
Interactive Grass Rendering Using Real-Time Tessellation

Klemens Jahrmann
Vienna University of

Technology
klemens.jahrmann@net1220.at

Michael Wimmer
Vienna University of

Technology
wimmer@cg.tuwien.ac.at

ABSTRACT
Grass rendering is needed for many outdoor scenes, but for real-time applications, rendering each blade of grass as
geometry has been too expensive so far. This is why grass is most often drawn as a texture mapped onto the ground
or grass patches rendered as transparent billboard quads. Recent approaches use geometry for blades that are near
the camera and flat geometry for rendering further away. In this paper, we present a technique which is capable
of rendering whole grass fields in real time as geometry by exploiting the capabilities of the tessellation shader.
Each single blade of grass is rendered as a two-dimensional tessellated quad facing its own random direction. This
enables each blade of grass to be influenced by wind and to interact with its environment. In order to adapt the
grass field to the current scene, special textures are developed which encode on the one hand the density and height
of the grass and on the other hand its look and composition.

Keywords
Rendering, Grass, Blades, Tessellation, Geometry, Wind, Real-time, LoD

1 INTRODUCTION

Grass rendering plays an important role for rendering
outdoor scenes. Especially in virtual reality and com-
puter games, natural scenes should include properly
rendered vegetation. For trees and plants, many solu-
tions already exist, but rendering grass has been a prob-
lem for a long time due to the high amount of needed
geometry. This is why most often grass is rendered as
a texture mapped to the ground or as transparent bill-
board quads. Both approaches have different unwanted
artifacts: grass as a texture does not look good if it is
shown from a small angle since there are no displace-
ments of the ground, while billboards have problems
when they are viewed from above because then they
look very flat.

In this paper, we present a technique which is capable
of rendering whole grass fields in real time completely
as geometry. This can be achieved by using the tes-
sellation shader as a fast geometry enhancement tool
and some level-of-detail approaches, see Figure 1. The
technique also uses special textures like density and ter-
rain maps to pass important information to the tessella-
tion stage.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Screenshot from our system.

2 STATE OF THE ART

Early grass rendering methods use only flat textures
mapped onto the ground. A more sophisticated texture-
based method was proposed by Shah et al. [6]. It uses
a bidirectional texture function to animate the grass
texture and displacement mapping for silhouettes,
which produces a better look than a simple texture,
but needs more time to render. Until today, almost
every method still uses a texture-based technique for
rendering grass that is far away from the camera. For
grass that is closer to the viewer, different approaches
have been developed: Orthmann et al. [5] present a
grass-rendering technique which uses two billboards
to represent a bunch of grass and which can interact
with its environment. Rendering billboards can be
done very efficiently on the graphics card but looks flat
when viewed from higher angles. Also, billboards lack
visual depth. To get deeper looking grass, Habel et al.
[3] use half-transparent texture slices, which are placed

on a regular grid, but the visual artifacts for higher
angles still exist. In order to solve this problem, Neyret
[4] refers to existing fur rendering techniques using
3D textures and extends them to render high-detail
geometry for large scenes like grass. This method
allows him to render grass with good quality from
different angles but still looks artificial. Zhao et al.
[8] use the geometry shader to draw bunches of grass
as geometry, but due to performance reasons, the
generated grass field is very sparse.

Like in this paper, Wang et al. [7] render a whole
grass field using geometry by drawing a single blade
of grass multiple times. The blade is modeled with
several vertices and a skeleton for the animation, but
complex level-of-detail and culling aproaches have to
be implemented to achieve reasonable framerates for
rather sparse grass fields. Boulanger et al. [1] present a
hybrid technique which uses the techniques mentioned
before as different levels of detail. As geometric rep-
resentation, they use a single grass patch consisting of
blades of grass which are formed by the trajectories of
particles during a preprocessing step. To get a large
grass field, instanced rendering is used with a random
orientation of the patch for each instance to reduce the
grid artifacts which come with instancing. Grass that is
further away is rendered using a 3D texture-based tech-
nique to draw a set of vertical and horizontal texture
slices. For rendering high distances, only one horizon-
tal slice is rendered, which leads to a texture mapped
onto the ground.

