
Analytic Rasterization on GPGPUs
Thomas Auzinger

Vienna University of Technology

Introduction
Analytic

Rasterization of vector input to a rasterized output is
equivalent to the sampling of a continuous input signal
at discrete sample locations.

According to the Nyquist-Shannon sampling theorem,
the resolution of the sample locations limits the finest de-
tails that are preserved by the sampling process.
Finer details lead to aliasing artifacts in the sampled
output (see direct sampling figure). Two main methods
exist to combat aliasing, i.e. to perform anti-aliasing:

•	Supersampling
Sample the input data more densly and then reduce
the number of samples by averaging the supersamples
with a suitable filter. Since the filtering happens after
sampling, this is also called postfiltering.
Note that this method still suffers from aliasing.

•	Prefiltering
Filter the data before the sampling with a suitable pre-
filter. This is the mathematically correct way to address
aliasing issues but computationally more expensive.
This method is used in our analytic rasterization.

0 1 2

3 4 5

6 7 8

Tile ID Triangle ID
0
1
1
3
4
4
5

Triangle ID Tile ID
0
1
3
4
1
4
5

Tile ID
0
1
3
4
5

Pixel mask of an LCD display

Text rasterization 3D rasterization

The process of converting vector to raster format
is called rasterization and is a fundamental step
that has to be executed before displaying computer
graphics.

Common display and image formats can be classified in two main
groups. Vector formats store the exact mathematical description of
the content and are used, for example, to store line graphics, text or
geometry. Raster formats store color values on regular grids and are
used for photograps, general images and for displays.

The rasterization process assigns each pixel (or
sample location) a color. Generally, the raster
output is just an approximation of the exact in-
put and small details have to be removed from
the data to avoid aliasing artifacts (cf. Section
Anti-Aliasing). This removal is usually done via
filtering.

In traditional rasterization, i.e. in the standard
graphics pipeline, filtering achieved by placing
more samples and averaging over them. While
being very fast, this method has limitations that
degrade the final image quality for highly de-
tailed input.

Our method applies filtering in a mathemati-
cally exact way by evaluating the filter convo-
lution integral as a closed-form expression, i.e.
as a formula. This aleviates all supersampling
issues and provides a near-perfect output im-
age.

GPGPU

Similar to traditional rasterization, our analytic method is highly
parallel and can be implemented efficiently on massive SIMD archi-
tectures, e.g. on GPUs. However, our analytic pipeline differs sig-
nificantly from the traditional graphics pipeline and does not use the
hardware rasterizer.
Exact filtering is enabled by keeping the input data in vector format

Anti-Aliasing

Our CUDA Pipeline

Results
With our method we present the following
contributions:
Exact visibility computation
•	Full hidden surface elimination
•	Handles geometry of sub-pixel size

Exact prefiltering

Traditional rasterization Our analytic method

Exact visibility, texture
mapping and non-linear

shading

Our analytic rasterization pipeline computes the contribution of each
input triangle to each sample location of the output raster image.
Most contributions are zero as triangles only influence sample loca-
tions close to them.
To avoid computing all triangle-sample pairs we tile the output im-
age and assign triangles to their tiles. This enables localized per-tile
computations.

Load balancing steps:
•	Subdivide output region into

regular tiles.

•	Compute overlapped tiles IDs for
each triangle ID in parallel.

•	Sort triangle IDs according to tile
IDs (radix sort using thrust).

•	Compute triangle ID ranges for
each tile ID.

All following computations are ex-
ecuted per-tile. The corresponding
input data is accessed via the trian-
gle ID ranges.
This ensures that each triangle only computes its non-zero contribu-
tions to close pixels.

Tiling Tiles per
triangle

Triangles per
tile

Sorting

Triangle
range per

tile

When viewing a scene from a given camera location, objects in the
front likely occlude other objects behing them. In the visibility stage
the visibility of all scene triangles is resolved by removing their
hidden parts.
This is computed in parallel for the edges of all triangles. The trian-
gle count of a normal scene (105-106) is enough to sature the threads
of a modern GPU.

