Trends in Visual Computing

Eduard Gröller
Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna University of Technology (VUT)
- VUT consists of 8 faculties
 - Scientific staff: ≈ 3,600
 - Students: ≈ 27,000 students
 - Graduates: 1,790 + 169 Ph.D. (2011)
- Faculty of Informatics
 - Seven computer science institutes
 - Institute of Computer Graphics and Algorithms (ICGA)
 - Computer Graphics at ICGA (Purgathofer)
 - Rendering group (RVR): Wimmer
 - Visualization group (vis-group): Gröller

Teaching at ICGA
- Bachelor Studies: Media Informatics und Visual Computing
- Master Studies: Visual Computing
- Lectures (examples):
 - Introduction to Visual Computing
 - Computer Graphics
 - Rendering
 - Real-time Graphics
 - Introduction to Colour Science
 - Virtual Reality
 - Computeranimation
 - Visualization 1+2
 - Information Visualization
 - Medical Visualization 1+2
 - Augmented Reality on Mobile Devices

Vis-Group and Funding and Projects

(Data) Visualization (1)
"The use of computer-supported, interactive, visual representations of (abstract) data to amplify cognition"

Visualization is part of Visual Computing
Visual Computing is acquisition, representation, processing, analysis, synthesis, and usage of visual information
Visual Computing is a Lot...

- Computer Graphics
- graphical user interfaces, animations...
- Computer Vision /Pattern Recognition
- modeling human vision...
- Visualization
- displaying volume- and other high-dimensional data...
- Interactive Visual Analysis
- presenting multidimensional data for analysis...
- Visual Sensors
- recording methods for obtaining visual information
- Modeling
digital models from data/images
- Rendering
- real-time visualization, illumination simulation, visibility...
- Virtual/Augmented Reality
- combining real and virtual environments
- Human-Computer-Interaction
the interface between users and computers

The purpose of visual computing is insight, not images.

- Visual Computing embedded in Science

- Challenges in Visual Computing

- New Data Sources - Novel Imaging Modalities
- Very large (abstract) data sets
- High-dimensional, multi-valued, multi-modal, heterogeneous
- Time varying
- Spatially sparse/dense, temporally sparse/dense
- Need for registration
- Need for feature extraction

- Examples
- Web 2.0
- Sonar Explorer

- New Data Sources – Web 2.0

- Social networks, wikis, blogs, data warehouses
 - Facebook
 - Twitter
 - LinkedIn
 - YouTube

[Gröller 2007]
Novel Imaging Modalities – Sonar Explorer (1)
- 4D sonar data
- Cones with resolution: 25x20x1319
- Ping rate 1 Hz
- 2 GB/ping
- Time steps overlapping
- Highly anisotropic
- Noisy
- Signal strength reduced with spreading and absorption

Novel Imaging Modalities – Sonar Explorer (2)
- Fish school monitoring
 - Size of school
 - Center of gravity
 - Shape parameters
 - Motion characteristics

Challenges in Visual Computing
- New Data Sources - Novel Imaging Modalities
- Ensembles, Uncertainty, Parameter Spaces

Visual Steering to Support Decision Making in Visdom
J. Waser, R. Fuchs, H. Ribičić, Ch. Hirsch, B. Schindler, G. Blöschl, E. Gröller

Flood emergency assistance
- New Orleans 2005: 17th canal levee breach

Evaluation of breach-closure techniques in a laboratory model
Computational Steering: World Lines

Video: World Lines - Features

Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction

Motivation

Sensitivity Analysis

Parameter Search
Motivation

Parameter Space → Target Space

Simulation, Measurement

Contribution

Parameter Space → Target Space

Pointwise Analysis

Local Analysis

Uncertainty

Application Example: Car Engine Design

Eduard Gröller

Challenges in Visual Computing

- New Data Sources - Novel Imaging Modalities
- Ensembles, Uncertainty, Parameter Spaces
- Multivariate, Heterogeneous Data

Visualization of Multi-Variate Scientific Data

Eduard Gröller

Coping with Complexity and Variability

- Reducing data complexity well established
 - Sub-setting
 - Slicing
 - Projection
 - Dimension reduction
 - Clustering
- Reducing visual complexity ??
 - Integrated views
 - Comparative visualization
 - Fuzzy visualization
 - …
Cardiac Data Visualization
- Fusion of 4 diverse data types

Interactive navigation
- Perfusion simulation
- Stenosis simulation

4D MRI Blood Flow
- van Pet et al.

