
Sampled and Analytic Rasterization
Thomas Auzinger and Michael Wimmer

Vienna University of Technology

VMV2013
September 11–13, 2013
Lugano, Switzerland

Contact
Name:

Institution:

Email:

LinkedIn:

Thomas Auzinger

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria

thomas.auzinger@cg.tuwien.ac.at

linkedin.com/in/thomasauzinger

Input signal

Prefilter Prefiltered signal Figure 4: Output (prefiltering)

Supersampling

Figure 2: Output (direct sampling)

Figure 3: Output (supersampling)

Aliasing

Direct sampling

Supersampling

Pr
efi

lte
ri

ng

Rasterization of vector data to a raster output is equivalent to the
sampling of a continuous input signal at discrete sample loca-
tions.

According to the Nyquist-Shannon sampling theorem, the den-
sity of the sample locations limits the finest details that are pre-
served by the sampling process. Finer details lead to aliasing
artifacts in the sampled output (see Figure 2 on the right). Two
main methods exist to combat these artifacts, i.e., to perform an-
ti-aliasing:

•	Supersampling	
This method samples the input data at a higher rate and then
reduce the number of samples by averaging the supersamples
with a suitable filter. Since the filtering happens after sampling,
this is also called postfiltering. Note that this method still suf-
fers from aliasing (see Figure 3 on the right).

•	Prefiltering	
This methods smooths the data before the sampling with a suit-
able prefilter. This is the mathematically correct way to address
aliasing issues (see Figure 4 on the right) but computationally
expensive. We employ this method for analytic rasterization.

Anti-Aliasing

Analytic Visibility

Input

Edge intersections

Hidden surfaces
eliminated

Sorting

To enable visibility prefiltering, the visible parts of the projected scene
primitives have to be determined exactly. We employ parallel hidden
surface elimination for this task. The computations can be executed in
parallel for all edges of the input triangles. This provides sufficient data
parallelism to effectively use massively parallel hardware such as GPUs.
The main stages of our analytic visibility method are described below.

Intersection computation
The visibility of a triangle edge only
changes at the borders of another tri-
angle. For a given edge of a scene trian-
gle, we thus compute all intersections
with other triangles along the line that
contains this edge.

Intersection sorting
Intersections are written concurrent-
ly and unordered into global memory,
thus we perform a sorting step to order
the intersection along each edge.

Hidden surface elimination
We walk along each edge and use the sorted intersections to count the
number of triangles that occlude each intersection. A scan is used for this
task. All visible edge segments, which are the output of this stage, are
then stored in global memory. These segments constitute the borders of
all visible regions of all projected scene primitives.

Input: E (set of all edges in the scene)
Output: I (set of all intersections)

for each edge e of E in parallel
 T ← triangles of local neighborhood
 for each triangle t of T in parallel
 o ← get global memory offset
 // with atomics
 I[o] ← add intersections of e and t
 end for
end for

Pseudo-code of the intersection computation

Analytic Shading

Sample locations

Selected filter location

Domain subdivision

Integration domains

This stage computes the convolution of a function with the prefilter
on all visible regions of the associated primitive. To perform full ana-
lytic rasterization, a simple shading function can be used [1, 2]. If the
shading model cannot be evaluated in closed form, a constant function
can be used to compute the convolution integral for analytic visibility
prefiltering [3].

Integral computation
For the given sample locations (usually the
pixel centers of the output image) the contri-
bution of all triangles to them is computed.
At each sample location a radial prefilter is
placed and convolved with the function on
the visible region of all triangles.

The visible region of each triangle is given by
its boundary, i.e., the line segment output of
the analytic visibility stage.
Each line segment and the sample location
spans an integration domain that is clipped
against the support of the filter over which is
integrated.

Due to the linearity of integration, the integra-
tions over the various domains can be done
independently. This fact is exploited in our
parallel implementation that is highly suit-
able for massively parallel hardware.

