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Rasterization of vector data to a raster output is equivalent to the 
sampling of a continuous input signal at discrete sample loca-
tions.

According to the Nyquist-Shannon sampling theorem, the den-
sity of the sample locations limits the finest details that are pre-
served by the sampling process. Finer details lead to aliasing 
artifacts in the sampled output (see Figure 2 on the right). Two 
main methods exist to combat these artifacts, i.e., to perform an-
ti-aliasing:

•	Supersampling	  
This method samples the input data at a higher rate and then 
reduce the number of samples by averaging the supersamples 
with a suitable filter. Since the filtering happens after sampling, 
this is also called postfiltering. Note that this method still suf-
fers from aliasing (see Figure 3 on the right).

•	Prefiltering	 
This methods smooths the data before the sampling with a suit-
able prefilter. This is the mathematically correct way to address 
aliasing issues (see Figure 4 on the right) but computationally 
expensive. We employ this method for analytic rasterization.
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To enable visibility prefiltering, the visible parts of the projected scene 
primitives have to be determined exactly. We employ parallel hidden 
surface elimination for this task. The computations can be executed in 
parallel for all edges of the input triangles. This provides sufficient data 
parallelism to effectively use massively parallel hardware such as GPUs.
The main stages of our analytic visibility method are described below.

Intersection computation
The visibility of a triangle edge only 
changes at the borders of another tri-
angle. For a given edge of a scene trian-
gle, we thus compute all intersections 
with other triangles along the line that 
contains this edge.

Intersection sorting
Intersections are written concurrent-
ly  and unordered into global memory, 
thus we perform a sorting step to order 
the intersection along each edge.

Hidden surface elimination
We walk along each edge and use the sorted intersections to count the 
number of triangles that occlude each intersection. A scan is used for this 
task. All visible edge segments, which are the output of this stage, are 
then stored in global memory. These segments constitute the borders of 
all visible regions of all projected scene primitives.

Input:  E (set of all edges in the scene)
Output: I (set of all intersections)

for each edge e of E in parallel
  T ← triangles of local neighborhood
  for each triangle t of T in parallel
    o    ← get global memory offset 
           // with atomics
    I[o] ← add intersections of e and t
  end for
end for

Pseudo-code of the intersection computation
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This stage computes the convolution of a function with the prefilter 
on all visible regions of the associated primitive. To perform full ana-
lytic rasterization, a simple shading function can be used [1, 2]. If the 
shading model cannot be evaluated in closed form, a constant function 
can be used to compute the convolution integral for analytic visibility 
prefiltering [3].

Integral computation
For the given sample locations (usually the 
pixel centers of the output image) the contri-
bution of all triangles to them is computed. 
At each sample location a radial prefilter is 
placed and convolved with the function on 
the visible region of all triangles.

The visible region of each triangle is given by 
its boundary, i.e., the line segment output of 
the analytic visibility stage.
Each line segment and the sample location 
spans an integration domain that is clipped 
against the support of the filter over which is 
integrated.

Due to the linearity of integration, the integra-
tions over the various domains can be done 
independently. This fact is exploited in our 
parallel implementation that is highly suit-
able for massively parallel hardware.

Input:  B (set of boundary segments of the 
           visible regions of all triangles)
        S (set of sample locations)
Output: C (set of pixel colors)

for each sample location s of S in parallel
  L ← boundary segments of B of local tile
  for each segment l of L in parallel
    c    ← compute prefilter convolution of l
    C[s] ← add color c
  end for
end for

Pseudo-code of the integration computation

T. Auzinger, M. Guthe, S. Jeschke, Analytic Anti-Aliasing of Lin-
ear Functions on Polytopes, Computer Graphics Forum (EG ’12), 
31(2):335–344, 2012
T. Auzinger, M. Wimmer, S. Jeschke, Analytic Visibility on the GPU, 
Computer Graphics Forum (EG ‘13), 32(2):409–418, 2013
T. Auzinger, P. Musialski, R. Preiner, M. Wimmer, Non-Sampled An-
ti-Aliasing, Proc. 18th Int. Workshop on Vision, Modeling and Visu-
alization (VMV ‘13), 2013

[1] 
 

[2]
 
[3]

References

Introduction

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Vector
Format

Raster
Format

Figure 1: The standard (left) and our analytic 
(right) rasterization pipeline.
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Table 1: Classification of anti-aliasing methods for rasterization. The traditional sampling based approaches have 
blue background whereas our works on prefiltering are underlaid with green.

In computer graphics, two main 
data formats are widely used:
•	Raster formats (e.g. for image ac-

quisition, processing and display)
•	Vector formats (e.g. for text or ob-

ject surfaces).

The term rasterization refers to:
•	The conversion of vector informa-

tion to a raster format
•	A 3D rendering technique which 

uses intermediate raster buffers 
throughout the graphics pipeline.

 We use both aspects in our work.

Rasterization is a fundamental task 
in computer graphics. The discrete 
nature of raster formats, however,  
limits their capability of retaining 
small details and special care has to 
be taken to avoid the introduction 
of artifacts during rasterization (see 
Section Anti-Aliasing on the right).

In the last years, we investigated 
how to enable prefiltering during 
rasterization to lift the limitations of 
supersampling approaches. In Ta-
ble 1, a classification of anti-aliasing 

techniques is given together with 
our works. So far, we achieved:
•	Visibility and shading prefilter-

ing for simple shading models [2]
•	Visibility prefiltering and sam-

pled shading for general shading 
models [3]

•	Shading prefiltering for 2D ren-
dering [1], which is a special case 
of the full 3D variant [2].

In our approach, we replace the vis-
ibility and/or shading stage of the 
graphics pipeline to retain the vec-

tor character of the 
input data as long as 
possible (see Figure 1).

The new design still 
maps well to massive-
ly parallel hardware 
architectures and was 
implemented using 

GPGPU. An explanation of the two 
most relevant novel stages can be 
found in the Sections Analytic Visibili-
ty and Analytic Shading below.

Results and Future Work

NSAA [3] combines exact visibility pre-
filtering with advanced non-linear and 
discrete shading models such as texture 

mapping and Phong illumination.

We gained several key observation 
through our research. The mathemat-
ically exact nature of prefiltering has 
higher compute and storage require-
ments when compared to massive su-
persampling. Since the actual raster 
conversion occurs at the end of the 
pipeline, all intermediate buffer sizes 
depend on the input complexity. Fur-
thermore, exact geometrical compu-
tations and lengthy closed-form solu-

tion of the filter convolutions cause 
increased computational require-
ments. Prefiltering is in general 2–3 
orders of magnitude slower than su-
persampling but results in a ground 
truth solution that is exact up to nu-
merical precision (see Figure 5).

Only simple shading models are ana-
lytically integrable and sampling has 
to be used for more advanced effects.

In the future, we plan to combine 
visibility prefiltering with shading 
supersampling as shown in Table 1. 
This should provide the best achiev-
able quality and set the ground truth 
reference for anti-aliasing methods. 
A main challenge is the correct sam-
pling of the shading function on the 
complicated visible regions of the pro-
jected scene primitives.
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Figure 5: Comparison of various anti-aliasing methods. Our exact prefiltering approaches yield ground truth solutions to complex scenes with highly detailed geometry (left) or line rendering (right).


