FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Shading Framework for Modern
Rendering Engines

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing
eingereicht von

Onur Dogangonul
Matrikelnummer 0416109

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung:

Wien, 06.11.2013

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Shading Framework for Modern
Rendering Engines

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Onur Dogangonul
Registration Number 0416109

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance:

Vienna, 06.11.2013

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Onur Dogangoniil
Am Raun 28, 6460 Imst

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

I want to thank Michael Wimmer for supervising this thesis and supporting me. Also, I want to
thank David Schedl for his assistance at the beginning of this thesis. Credits to Stefan Reinalter,
who provided a detailed feedback on the problem definition. I am obliged to the whole institute
of Computer Graphics and Algorithms at the Vienna University of Technology for giving me the
possibility to learn from an excellent scientific staff.

I want to thank my friends, Helene Hovorka and Hannes Widmoser, for proof-reading parts
of the thesis and helping with translation issues.

Last but not least, I want to thank my parents, Muharrem and Zeynep, for supporting me
throughout my education.

iii

Abstract

Nowadays real-time graphics programmers find themselves in a challenging development envi-
ronment. Graphics algorithms are usually accelerated by specialized hardware, which is opti-
mized for streaming operations and parallel computation. Programmers write shaders to specify
the behavior of certain stages of the graphics pipeline. Shaders are mostly written in procedural
per-stage languages like HLSL or GLSL, whereas application code is mostly written in C/C++.
Hardware state setup, shading- and application code has to be aligned to achieve a certain visual
effect. Advanced graphics algorithms often comprise numerous shader files, including unde-
sirable duplicate- and pass-through shader code. Furthermore, code reusability, composability
and modularity is restricted due to the design of current shading languages. In this thesis cur-
rent issues in real-time graphics development are discussed. Particularly, the Spark framework,
which is considered as a reference approach is examined and extended by supplementary docu-
mentation and functionality. Within the framework the authors present a novel aspect-oriented
per-pipeline shading language, which is eventually translated to HLSL procedures by a compiler
on top of a Direct3D 11 back-end. Within this thesis an OpenGL 4.2 back-end is presented, new
examples are shown and the extended framework is re-evaluated and discussed.

Kurzfassung

Die Entwicklung von modernen Echtzeitgrafikanwendungen stellt fiir Entwickler eine grofe
Herausforderung dar. Grafikalgorithmen werden iiblicherweise von spezialisierter Hardware, die
fiir parallele Berechnung einer groBen Anzahl an Operationen optimiert ist, ausgefiihrt. Die Ent-
wickler definieren das Verhalten der verschiedenen Abschnitte der Grafikpipeline tiber Shader-
programme, die typischerweise in prozeduralen Sprachen wie HLSL oder GLSL fiir jeden Ab-
schnitt separat geschrieben werden. Im Gegensatz dazu wird der Anwendungscode selbst meist
in C/C++ geschrieben. Die Konfiguration der Hardware, der Shader- und der Anwendungscode
miissen miteinander abgestimmt sein um bestimmte visuelle Effekte erzielen zu kénnen. Die
meisten komplexen Grafikalgorithmen erfordern zahlreiche Shaderdateien, die zum Teil Code
doppelt enthalten oder nur dafiir dienen, Daten von einem Abschnitt der Pipeline in den nichs-
ten weiterzuleiten. Dazu kommt, dass die Wiederverwendbarkeit und Modularitit des Codes
durch das Design der Shadersprachen eingeschrinkt ist. Diese Arbeit setzt sich mit aktuellen
Themen der Entwicklung von Echtzeitgrafikanwendungen auseinander. Das Spark Framework
wird dabei als Referenzansatz vorgestellt, untersucht und durch unterstiitzende Dokumentation
und Funktionalitit erweitert. Die Autoren des Spark Frameworks stellen eine neuartige, aspek-
torientierte Shadingsprache vor, die durch einen Compiler in HLSL Prozeduren basierend auf
einem Direct3D Backend umgeschrieben wird. Im Rahmen dieser Arbeit wird ein OpenGL Ba-
ckend prisentiert, durch neue Beispiele erldutert und das resultierende erweiterte Framework
evaluiert und untersucht.

vii

Contents

(I_Introduction|

1.1 Real-Time Computer Graphics|
1.2 Graphics Pipeline]
[1.3 Graphics Hardware and Parallelism|

Research Analysis|

22 Comparison| e e e e e
2.3 Spark Background| oo oL

Introduction to Spark|

3.1 BasicExample|
3.2 C++Bindings|
3.3 Spark Design Goals| o o
3.4 Dynamic Cube Mapping|
13.5 Distance Adaptive Tessellation|00 0L,

Language Processing Basics|

4.1 Compilation Process|
4.2 Compiler Structure]

Syntax Analysis|

15.1 Project Structure and System Architecturef
[5.2 Intermediate Representation|

6

Semantic Analysis|

15
15
19
21

23
23
25
27
29
32

37
37
38
40
43

51
51
55

63

iX

6.2 Module Declaration| 65
|6.3 Pipeline Declaration|. L 67
6.4 Facet Declarationl L 72
6.5 Member Declaration| L 72
6.6 Resolving Terms| 77
|6.7 Resolving Statements| L oL 80

{7 Optimization| 83
(7.1 Build System| 83
[7.2 Intermediate Representation| 88
[7.3 Emitting Expressions| 94
(74 MemberTerml 97
[7.5 Type Expressions| e 98
[7.6 Simplification| 102
[77 Mark Outputs| e 102
[8__Code Generationl 105
[8.1 Emit Context And Target| 105
105

106

110

110

113

115

116

8.9 HISIL Pixel Shader 118
[8.10 HLSL Shader Compilation| 119

9 OpenGL 4.2 Support| 121
9.1 CompilerOptions| e 121
9.2 Standard Library| 122
9.3 C++Wrappers|. e 123
9.4 Standard Library Changes| 124
9.5 Connector Types| e 124
9.6 Uniformblocks L 125
9.7 Signature Changes| L 126
0.8 Built-in Variables 127
(10 Discussion and Conclusion| 129
(0.1 Evaluationl. 129
[10.2 Industry Relevance| 130
[10.3 Conclusion] e 132

132

135

X1

CHAPTER

Introduction

1.1 Real-Time Computer Graphics

A usual graphics application renders complex scenes, comprising hundreds of 3D models, for
a given camera setup and several light sources, to one or more output devices. Location and
shape of the visual objects are determined by their geometry and the projection properties of
the camera |15, Chapter 2]. Their appearance, however, is specified by defining materials, tex-
tures, light sources and, of course, shading models [15, Chapter 2]. Since real-time applications
require an interactive setting, at least 72 frames per second (FPS) have to be provided to guar-
antee continuous rendering [[15, Chapter 1]. Generally, a trade-of between performance and
physical authenticity has to be made. Material-light interactions and other phenomena are often
merely based on physical concepts but still require strong visual plausibility. The development
of graphics algorithms, shading languages and the design of hardware architectures is intrinsi-
cally coupled. In fact, dedicated graphics hardware is essential in modern real-time graphics
development. A lot of efforts are made to devise optimized graphics effects to take advantage
of a given hardware architecture. Conversely, new ideas in computer graphics often influence
design decisions of hardware vendors.

1.2 Graphics Pipeline

An efficient implementation of the previously mentioned rendering task implicitly imposes a
pipeline structure, with certain stages, which is referred to as the graphics pipeline. Before
determining pixel colors on the screen, several distinct stages, with different tasks, have to be
passed. For instance, the 3D models are usually specified in a local coordinate system. Model
vertices have to be transformed from local- to projected coordinates in an earlier stage, so that
in a later stage pixel colors can be determined for geometric primitives visible on the screen.
Nowadays, specialized hardware accelerates most stages of the rendering pipeline, however, the

1

actual pipeline structure depends on the actual implementation. Usually the essential features
are categorized into three conceptual stages [[15] Section 2.1]:

Application stage

The application stage is the entry-point of the graphics application. To some extent, a so-called
rendering engine is implemented, typically in C++, that manages and performs operations on
the data structures of the scene. Further, input from possibly multiple sources have to be han-
dled. Graphics application programming interfaces (APIs), for instance, Direct3D or OpenGL,
provide means to defer graphics commands to the specialized hardware. Since the application
stage is processed on the central processing unit (CPU), the developers have a lot of flexibility
to perform optimizations (e.g. view frustum culling) to reduce the load of the subsequent stages.

Geometry Stage

The geometry stage receives all the geometric data, with according transformation matrices
and other necessary resources. Since models are specified in a local coordinate system (model
space), a common coordinate system (world space) is required to put all models into a scene.
Therefore, a model matrix is associated with each primitive to provide the transformation from
local to world coordinates. Subsequently, the virtual 3D scene has to be projected on a plane.
To simplify projection, all visual objects are transformed into another coordinate system (view
space), where the camera is located in the center (view coordinates). The transformation process
from model space to view space is, usually, combined to a model-view transform. Depending
on the implemented effects, per-vertex shading equations may be evaluated before applying pro-
jection, which is, commonly, referred to as vertex shading. Also, more detailed 3D-models may
be generated on the fly or even geometry amplification may be implemented by optional tessel-
lation and geometry stages. Anyhow, projection transforms the view volume, which is defined
by a perspective or orthographic projection matrix, into a unit cube. Primitives inside the unit
cube are send to subsequent stages, whereas primitives outside of the cube are discarded. Inter-
secting primitives are clipped against the unit volume. The process of clipping may, therefore,
introduce new vertices. Moreover, vertices inside the unit cube are transformed from, so-called,
normalized device coordinates to screen coordinates by the process of screen mapping.

Rasterisation Stage

The rasterisation stage receives the projected vertices and necessary data and as a first step
supplementary data is computed per triangle. This process is called triangle setup. Subsequently,
scan conversion (also known as triangle traversal) generates fragments for each pixel that is
covered by the triangle. Vertex attributes have to be interpolated among triangle vertices to
allow per-fragment shading operations. In a final step the generated fragment color is merged
with the pixel information, which is stored in the framebuffer.

Additional details about these conceptual stages will be provided throughout the thesis as
necessary. Stages are processed in parallel and the performance of the whole pipeline depends on
its slowest stage, since other stages are dependent [[15, Section 2.1]. Note that these conceptual

2

stages may also deploy a pipeline with sub-stages [15, Section 2.1]. A nonpipelined system that
is divided into n stages, ideally benefits of a speedup by the factor of n [[15, Section 2.1].

1.3 Graphics Hardware and Parallelism

Graphics applications mostly require two kinds of specialization [[10, Chapter 12]:
e Streaming operations: reading a lot of data from single or sequential locations

e Parallel computation: perform independent calculations for a collection of elements of the
same kind: e.g.

— Transform vertices from model space to view space

— Apply per-fragment shading equations

Foley distinguishes the concepts of data parallelism and pipeline parallelism (3, Section
1.1]. Data parallelism is accomplished by, for instance, processing all vertex computations
of a primitive- or evaluating shading equations for several pixels at once. Pipeline parallelism
addresses the fact that, for example while per-fragment calculations are performed for the current
model, per-vertex computations may already be performed for another model. Since modern
central processing units (CPUs) favor hardware architectures for a broader field of application
and do not exhibit such levels of parallelism, graphics pipelines are implemented as special
hardware circuits optimized for graphics processing. Recent trends towards general-purpose
computing on graphics processing units (GPGPU) augment the processing flexibility of graphics
hardware and introduce novel possibilities for other scientific fields. A few notes about GPGPU
and real-time rendering are provided in Section[I.4] Nevertheless, current real-time rendering
mostly involves the development of shaders, which are programs that specify the functionality
of certain stages in the graphics pipeline.

1.4 Shader Programming

Programmable graphics pipelines were established with the introduction of NVIDIA’s GeForce3
on consumer level in 2001 [[15} Section 3.3]. At that time, the previously configurable graphics
hardware was enhanced by programmable vertex shaders [|15, Section 3.3]. Early graphic APIs
(Microsoft’s DirectX 8.0 or OpenGL via extensions) exposed new hardware features to graphics
developers by an assembly-like language [[15) Section 3.3]. Graphics acceleration chips devel-
oped rapidly and high-level languages, for example Microsoft’s High-Level Shading Language
(HLSL), OpenGL Shading Language (GLSL) or Nvidia’s C for Graphics (Cg), were introduced.
A shader is a C-like program that receives a set of input data and performs computations at a
given rate, for instance, per-vertex or per-fragment. The outputs of a shader can be used as in-
puts to subsequent stages. Having discussed the coarse structure of the rendering pipeline and
the basics of shader programming, it is time to take a closer look at a reference implementa-
tion. As previously mentioned, the conceptual geometry- and rasterizer stages are, nowadays,
accelerated by graphics hardware. Therefore, programmers have to pass all necessary data to the

3

VS VERTEX SHADER

I

TESSELLATION

TCS
CONTROL SHADER
TES TESSELLATION
EVALUATION SHADER
GS GEOMETRY SHADER
FS FRAGMENT SHADER

Figure 1.1: Programmable stages of the OpenGL 4.2 pipeline

graphics card and specify all configurable and programmable stages. FigurdI.1|shows the deci-
sive programmable stages of the current OpenGL 4.2 pipeline [11] [[7]. Common development
tasks are delineated for each stage in the next subsections.