3 OVERVIEW
In contrast to the methods mentioned before, the pro-
posed technique renders all blades of a dense grass field
completely as smoothly shaped geometry using hard-
ware tessellation. In addition, each blade of grass can
be individually deformed by forces like wind or objects.

First, we explain a basic technique suitable for smaller
grass fields. The particular point of this technique is
that it stores the geometric data of each blade of grass
individually. This leads to a perfectly random and uni-
form grass field and has good performance, because
many level-of-detail approaches can be applied to it.
However, since each blade is stored by the application
it does not scale very good for large scenes.

We then extend the basic technique using instancing:
only a single grass patch is stored in memory and drawn
multiple times, so that animated grass scenes of practi-
cally arbitrary sizes can be rendered in real time. A
common handicap of instancing are the repeating pat-
terns that normally appear, but since each blade is gen-
erated inside the shader, its look can be easily influ-
enced by the world-space position, which conceals the
transitions between the patches. In addition, by using

instancing, we can simply add billboard flowers to the
scene for visual enhancement.

Both methods require an initialization step to set up
the textures (Section 4). We discuss the basic render-
ing technique in Section 5, and extensions to handle
larger scenes, including instancing, levels of detail and
antialiasing in Section 6.

4 INITIALIZATION
Our technique is based on a grass field which forms the
boundaries of the space where grass is rendered. The
field itself acts as a container for user-specified data like
textures and parameters and is represented as a regular
grid, where each grid cell contains a grass patch. The
size of each grid cell has a significant impact on the
performance, but the optimal size cannot be predefined
in general, since it depends heavily on the overall scene
and application. Each grass patch saves a vertex array
object, which contains all necessary data to draw the
blades of grass that grow on it. In addition, a bounding
box is assigned to the patch to perform view-frustum
culling.

The visual representation of the rendered grass field can
be adjusted to match a high variety of possible scenes.
It is determined by various textures, explained in Sec-
tion 4.1, and by several parameters, which are listed be-
low. During the initialization step, both the textures and
parameters are evaluated to generate the input for the
rendering process.

• Density: indicates how many blades of grass are ini-
tialized on a 1x1 unit-sized square.

• Width: the minimum and maximum width of a
blade.

• Height: the minimum and maximum height of a
blade.

• Bending factor: determines the maximum bending
offset.

• Smoothness factor: specifies the maximum tessella-
tion of a blade.

4.1 Special Textures
4.1.1 Density Map
The density map defines the density and the height over
a grass field. Its red channel encodes the density value,
which is directly used by the application to determine
how many blades are generated. The green channel
gives a subsampled version of the grass, which is later
used when a less detailed model is needed. For exam-
ple, when rendering water reflections, only the geome-
try near the coast lines need to be rendered. The blue

Figure 2: a) Shows an example of a density map, b) il-
lustrates how a terrain map can be used (the white pix-
els are transparent) and c) shows a vegetation map of an
oasis scene.

channel encodes the blades of grass’ height at each po-
sition. If no special height differences are desired, the
blue component can be created by blurring the red chan-
nel, which leads to a smoother transition between the
regions where grass is rendered and where it is not. An
example of a density map can be seen in Figure 2a.

4.1.2 Terrain Map
The terrain map itself does not change the appearance
of a grass blade, but it determines the texture under-
neath the grass, which is also very important, since
grass is naturally not perfectly dense and it is seen es-
pecially at sparse spots or tracks. Basically, the ground
beneath the grass is organized in tiles just like the grass.
Each tile has its own seamless diffuse texture assigned
and the terrain map works as diffuse texture for the
whole field. How a ground fragment is shaded is then
determined by the alpha value of the terrain map. This
can be seen in Equation 1, where cr is the result color,
ctt the sampled tile texture, ctm the sampled terrain map
and a its alpha value. An example of a terrain map can
be seen in Figure 2b.

cr = ctt · (1−a)+ ctm ·a (1)

4.1.3 Vegetation Map
A vegetation map is used if the grass color depends on
its position inside a scene. If it is enabled, the color of
the grass is determined by the color sampled from the
vegetation map rather than from its diffuse texture. This
can be used to simulate a desert scene with an oasis,
where lush and healthy grass is placed near the water
and dry grass further away. An example of a vegetation
map can be seen in Figure 2c.