Input

Edge intersections

Hidden surfaces
eliminated

Intersection computation
The visibility of a triangle can only
change at the edges of another triangle.
For a given edge of a scene triangle we
compute all intersections with the edges
of other triangles along the line that con-
tains this edge.

Intersection sorting
The threads write the intersections unor-
dered into global memory, thus we per-
form a sorting step to order the intersec-
tion along each edge.

Sorting

Input: E (set of all edges in the scene)
Output: I (set of all intersections)

for each edge e of E in parallel
 T ← triangles of local tile
 for each triangle t of T in parallel
 o ← get global memory offset
 // with atomics
 I[o] ← add intersections of e and t
 end for
end for

Hidden surface elimination
We walk along each edge and use the sorted intersections to count
the number of triangles that occlude each intersection. A scan is
used for this task. All visible edge segments, which are the output
of this stage, are then stored in global memory.

A shading function is defined on each triangle depending on the as-
signed material and the local illumination. Our goal is to prefilter
and then sample this function on the visible regions of all scene tri-
angles. The output of the analytic visibility stage is used for this pur-
pose.

Sample locations

Selected filter location

Domain subdivision

Integration domains

To perform exact filtering of the shading
function, it has to be symbolically integra-
ble in order to obtain a closed-form solu-
tion. If this is not the case, the visible area of
each triangle is prefiltered to obtain the ex-
act weights for sampled shading (this can be
seen as a ground truth solution for multisam-
pling).

Integral computation
For the given sample locations (usually the
pixel centers of the output image) the contri-
bution of all triangles to them is computed.
At each sample location a radial prefilter is
placed and convolved with the shading func-
tion of the visible region of all triangles.

The visible region of each triangle is given by
its boundary, i.e. the line segment output of
the analytic visibility stage.
Each line segment and the sample location
spans an integration domain that is clipped
against the support of the filter over which is
integrated.

Input: B (set of boundary segments of the
 visible regions of all triangles)
 S (set of sample locations)
Output: C (set of pixel colors)

for each sample location s of S in parallel
 L ← boundary segments of B of local tile
 for each segment l of L in parallel
 c ← compute prefilter convolution of l
 C[s] ← add color c
 end for
end for

Rasterization

Unfiltered output

Analytic output

Supersampled output

as long as possible. For ex-
ample, visibility and shading
computations are executed
in this format. Only the very
last step is the actual rasteri-
zation.
The standard graphics pipe-
line design, in contrast, per-
forms most computations
in raster format. Thus, we
cannot use a shader based
programming model (Open-
GL, DirectX,...) but rely on
the GPGPU capabilities of
modern GPUs. For our im-
plementation we use NVidia
CUDA C.

Traditional

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Input

Transform
Geometry

Rasterize

Resolve
Visibility

Apply
Shading

Output

Vector
Format

Raster
Format

Analytic
rasterization pipeline

Input signal

Prefilter Prefiltered signal Output (prefiltering)

Supersampling

Output (direct sampling)

Output (supersampling)

AliasingAliasing

Direct sampling

Supersampling

Pr
efi

lte
ri

ng

•	Closed-form solution
for prefiltering

•	Artifact-free near-per-
fect anti-alising

•	Exact shading for sim-
ple shading models

•	Exact visibility
weighting for com-
plex models

Parallel hardware ad-
aptation
•	Formulated as highly

parallel algorithm
•	Efficient implemen-

tation on SIMD hard-
ware

•	Interactive perfor-
mance

Load Balancing Analytic Visibility Analytic Shading

Pseudo-code of the intersection computation

Pseudo-code of the integration computation

Contact
Name:

Institution:

Email:
References:

Thomas Auzinger
Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria
thomas.auzinger@cg.tuwien.ac.at
T. Auzinger, M. Wimmer, S. Jeschke, Analytic Visibility on the GPU,
Computer Graphics Forum, 32(2):409-418, 2013
T. Auzinger, M. Guthe, S. Jeschke, Analytic Anti-Aliasing of Linear Functions
on Polytopes, Computer Graphics Forum, 31(2):335-344, 2012

Pixels of a raster image

PUMPS 2013 Summer School
July 8-12, Barcelona, Spain