Vertex Shader

Typically, a scene contains various 3D-models, each comprising at least several vertices specified
in a local or global coordinate system. Optionally, other vertex attributes, for instance vertex
normals, texture coordinates or material properties are provided. The vertex shader, usually,
performs model-view transform, vertex shading and the projection of vertices. Each vertex
shader is constrained to perform /local computations [7, Section 2.1], which facilitates parallel
computing.

Tessellation Shader

Modern graphics hardware allows on-the-fly tessellation of coarse models. The benefits |10}
Chapter 13] are, for instance, physics calculations can be performed on the coarse model, while
a tessellated model is rendered on screen. Further, less data (only the coarse geometry) is sent
to the graphics card, since the tessellated model is re-created each frame. Also, dynamic level

4

of detail (LOD) algorithms may be implemented on the GPU. In OpenGL 4.2 two shaders have
to be specified to perform tessellation:

e The tessellation control shader [[7, Section 2.2] receives a patch of incoming vertices and
emits a new output patch. The tessellation control shader is invoked for each vertex in the
output patch. Additionally, the tessellation primitive generator (TPG), which implements
the actual tessellation process, has to be configured. Inner and outer tessellation levels are
specified to control the tessellation granularity.

e The tessellation evaluation shader [[7, Section 2.3] is processed after the TPG and is in-
voked for each generated parametric location to interpolate actual fine vertex coordinates-
and attributes.

The tessellation stage is optional. Usually, when tessellation is enabled algorithms work on
control-points, which are used to interpolate a curve or a surface. Therefore, the role of the vertex
shader changes. Projection is usually deferred to later stages and the vertex shader becomes a
vertex shader of control-points [[10, Section 13.1.1].

Geometry Shader

The geometry shader is also optional and is invoked once for each primitive and can output zero,
one or more primitives [16, Chapter 6]. Input and output primitive types may diverge but only a
single kind of output primitive may be specified [[16, Chapter 6].

Fragment Shader

The fragment shader is executes for each fragment, which is generated by the fixed-function
scan conversion stage. Pixel colors are generated and merged with the current framebuffer.

Configurable stages

Beside the programmable stages, some tasks, for instance, clipping, screen mapping, scan con-
version or output merging are either fixed-operation or merely configurable. In this thesis, only
the decisive programmable stages are focused and details are revealed as necessary.

Modern Pipeline Stages and Group-wise Operations

For the modern graphics pipeline point-wise and group-wise shading code may be distinguished
[3, Section 1.3]. Early rendering pipelines only supported vertex and fragment shaders. The
idea was to apply a custom point-wise operation over a stream of vertices and fragments, re-
spectively. Since there is no data dependency, parallel computation is simple. However, modern
stages involve group-wise operations. The tessellation control shader is invoked for each vertex
in the output patch and has access to all per-vertex data in the input patch. Additional per-vertex
attributes may be computed for the output patch, which is passed along to the tessellation evalua-
tion shader. The tessellation evaluation shader is invoked for each generated parametric location.

5

Usually, per-vertex information is required from the output patch to compute bilinearly interpo-
lated actual fine vertex locations. The geometry shader works on an aggregate of vertices, which
form a primitive, and may even output multiple primitives.

Compute Interfaces and GPGPU

Due to the increasing computing power and flexibility of the graphics hardware, there is a grow-
ing interest to deploy the GPU for a broader field of application other than real-time rendering.
GPGPU and compute approaches were initially implemented by abstracting over rendering ar-
chitectures like OpenGL [3}, Section 2.2.2]. CUDA or OpenCL do not conform to such abstrac-
tions and expose additional capabilities [3, Section 2.2.2]. Most prominently, Direct3D 11 and
OpenGL 4.3 introduce an additional compute shader, which is not part of the direct rendering
pipeline, but can read and write to GPU resources 8}, Section 2.6] [10, Chapter 12]. Furthermore,
compute shader outputs may be bound as resources to the rendering pipeline, which conveniently
increases the flexibility of graphics hardware [10, Chapter 12].

OpenGL and Direct3D:

The thesis is written with a focus on OpenGL, however, also Direct3D 11 examples may be
found since OpenGL 4.2/4.3 and Direct3D 11 expose similar capabilities and programmable
shaders. The introduction to real-time rendering and the graphics pipeline also applies (with
minor changes) to Direct3D 11. Having discussed the basic aspects of real-time rendering and
shader programming, current development issues are depicted in the following section.

1.5 Problem Statement

Real-time graphics programmers face a challenging development environment. Due to the het-
erogeneousness of the development tools, it is not simple to apply appropriate software design
decisions. Usually, C++ application code, hardware state setup and procedural shader code has
to be aligned to implement graphics effects.

Figure[I.2]shows a vertex and fragment shader in GLSL. Basically, three features are imple-
mented:

e Red highlights indicate the transformation from model coordinates to projected vertices,
which is mandatory for most shading applications.

e Green highlights show lines of code corresponding to texturing.
e Blue highlights show an implementation of a simple diffuse lighting model.

Foley discusses ubiquitous drawbacks in current shader development in [3| Section 1.3] of
his PhD thesis, which may also be observed in this simple application.

6

#version 420 core

uniform Uniforms

{
mat4 modelView;
matd proj;
matd view;
mat3 normalMatrix;
vecd w lightPos;

} uniforms;

in vec3 vertex;
in vec3 normal;
in vec2 texCoord;

out VS2PS

{
vec3 v_normal;
vec3 v_lightDir;
vec? texCoord;

1 vs2ps;

void main (void)

{

vecd pos = vecd (vertex,

#version 420 core
uniform sampler2D tex;

in VS2PS

{
vec3 v_normal;
vecl3 v _lightDir;
vec? texCoord;

} vsZ2ps;

void main (void)

{

vecd diffuse = texture(tex, vs2ps.texCoord);

float lighting = max({(0.0f,
dot (normalize (vs2ps.v_lightDir),
normalize (vs2ps.v_normal)));
vecd color = diffuse * lighting;

gl_Fragbatal[0] = color;

1.0f);

vecd v_pos = uniforms.modelView * pos;

vecd v_lightPos = uniforms.view * uniforms.w lightPos;

vec3 v_lightPos3 =

v _lightPos.xyz / v_lightPos.w;

vec3 v_normal = uniforms.normalMatrix * normal;

vecld v _posl = v pos.xyz / vV _pos.w;

vec3 v_lightDir =

normalize (v lightPos3 - v pos3);

vs2ps.v_normal = v _normal;

vs2ps.v_lightDir = v _lightDir;
vs2ps.texCoord = texCoord;

gl Position = uniforms.proj * v_pos;

Figure 1.2: Basic GLSL vertex and fragment shader

Lack of Modularity

Due to the procedural programming paradigm, developers may combine simple procedures to
build complex procedures. Almost any kind of operations may be performed. From data de-
pendent flow control to program loops, current shading languages are flexible enough to allow
the implementation of a variety of graphics effects. However, procedural programming exposes
limited structural properties. In particular, the developer is constrained to break up the graphics
algorithms into procedural shaders. Again, FigurdI.2] shows three different modules that are
mixed together and spread over two stages. Ideally, different features should be localized and
implemented in independent modules. For instance, the simple diffuse lighting model could be
implemented in a separate module to be reused in other applications. Also shader extension and
combination is often related to duplicate code.

Lack of Reusability

As already indicated, reusability is restricted. Developers are often tempted to utilize ‘copy-
paste programming. For example, some kind of texturing code is used in most shading tasks.
Usually, the code base is (to a certain degree) polluted with duplicate shader code. Changes to a
particular feature require a lot of effort to be adapted to the whole project.

Additional Plumbing Code

In Figure texture coordinates have to be passed along from the vertex shader to the frag-
ment shader (green highlights). Although texturing is applied in the fragment shader, there is a
dependency in the vertex shader.

1.6 Motivation and Aim

Aim of this Thesis

Procedural shading languages merely abstract the lowest hardware levels and were designed to
allow a wide range of computations. In this thesis, the initial question is whether it is possible
to provide a flexible high performance shading framework which solves the development issues
illustrated in Section The framework should cover most features of the current graphics
pipeline (OpenGL 4.2 or Direct3D 11). Furthermore, and most importantly, additional run-time
costs should be tolerable. This thesis examines, documents and extends an existing approach
in current graphics research, which is mainly discussed in Foley’s PhD thesis [14]]. There, the
authors present a flexible novel per-pipeline shading language (Spark), which facilitates current
shader development and is therefore considered as the central subject and resource of this thesis.
The aim of this thesis is to describe the absent parts of the available documentation and to provide
a low-level view on the Spark compiler. Additionally, the Spark system should be extended by
an OpenGL 4.2 back-end.

The Spark Framework

Given the increasing complexity of graphics algorithms, the authors of Spark [14] show the im-
portance of adopting appropriate software-engineering principles to the difficulties of modern
shader development. A main focus is the separation of concerns: the factoring of logically dis-
tinct program features into localized and independent modules [14]. Again, as pointed out in
Section [I.5] ideally, different program features should be expressed as separate, reusable mod-
ules. Data which is used in later stages should be automatically plumbed through intermediate
stages.

FigurdI.3|shows a possible implementation of the simple shading application from[I.2]using
Spark. Without going into language details at this point, notice that the program features are
separated in classes, which may be reused or extended by inheritance. A more realistic and
elaborate graphics application, where an animated, tessellated and displaced model is rendered
to all six faces of the cube map in the geometry shader may be found in Foley’s article [[14]].

8

abstract shader class Base extends OpenGL42DrawPass
{

// @Uniform

input @Uniform matd world;

input @Uniform matd view;

. . . shader class Texturing extends Diffuse
input @Uniform matd4 proj;

{
// @Uniform

Q@Uniform mat4 modelView = view * warld; i K
input QUniform sampler2D tex;

QUniform matd mvp = proj * modelView;
@Uniform mat3 normalMatrix =

mat3 (transpose (inverse {(modelView))) ;
// @AssembledVertex
input @AssembledVertex vec3 pos;

// @AssembledVertex
input @AssembledVertex vec2 texCoord;

// @Fragment

/) @Rastervertes override diffuse = texture (tex, texCoord):;

override RS Position = mvp * vecd(pos, 1.0f);

// @Pixel
abstract output @Pixel wvecd target;

}

shader class Diffuse extends Base
{
// @Uniform
input @Uniform vecd w_lightPos;

// @AssembledVertex
input @AssembledVertex vec3 normal;

// @CoarseVertex
@CoarseVertex vecd v pos = modelView * vecd(pos, 1.0f);
@CoarseVertex vec3 v pos3 = v pos.xyz / vV _pos.w;

@CoarseVertex vecd4d v lightPos = view * w lightPos;
@CoarseVertex vec3 v lightPos3 = v lightPes.xyz / v _lightFos.w;

@CoarseVertex vecl v_lightDir = normalize{v_lightPos3 - v_pos3);
@CoarseVertex vecld v_normal = normalMatrix * normal;

// QFragment
virtual @Fragment vecd diffuse = vecd4(1.0f, 1.0f, 1.0f, 1.0f);
@Fragment float lighting =

max (0.0f, dot(normalize(v lightDir), normalize(v_normal)));
@Fragment vecd color = diffuse * lighting;

// @Pixel
override target = color;

Figure 1.3: Base Spark Module

Render To CubeMap Tessellation

Vertex Colors Displacement
Texture Mapping Animation
. N S ~ - ~ ~
H i] it i !
1 1! [[1! 1
I 1! [[1! 1
1 ! [! [1
I 1! [[1! 1
1 1! s ! [1
I 1! [1! 1
1 [! [|
I ! [[1
1 [! [|
I ! ' [! 1
H 1
H 1
1 1
H 1
1 ' !
H 1
H 1
H 1
H 1
\ 1 B !
N 4 M ___. ¢ N _____. N _____. N o ____. .
VS TCS TES Gs3 FS

Figure 1.4: Complex visual effect with cross-cutting modules

Render To CubeMap Tesgellation
Vertex Colors Displacement
Texture Mapping Animation
P N ~ ~N S~ ~
: 1! 1t 1t [1
I 1! [[() 1
I ! ! 1! [1
I 1! [[1! 1
1 ! [! [1
I 1! [[1! 1
1 1! [! [1
I 1! [[1! 1
1 1! [! [1
I 1! [[1! 1
1 1! [! [1
I 1! [[1! 1
1 1! [! [1
I 1! [1! 1! I
I 1! [[() 1
I 1! [[1! 1
I 1! [[() 1
I 1! [[1! 1
I 1! [[() 1
I 1! [[1! 1
\ L 1 J) Ja 1
N e e e M e e N N . R NN ’
Vs TCS TES GS FS

Figure 1.5: Forced decomposition of concerns, due to per-stage shading language

FigurdI.4|presents an OpenGL 4.2 adaption of the same example. Dashed boxes indicate the
programmable stages of the current OpenGL 4.2 pipeline. Colorized rounded rectangles denote
different program features as modules. Some of them extend over multiple stages and might be
considered as cross-cutting concerns in terms of aspect-oriented software development [14]].