4.2 Creating Geometry
At the end of the initialization step, when all user-
specified data has been read, the basic grass geometry
that will serve as input to the rendering pipeline is gen-
erated for the high- and the low-detailed version of the
grass field. For this, the density map is sampled and for
each pixel, the world-space area which it refers to is cal-
culated. The area is then multiplied with the red sample

and the density value to determine how many blades
have to be generated at this specific area. Then for each
blade a random position is calculated and added to the
high-detail list. If the density map’s green sample value
is also greater than zero, it is added to the low-detail list
too. For each blade, an outline quad is generated with
the following vertices:

w = wmin +R · (wmax−wmin)

h = (hmin +R · (hmax−hmin)) ·densityb

p1 = pc− [0.5 ·w,0.0,0.0] (2)
p2 = pc +[0.5 ·w,0.0,0.0]
p3 = pc +[0.5 ·w,h,0.0]
p4 = pc− [0.5 ·w,h,0.0]

where w is the width and h the height of the blade with
their maxima and minima wmax, wmin, hmax and hmin,
R is a randomly generated number between zero and
one, densityb is the blue component sampled from the
density map, pc is the blade’s center point and pi is the
ith point of the quad. For higher performance, the height
map can also be baked into the position, to reduce the
texture lookups during the rendering process.

Apart from the vertex position, each vertex sends
additional information to the graphics card: two-
dimensional texture coordinates and the blade’s center
position, with a y-value of zero if it is a lower vertex or
one if it is an upper vertex. Up to now, each blade of
grass differs only in its height and its position. To make
each blade unique, random values have to be generated
and added to the graphics pipeline. For this, each of
the transfered vectors is filled with random values until
they are all four-dimensional, and an additional vector
containing only random values is passed too. In total,
there is one random value for the position and center
position vector, two values for the texture coordinates
and four additional ones, resulting in eight random
values, which will all be needed in the rendering
process.

5 REAL-TIME GENERATION
The rendering of the grass is done completely by the
graphics card, which has to be able to execute tessel-
lation shaders. If a grass patch is visible inside the
view frustum, all included blades of the desired detail
are drawn. Since each blade of grass is just a two-
dimensional quad, backface-culling has to be disabled
for full visual appearance.

5.1 Grass-Blade Generation
At first, each blade of grass is represented just by a
random sized quad aligned on the x-y-plane, which
is then tessellated into subquads using the tessellation

Figure 3: Illustration of the creation of a single blade of
grass. The first step shows the input quad, the following
steps show the results after the vertex shader, the tessel-
lation control shader, the tessellation evaluation shader
and finally the shaded blade of grass after the fragment
shader.

shader. The resulting vertices are aligned on two par-
allel splines, which are formed by the upper and lower
vertices of the input quad and two additional control
points that determine the curvature of a blade. The fi-
nal shape of the blade is determined by an alpha tex-
ture. The following will describe the path of the quad
through each shader stage to become a nicely formed
and shaded blade of grass. The procedure is also illus-
trated in Figure 3.