Generalized Polyhedral Grids
- Muigg, Doleisch et al.

Challenges in Visual Computing
- New Data Sources - Novel Imaging Modalities
- Ensembles, Uncertainty, Parameter Spaces
- Multivariate, Heterogeneous Data
- Visual Analytics (↔ SciVis ↔ InfoVis)

Visual Analytics (↔ SciVis ↔ InfoVis)
- “Visual Analytics is the science of analytical reasoning facilitated by interactive visual interfaces”
- What do we have?
 - Automatic Knowledge Discovery & Information Mining
 - Interactive Visual Data Exploration
- What do we need?
 - Tight Integration of Visual and Automatic Data Analysis Methods with Database Technology for a Scalable Interactive Decision Support

Visual Data Exploration
- Data
- Models
- Knowledge
- Information Mining
- [Keim, Thomas 2007]
SimVis: Interactive Visual Analysis of Large & Complex Simulation Data

Helmut Doleisch et al.

Importance-Driven Focus of Attention (1)

- Guided navigation between characteristic views

[Viola et al. 2006]

Importance-Driven Focus of Attention (2)

Knowledge-Based Navigation (1)

- Interaction with 2D slices
- Automatic generation of expressive 3D views

[Kohmann et al. 2007]
Knowledge-Based Navigation (2)

![Image](image1.png)

[Kohlmann et al. 2007]

Challenges in Visual Computing

- New Data Sources - Novel Imaging Modalities
- Ensembles, Uncertainty, Parameter Spaces
- Multivariate, Heterogeneous Data
- Visual Analytics (↔ SciVis ↔ InfoVis)
- Interaction (Knowledge-assisted, User-centric)
- Scalability

Scalability

- **Challenges** [Keim, Thomas 2007]
 - amount of data and dimensionality
 - numbers of data sources and heterogeneity
 - data quality and data resolution
 - dynamicity and novelty
 - data representation and visual resolution

- **Examples**
 - Focus+Context
 - Aggregation
 - Abstraction and Illustration

Scalability - Process Visualization (1)

- **Improving singular instruments**
 - History encoding
 - Multi-instruments
 - Levels of detail (LOD)

- **Improving the monitoring system**
 - Focus+Context (F+C) rendering
 - Collision avoidance

[Viola et al.]
Scalability - Process Visualization (2)

- Various instruments can be used to construct Levels of Detail (LODs)

Scalability - Process Visualization (3)

- Process Visualization with Levels of Detail

 K. Matkovic, H. Hauser, R. Sainitzer and E. Groller

Challenges in Visual Computing

- New Data Sources - Novel Imaging Modalities
- Ensembles, Uncertainty, Parameter Spaces
- Multivariate, Heterogeneous Data
- Visual Analytics (↔ SciVis ↔ InfoVis)
- Interaction (Knowledge-assisted, User-centric)
- Scalability
- Visual Computing in the Cloud

Problem Solving: Algorithm + Parameters

- Parameter space analysis
 - Robustness, stability: well established in other disciplines
 - Increased interest in visualization
 - Variations
 - Ensembles
 - Knowledge-assisted visualization

AlgoLets: The Next Generation

- AlgoLets
 - „Small“ algorithms
 - Attach to data portions
 - Produce image fragments
- Integration of fragments
Thank You for Your Attention

Questions? Comments?

Acknowledgments

Wolfgang B Berger
Jean-Paul Babalablanian
Helmut Doleisch
Raphael Fuchs
Helwig Hauser
Armin Kantarai
Peter Koldmann
M. Maddassar Malik
Krasimir Markov
Philipp Mugg

Harald P Pringer
Werner Purgathofer
Peter Rauzer
Hugo Ribbiño
Georg Stonański
Maurice Terme
Roy van Pelt
Anna Wallnö
Ivan Voža
Jürgen Waser

References (1)

References (2)