Figurdl.3| visualizes the constrained mapping of program features to the programmable
stages when utilizing a per-stage language like GLSL. Some concerns are divided upon stages,
others have to be merged. Usually, the implementation of a complex effect takes some time.

10

Ideally, the code is cleanly separated in modules, which might be re-used when developing new
effects. Given the current progress in graphics development, the authors of Spark are convinced
that the time is right to re-evaluate the design criteria for real-time shading languages [14]]. Spark
is built on top of a Direct3D 11 back-end: Spark shaders are eventually compiled to HLSL blobs.
Evaluations indicate that Spark shaders perform within 2% of optimized analog HLSL Uber-
shaders [14]. In conclusion of this section, it should be clarified again that the examples and
figures in this section are derived from examples in [3, Section 1.4] and [14], with the intention
to be adopted to the OpenGL context.

1.7 Methodical Approach

Currently, there are three online resources documenting the high-level concepts of Spark:
o ACM TOG paper on Spark (SIGGRAPH 201 lﬂ
e Foley’s PhD thesis about SparkE]
e Spark user’s guide: rﬂ

The initial code base is available irﬂ The research paper about Spark summarizes high-level
considerations and core system details, which may also be found more detailed in Foley’s PhD
thesis. The user’s guide gives an introduction to the Spark shading language. The main part of
this thesis may be considered as a case study of Spark, as a source-to-source compiler. Within
this thesis, the (above mentioned) existing documentation is extended with supplementary low-
level discussion about each phase of the compilation process. Usually, the implementation of
a compiler does not require any mathematical computations and simply involves the creation
and processing of intermediate representations (IR). The data structures, their initialization and
the processing of these IR are central. All information provided in the Chapters [5] to [§] rely on
reverse engineering and the available documentation.

1.8 Structure of the Work

Given the initial thoughts, issues and goals, related work is discussed in Chapter 2]
Chapter 3 gives an introduction to the Spark shading language by examining some examples
and language features.
Chapter] provides some informal and practical basics of language processing.
Chapter [5| provides some details about the data structures and syntax analysis in Spark.
Chapter [6] presents data structures and algorithms of the semantic analysis phase. Some
stylistic peculiarities and a common implementation theme is highlighted.

lhttp ://graphics.stanford.edu/papers/spark/spark_preprint.pdf

http://graphics.stanford.edu/~tfoley/papers/tfoley-dissertation.pdf

*http://cloud.github.com/downloads/spark-shading-language/spark/
spark—-users—guide.pdf

Yhttps://github.com/spark-shading-language/spark

11

http://graphics.stanford.edu/papers/spark/spark_preprint.pdf
http://graphics.stanford.edu/~tfoley/papers/tfoley-dissertation.pdf
http://cloud.github.com/downloads/spark-shading-language/spark/spark-users-guide.pdf
http://cloud.github.com/downloads/spark-shading-language/spark/spark-users-guide.pdf
https://github.com/spark-shading-language/spark

In Chapter [7] some aspects of code optimization are discussed and Chapter [§] and [9] provide
details about the final HLSL and GLSL code generation phase.

Chapter |10 wraps up with an evaluation of the new shading examples and retrospective
discussion on Spark.

This thesis is an extension to Foley’s PhD thesis, therefore, it is highly recommended to
read [3]], [14] and [2] first. Chapters [I] to [3] re-iterate some ideas as needed, however, do not
cover each aspect of Foley’s works. While skimming over Chapters [5]to 0] the reader is advised
to browse through the code to facilitate the understanding, since the description provides only a
(coarse) thread through the implementation and does not cover each and every detail. Readers
interested only in high-level concepts should read Chapters [I]to [3]and [I0] whereas readers who
are familiar with Foley’s work may directly read ff| to [0] Chapter 4] may be considered as an
optional crash course on language processing.

1.9 Contributions

The main contribution of this thesis is a complementary low-level documentation of the Spark
framework, which is both missing in the available paper [[14] and PhD thesis [3] on Spark.
Furthermore, the initial Spark compiler targets the Direct3D back-end. Here, the adaption of an
OpenGL 4.2 back-end is discussed and documented.

Documentation

The existing documentation (c.f. Section [L.7) is supplemented by the following low-level de-
tails. For each phase of the compiler a corresponding chapter describes certain aspects of the
implementation.

e Syntax Analysis (Chapter 3)):

— Provides a closer look on the application of GPLEX/GPPG

— Discusses key data structures of the first intermediate representation
e Semantic Analysis (Chapter [6):

— Discusses the build system and lazy initialization mechanism used to construct the
next intermediate representation

— Essential interfaces and data structures

— Key semantic analysis tasks: shader inheritance checks, base linearization, member
declarations, member overriding, resolve statements, terms and expressions, hints
on type-checking, ...

e Optimization (Chapter|7/):
— Discusses the build system and some aspects of the new intermediate representation

— Details on how expressions are decomposed

12

— Some aspects of simplification and marking output variables
e Code Generation (Chapter [g)):

— Provides details on how the final intermediate representation is used to emit HLSL
code
— Differentiates C++ (wrapper classes) and HLSL (actual shader) code generation

— Implementation details on each pipeline stage
e OpenGL 4.2 Support (Chapter [9):

Discusses the most crucial changes which were necessary to adapt the different syn-
tax and semantic of GLSL shaders

Differences in the wrapper classes

Changes to the standard library

Considerations on architectural issues

Codebase

Certain adaptions were made to the code generation phase to support the GLSL syntax and
semantic (c.f. Chapter [9). Further, new examples were added using both the Direct3D and
OpenGL back-end:

e HLSL examples

— SimpleHLSL: simple shading example showing the application of Spark without the
noise of additional libraries (DXUT, etc)

— SimpleBezier11: adaptive tessellation of a bezier surface
o GLSL examples

— SimpleGLSL: simple shading example using the OpenGL back-end
— CubeMapGLSL: dynamic cube mapping

— SimpleBezierGLSL: adaptive tessellation of a bezier surface

In Section [T0.1] the new OpenGL back-end is evaluated by comparing Spark shaders to
custom GLSL shaders. To measure the exact run-time deviations the application-side differences
are reduced to a minimum.

13

CHAPTER

Research Analysis

The amount of scientific work addressing shader development is substantial. Ideas of shading
languages and programmable shading existed even before the introduction of accelerated graph-
ics hardware. Due to rapid development in hardware architectures, shading languages and APIs,
current challenges differ widely from difficulties and limitations in the past. Here, the most
practical and up-to-date approaches will be discussed and compared to the Spark framework.

2.1 Related Work

Effect Frameworks

Effect frameworks facilitate the encapsulation of the graphics state and shader code. In one of the
first articles about effect frameworks, the author motivates the usage of effect frameworks and
so-called effect files as an alternative to the usual individual file approach, where each shader
is placed in a separate file [12]. Microsoft’s effect framework (2003) and NVIDIA’s CgFX
(2003) were first implementations. The Direct3D 11 effect framewor allows the description of
groups, techniques and passes. Groups are optional and define a set of techniques. For example,
a collection of material shaders could be grouped in an effect file. A technique, however, defines
a set of rendering passes and each pass defines necessary pipeline states to render an effect.
Figure shows relevant code fragments of a basic Direct3D 11 effect file, which contains
(conceptual) global variables, state specifications, shader code and technique descriptions. Two
single-pass techniques are specified:

e RenderSceneWithTexturelLight: comprises a vertex and pixel shader

e RunComputeShader: uses a compute shader

lhttp://msdn.microsoft.com/enfus/library/windows/desktop/ff476136(v=vs.85)
.aspx

15

http://msdn.microsoft.com/en-us/library/windows/desktop/ff476136(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476136(v=vs.85).aspx

/7

Global variables

/).

//

Texture and sampler state

/).

Other non-programmable pipeline state

Shaders
RenderSceneVs, RenderScenePS and CS

Groups, Techniques and Passes
RenderSceneWithTexturelLight
PO
SetVertexShader{ CompileShader{ vs 4 0, RenderScenevVs{ 1, true, true)));

SetGeometryShader (NULL);
SetPixelshader(CompileShader(ps_4_ 0, RenderScenePS(true)));

g0
RunComputeShader
PO

SetComputeShader { CompileShader (¢s 5 0, CS{)));

Figure 2.1: HLSL effect framework

The compute shader technique is placed in a fxgroup, anyhow, the RenderSceneWithTex-
turelLight is a global technique and is implicitly placed in an unnamed group.

A more elaborate example could contain several techniques with multiple passes. For ex-
ample, a material shader could be specified using several techniques, each corresponding to a
fallback shader for certain hardware capabilities. Different passes could be used to render usual
geometry in the first pass and to add sprites in a follow-up pass.

Usually, following pipeline states have to be provided:

e Shader state: vertex-, hull, domain, geometry, pixel (and compute) shader

e Texture and sampler state

e Other non-programmable pipeline state

Non-programmable pipeline stages are configured using structures:

e D3D11 _RASTERIZER DESC: defines the state of the rasterizer

e D3DI11_BLEND_DESC and D3D11_DEPTH_STENCIL_DESC: define the state of the
output merger and depth buffer

16

// File SimpleBezierll.cpp

/).
D3D SHADER MACRO integerPartitioning[] = { { , Y, {000)
D3D SHADER MACRO fracEvenPartitioning[] = { { , Y, {0})
D3D SHADER MACRO fracOddPartitioningl] = { { , 1, {01 };
V_RETURN(CompileShaderFromFile{ L , NULL, ;

, &pBlobVs));
V_RETURN(CompileShaderFromFile{ L , integerPartitioning, ,

; &pBlobHSInt) };
V_RETURN(CompileShaderFromFile(L , fracEvenPartitioning, ;

, &pBlobHSFracEven));
V_RETURN(CompileShaderFromFile{ L , fracOddPartitioning, ,

, SpBlobHSFracOdd)})
V_RETURN(CompileShaderFromFile{ L , NULL, , , &pBlokDS))
V_RETURN(CompileShaderFromFile{ L , NULL, ; , &pBlobPsS))
V_RETURN(CompileShaderFromFile{ L , NULL, , , &pBlobPSSolid));
/).

// File: SimpleBezierll.hlsl

/e
BEZIER HS PARTITION
BEZIER HS PARTITION
// BEZIER HS PARTITION
/e
[partitioning (BEZTER HS PARTITION)]
Y

Figure 2.2: Code Fragments of the SimpleBezierl 1 example from the DirectX SDK (June 2010)

Shader state changes require a more precise control, therefore a finer granulation into
e Constant buffer state

e Sampler state

e Shader resource state

e And unordered access view state (for pixel and compute shaders)

is provided.

Effect files enhance the manageability of shaders and allow the implementation of fallback
shaders. The pipeline state is specified more cleanly. However, shader combination or shader
inheritance is not supported.

Uber-Shader

The iiber-shader implements several predefined effects in a single file. Certain features may
be modified using the preprocessor. Figure [2.2] shows code fragments of a basic iiber-shader
implementation, which can be found in the examples of the DirectX Software Development Kit
(SDKﬂ The application implements a simple tessellation algorithm of a bézier surface. In the

DirectX SDK (June 2010): http://www.microsoft.com/en-us/download/details.aspx?
1d=6812

17

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=6812

Diffuse : ShaderBase<Diffuse, IlluminatedMaterial>
vold <> illuminance (vec3<>, vec3<>)
{ invoke< void <> >{(Yo}
ValueReference<vecd, uniform> color;
DERIVED DECL(Diffuse, IlluminatedMaterial)
by

CLASS INIT (Diffuse, , NONE, DEFS({((color)))

// Diffuse.glsl

Diffuse illum_impl (Diffuse SELF, light_color, light direction)
{
normal = IlluminatedMaterial get normal (self);
intensity = max (0., dot(light direction, normal));
color = intensgity * (light color, 1) * Diffuse get color(self);

IlluminatedMaterial accum color(self, color);

Figure 2.3: Coupling of proxy objects and GLSL shading code

hull shader different subdivision modes (integer, fractional even, fractional odd) may be speci-
fied. In the application three different versions of the hull shader are compiled, each correspond-
ing to a different subdivision mode. Later, the user may switch between different tessellation
modes. The iiber-shader allows simple variation and combination of shaders, without producing
duplicate shader code. Also, features may be enabled or disabled using the preprocessor and
data-dependent control flow. However, programmers are forced to work on a single complex
shader.

Object-Oriented Shader Design

In [3 Section 2.1.5] Foley refers to effect systems and iiber-shaders as shader metaprogram-
ming concepts. Kuck and Wesche present an innovative and recent metaprogramming approach,
which addresses the shader combination problem [9]] [[13]]. They introduce a lightweight object-
oriented framework on top of the OpenGL 3.2 pipeline and GLSL for the standard illumination
situation (surfaces illuminated by light sources), consisting of two dependent parts:

e An object system for GLSL and
e proxy objects in C++

Classes are declared and instantiated in the application. Class attributes and methods corre-
late to pipeline stages by exposing stage qualifiers. For each instanced object, its attributes are
declared as global variables in GLSL. Figure [2.3] shows how shading code is coupled to proxy
objects. A Diffuse classis implemented by deriving froma I1luminatedMaterial base
class, which is used by materials that receive light from light sources. Without going into details,

18

note that a uniform color attribute is declared and an 11luminance method is implemented.
The illuminance method itself only holds the name of the actual GLSL method in Diffuse.glsl.
The GLSL implementation uses methods of the base class to retrieve the normal vector and to
accumulate the material color. Kuck and Wesche propose a novel reference type to map appli-
cation classes to GLSL, which allows

o the reference of objects as variables and
e calling methods of objects in the shading language.