During the vertex shader stage, the blade’s orientation is
specified by applying a rotation around the blade’s cen-
ter position with one of the random values as angle. For
the upper vertices, which are identified by their center
position’s y-value, an offset in x-z-direction is applied
by using two other random numbers R1,R2 multiplied
by the maximal bending factor b specified for the cur-
rent grass patch. The calculation of the offset can be
seen in Equation 3.

offset =

 b · (2R1−1)
0

b · (2R2−1)

 (3)

In the tessellation control shader, the distance between
the blade and the camera position is computed. Using
this distance together with a specified maximum dis-
tance, the tessellation factor is calculated by linearly in-
terpolating the integer values between 0 and the given
smoothness parameter s, which indicates the maximum
tessellation of the blade. The interpolation can be seen
in Equation 4, where d describes the distance to the
camera and dmax the maximum distance.

level =
⌈

s ·
(

1− d
dmax

)⌉
(4)

This value is applied as inner tessellation level and also
as outer tessellation level for the right and left side of
the quad. At and above the maximum distance, the
tessellation level of zero culls a blade completely, and
near the camera, the tessellation level of s subdivides
the quad to s quads along the y-axis. An alternative
approach for determining the tessellation level is to cal-
culate the screen-space size of a blade and setting the

level so that every subquad occupies the same amount
of pixels. This is shown in Equation 5, where uy and
ly indicate the y-coordinate of the upper and lower ver-
tices of the quad, hs is the vertical screen resolution and
s is the smoothness parameter.

level = min
(
((uy ·0.5+0.5)− (ly ·0.5+0.5)) ·hs

pixels per quad
,s
)

(5)

Two additional control points are generated in the tes-
sellation control shader to determine the shape of the
blade in the next step. For this, the lower points’ x-
and z-coordinate together with the upper y-coordinate
can simply be taken, but in order to generate slightly
differently shaped blades of grass, the coordinates are
also varied by two random numbers. The variation
can be seen in Equation 6, where l = (lx, ly, lz) and
u = (ux,uy,uz) describe the lower and upper vertex and
Ri are random values. In our application, R1 lies be-
tween − 1

4 and 1
4 and R2 between 3

4 and 5
4 .

h =

 lx ·R1 +ux · (1−R1)
ly ·R2 +uy · (1−R2)
lz ·R1 +uz · (1−R1)

 (6)

In the tessellation evaluation shader, the tessellated
quad is shaped by aligning the vertices along two
parallel quadratic splines. Each spline is defined by
three control points. We use De Casteljau’s algortithm
[2] to compute each desired curve points c(v), with v
being the domain coordinate (equals i/level for the ith

subquad) as parameter. The evaluation of one vertex
on one spline can be seen in Equation 7 and is also
illustrated in Figure 4a, where pb and pt indicate the
bottom and top vertices and h is the additional control
point. By using this recursive approach, the tangent~t
of a spline can also be found easily.

a = pb + v · (h−pb)

b = h+ v · (pt −h) (7)
c(v) = a+ v · (b−a)

~t =
b−a
‖b−a‖

When both splines are computed, the final position and
tangent can be interpolated using the domain coordi-
nate v as parameter. The bitangent results directly from
the two spline points. After tangent and bitangent are
calculated, the normal can be computed by the cross
product. This can be seen in Equation 8 and is also il-
lustrated in Figure 4b.

pb

a

c(v)

pt b h

v

1-v

v1-v

trtl

bitangent

cl(v) cr(v)

a) b)

tangent

u 1-u

Figure 4: a) Illustration of De Casteljau’s algorithm for
calculating a point on a curve with the parameter v. b)
shows how the tangent and bitangent of the blade of
grass can be calculated.

Figure 5: Shows an example of an alpha texture (top)
and a diffuse texture (bottom).

position = cl(v) · (1−u)+ cr(v) ·u

bitangent =
cr(v)− cl(v)
‖cr(v)− cl(v)a‖

(8)

tangent =
~tl · (1−u)+~tr ·u∥∥~tl · (1−u)+~tr ·u

∥∥
normal =

tangent×bitangent
‖tangent×bitangent‖

In the fragment shader, the final shape of the blade is
formed by the masking using the alpha texture. The
diffuse color is then sampled either by the blade’s dif-
fuse texture or by the vegetation texture as has been ex-
plained in Section 4.1.3. In order to achieve a better
variance, the components of the sampled color are mod-
ified slightly by three random values. Due to shadow
effects, a blade of grass is normally darker near the
ground and lighter at its tip, which can be simulated
by multiplying the color with the vertical texture co-
ordinate, leading to a better looking parallax effect. An
example of an alpha and diffuse texture is shown in Fig-
ure 5.