Input: B (set of boundary segments of the
 visible regions of all triangles)
 S (set of sample locations)
Output: C (set of pixel colors)

for each sample location s of S in parallel
 L ← boundary segments of B of local tile
 for each segment l of L in parallel
 c ← compute prefilter convolution of l
 C[s] ← add color c
 end for
end for

Pseudo-code of the integration computation

T. Auzinger, M. Guthe, S. Jeschke, Analytic Anti-Aliasing of Lin-
ear Functions on Polytopes, Computer Graphics Forum (EG ’12),
31(2):335–344, 2012
T. Auzinger, M. Wimmer, S. Jeschke, Analytic Visibility on the GPU,
Computer Graphics Forum (EG ‘13), 32(2):409–418, 2013
T. Auzinger, P. Musialski, R. Preiner, M. Wimmer, Non-Sampled An-
ti-Aliasing, Proc. 18th Int. Workshop on Vision, Modeling and Visu-
alization (VMV ‘13), 2013

[1]

[2]

[3]

References

Introduction

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Vector
Format

Raster
Format

Figure 1: The standard (left) and our analytic
(right) rasterization pipeline.

Visibility
Trivial Sampled Supersampled Prefiltered

Sh
ad

in
g Sampled Standard Standard MSAA, CSAA NSAA [3]

Supersampled Font rasterization — SSAA, Decoupled Future work
Prefiltered Analytic 2D [1] — — Analytic 3D [2]

Table 1: Classification of anti-aliasing methods for rasterization. The traditional sampling based approaches have
blue background whereas our works on prefiltering are underlaid with green.

In computer graphics, two main
data formats are widely used:
•	Raster formats (e.g. for image ac-

quisition, processing and display)
•	Vector formats (e.g. for text or ob-

ject surfaces).

The term rasterization refers to:
•	The conversion of vector informa-

tion to a raster format
•	A 3D rendering technique which

uses intermediate raster buffers
throughout the graphics pipeline.

 We use both aspects in our work.

Rasterization is a fundamental task
in computer graphics. The discrete
nature of raster formats, however,
limits their capability of retaining
small details and special care has to
be taken to avoid the introduction
of artifacts during rasterization (see
Section Anti-Aliasing on the right).

In the last years, we investigated
how to enable prefiltering during
rasterization to lift the limitations of
supersampling approaches. In Ta-
ble 1, a classification of anti-aliasing

techniques is given together with
our works. So far, we achieved:
•	Visibility and shading prefilter-

ing for simple shading models [2]
•	Visibility prefiltering and sam-

pled shading for general shading
models [3]

•	Shading prefiltering for 2D ren-
dering [1], which is a special case
of the full 3D variant [2].

In our approach, we replace the vis-
ibility and/or shading stage of the
graphics pipeline to retain the vec-

tor character of the
input data as long as
possible (see Figure 1).

The new design still
maps well to massive-
ly parallel hardware
architectures and was
implemented using

GPGPU. An explanation of the two
most relevant novel stages can be
found in the Sections Analytic Visibili-
ty and Analytic Shading below.

Results and Future Work

NSAA [3] combines exact visibility pre-
filtering with advanced non-linear and
discrete shading models such as texture

mapping and Phong illumination.

We gained several key observation
through our research. The mathemat-
ically exact nature of prefiltering has
higher compute and storage require-
ments when compared to massive su-
persampling. Since the actual raster
conversion occurs at the end of the
pipeline, all intermediate buffer sizes
depend on the input complexity. Fur-
thermore, exact geometrical compu-
tations and lengthy closed-form solu-

tion of the filter convolutions cause
increased computational require-
ments. Prefiltering is in general 2–3
orders of magnitude slower than su-
persampling but results in a ground
truth solution that is exact up to nu-
merical precision (see Figure 5).

Only simple shading models are ana-
lytically integrable and sampling has
to be used for more advanced effects.

In the future, we plan to combine
visibility prefiltering with shading
supersampling as shown in Table 1.
This should provide the best achiev-
able quality and set the ground truth
reference for anti-aliasing methods.
A main challenge is the correct sam-
pling of the shading function on the
complicated visible regions of the pro-
jected scene primitives.

MSAA1 MSAA8 NSAA [3] MSAA1 Analytic Visibility [2]
Figure 5: Comparison of various anti-aliasing methods. Our exact prefiltering approaches yield ground truth solutions to complex scenes with highly detailed geometry (left) or line rendering (right).