In GLSL objects are mapped to plain numbers. Dispatch functions are created for all at-
tributes and methods of the instanced classes. The complete GLSL shader comprises the GLSL
implementations and the dispatcher functions. Classes are created in the application stage, which
facilitates the allocation of GPU resources. A single root object provides the entry point for all
stages and triggers necessary method calls of referenced objects.

Figure shows a typical calling sequence in Kuck and Wesche’s framework. The root
Surface object, which is not shown in the sequence diagram, holds references to Material,
Light and CoordinateSystem objects. In the vertex shader the coordinate system is ini-
tialized, where necessary data is transformed into the coordinate system where lighting is per-
formed. Then the material is initialized, which triggers the transformation of the light sources.
First the t ransform_1ight method is called on the CoordinateSystem object by pro-
viding the list of light sources. The CoordinateSystem object then calls corresponding
transform_light methods on the actual light sources, by providing a self reference. In
the fragment shader the shade method is invoked, which triggers 1 11uminate calls on each
light source. The shading is calculated indirectly by a double dispatch procedure, which allows
various shading effects for different light and material types.

2.2 Comparison

Effect Frameworks

Effect frameworks, in comparison to plain GLSL or HLSL shaders, provide a more consistent
encapsulation of the hardware state setup and shading code. Similar shading techniques may be
grouped into fxgroups and several fall-back shaders may be provided by supporting numerous
techniques of a single effect. High-end computers may benefit from more appealing visual
effects by evaluating expensive techniques, whereas older hardware generations may still run
lower-cost implementations. Multiple passes may be defined in a technique, which enhances
the manageability of the shading code and state changes. The Direct3D 11 effect framework
simply extends the HLSL syntax to support groups, techniques and passes. Therefore, learning
and using effect files is straightforward. However, problems like shader combination, extension,
modularity and code reusability still persist.

3The sequence diagram was adapted from Kuck’s paper

19

Material Light UV Light CoordinateSystem
4 I
init ()
€mmmmm | e e o
init ()
transform lights ()
o ,
—% transform light ()
o
v
w e e e e
oy B B >
)
z-‘) transform light ()
= <
€ mmmmmmmmmmmmmmme e
- J
" I
shade ()
illuminate ()
by illuminance ()
kel <+
It
o
48]
E‘ D e T L
“EJ illuminate ()
Sy
8 illuminance_UV ()
[
_______________________________________ >
. J

20

Figure 2.4: Shader metaprogramming sequence diagram

Uber-Shader

The tiber-shader implements all desired effects in a single and probably complex file. With the
help of the preprocessor and data-dependent control flow, predefined features may be enabled
or disabled. Also simple shader variations may be achieved. The HLSL or GLSL shader code
with the according preprocessor evaluation is compiled. At run-time, the user may switch be-
tween the provided shader programs. Similar to effect frameworks, also fall-back shaders may
be implemented by integrating different preprocessor definitions for different hardware targets.
Multipass rendering and state encapsulation is not considered. Since the iiber-shader comprises
the implementation of every preprocessor definition in a single file, teamwork and code main-
tainability is aggravated. Also, the actual development issues, similarly to effect files, are still
inherent.

Object-Oriented Shader Design

Kuck and Wesche present another metaprogramming framework for the OpenGL 3.2 pipeline,
which improves shader combination, extension and code reusability. The shading effect is de-
fined by incorporating C++ code and the GLSL object system. From the developer point of view,
the actual shading code is still specified in GLSL, since the C++ method definition merely holds
the name of the GLSL procedure. The final GLSL shader comprises shading code, global vari-
ables for all object attributes and necessary dispatcher methods. Several effects may be imple-
mented for the standard illumination situation with enhanced code reusability and shader combi-
nation possibilities. However, the framework brings additional compilation- and predictable run-
time costs. Currently, there is no follow-up work or adaption for the actual rendering pipeline,
including tessellation and compute shaders.

2.3 Spark Background

In [3, Chapter 2] Foley outlines the evolution of real-time shading languages and mentions ap-
proaches, which influenced his design decisions. Although shader programming is practically
used since 2001, the ideas of a shading language go back to the mid 1980s. Back then two
opposite approaches emerged.

e Cook’s shade trees

e Perlin’s image synthesizer

Cook proposed a declarative language, where surface, light, atmosphere and displacement
shaders are constructed as separate graphs. While these graphs impose highly structural proper-
ties, which make shader combination possible, certain constraints have to be followed. Mutable
variables or control flow are not available. On the other side Perlin suggested a procedural
approach, where almost any algorithm may be expressed, while exposing only a procedural
structure. Further, Foley states that modern shading languages often derive either from Cook’s
declarative language or Perlin’s procedural approach. He mentions the RenderMan Shading

21

Language (RSL) as a mixture of both possibilities. In particular, the idea of a shader as an in-
stantiated object of an object-oriented class influenced the design of Spark. Thereby, expensive
operations on shaders (e.g. specialization) and shader lifetime can be managed properly from
the application point of view. Although RSL being an procedural language, surface and light
shaders are separated. Interaction between shaders is facilitated by an interface via illuminance
loops and illuminate calls. Furthermore, RSL introduces the concept of computational rates.
Values are specified per-batch or per-sample, e.g. a directional light vector as a uniform vari-
able and diffuse reflectance of the surface with varying rate. The Stanford Real-Time Shading
Language (RTSL) enhances the set of rate qualifiers. A single per-pipeline shader may target
both vertex and fragment stages by partitioning computations at vertex or fragment rate. Spark
adapts computation rates as an extensible concept and applies these ideas to the modern graphics
pipeline.

22

CHAPTER

Introduction to Spark

Spark is a per-pipeline shading language which merges various aspects of other languages and
software engineering notions to improve real-time shader programming. Foley provides a user’s
guide [[2] to quickly start developing Spark shaders. As mentioned, in his PhD thesis he provides
an overview of many high-level concepts [2].

However, this chapter presents some facets of Spark by providing examples using the novel
OpenGL 4.2 back-end. The entire code base with the OpenGL 4.2 back-end and additional
examples are available on githul{l

3.1 Basic Example

Figure [3.1] shows the simple diffuse lighting and texturing effect from Chapter [I] (Figure [I.3))
implemented in a single shader class.

Shader Classes

The shading code is comprised in a shader class. Forget about the implementation details for
a second. Basically, all declarations and definitions have to be located in shader classes. Basic
concepts known to developers familiar with object-oriented programming also apply to Spark
shaders. A shader class may derive from other classes and inherit the definitions and declarations
of the base class. Abstract declarations and virtual definitions may be used to provide interfaces
and allow customizability.

The BasicSpark class inherits types, methods and other features from the OpenGL 4.2
pipeline by deriving from the OpenGL42DrawPass base class, which is located in the stan-
dard library also written in Spark.

Programmers may opt between OpenGL 4.2 and Direct3D 11 by either deriving from OpenGL42DrawPass
orD3D11DrawPass.

'https://github.com/dinony/spark_opengl

23

https://github.com/dinony/spark_opengl

24

shader class BasicSpark extends OpenGL42DrawPass

{

// @Uniform

input @Uniform matd world;
input @Uniform mat4d view;

input @Uniform mat4d proj;

input @Uniform vec4 w lightPos;
input Q@Uniform sampler2D tex;

@Uniform mat4d modelView = view * world;
@Uniform mat4 mvp = proj * modelView;
@Uniform mat3 normalMatrix = mat3 (transpose (inverse (modelView)));

// @AssembledVertex

input @AssembledVertex vec3 m pos;
input @AssembledVertex vec3 m normal;
input @AssembledVertex vec2 texCoord;

// Q@CoarseVertex
@CoarseVertex vecd v _pos = modelView * vecd (m pos, 1.0f);
@CoarseVertex vec3 v _pos3 = Vv _pos.xyz / V_Pos.w;

@CoarseVertex vecd v _lightPos = view * w_lightPos;
@CoarseVertex vec3 v _lightPos3 = v _lightPos.xyz / v_lightPos.w;

@CoarseVertex vec3 v_lightDir = normalize(v_lightPos3 - v _pos3);
QCoarseVertex vec3 v _normal = normalMatrix * m normal;

// @RasterVertex
override RS Position = mvp * vec4d(m pos, 1.0f);

// @Fragment
@Fragment vec4d diffuse = texture (tex, texCoord);
@Fragment float lighting = max(0.0f,

dot (normalize (v _lightDir), normalize (v normal)));

@Fragment vec4 color = diffuse * lighting;
// @Pixel
output @Pixel vec4 myTarget = color;

Figure 3.1: Basic Spark Shader (Colors denote different computation rates)

Attributes

Another characteristic of Spark are the attribute definitions:
input @Uniform mat4 world;

Programmers familiar with GLSL will assume a uniform variable declaration. Basically, a
more precise frequency-qualified type declaration is provided. @Uniform defines the compu-
tation rate and mat 4 defines the actual type the world variable will acquire at run-time.

But what about the following uniform variable definition?

@Uniform mat4 modelView = view = model;

A uniform variable definition, which is initialized by other uniform variables. Actually,
the Spark compiler recognizes such variables and generates C++ code, which will initialize the
according mode1View variable before it is sent to the GPU.

@Fragment vecd4d diffuse = texture (tex, texCoord);

The above attribute definition can be read as diffuse being a variable of type vec4,
which is evaluated per-fragment. That is, the compilation process has to map diffuse to the
fragment shader. Further, the per-assembled-vertex texCoord variable has to be plumbed
through all intermediate stages. That is, a type conversion routine is required to transform
@AssembledVertex T to @Fragment T types (T being a generic type parameter). In
Spark, pre- and user-defined plumbing operators are used to configure the compiler to perform
the required conversions.

Per-pipeline Shader

In contrast to current per-stage languages, several programmable stages may be targeted in a
single per-pipeline shader class. There is much more to mention about Spark, however, further
details are provided when new examples are introduced.

3.2 C++ Bindings

Spark shaders are translated to GLSL or HLSL shaders. Additionally, the compiler generates
wrapper classes to interface with the C++ application.

Figure [3.2] shows the basic structure of a C++ application using Spark. At the beginning a
Spark context is acquired. Then the usual tasks are performed:

e Initialize GLFW
e Create a window and an OpenGL context

e Initialize GLEW

25

#include // SPARK:

// Other includes... gshaderInstance =

gSparkContext->CreateShaderInstance<BasicSpark>(0);
#include GLint vertexLoc = gShaderInstance->getPosLocation();
#include // Get other locations

// Also include glm...
// Create vertex buffers

// SPARK: // Create vertex array objects
#include // Buffer geometry on gfx ram
// Load textures
// SPARK: // Setup graphics state
spark::IContext* gSparklontext = nullptr;
BagicSpark* gShaderInstance = nullptr; (running)
// Other global variables... {
// Do input handling, animation, etc...
main {)

{ // SPARK:

// SPARK: // Update per-frame shader uniforms

gSparkContext = SparkCreateContext(); gShaderInstance->SetProj (proj);

//

// glfw initialization...

// Create a window... // 3etup DrawS3pan

// glew initialization...

// Geometry initialization... glClear(.. | ..)i

glm::matd proj = glm::perspective(75.0f, aspect, gShaderInstance->Submit () ;

1.0£, 1000.0f); glfwSwapBuffers (};
// Other matrices etc. }
// SPARK:

{gShaderInstance) gShaderInstance->Releasel();
// Clean up rest
glfwTerminate () ;
0;
}

Figure 3.2: Basic Spark Application

o Initialize matrices, camera, projection, etc

With the Spark context the shader is created. As usual, the vertex buffer objects and vertex
array objects are initialized. In the rendering loop shader inputs are updated via automatically
generated setter methods. Finally, the shader is executed by calling Submit (..). From the
application point of view the most basic Spark example is shorter than the analog OpenGL
example. Behind the scenes the following tasks are adopted by Spark :

e During initialization:

— Create and compile the generated GLSL shaders
— Shader error recovery

— Create and initialize the according uniform buffer object
e In the render loop:
— Perform constant and uniform computations

— Update uniform buffer

26

‘\~\\§* modelView normalMatrix

matd world;

matd view;

matd proj;

matd mvp;

matd modelView;
mat3 normalMatrix;
vecd w_lightPos;
sampler2D tex;

w_lightPos
nvp —

m_normal

v_lightPos

texCoord

vec3 m_pos;
vec3d m_normal;
vec2 texCoord;

v_normal

j v_lightPos3
vecd v_pos;

vec3 v _pos3;

vec3 v_normal;
vecd v_lightPos;
vec3 v_lightPos3;
vec3 v_1lightDir;

v lightDir

R5_Position

vecd RS_Positicon;

‘ lighting J

\

color vecd diffuse;
' - float lighting;

vecd color;

diffuse

Fragment

‘ myTarget

Figure 3.3: Shader Graph (left), Record Types (right) of the BasicSpark example

— Bind VAO and call according draw method

3.3 Spark Design Goals

A basic Spark example has been presented. Here, some thoughts and background knowledge
are provided, which influenced the language design decisions and the implementation of the
compiler.

