rendered with environment lighting
0 Local Lights 1 Local Light 2 Local Lights 3 Local Lights

City 113fps 32fps 21fps 15fps
Cones v1 112fps 33fps 22fps 17fps
Moutains 102fps 31fps 21fps 15fps
Eggtray 108fps 31fps 21fps 16fps
Sine grating 100fps 32fps 21fps 16fps
Teddy 103fps 33fps 22fps 16fps

Table 6.4: This table shows scences rendered with different number of local lights and an envi-
ronment map in fps.

Test scenes rendered without lighting
City Cones v1 Moutains Eggtray Sine grating Teddy

fps 1060 1125 905 1006 1100 1108

Table 6.5: This table shows the scences from table 6.4, rendered without environment light and
local lights (i.e. just standard OpenGL lighting) in fps.
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Test scenes time measurements
Pyramid Env. Light 1st L− Light 2nd L− Light 3rd L− Light

City 1.71 ms 6.71 ms 16.33 ms 16.19 ms 16.23 ms
Cones v1 1.75 ms 6.69 ms 15.06 ms 15.47 ms 15.64 ms
Moutains 1.72 ms 7.15 ms 15,64 ms 16.49 ms 15.79 ms
Eggtray 1.71 ms 7.05 ms 15,8 ms 16.34 ms 16.23 ms
Sine grating 1.69 ms 7.18 ms 15,96 ms 16.44 ms 16.63 ms
Teddy 1.77 ms 6.82 ms 15,74 ms 16.17 ms 16.25 ms

Table 6.6: This table shows the computation times in milliseconds per frame, for each pass and
each scene.
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(a) nϕ = 4 and ls = 4

(b) nϕ = 8 and ls = 4

(c) nϕ = 32 and ls = 4

Figure 6.1: Details from the cones scene (version two) rendered with different number of partial
swaths. Each image shows one cone, viewed from the top. We can see that we already get nice
results with a low number of swaths, due to the smoothing in the height-field pyramid and the
low-order SH basis. By taking additional samples we get a more accurate shadow, compared
to just 4 samples, which produces no shadow at all. This is because the cone falls between
sampling directions. To better distinguish soft-shadows between the images, we increased the
contrast, resulting in noticeable quantisation artefacts (lines bewteen colours). The areas in
the lower right of the Image a and Image b show the differences with Image c. The red color
componet represents the maximum difference, with 0.5 times the maximum brightness of image.
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(a) nϕ = 32 and ls = 1 (b) nϕ = 32 and ls = 2

(c) nϕ = 32 and ls = 3 (d) nϕ = 32 and ls = 4

Figure 6.2: Image area snippets from the cones scene (version two) rendered with different
number of level steps values. Each image shows one cone, viewed from the top. The red arrows
point out artifacts in the shadows. The ringing seen in the shadows arises due to undersampling
of the height field in the distance direction. We can see that increasing the sampling density by
increasing the level step parameter eliminates the artifacts and results in smooth shadows.
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(a) City scene (3 local lights, 1 environment light) (b) Detailed view of scene 6.3a

(c) Cones scene V1 (2 local lights) (d) Cones scene V1 (3 local lights, 1 environment light)

(e) Cones scene V2 (1 local light) (f) Detailed view of 6.3e

Figure 6.3: A set of images from the city, cones V1 and cones V2 scene: The parameterization
for the hightfield pyramid: ls = 4, lo = 4, number of partial swaths is 32 and the texture
resolutin is 256× 256. All scenes are dynamic.
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(a) Eggtray scene (1 local light) (b) Eggtray scene (2 local lights)

(c) Mountain scene (1 environment light) (d) Mountain scene (3 local lights, 1 environment
light)

(e) Sine grating scene (1 local light, 1 environment
light)

(f) Detail of the sine grating scene (2 local lights)

Figure 6.4: A set of images from the eggtray, mountain and sine grating scene: The parameter-
ization for the hightfield pyramid: ls = 4, lo = 4, the number of partial swaths is 32 and the
texture resolutin is 256x256. All scenes are dynamic.
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(a) Teddy scene (3 local lights) (b) Detail of the teddy scene (1 local light)

Figure 6.5: A set of images from the teddy scene: The parameterization for the hightfield pyra-
mid: ls = 4, lo = 4, number of partial swaths is 32 and the texture resolutin is 256 × 256. All
scenes are dynamic.
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(a) Environment light only - unshadowed (b) Environment light only - shadowed

(c) Local light only - shadowed) (d) Local light and environment light - shadowed

Figure 6.6: A set of images from the dynamic height field scene: The top left image shows the
scene lit by the environment map without shadows, the top right image shows the shadowed
scene using only environment lighting. The bottom left image shows the shadowed scene using
one local light only and the bottom right image shows the scene shadowed from the environment
light and one local light source. The parameterization for the hightfield pyramid: ls = 4, lo = 4,
number of partial swaths is 32 and the texture resolutin is 256x256.
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CHAPTER 7
Conclusion

In this work, we describe a novel method to calculate soft shadows from local light sources
on dynamic height fields. Due to the complexity of computing physically based soft-shadows,
most current real-time graphics applications, like video games, suffer from poor soft shadow
quality, or they even do not support them. Another limitation seen in video games that include
open worlds like mountains is the limitation of shadow casting lights to strong directional light
sources like sun light and also infinitely distant light sources. In the special case of height field
geometry, simplifying assumptions can be made that allow real-time soft shadows from dynamic
geometry.

In this thesis, we have tried to contribute to the development of realistic soft shadows on
dynamic height fields. We present a method to approximate realistic soft shadows from local
light sources in dynamic height fields by extending the method by Snyder et al. [29]. We achieve
real-time frame rates for up to three local lights and an environment light source on consumer
graphics hardware.

Several extensions to this method are possible. First, we could precompute the visibility
wedge table for different angles between two azimuthal directions as a function of the size of
the spherical light source. This would reduce the sample requirement for the complete swath
to just a partial swath for a small set of azimuthal directions covering the range of incident
light directions from a local light source. Another possible extension is to support diffuse and
glossy inter-reflections. Basically, this could be done by creating a multi-resolution pyramid
on the radiance and geometry data to reduce sampling overhead or by extending the method by
Nowrouzezahrai et al. [19] to local light sources.

The method can also be combined with methods [8, 21] to support shadows cast by more
general geometry onto the height field.
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APPENDIX A
Zonal Harmonics Coefficients for

Local Light Sources

The symbolic integrals for a spherical light source li that substends an angle Θli in radians. The
first 4 bands, where k is the band index, are:

k = 0 : −
√
π (−1 + cos(Θli))

k = 1 :
1

2

√
3π sin(Θli)

2

k = 2 : −1

2

√
5π cos(Θli) (−1 + cos(Θli)) (1 + cos(Θli))

k = 3 : −1

8

√
7π (−1 + cos(Θli)) (1 + cos(Θli)) (−1 + 5cos(Θli)

2)

(A.1)
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