5.2 Applying Forces
Until now, the grass is rendered nicely, but it is not an-
imated and does not interact with its environment. In
nature, grass is always in motion, either influenced by
wind or by objects which also leave tracks. Wind can

Figure 6: The left image shows an image of foot prints,
the middle illustrates its corresponding force map and
the right shows the rendered grass scene with the force
map applied.

either be applied through a texture which is computed in
some application-specific way, e.g. by a physical simu-
lation, or it can be calculated using a wind function in-
side the shader. We implemented a wind function w(p)
that takes the world space position p = (px,py,pz) and
the current time t as parameter and calculates wind as
two overlapping sine and cosine waves along the x-axis
and a cosine wave along the z-axis. The function can
be seen in Equation 9, where the constants ci determine
the shape of the wind waves together with a small num-
ber ε to avoid a division by zero. The result of the wind
function can then be applied directly to the offset of the
quad’s upper vertices in the vertex shader.

w(p) = sin(c1 ·a(p)) · cos(c3 ·a(p)) (9)

a(p) = π ·px + t +
π

4
|cos(c2 ·π ·pz)|+ ε

In addition to wind, each blade of grass can be influ-
enced individually by external forces. For this, we use
a force map which indicates the direction in which a
blade is pushed at a certain position. In case of simu-
lating tracks, the vectors of areas which have been fully
under pressure by an object point towards the negative
y-direction. At the boundary of an object, the force vec-
tors point away from the object’s center point, which
can be approximated by the normal vector at the bound-
ary. The vectors of the regions around an object also
point away from its center, but with decreasing length.
The size of the surrounding region depends on the im-
pact of the applied force. An example can be seen in
Figure 6. The sampled force-map vector can then be
added to the offset of the quad’s upper vertices.

6 HANDLING LARGE SCENES
6.1 Visibility
When dealing with large scenes, not all grass patches
are visible in each frame. So the application has to de-
termine which patches can be seen by a camera frustum,
so that only visible blades of grass are transmitted to the
graphics card. For this we implemented a simple hierar-
chical rasterization approach, where every two patches

Figure 7: Illustration of the visibility test for the hierar-
chical rasterization approach.

are combined to one bigger patch until the grass field is
represented by only one macro-patch. Then each frame
the macro-patch is tested for visibility with the view
frustum and if it is visible, its subpatches are tested it-
eratively. Figure 7 shows the visibility test for the hier-
archical rasterization approach. The boxes representing
the big patches are tested against the blue frustum and
the green quads indicate the visible grass patches.

6.2 Instancing
As mentioned in Section 3, storing each single blade
of grass in memory has hard limits regarding the max-
imum scale of a scene. Therefore, we implemented
an instanced rendering technique, which only needs to
store a single patch of grass as geometry data, in or-
der to minimize the memory overhead of the scale of a
scene.

When drawing grass patches by instancing, the basic
grass-rendering method stays the same, but some adap-
tations have to be done. The grass field still needs to
have a maximum size in order to generate lookup coor-
dinates for the various global textures, but a tiling fac-
tor can be applied so that the textures do not need to
scale with the scene if they are seamless. Instead of a
list of patches, the grass field has to create just a single
patch. The appropriate transformation matrices for the
visible patch positions are calculated during the raster-
ization of visible patches. Then before each draw call,
the transformation matrices have to be transmitted to
the graphics card.

In the rendering process, only the vertex shader stage
has to be changed. The vertex position has to be trans-
formed by the given transformation matrix, and the den-
sity value has to be tested if the blade is visible. In ad-
dition, the height map has to be sampled, since it can-
not be baked into the position anymore. These changes
lead to an additional transformation and two additional

texture lookups for each vertex of each blade, which is
a certain overhead over the basic technique for smaller
scenes.