Declarative and Procedural Aspects

Spark unifies declarative and procedural features [3| Section 3.3.1]. While a class definition
exhibits declarative properties, in procedural subroutines modern programming constructs like

27

control flow and loops are available.

Each attribute in the class declaration represents a node in the shader graph, which is shown
on the left side of Figure [3.3] Spark code is translated to procedural HLSL or GLSL shaders, so
the computations have to be mapped to according pipeline stages. This is achieved via the /-fo-1
relationship between computation rates and record types in the generated per-stage procedures.

Each graph-node corresponds to a certain computation rate and defines a field in the accord-
ing record type. Shader stages communicate via record types, for instance, the vertex shader
receives a stream of AssembledVertex records to apply per-(coarse)vertex computations.

Edges connecting nodes with different colors denote changes in the computation rate. there-
fore, plumbing operators have to be defined. For instance, when a per-vertex color attribute is
used in a per-fragment computation, the values are interpolated.

The pipeline implicitly implements some plumbing operators, for instance, the interpolation
from raster vertices to fragments by the fixed-function rasterizer. Custom plumbing operators
may be defined to provide explicit conversion operators for certain types.

The shader graph defines only point-wise shading code, while the current graphics pipeline
supports procedural group-wise operations (c.f. Section[I.4). In Spark, group-wise operations
are specified in shader subroutines. These methods may be used to define attributes. Also,
plumbing operators may involve group-wise computations, for instance, when interpolating fine
vertex attributes for given parametric locations.

Plumbing operators are implemented as special subroutines with explicit rate qualifiers and
without control flow. In particular, plumbing may introduce intermediate results and additional
attributes (graph-nodes).

Shaders as Classes

The modeling of shaders as classes is beneficial |3, Section 3.3.2]. Mechanisms for modularity
and composition are exposed via well-known object-oriented principles. Using virtual nodes,
customizable parts are defined, whereas abstract classes may declare interfaces. Shader classes
may derive from other classes to inherit attributes and specialize by adding new graph-nodes.
Composition of two and more shaders is supported by mixin inheritance concepts known from
other languages. To avoid problems associated with multiple inheritance, the C3 linearization
approach is implemented to flatten the inheritance tree. However, it is crucial to determine a total
order of the inherited bases to resolve virtual members. Most linearization concepts bring some
drawbacks [3| Section 2.3.1]. Beside name-clashing issues for dynamic languages, changing the
inheritance order might change the behavior of the program, which is, generally, problematic for
modularity.

From the application point of view, shader creation, management and execution can be han-
dled much better. There is a clean phase separation of heavy-weight operations like compiling
and light-weight shader execution.

28

Figure 3.4: Dynamic Cube Mapping in Spark (OpenGL 4.2 back-end)

3.4 Dynamic Cube Mapping

Cube mapping is a popular algorithm to render reflective surfaces in real-time. When the envi-
ronment changes or the reflective object is moving the cube maps have to be updated dynam-
ically. Figure [3.4] shows a scene consisting of a grid of randomly colored cubes and a moving
reflective sphere. There are several possible implementations:

o CPU Multipass implementation:

— Generate a cube map texture

Six passes are used to create the cube map

Each pass sets the view direction for the current face of the cube map

Seventh pass renders the scene from the viewer’s perspective

An additional pass to perform cube mapping
e Geometry shader:

— Use the geometry shader to render to the different faces of the cube map

29

— Six passes are relocated to the GPU

— Only three CPU passes needed
e Geometry shader instancing:

— Invoke geometry shader six times

— Render to the different faces of the cube map simultaneously

Here, the implementations using the geometry shader are discussed. The abstract class
Base in Subsection [I.6] (c.f. Figure [I.3) implements the transformation of a vertex. Also,
the Diffuse class implements a simple lighting model. Therefore, these two classes may be
reused to render the scene. Now, the real interesting part is the shader to create the cube map.

The following abstract class may serve as the base class for different render to cube map
shaders (only crucial parts are shown):

abstract shader class RenderToCubeMapBase
extends OpenGL42DrawPass, OpenGL42GeometryShader

//

input @Uniform Array[matd4, 6] views;

// We are always taking one triangle as input

override GS_InputVertexCount = 3;

input @RasterVertex int vertexID;

input @RasterVertex int facelD;

@RasterVertex FineVertex fVertex = GS_InputVertices (vertexID);
QRasterVertex mat4 curView = views (facelD);

@RasterVertex mat4 curViewProj = proj * curView;

@RasterVertex mat4 curMvp = curViewProj * world;

@RasterVertex mat4 curModelView = curView * world;

@QRasterVertex mat3 normalMatrix =
mat3 (transpose (inverse (curModelView))) ;

@QRasterVertex vecd m_pos = vecd (m_vertex, 1.0f);
override RS_Position = curMvp * m_pos;

override @RasterVertex T FineToRaster[type T] (@FineVertex T value) {
return value @ fVertex;

RenderToCubeMapBase derives both from OpenGL42DrawPass and

30

OpenGL42GeometryShader. Every render to cube map shader requires an array of
view matrices corresponding to the view directions. The geometry shader always works on
three vertices (triangles) and projects each vertex to the according cube map face. Notice the
two @RasterVertex vertexID and faceID. To perform the per-raster-vertex operations
these two attributes have to be provided. That is, the current cube map face has to be known and
the vertex number of the current triangle. The vertex id is used to fetch the current vertex from
the array of input vertices:

@RasterVertex FineVertex fVertex = GS_InputVertices (vertexID);
and the face id is used to fetch the current view matrix:
@QRasterVertex mat4 curView = views (facelD);
Notice the custom plumbing operator:
override @RasterVertex T FineToRaster[type T] (@FineVertex T wvalue) {

return value @ fVertex;

Remember that the operator () is used for array access and [] is used to specify generic
parameters in Spark [2| Section 2.7].

@FineVertex attributes max be projected out of the fVertex attribute [2, Section 2.6].

An actual implementation derives fom RenderToCubeMapBase and overrides and im-
plements all abstract or virtual attributes and method declarations, respectively.

shader class RenderToCubeMap
extends RenderToCubeMapBase, OpenGL42NullTessellation

override GS_InstanceCount = 1;
override GS_MaxOutputVertexCount = 18;

override @GeometryOutput void GeometryShader ()

{ // for all views
for(j in Range (0, 6))
{ // render all vertices
for (i in Range (0, 3)) {
EmitVertex (RasterVertex (vertexID : 1, facelID : 7j));

}

EndPrimitive () ;

31

GS_InstanceCount denotes that there is only a single invocations of the geometry
shader. GS_MaxOutputVertexCount specifies that 18 vertices are produced by the GeometryShader ()
method. Anyhow, the GeometryShader () method, very similar to an GLSL geometry
shader, iterates over all view matrices and over each triangle vertex and performs the @RasterVertex
computations, which are common to all render to cube map variations (in RenderToCubeMapBase).
Another implementation uses geometry shader instancing:

shader class RenderToCubeMapGSInst
extends RenderToCubeMapBase, OpenGL42NullTessellation

override GS_InstanceCount = 6;
override GS_MaxOutputVertexCount = 3;

override @GeometryOutput void GeometryShader ()
{
for (i in Range (0, 3)) {
EmitVertex (RasterVertex (vertexID : 1
, faceID : gl_InvocationID));
}

EndPrimitive () ;

The GeometryShader () method is invoked for each view matrix. The geometry shader,
however, produces only three vertices per invocation. Again notice the RasterVertex record
type constructor call.

RasterVertex (vertexID : i, faceID : gl_InvocationID)

Calling the record type constructor has the effect of performing all calculation for the given
computation rate [3| Section 4.1.3].

3.5 Distance Adaptive Tessellation

Distance adaptive tessellation is implemented in Spark to present the support for tessellation. In
the previous section the geometry shader was accessed by deriving from OpenGL42Geometry
shader. When the geometry shader is active and tessellation stages are skipped, the standard
library provides the OpenGL42NullTessellation class to provide a default plumbing op-
erator used to convert per-coarse vertex attributes to per-fine vertex values.

Distance adaptive tessellation is a simple algorithm to adjust the level of detail needed for
rendering appealing images. Basically, in the tessellation control shader the distance of the
current triangle or quad patch is computed to determine the inner and outer tessellation levels.
Of course, there are other criteria to determine the level of tessellation, however, here a simple
example is presented to show how tessellation shader are implemented in Spark.

32

Figure 3.5: Distance Adaptive Tessellation of a Bezier Surface (OpenGL 4.2 back-end)

Figure [3.5]shows a tessellated bezier surface. The initial approximation of the mobius strip
is given by four quads. From the GLSL point of view the tessellation control shader sets the
tessellation levels, and the tessellation evaluation shader comprises the cubic Bezier surface
evaluation code for the generated parametric locations.

The Spark implementation must declare a shader class deriving from OpenGL42DrawPass
and OpenGL42QuadTessellation:

shader class AdaptCubicBezierTess
extends OpenGL42DrawPass, OpenGL42QuadTessellation
{//7 ...}

OpenGL42QuadTessellation derives from the standard library shader class OpenGL42Tessellation
and provides a specialization for quad tessellation (OpenGL42TriTessellation is avail-
able for triangle tessellation). The base class declares a couple of abstract constants used by the
tessellation stages:

abstract output @Constant int HS_OutputControlPointCount;

abstract output @Constant TessellationDomain TS_Domain;

abstract output @Constant TessellationPartitioning TS_Partitioning;
abstract output @Constant TessellationOutputTopology TS_OutputTopology;
// etc

33

The AdaptCubicBezierTess implementation has to provide these constants to con-
figure the TPG. Besides, OpenGL42Tessellation defines plumbing operators required to
convert between the record types specified in [2} Section 3.8].

Tessellation Control Shader

Lets break up the Spark implementation to make it clearer for traditional GLSL programmers.
When working with tessellation shaders usually control points are given. So, in Spark there is a
corresponding rate of computation. The standard library declares:

// in stdlib.spark class: OpenGL42Tessellation
input @__ InputPatch
Array[CoarseVertex, HS_InputCoarseVertexCount] gl_in;

gl_inisan array of coarse vertices given per input patch. The AdaptCubicBezierTess
defines a plumbing operator, which converts coarse vertices to control points:

implicit @ControlPoint T
CoarseToControlPoint [type T] (@CoarseVertex T value) {
return value @ gl_in(gl_InvocationID);

The control points are the coarse vertices, which are projected out of the array of coarse
vertices, which are given per input patch. The tessellation control shader will be evaluated for
each control point in the output patch. g1__InvocationID corresponds to the current instance
of the TCS shader. Once the control points are given the computation of the distance is simple:

@InputPatch vec3 aTmp = v_pos3 @ gl_in(0);
@InputPatch vec3 bTmp = v_pos3 @ gl_in(3);
@InputPatch vec3 cTmp = v_pos3 @ gl_in(12);
@InputPatch vec3 dTmp = v_pos3 @ gl_in(15);
@InputPatch vec3 v_center = (aTmp + bTmp + cTmp + dTmp) / 4.0f;

@InputPatch float d = length (v_center);

// for the given distance compute tessellation factor (tessFac)
override HS_EdgeFactor = tessFac;
override HS_InsideFactor = tessFac;

Tessellation Evaluation Shader

Given the parametric locations from the TPG, the tessellation evaluation shader computes the
actual fine vertex positions. For the mobius strip the cubic Bezier surface evaluation requires the
computation of the Bernstein basis functions:

34

vecd4d bernsteinBasis (float t)
{
float invT = 1.0f -t;
return vecd4 (invT % invT % invT,
3.0f » t % invT * invT,
3.0f » t « t % invT,
t x t x t);

vecd4 dBernsteinBasis (float t)
{
float invT = 1.0f - t;
return vecd4 (-3.0f x invT * invT,
3.0f » invT % invT - 6.0f t x invT,
6.0f » £t » invT - 3.0f % t * t,
3.0f » t * t);

The derivations are required to compute the tangent and bi-tangent vector to receive the
normal vector for the approximated fine vertex position. The TES has access to the control
points of the output patch:

input @FineVertex Array[ControlPoint, HS_OutputControlPointCount] gl_out;

Given the Bernstein basis functions the surface points are evaluated by projecting the control
point out of the output patches.