Normally, when using instancing on patches, a repeat-
ing grid pattern appears over the scene, which is very
disturbing. This effect can be partly hidden by ro-
tating or mirroring the instances, like it is done by
Boulanger et al. [1]. Since in our method, the blades
are generated inside the shaders, the world-space po-
sition can be taken directly as variation factor of each
random value R so that no grid pattern is visible with-
out any rotation or mirroring. The influence of the
world-space position on a random value can be de-
scribed by one of the following Equations 10-12, where
11 as well as 12 can also be calculated using the z-
coordinate or in 12, the cosine function can be used
too. In these equations, p = (px,py,pz) is the world-
space position, ~dimension = (dimensionx,dimensiony)
refers to the size of the grass field, c stands for any con-
stant value and the function fract() gives the fractional
part of a number.

Rnew = fract
(

R ·px

pz

)
(10)

Rnew = R · px

dimensionx
(11)

Rnew = R · sin(c ·px) (12)

6.3 Level-of-Detail
Drawing each single blade of grass each frame has
some disadvantages: First of all, it leads to a low fram-
erate, and secondly, aliasing artifacts become visible
the more blades of grass are drawn onto the same pixel.
So several level-of-detail approaches have to be imple-
mented to overcome these problems. As mentioned in
Section 4, a highly downsampled version of a grass
patch is generated for additional effects like reflections.
Following this approach, more versions can be calcu-
lated at startup, each with fewer blades of grass. Then,
for rendering, the distance to the grass patch determines
the detail which is drawn.

This will then lead to step artifacts when the distance
falls beyond a detail threshold. To achieve smooth tran-
sitions, more random blades of grass have to be culled
the higher the distance gets. This takes place in the
tessellation control shader, where the tessellation level
is set to zero for some blades depending on one of
its random values and the ratio between distance and
maximum distance. Since the blades are normally dis-
tributed, hardly any artifacts are visible. In addition,
the tessellation level of a blade of grass gets smaller
the further away it is, because at far distances, there is
no difference if the geometry of a blade is just a single
quad.

In order to reduce the maximum amount of blades that
are drawn, each blade that lies beyond a given maxi-
mal distance is culled by the tessellation control shader.
This will result in a hard-edged circle of grass around
the camera position. A smoother transition can be
achieved by lowering the height of a blade of grass the
further it is away. For these distance-driven approaches
different distance functions were tested during the re-
search process, and surprisingly a linear function yields
the best results regarding performance and appearance.

6.4 Antialiasing
Although fewer blades of grass are drawn at higher dis-
tances, there are still aliasing and z-fighting artifacts
visible. The reason is that it is impossible to render the
perfect amount of blades for all distances and viewing
directions. Nevertheless, the artifacts can be hidden by
blurring the result image in consideration of the pixel’s
depth value. To maintain real-time performance, we use
a separable 7x7 blur kernel with half-pixel sampling
for a screen resolution of 1200x800. Since OpenGL’s
depth values go from one at the near clipping plane
to zero at the far clipping plane, the depth value can
be taken directly as center weight for the kernel func-
tion. The other kernel weights can either be the same
small value, which leads to a simple average filter for
higher distances, or small gradient values, leading to a
Gaussian-like filter. The blur will then be processed in
two separate passes, the first in horizontal and the sec-
ond in vertical direction. For each pass, five samples
are taken, the first at the pixel’s center and the other at
the border between the neighboring pixel and its neigh-
bor, so that for a 7x7 kernel, only ten texture lookups
are needed.

Blurring the image can reduce the aliasing artifacts
only to a certain amount, but at farther distances, high-
frequency noise can still be seen. So we developed an-
other approach, which applies a penalty to the mate-
rial of a blade of grass depending on its distance to the
camera. This leads to a smooth darkening towards the
horizon, which not only reduces the aliasing a lot, but
also delivers a good sense of depth of a scene. Together
with the distance blur, the artifacts can be reduced to
a pleasing amount. To illustracte the impact of these
effects, Figure 8 shows different result images.