@FineVertex vec3 evalBezier
(@FineVertex vecd basisU, @FineVertex vecd basisV) {
@QFineVertex vec3 result vec3(0.0f, 0.0f, 0.0f);
result = basisV.x =

((v_cp3 @ gl_out(0)) *» basisU.x +
(v_cp3 @ gl_out(l)) * basisU.y +
(v_cp3 @ gl_out(2)) * basisU.z +
(v_cp3 @ gl_out(3)) *» basisU.w);
result = result + ...; // next 4 control points...

return result;

35

CHAPTER

Language Processing Basics

4.1 Compilation Process

A compiler is a program that translates a given source program into a target program without
losing the semantic equivalency [|1, Section 1.1]. A source program describes data structures
and according computations in the source language. The compiler, as a language processor,
translates the source language to the target language. Eventually, executable machine code is
produced, which processes inputs and produces appropriate outputs. Figure {.T] shows that the
complete translation process also involves other programs: the preprocessor, assembler, linker
and the loader [1, Section 1.1]. Usually, the source program is spread over multiple files. The
preprocessor collects all code fragments and expands macro definitions. The compiler receives
the collected and modified source program and outputs an assembly program. The assembler,
for the first time, produces relocatable machine code. More complex programs usually rely on
libraries and external tools. The linker resolves issues regarding external memory addresses and
allows the reusability of other relocatable programs. Finally, the loader places the complete
executable program into the memory.

o Relocateable
Modified program Assembly program machine code
Source B Linker/Load Target
. — —)
program reprocessor — Compiler — Assembler ilnker oader machine code

T

Library files
Relocatable object files

Figure 4.1: Language processing system

37

4.2 Compiler Structure

The compiler is divided into an analysis and synthesis part |1, Section 1.2]. The compiler re-
ceives the source program as a character stream. The analysis front-end processes the source
program and extracts syntactic and semantic properties, whereas the synthesis back-end pro-
duces the target program.

Lexical Analysis

The compiler receives a character stream. In the first phase of analysis, meaningful character
groups, lexemes, are extracted by lexical analysis (scanner). Each lexeme belongs to a certain
class of fokens. A token declares a class of meaningful character sequences, which are expressed
using regular expressions.

tmp = x * 2;

The above code line could be partitioned into the lexemes:
"tmp" nwn_mn "X" "*" "2" and m.nmn
4 4 r 4 4

Obviously, the lexemes "tmp" and "x" belong to the same class of tokens denoting identifiers.
The lexeme "2" is recognized as another token denoting a digit or integer number. All in all,
a token and a semantic value is generated for each recognized lexeme. The semantic value, of
course, depends on the token type. In the case of a simple digit, the semantic value is the digit
itself, whereas the semantic value of an identifier can be the character string. However, lexical
analysis transfers the given character stream into a stream of tokens, which could look like:

<id, 1> <=> <id, 2> <x> <2><;>

Each token (denoted by <. . >) comprises an abstract symbol and an attribute value. The abstract
symbol declares the token type and the attribute value points to an entry in the symbol table,
which records information about each identifier [|1, Section 1.2].

Syntax Analysis

Given the token and semantic values of each lexeme, the syntax analyzer (parser) imposes a
grammatical structure on the token stream. Usually, the grammar is specified by defining certain
production rules in a notation similar to the Backus-Naur form (BNF).

expr: expr "+’ expr (rule 1)
expr: expr 'x’ expr (rule 2)

expr: TOK_NUMBER (rule 3)

For example, the above production rules allow the deduction of arithmetic expressions like:
7 4 3 * 2. Starting with the non-terminal symbol *expr’ necessary derivation steps could be

38

/N

<id, 1> <K >

7N\

<id, 2> <2>

Figure 4.2: Abstract Syntax Tree (Parser)

expr (start)
expr '+’ expr (rule 1)
7 "+’ expr (rule 3)
7 "+’ expr '+’ expr (rule 2)
7 "+" 3 'x' expr (rule 3)
T4+ 3 kT2 (rule 3)

The parser has to perform the reverse assignment. Given a potentially well-formed sentence,
the parser has to determine necessary production rules to show that the expression can be re-
duced to the start symbol. That proves the conformity of the given expression and is accepted
by the specified grammar. The parser constructs an intermediate representation (IR), which is
often referred to as the abstract syntax tree (AST). Figure [4.2] shows a possible AST represen-
tation for the simple token stream from the previous section. A depth-first traversal of the AST
corresponds to the evaluation of the given arithmetic expression.

Semantic Analysis

Given the AST, the semantic analyzer examines the semantic consistency of the program. Se-
mantic analysis covers a lot of tasks, depending on the complexity of the language. Type-
checking involves the validation of each operator and corresponding operands. If an operator
has operands of non-matching types, a compiler error may be generated. In some cases the types
can be converted. For instance, if the multiplication operator works on float values and an integer
value is given, the compiler can insert additional code to convert the integer value to a floating
point value.

Code Generation

After syntax and semantic analysis, usually an assembly-like IR is produced. There are several
benefits for producing an assembly program []1, Section 1.1]:

e Assembler code is easy to produce and easy to translate to machine code
e Serves as an IR to optional optimizing back-ends
e Debugging is facilitated, which is crucial for developers working on a very low-level

Optionally, machine independent IR optimization may be performed, which usually leads
to better machine code. There are different criteria for code optimization, for instance, faster,

39

/)
stream =
System.IO.FileStream(
fileName,
System.I0.FileMode.Open,
System.I0.FileAccess.Read) ;

(stream)
{
scanner = Generated.Scanner (fileName, stream);
parser = Generated.Parser (scanner) ;

ASTNode rootNode;

(parser.Parse())
rootNode = parser.Result;

Figure 4.3: Abstract Syntax Tree (Parser)

shorter or less power consuming code. Usually code optimizers rely on heuristics, since finding
a good solution is a complex task. The code generator takes the IR and produces an executable
target program. Here, actual memory locations and registers are assigned.

4.3 GPLEX Basics

Spark uses the Gardens Point Scanner- (GPLEXE and Parser Generator (GPPGﬂ GPLEX and
GPPG take scanner and parser configuration files and produce corresponding C# implementa-
tions. The generated scanner provides either stand-alone pattern matching functionalities or may
interact with a compatible parser.

Figure[d.3|shows the typical usage within a C# application. Obviously, the generated scanner
and parser lie in the Generated name-space. First the scanner is initialized and assigned to
the parser, which provides a Parse () method. The parser generates some kind of IR, which is
in this case denoted by the ASTNode type, which is the root node of the AST.

Input Grammar

GPLEX users have to define custom behavior in a particular input file, which has to follow a
certain input grammar. Basically, the input file comprises a definition section, a rules section
and an optional user code section:

LexInput
DefinitionSection "%%" RulesSection UserCodeSection_{opt}

"http://plas.fit.qut.edu.au/gplex/
2http://plas.fit.qut.edu.au/gppg/

40

http://plas.fit.qut.edu.au/gplex/
http://plas.fit.qut.edu.au/gppg/

counter = -1;
(counter <= 10)

(counter > 4)
print counter;

print 0;

counter = counter + 1;

Figure 4.4: A simplified language

UserCodeSection
"%$%" UserCode_{opt}

Each section is split by the "%$%" delimiter. Most prominent definitions in the first section
are:

Name-space declaration

Using declarations: allows the usage of types in other name-spaces

User-code: arbitrary C# code that can be placed inside a class definition

Lexical category definition: defines named regular expressions that can be used to build
more complex expressions in the rule section

Figure [4.4] shows a simple language, which allows arithmetic expressions and also supports
while- and conditional statements. The definition section of the input file could look like

%¥namespace calcInterpreter.Generated
%using calcInterpreter;
51
private string _fileName;
public Scanner (string fileName, System.IO.Stream stream) {
_fileName = fileName;
SetSource (stream) ;

o\°
—

DecDigit [0-9]

41

DecNum {DecDigit}+
IdInit [a—-zA-7]
IdChar [a-zA-Z0-9_]

Here, the scanner class is placed into the calcInterpreter.Generated namespace.
A using declaration includes the calcInterpreter name space. The user defined code
provides a private field named _fileName, which corresponds to the source file. Further, a
custom constructor declares that the scanner gets the character stream from a file stream. Some
character class definitions conclude the definition section of the lexer configuration file:

e DecDigit [0-9]: digits between O and 9
e DecNum {DecDigit }+: decimal numbers as sequences one or more digits
e IdInit [a-zA-Z]: the first character of an identifier

e IdChar [a-zA-Z0-9_]: rest of the identifier may contain digits and underscores

Having defined the above character classes, regular expressions (RE) can be declared to
recognize lexemes. The rules section exhibits certain RE patterns and corresponding actions,
which are triggered in case of compliance. The grammar of a rule is as follows:

Rule
StartCondition_opt RegularExpression Action
7
Action
Ill
| CodeLine
| "{’ CodeBlock "}’

4

The optional start condition defines a state in which the rule should be active. The rest
of a rule definition is straightforward. A regular expression defines the lexeme and the action
definition declares the behavior of the lexer. For each recognized character sequence the lexer
returns a token type and loads up the semantic value.

The rule section for the simple language looks like:

return (
return (
return (int
(
(

{) }
{) }
{) }
"<" { return (int) ’'<’; }
">" { return (int) ’'>"; }
"=" { return (int) ’'='; }
"+" { return (int) ’'+’'; }
"x" { return (int) ’"x’'; }

) "/

int) ’;’;
)
)

return (
(4
return (int) " {’;
(
(

return

—— o o

;
return "y,
return (int) ’".’; }

">=" { return (int)Tokens.TOK_GE; }

"<=" { return (int)Tokens.TOK_LE; }

"==" { return (int)Tokens.TOK_EQEQ; }
"1=" { return (int)Tokens.TOK_NE; }
"while" { return (int)Tokens.TOK_WHILE; }
"if" { return (int)Tokens.TOK_IF; }
"else" { return (int)Tokens.TOK_ELSE; }

"print" { return (int)Tokens.TOK_PRINT,; }

—_
e N N N

{DecNum}
{yylval.number = Int32.Parse(yytext); return (int)Tokens.TOK_NUMBER; }

{IdInit}{IdChar}*
{yylval.ident

yytext; return (int)Tokens.TOK_IDENT; }
[\t\n]+ ; /* ignore whitespace =*/

The scanner implements an interface to interact with the parser. For each recognized lexeme
the parser receives a token type and a semantic value. For every recognized decimal number,
a TOK_NUMBER is passed. The semantic value is stored in the yylval field has the defined
semantic value type. Here, the semantic value of a decimal number is in fact the number rep-
resentation. As indicated, the {IdInit} {IdChar} RE is used to match identifiers. The
returned token type is TOK_IDENT and the semantic value is the matched character sequence.
Further, white-spaces are ignored and simple operators and keywords do not return a semantic
value.

4.4 GPPG Basics

The parser deals with a much more complex assignment. GPPG is an implementation of a shift-
reduce bottom-up parser. As mentioned the parser deals with the reverse assignment presented
in Section

Again define the following rules to produce simple arithmetic expressions: 7 3 * 2+:

expr : expr '+’ expr (rule 1)
expr : expr '’ expr (rule 2)
expr : TOK_NUMBER (rule 3)

For the expression the parser receives the following token stream:

43

TOK_

NUMBER '+’

TOK_NUMBER

I*I

TOK_NUMBER

Informally, the parser (depending on the configuration) performs the following steps:

1: .TOK_NUMBER '+’ TOK_NUMBER / *’ TOK_NUMBER (shift)
2 TOK_NUMBER .’ +' TOK_NUMBER ' %’ TOK_NUMBER (reduce rule3)
3: expr A TOK_NUMBER ' %’/ TOK_NUMBER (shift)
4: expr "+’ ., TOK_NUMBER ' %’ TOK_NUMBER (shift)
5: expr "+’ . TOK_NUMBER ' %’/ TOK_NUMBER (shift)
6: expr r+r TOK_NUMBER .’ %’ TOK_NUMBER (reduce rule3)
7: expr T expr ! TOK_NUMBER (shift)
8: expr "+’ expr "%’ . TOK_NUMBER (shift)
9: expr T expr "kt TOK_NUMBER . (reduce rule3)
10: expr "+’ expr "' expr . (reduce rule?2)
11: expr "+’ expr . (reduce rulel)
12: expr . (accept)

The dot (.) denotes the current position. The parser shifts if no reduction step can be applied.
In step 2 the parser recognizes that TOK_NUMBER can be reduced to the non terminal symbol
expr. Analogically, shift and reduction steps are performed until the start symbol is reached,
which in this case is expzr. That is, the expression follows confirms to the grammar rules and
can be accepted. For this simple example already some problematic issues may be observed. In
step 7 the parser could reduce the addition. This would not conform to the standard precedence
rules for arithmetic expressions, since multiplication binds tighter than addition. This may be
considered as a shift-reduce conflict, which introduces ambiguity for the parser. Therefore, the
input file has to define according precedence rules to resolve ambiguity.