7 RESULTS
For the performance evaluation, three scenes have been
tested: First, a small oasis scene with reflections and
very dense grass around the lake as well as dry and
sparse grass further away. The second scene shows a
meadow with complex objects and with a force map of
huge foot steps applied. The last tested scene shows a
large undulating grass field with flowers and the force
map of the second scene using instanced rendering.

Figure 8: These result images show the effects of the
distance blur and the depth darkening. Image a) is ren-
dered with both effects disabled, b) is blurred without
depth darkening, c) has depth darkening enabled but is
not blurred and d) is rendered with both effects applied.

The application was tested on a Windows 7 64-bit sys-
tem, with an 8-core Intel i7 processor at 3.8GHz with
16GB of RAM and an NVIDIA GeForce GTX 680 with
4GB of graphics memory.

In Table 1, the average frames-per-second together with
the corresponding amount of blades drawn are mea-
sured for the three different scenes. It is tested with and
without post-processing effects (the distance blur and
the depth darkening) and with differently scaled grass
fields. Some tests also contain additional geometry be-
sides the grass field, which is stated in the column Add.
drawn.

Scene FPS Vis. Blades Scale PP effects Add. drawn
Oasis 75 136,650 160x160 enabled -
Oasis 78 136,650 160x160 disabled -
Oasis 65 330,816 320x320 enabled -
Oasis 68 330,816 320x320 disabled -

Meadow 84 348,370 300x300 enabled -
Meadow 88 348,370 300x300 disabled -
Meadow 83 348,370 300x300 enabled Objects
Meadow 87 348,370 300x300 disabled Objects
Meadow 81 340,716 600x600 enabled Objects
Meadow 85 340,716 600x600 disabled Objects
Instance 60 660,000 300x300 enabled -
Instance 62 660,000 300x300 disabled -
Instance 56 824,000 600x600 enabled -
Instance 58 824,000 600x600 disabled -
Instance 55 1,008,000 2,000x2,000 enabled Flowers
Instance 57 1,008,000 2,000x2,000 disabled Flowers
Instance 55 1,008,000 4,000x4,000 enabled Flowers
Instance 57 1,008,000 4,000x4,000 enabled Flowers
Instance 55 1,008,000 8,000x8,000 enabled Flowers
Instance 57 1,008,000 8,000x8,000 enabled Flowers
Instance 55 1,008,000 90,000x90,000 enabled Flowers
Instance 57 1,008,000 90,000x90,000 enabled Flowers

Table 1: Test results of three different scenes. Scene
Oasis containing water reflections and a vegetation map
and scene Meadow containing highly detailed objects
are rendered both with the basic technique. Scene In-
stance is rendered using the instanced rendering ap-
proach together with billboard flowers.

For the results we tried to position the camera for
worst-case scenarios where most blades of grass are
drawn. The corresponding images can be seen in the

Figure 9: The rendered image of the Oasis scene.

Figure 10: The rendered image of the Meadow scene.

Figures 9, 10 and 11. As stated in earlier sections, for
smaller scenes the highly optimized version is superior
to the instanced version, but the big advantage of the
instanced version is that its performance stays constant
with the amount of blades drawn regardless of the size
of the overall scene. The only limitation which the
size of the scene has lies in the memory used for the
grass field’s hierarchical rasterization structure. The
difference in the performance between the basic and
the instanced method can be seen at the 300x300 and
600x600 sized instances. Even when drawing complex
objects, the optimized basic version is clearly faster
than the instanced version. However, the basic version
is not able to render fields greater than 1000x1000,
because then the application’s memory is full.

A numerical comparison of the performance between
the presented technique and the related papers men-
tioned in Chapter 2 cannot be done correctly, because
most of the related techniques use static level-of-detail
and image based methods, whereas our method only
uses dynamic level-of-detail and geometry. The main
advantage of the presented algorithm is its flexibility,
so that it is extensible and can easily fit to any possible
scene. This is because in each frame, the blades are pro-
cedurally generated inside the shader. With our method,
also grass-like scenes like for example a wheat field can
be rendered, which is shown in Figure 12. In addition,

Figure 11: The rendered image of the Instance scene.