Input Grammar

Similar to the input file for GPLEX, the GPPG input files also define a particular input grammar.
Again, there are three sections:

Grammar
DefinitionSequence_opt "%%" RulesSection UserCodeSection_opt
7
DefinitionSequence
DefinitionSequence_opt Declaration
| DefinitionSequence_opt "%{ CodeBlock "%}"
7
UserSection
CodeBlock

noomn
[CRae]
’
The definition sequence- and user code section is optional. However, the first section com-
prises important definitions. Besides using- and namespace declarations also the semantic value
is declared:

44

$union { public int number;
public string ident;
public ASTNode node; }

This type declaration corresponds to the semantic value the scanner initializes (e.g. yylval.ident,
yylval.number). The union definition is mapped to a C# struct declaration. Furthermore,
token declarations can be found in the GPPG input file:

Declaration
// Productions for other declarations
| "$left" Kind_opt TokenList
| "%token" Kind_opt TokenList

4

Kind
''<’ ident >’

TokenList
TokenDecl
| TokenList ’,’_opt TokenDecl
’
TokenDecl
litchar
| ident number_opt litstring_opt

7
There are different possible token declarations:
e Ytoken: usual token declaration
o 9left or %right: declares left and right associative tokens
e %nonassoc: defines tokens without assiciativity

Left and right token declarations are used to determine the binding of arithmetic operators.
For example, the arithmetic expression 3 — 4 + 1 is equivalent to (3 — 4) + 1, if both operators
have same precedence and are left associative. If both operators are declared right associative
the expression would be equivalent to 3 — (4 + 1), which has obviously a different meaning.
Generally, left or right associativity is necessary when an operand is preceded and followed by
an operator of the same precedence.

The production rule for token declarations allow an optional kind specification.

$token <ident> TOK_IDENT

45

The above definition associates the token TOK_IDENT with the ident field in the semantic
value definition.
Token precedence is determined by the order in which they are declared:

$left /+/ ' -’
Sleft "+’ 1/’

This defines the usual arithmetic operators as left associative, giving multiplication and di-
vision a higher precedence.

The grammar of a language is defined by production rules, with non-terminal symbol on the
left hand side and according right hand sides.

The parser tries to reach the non-terminal start symbol from recognized tokens, The parser
uses a stack, where it pops current right hand sides and pushes back possible reductions. There-
fore, also non-terminal symbols correspond to certain data structures, which can be pushed on
the stack:

$type<node> expr stmt stmt_list program

The above type declaration determines that the non-terminal symbols
expr, stmt, stmt_list and program

correspond to the node field of the semantic value structure.
The (shortened but) complete definition sequence for the simple language:

namespace calcInterpreter.Generated
%using calcInterpreter;
51
public Parser (AbstractScanner<ValueType, LexLocation> scanner)
base (scanner) {...}

private ASTNode _result;

public ASTNode Result { get { return _result; } }

private ASTNode createOperatorNode (OperatorType opType,
params ASTNode[] operands){...}

private ASTNode createStmtNode (StmtType stType,
params ASTNode[] children{..}

private ASTNode createliteralNode (int number) {...}

private ASTNode createldentNode (string ident){...}

private ASTNode createStmtListNode (params ASTNode[] children){...

o\
—

Sunion { public int number;
public string ident;
public ASTNode node; 1}

%$start program

$token<number> TOK_NUMBER
$token<ident> TOK_IDENT

$token TOK_WHILE TOK_IF TOK_PRINT
$nonassoc IFX

$nonassoc TOK_ELSE

$left TOK_GE TOK_LE TOK_EQEQ TOK_NE ’">" ’<’
Sleft 7+7 -1

Sleft "7 7/’

%$nonassoc UMINUS

$type<node> expr stmt stmt_list program

Besides the discussed declarations, the user code section comprises a custom constructor
definition and methods to create AST nodes.

The rules section declares the production rules. A rule definition in GPPG follows the gram-
mar:

Rule
NonTermSymbol ’:’ RhsSequence_opt ;'
’
RhsSequence
RightHandSide
| RhsSequence ' |’ RightHandSide

basically, a non-terminal symbol serves as the left-hand side and the right-hand side may

consist of optional terminal or non-terminal symbols.
The production rules of the simple language are:

program
stmt_list { _result = $1; }

stmt_list
stmt { $$ = $1; }
| stmt_list stmt { $$

createStmtListNode ($1, $2); }

.
4

47

stmt

TOK_PRINT expr ’;’

{ $$ = createStmtNode (StmtType.STMT_PRINT, $2);
| TOK_IDENT ’'=’ expr ’;’
{ $$ = createStmtNode (StmtType.STMT_ASSIGN, createldentNode ($1),
| TOK_WHILE ' (' expr ')’ stmt
{ $$ = createStmtNode (StmtType.STMT_WHILE, $3, $5); }
| TOK_IF ' (' expr ')’ stmt %$prec IFX
{ $$ = createStmtNode (StmtType.STMT_IF, $3, $5); }
| TOK_IF ' (" expr ")’ stmt TOK_ELSE stmt
{ $$ = createStmtNode (StmtType.STMT_IFELSE, $3, $5, S$7);
| 7{’ stmt_list "}’ { $$ = $2; }
’
expr
TOK_NUMBER { $$ = createlLiteralNode (S$1);
| TOK_IDENT { $$ = createIdentNode($1); }
| =" expr S%prec UMINUS
{ $$ = createOperatorNode (OperatorType.OP_UMINUS, $2);
| expr "+’ expr
{ $$ = createOperatorNode (OperatorType.OP_PLUS, $1, $3);
| expr '-' expr
{ $$ = createOperatorNode (OperatorType.OP_MINUS, $1, $3);
| expr "x' expr
{ $$ = createOperatorNode (OperatorType.OP_MULT, $1, $3);
| expr '/’ expr
{ $$ = createOperatorNode (OperatorType.OP_DIV, $1, $3);
| expr "<’ expr
{ $$ = createOperatorNode (OperatorType.OP_SM, $1, $3);
| expr ">’ expr
{ $$ = createOperatorNode (OperatorType.OP_GR, $1, $3);
| expr TOK_GE expr
{ $$ = createOperatorNode (OperatorType.OP_GE, $1, $3);
| expr TOK_LE expr
{ $$ = createOperatorNode (OperatorType.OP_LE, $1, $3);
| expr TOK_NE expr
{ $$ = createOperatorNode (OperatorType.OP_NE, $1, $3);
| expr TOK_EQEQ expr
{ $$ = createOperatorNode (OperatorType.OP_EQEQ, $1, $3);
| 7 (" expr)" { $$ = $2; }

r

The right-hand side provides an optional semantic action, which is triggered when the parser
recognizes a production rule and reduces to the symbol on the left-hand side. TOK_NUMBER
matches the rule:

48

expr : TOK_NUMBER { $$ = createlLiteralNode ($1); }
|

4

In the semantic action, specified in curly brackets, $$ denotes the top of the parser stack and $1
denotes the semantic value of the first symbol on the right-hand side (TOK_NUMBER).

This covers the basics of language processing required to understand the scanner and parser
definition of Spark. John Gough provides a complete documentation of the input language [4]],
scanner- [5]] and parse generator [6].

49

CHAPTER

Syntax Analysis

Foley, in his PhD thesis, describes many high-level concepts, which mostly address key ideas
of the language design and system implementation. In [3, Chapter 2] and [3, Chapter 3] a lot
of motivational information is provided, which led to the current application of Spark. In [3|
Chapter 4] some parts of the implementation are described from a high-level point of view,
which allows the reader to get a superficial stance on the system architecture. However, an
in-depth documentation is missing.

In this chapter more rigorous documentation is provided, which should supplement the high-
level descriptions with a more particular view on the implementation.

This chapter begins with a survey on the Spark project and describes the low-level interme-
diate representation which is generated by the parser.

5.1 Project Structure and System Architecture

The Spark code base comprises several sub-projects and is written in both C# and C++. Figure
[5.1] shows a project dependency graph.

e sparkc: is written in C# and is the entry point of the compiler. Compiler options are parsed
from the command line arguments and Spark shader files are fed to the compiler.

e Spark: is written in C# and reveals the core parts of the compiler.

o SparkGenerateParser: is a dummy project to generate the GPLEX scanner and GPPG
parser.

e SparkCPP: provides a C++ interface to Spark.

o SparkBuildLLVM: is a dummy project to initiate the LLVM build.

51

Spark

sparkc —» Spark — » Generate

Parser

Spark

SparkCPp — Build
LLVM

Figure 5.1: Project Dependency Graph

Compilation process

Figure [5.2] presents a system block diagram of Spark. Basically, the user specifies Spark shader
classes and C++ application code. The Spark compiler, with the help of additional pipeline
library interfaces, eventually, translates Spark code to HLSL or GLSL procedures. The pipeline
libraries provide types, operators, functions, computation rates and plumbing operators for a
specific pipeline (Direct3D 11, OpenGL 4.2).

Spark is a source-to-source compiler and partially conforms to the compilation procedure
in Figure .1} Syntax analysis is followed by semantic analysis and an optimization phase (c.f.
Figure[5.3). Finally, the code generator emits per-stage shader code and C++ wrapper classes.

The compiler is highly configurable via definitions in the standard library. This brings a lot
benefits, however, also increases the language and compiler complexity.

Scanner and Parser

The scanner and parser specification is, of course, more complex than the examples provided
in Sections [4.3] and 4.4} however the same building blocks are used. The parser defines the
following semantic value structure:

gunion { public Int64 intVal;
public Double floatVal;
public string stringVal;
public AbsSourceRecord sourceRecordVal;
public List<AbsGlobalDecl> globalDeclListVal;
public AbsGlobalDecl globalDeclVal;
public Identifier identifierval;
public List<AbsMemberDecl> memberDeclListVal;
public AbsMemberDecl memberDeclVal;
public List<AbsTerm> termListVal;

52

.spark Spark shader
classes
D3D11/0OpenGL 4.2
Spark compiler pipeline module
D3D11/0penGL 4.2 pipeline
Front-end . q
library interface
| D3D11/0OpenGL 4.2 specific
back-end
.h/.cpp Application .h/.cpp Generateg wrapper
code classes including
shader (byte)code

Application

Figure 5.2: System Architecture

53

Compile ()
errorCount = Q;

errorCount += Parse();

(errorCount != 0) <<Syntax Rnalysis>>
errorCount;

errorCount += Resolve();
(errorCount != 0)

<<Semantic Analysis>>
errorCount;

errorCount += Lower () ;
(errorCount != 0)

N <<Code Optimization>>
errorCount;

// Create code generation context

VA

emitModule =

.)) . << ion>>
(EmitModuleCPP) emitContext.EmitModule (midModule) ; Code Generation

// Write generated code
//

errorCount;

Figure 5.3: Most outer control flow of compiler (in Compiler.cs)

public AbsTerm termVal;

public List<AbsArg> argListVal;

public AbsArg argVal;

public List<AbsParamDecl> paramListVal;
public AbsParamDecl paramVal;

public List<AbsStmt> stmtListVal;

public AbsStmt stmtVal;

public List<AbsGenericParamDecl> genericParamListVal;
public AbsGenericParamDecl genericParamVal;
public AbsAttribute attributeVval;

public AbsCase caseVal;

public List<AbsCase> caselistVal;

public AbsConceptDecl conceptDeclVal; }

Beside integer, floating point and string literal values, a list of type declarations is provided,
which corresponds to the types of non-terminal symbols. Here are some of the production rules:

start
source_record
{ _result = $1; }

54

source_record
opt_global_decls

{ $$ = new AbsSourceRecord(info (@S$), S$1);

14
opt_global_decls
/* empty =/
{ $$ = new List<AbsGlobalDecl>(); }
| opt_global_decls global_decl
{ $1.Add($2); $$ = $1; }
global_decl
pipeline_decl
{ 88 = 81; 1}

pipeline_decl

}

TOK_SHADER TOK_CLASS identifier opt_extends ’'{’ opt_member_decls

{ $$ = new AbsPipelineDecl (info (@S), $3, $4, S$6); }
| TOK_ABSTRACT pipeline_decl

{ $$ = $2; $$.Modifiers |= AbsModifiers.Abstract; }
| TOK_MIXIN pipeline_decl

{ $$ = $2; $S.Modifiers |= AbsModifiers.Mixin; }
| TOK_PRIMARY pipeline_decl

{ $$ = $2; $$.Modifiers |= AbsModifiers.Primary; }

4

A source record consists of optional global declarations. A global declaration is equivalent
to a pipeline declaration. The pipeline declaration eventually is the definition of a shader so on

and so forth.

5.2 Intermediate Representation

Source Record

The parser receives one or more input files and constructs an intermediate representation. Figure
shows that the parser constructs a list of source records (ARbsSourceRecord). Each source

record holds a list of global declarations (AbsGlobalDecl).

Pipeline Declaration

The only global declarations allowed in Spark are shader classes. Since Spark shaders may target
every graphics stage, the container of a class is denoted by a pipeline declaration (AbsPipelineDecl).
A pipeline declaration has the following properties (c.f. Figure[5.5)):

e Modifiers: shader modifiers, for instance, abstract, mixin, ... (AbsModifier)

55

I}I

stdlib.spark

abstract shader class OpenGL42DrawPass

{
VA
}

abetract mixin shader class OpenGL42GeometryShader extends OpenGL42DrawPass

{

/]
1
/) AbsGlobalDecl
(AbsPipelineDecl
abstract mixin shader class OpenGL42Tessellation extends OpenGL42DrawPass
{
/]
t
BasicSpark.spark AbsSourceRecord
shader class BasicSpark extends OpenGL42DrawPass
{
/...
} 2bsGlobalDecl
(AbsPipelineDecl

Figure 5.4: The parser receives stdlib.spark (standard library) and custom Spark shaders (Ba-
sicSpark.spark) and produces a list of source records holding global declarations

AbsModifiers SimpleIdentifier AbsTerm (AbsVarRef)

abstract mixin|shader class|OpenGL42GeometryShader| extends |OpenGL42DrawPass AbsPipelineDecl

{

/1 AbsMemberDecl

Figure 5.5: A shader declaration with according modifiers and a class name. After the extends
keyword there is a list of terms denoting the base classes. Inside the shader scope several member

definitions can be found.

56

abstract shader class OpenGL42DrawPass AbsPipelineDecl
{
[[Builtin(”glsl”, “uint”)]]
[[Builtin ("¢c++”, “UINT”)]] AbsTypeSlotDecl
type uint;

//

[[Builtin{”glsl”, “vecd ({0},{1})7]]

vecd vecd (vecl xyz, float w); AbsMethodDecl
//
element Constant; AbsElementDecl
//
input @Constant TessellationDomain TriangleDomain; AbsSlotDecl
//
concept Linear[type T]
{ abstract T operator+(T left, T right);
abstract T operator-(T left, T right); AbsConceptDecl

abstract T operator* (T left, T right);

//

Figure 5.6: A closer look on a shader class reveals several kinds of member declarations (orange
boxes)

e Identifier: the name of the class (Identifier)

e Bases: a list of terms denoting all base classes (AbsTerm)

o Members: a list of class member declarations (e.g., attributes, methods, ...) (AbsMemberDecl)

The data structures discussed here and in the next sections are quite complex and expose
hundreds of type declarations with various derivations. For instance, AbsTerm is the base class
of many specializations (e.g. if-term, frequency-qualified term, etc..). Whenever possible un-
necessary complexity is hidden to facilitate the understanding. Actually, the AbsTerm instance
denoting the base class can only be a variable reference (AbsVarRef) - as expected. Therefore,
the AbsTerm data structure is left as a “black box’ and only currently relevant information is
mentioned.

57

Member Declaration

Figure[5.6/shows typical member declarations in the standard library. The OpenGL42DrawPass
declares types, attributes and methods and so forth.
Here is the list of possible member declarations:

AbsTypeSlotDecl: define pipeline specific types with additional built-in tags neces-
sary for code generation

AbsMethodDecl: define methods

AbsElementDecl: define record types (computation rates)

AbsSlotDecl: define attributes

e AbsStructDecl and AbsConceptDecl: define nested structures and concept classes
The following properties are common to all member declarations:
e Modifiers: member modifiers (AbsModifiers)

o Attributes: built-in tags (AbsAttribute)

Type Slot Declaration

Figure shows a type slot declaration from the standard library.

Additional built-in tags specify pipeline specific target types. The Spark vec4 type is mapped
to the glsl vec4 and C++ vec4 type (GLM library). More precisely, each built-in attribute com-
prises a profile (e.g. glsl, hlsl, C++) and a template (e.g. vec4, glm::vec4).

In the lower part of Figure[5.7)a generic Array type is declared (e.g. Array[mat4, 10]). The
array may hold arbitrary types but the size has to be specified.

There are two specializations of AbsGenericParamDecl.

e AbsGenericTypeParamDecl: used to declare a generic type

e AbsGenericValueParamDecl: used to declare the type of the array size parameter

The generic value parameter declaration specifies a frequency qualified term (AbsFreqQualTerm),
to denote that the array size parameter is a per-constant integer value.

Neither HLSL nor GLSL exposes an Array type, therefore, the reserved __ Array tem-
plate is used provide a special code generation implementation. Chapter 8| provides more insight
in emitting HLSL or GLSL code.

58

[[Bu%lt}n(gisli, veci?))) T AbsAttribute
[[Builtin(”c++”, “glm::vecd”)]] H—
type vecd;
AbsTypeSlotDecl
[[Builtin(|"glsl” |, |“vecd” |)]1]
AbsArg
(AbsPositionalArqg)
[[Builtin("glsl”™, " Array")]] T ,
[[Builtin({"c++", " Array")]] | | AbsAttribute

type Array[type T , @Constant int length]; AbsTypeSlotDecl

AbsGenericParambecl

AbsGenericValueParambecl

[type T , |@Constant int|Length]
AbsTerm{

AbsGenericTypeParamDecl

AbsFreqQualTerm)

Figure 5.7: A simple type slot declaration (upper part), and a generic type declaration (lower
part)

Method Declaration

Figure [5.8] shows a method definition, which is an implementation of a plumbing operator.
@CoarseVertex values may be converted to @FineVertex values by projecting the val-
ues out of the _c2fhelper helper attribute. Usually, the projecting operator looks like:
value @ _c2fhelper, however, in the standard library sometimes this notation is used:
value (_c2fhelper).

Method definitions expose the following properties:

e Result type: the term denoting the result type (AbsTerm)
e Parameters: method parameters (AbsParam)
e Generic parameters: generic method parameters (AbsGenericParamDecl)

e Method body: the implementation (AbsStmt)

59

AbsModifiers AbsGenericParamDecl AbsParamDecl

implicit virtual

@FineVertex T|CoarseToFineWrapper|[type T , implicit Linear[T]] (|Q@CoarseVertex T value)

{
return value(c2fhelper);
}
AbsTerm (AbsFregQualTerm) AbsSegStmt AbsMethodDecl
|AbsApp
(|
implicit AbsGenericApp '
return|value (c2fHelper)| ;

2AbsGenericValueParambDecl }

AbsSegStmt | AZbsReturnStmt

Figure 5.8: A generic method definition. A plumbing operator to convert coarse vertex- to fine
vertex values.

A inherits member modifiers, which are in this case: implicit and virtual. Thatis, the
plumbing operator may be implicitly inserted by the compiler whenever a conversion is required.
Further, the conversion operation may be overridden by derived classes.

The generic parameter declaration enforces the Linear concept to be supported. The linear
concept requires that the addition, subtraction and multiplication is defined. This matches the
usual interpolation requirements for attributes.

The real interesting part are sequence of statements in the method body.

Attribute Declaration
Attribute declarations (AbsSlotDecl) expose the following properties:

e Type: a term denoting the attribute type (AbsTerm)

e Initialization: the initialization term (AbsTerm)

o Input flag: mark as input attribute (AbsModifier)

Figure[5.9|shows a common slot declaration. The normal matrix is computed as the transpose
inverse model-view matrix. Each nested method call is represented as a method application

(AbsApp).

60

AbsFregQualTerm

@CoarseVertex mat3|normalMatrix =|mat3{ |transpose (|inverse { |modelView|)| |):

—]

AbsSlotDecl AbsVarRef
AbsApp
Figure 5.9: Attribute definition (AbsSlotDecl)
AbsGenericTypeParambDecl

concept Linear[type T]
{

abstract T operator+{ T left, T right);

abstract T operator-{(T left, T right);

AbsMethodDecl

abstract T operator*{ T left, float right);

} — AbsConceptDecl

OperatorIdentifier

abstract T |operator*| (| T left|, T right) ;

AbsModifiers
AbsParamDecl

Figure 5.10: Linear concept declaration

Concept Declaration

Figure[5.10]shows a generic concept class declaration consisting three method signatures, which

must be implemented to support the linear concept.
The IR, which is delivered by the parser has been discussed to some extend. Further details

are introduced as necessary. In the next chapter some semantic analysis tasks are discussed.

61

CHAPTER

Semantic Analysis

In [3, Chapter 2 and Chapter 3] Foley provides lots of conceptual insights into many aspects of
the Spark shading language. However, a specific view on the implementation is not provided.
Here, both the semantic validation of those concepts and the process itself is documented in more
detail. Some aspects of the intermediate representation (IR) of the parser have been provided
in Chapter [5] As a next step, semantic analysis (resolve phase) is performed. Basically, each
step of the compiler takes an IR and constructs a new enhanced representation. This chapter
discusses the new data structures, the build system and some semantic analysis tasks.

6.1 Build System And Lazy initialization

IR generation and semantic analysis is implemented via a lazy initialization mechanism. Figure
[5.3] shows the initiation of semantic analysis by calling the Resolve method of the compiler.
A resolve context is created, which implements the crucial semantic analysis tasks.

Essential Interfaces

There are five central interfaces which provide the basic facilities for the lazy initialization mech-
anism.

Figure shows the relationship between those interfaces. The basic ILazy interface de-
clares merely a Force () method signature. The more refined ILazy<out T> interface ap-
pends a generic value property. That is, the ILazy<out T> implementations contain a generic
value property, which is initialized when the actual instance is needed. The ILazyFactory
interface exposes a method to add and maintain I1lazy instances. The INewBuilder inter-
face extends the ILazy interface by allowing to add build actions for certain build phases. The
The abstract class NewBuilder<T> extends both ILazy<T> and INewBuilder.

63

ILazy

Force () ;
}
ILazy< T> : ILazy
{
T Value { .
1
ILazyFactory

Add (ILazy instance);

INewBuilder : ILazy

void AddAction (NewBuilderPhase phase, Action action);

NewBuilder<T> : ILazy<T>», INewBuillder
T : {7/ ...}

Figure 6.1: Essential interfaces for the lazy initialization mechanism (in Builder.cs)

Build System

The NewBuilderPhase defines seven build phases: [nitial, Dependencies, Header, Body,
Seal, Finalize and Final. Children of NewBuilder<T> may specify build actions via C#
lambda expressions. The LazyFactory class implements the ILazyFactory interface and
maintains ILazy instances. That is, either ITLazy implementations or NewBuilder<T> im-
plementations may be added to the LazyFactory. The implementation of the Force ()
method of the TLazy interface is simple: each Lazy instance is associated with a generator
function (again specified as a C# lambda expression), which is called when the actual value of the
Lazy instance is enforced. Actual values of the children of the abstract class NewBuilder<T>
are computed by applying each build action of each build phase. The builder keeps track of the
phases where build actions are already added and phases where the build actions are already
applied. Build actions, which are added or performed too late or too early may be caught that
way.

Figure [6.2] shows the inner loop of the resolve phase. While there are uninitialized lazy
instances, the actual values are enforced. Each lazy instance may trigger new lazy instances to
be added to the factory. Therefore the resolve method iteratively resolves all lazy instances, until
there are no unresolved instances.

In the first iteration the entire module declaration, which is the most outer container, is added
to the lazy factory. The module declaration comprises global declarations, which also have to be
resolved. The build actions, which need to be performed are different from task to task. Trivial
building steps may merely require a conversion from a List<T> to T []. More complex build

64

LazyFactory : ILazyFactory
//
Force ()
{)

(_instances.Count == 0)

12

oldInstances = instances;
_instances = List<ILazy>{();
{ instance oldInstances)

instance.Force () ;

Add{ILazy instance){ instances.Add(instance); }

List<ILazy> 1instances = List<ILazy>{();

Figure 6.2: Inner loop of the resolve phase (in Builder.cs)

IResModuleDecl

IEnumerable<IResGlobalDecl> LookupDecls (Identifier name);
IEnumerable<IResGlobalDecl> Decls { .

Figure 6.3: IResModuldeDecl interface (in IResModuleDecl.cs)

tasks defer new lazy instances and are mostly specified using C# lambda expressions. In the
next subsection more details about the initialization mechanism and IR generation is provided.

6.2 Module Declaration

The module declaration is the root data structure holding all global declarations, as delineated
in Figure[6.3]

Figure [6.4] shows a typical code fragment during semantic analysis. At the beginning, the
resolve method of the previously mentioned resolve context builds a resolved module declara-
tion (ResModuleDecl) with the help of the corresponding resolve module declaration builder
(ResModuleDeclBuilder). The ResModuleDeclBuilder derives from:

65

IResModuleDecl Resolve (IEnumerable<AbsSourceRecord> sourceRecords)

lazyResModule = ResModuleDeclBuilder.Build({
LazyFactory,
(resModuleBuilder) =>
{
globalScope = SetupBuiltins(resModuleBuilder);

moduleScope new ResModuleScope (resModuleBuilder);

env = new ResEnv (, _diagnostics, globalScope);
env = env.NestScope (moduleScope) ;
(sSr sourceRecords)
(decl sr.decls)

ResolveGlobalDecl (resModuleBuilder, decl, env);
by

_lazyFactory.Force() ;
lazyResModule.Value;

Figure 6.4: For the list of source records, create a module declaration, where each global decla-
ration is resolved (in ResolveContext.cs)

NewBuilder<IResModuleDecl>

As described in Section[6.1] the ResModuleDec1Builder allows the association of build ac-
tions with build phases. Children of NewBuilder<IResModuldeDecl> are, due to emula-
tion of multiple inheritance through interfaces, also children of ILazy<IResModuleDecl>.
The key idea is that the ResModuldeDecl instance is the value property of the lazy in-
stance. That is, to initialize the value of the lazy instance all build actions have to be per-
formed for each build phase. The ResModuldeDecl class, more precisely, implements the
IResModuleDecl interface, which simply exhibits resolved global declarations and a method
to lookup global declaration for a given identifier.

Since global declarations are not initialized yet, an ILazy<IResGlobalDecl[]> in-
stance is bound to the module declaration.

The build action (header phase) of the ResModuldeDeclBuilder is given by the lambda
expression (c.f. Figure [6.4), where semantic analysis of the global declarations is deferred.
The anonymous method adds built-in types (bool, int, float) in the global scope. The module
declaration is nested inside the glob