Figure 12: The grass-rendering technique applied to a
wheat field.

grass rendered with the proposed technique can be used
in physically correct simulations, since each blade of
grass can be influenced by its environment seperately.

Compared to Boulanger et al. [1], our technique en-
ables each single blade to be animated and influenced
by forces at all distances, since the grass field is com-
pletely rendered as geometry. Wang et al. [7] can also
animate each single blade of grass seperately, but due
to the high amount of vertices which have to be stored
for a scene, the grass field can only be sparse in order to
achieve interactive framerates. The difference between
our method and the related works can be seen in Figure
13 and Figure 14.

The mentioned scenes and effects can also be seen in
motion on the accompanying video and a more detailed
view of the grass and flowers can be seen in Figure 15.

8 CONCLUSION AND FUTURE
WORK

Although rendering dense grass fields completely as ge-
ometry seemed to be impossible for a long time, this
paper introduced a quite simple method which is able
to draw large grass scenes in real time using the tessel-
lation shaders as geometry enhancement tool. One of
the main advantages is its flexibility regarding different

Figure 13: The left image shows a picture of a grass
field with a tornado-like wind taken from [7] and
the right one shows a similar scene rendered with
our method, where the tornado is simulated with a
forcemap.

Figure 14: The left image shows a picture of a football
field taken from [1] and the right one shows a similar
scene rendered with our method.

Figure 15: A more detailed view of the grass and the
flowers.

scenes, since the blades of grass are procedurally gen-
erated inside the shader. Following this aspect, many
extensions can be made to the proposed technique. For
example, a life-time model can be implemented, mak-
ing grass grow over time, or the grass can adapt itself
to its environment, like growing along the shape of ob-
jects. Until now the grass can only grow in y-direction,
but it might be simple to give each blade of grass a di-
rection, so that grass can grow on arbitrary locations.
For example, grassy objects or roots of underground
scenes can be rendered using this approach.

In the technique as presented, each blade of grass can
be influenced by forces, but the animation and inter-
action is just a simple simulation. A physically based
wind and bending model with collision detection, like
in [7], has to be implemented for more realistic looking
scenes.

9 REFERENCES
[1] K. Boulanger, S.N. Pattanaik, and K. Bouatouch.

Rendering Grass in Real Time with Dynamic
Lighting. Computer Graphics and Applications,
IEEE, 29(1):32–41, 2009.

[2] Gerald E. Farin and Dianne Hansford. The essen-
tials of CAGD. A K Peters, 2000.

[3] Ralf Habel, Michael Wimmer, and Stefan Jeschke.
Instant Animated Grass. Journal of WSCG, 15(1-
3):123–128, 2007.

[4] Fabrice Neyret. A General and Multiscale Model
for Volumetric Textures. In Graphics Interface,
pages 83–91. Canadian Human-Computer Com-
munications Society, 1995.

[5] J. Orthmann, C. Rezk-Salama, and A. Kolb. GPU-
based Responsive Grass. Journal of WSCG, 17:65–
72, 2009.

[6] Musawir A. Shah, Jaakko Kontinnen, and Sumanta
Pattanaik. Real-time rendering of realistic-looking
grass. In Proceedings of the 3rd international
conference on Computer graphics and interactive
techniques in Australasia and South East Asia,
GRAPHITE ’05, pages 77–82, New York, NY,
USA, 2005. ACM.

[7] Changbo Wang, Zhangye Wang, Qi Zhou, Cheng-
fang Song, Yu Guan, and Qunsheng Peng. Dy-
namic modeling and rendering of grass wagging
in wind: Natural phenomena and special effects.
Comput. Animat. Virtual Worlds, 16(3-4):377–389,
July 2005.

[8] Xiangkun Zhao, Fengxia Li, and Shouyi Zhan.
Real-time animating and rendering of large scale
grass scenery on gpu. In Proceedings of the 2009
International Conference on Information Technol-
ogy and Computer Science - Volume 01, pages
601–604. IEEE Computer Society, 2009.

