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Introduction
Analytic

Rasterization of vector input to a rasterized output is 
equivalent to the sampling of a continuous input signal 
at discrete sample locations.

According to the Nyquist-Shannon sampling theorem, 
the resolution of the sample locations limits the finest de-
tails that are preserved by the sampling process.
Finer details lead to aliasing artifacts in the sampled 
output (see direct sampling figure). Two main methods 
exist to combat aliasing, i.e. to perform anti-aliasing:

•	Supersampling 
Sample the input data more densly and then reduce 
the  number of samples by averaging the supersamples 
with a suitable filter. Since the filtering happens after 
sampling, this is also called postfiltering. 
Note that this method still suffers from aliasing. 

•	Prefiltering 
Filter the data before the sampling with a suitable pre-
filter. This is the mathematically correct way to address 
aliasing issues but computationally more expensive. 
This method is used in our analytic rasterization.
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The process of converting vector to raster format 
is called rasterization and is a fundamental step 
that has to be executed before displaying computer 
graphics.

Common display and image formats can be classified in two main 
groups. Vector formats store the exact mathematical description of 
the content and are used, for example, to store line graphics, text or 
geometry. Raster formats store color values on regular grids and are 
used for photograps, general images and for displays.

The rasterization process assigns each pixel (or 
sample location) a color. Generally, the raster 
output is just an approximation of the exact in-
put and small details have to be removed from 
the data to avoid aliasing artifacts (cf. Section  
Anti-Aliasing). This removal is usually done via 
filtering.

In traditional rasterization, i.e. in the standard 
graphics pipeline, filtering achieved by placing 
more samples and averaging over them. While 
being very fast, this method has limitations that 
degrade the final image quality for highly de-
tailed input.

Our method applies filtering in a mathemati-
cally exact way by evaluating the filter convo-
lution integral as a closed-form expression, i.e. 
as a formula. This aleviates all supersampling 
issues and provides a near-perfect output im-
age.

GPGPU

Similar to traditional rasterization, our analytic method is highly 
parallel and can be implemented efficiently on massive SIMD archi-
tectures, e.g. on GPUs. However, our analytic pipeline differs sig-
nificantly from the traditional graphics pipeline and does not use the 
hardware rasterizer.
Exact filtering is enabled by keeping the input data in vector format 

Anti-Aliasing

Our CUDA Pipeline

Results
With our method we present the following 
contributions:
Exact visibility computation
•	Full hidden surface elimination
•	Handles geometry of sub-pixel size

Exact prefiltering

Traditional rasterization Our analytic method

Exact visibility, texture 
mapping and non-linear 

shading

Our analytic rasterization pipeline computes the contribution of each 
input triangle to each sample location of the output raster image. 
Most contributions are zero as triangles only influence sample loca-
tions close to them.
To avoid computing all triangle-sample pairs we tile the output im-
age and assign triangles to their tiles. This enables localized per-tile 
computations.

Load balancing steps:
•	Subdivide output region into 

regular tiles. 

•	Compute overlapped tiles IDs for 
each triangle ID in parallel. 

•	Sort triangle IDs according to tile 
IDs (radix sort using thrust). 

•	Compute triangle ID ranges for 
each tile ID.

All following computations are ex-
ecuted per-tile. The corresponding 
input data is accessed via the trian-
gle ID ranges.
This ensures that each triangle only computes its non-zero contribu-
tions to close pixels.
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When viewing a scene from a given camera location, objects in the 
front likely occlude other objects behing them. In the visibility stage 
the visibility of all scene triangles is resolved by removing their 
hidden parts.
This is computed in parallel for the edges of all triangles. The trian-
gle count of a normal scene (105-106) is enough to sature the threads 
of a modern GPU.
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Intersection computation
The visibility of a triangle can only 
change at the edges of another triangle. 
For a given edge of a scene triangle we 
compute all intersections with the edges 
of other triangles along the line that con-
tains this edge.

Intersection sorting
The threads write the intersections unor-
dered into global memory, thus we per-
form a sorting step to order the intersec-
tion along each edge.

Sorting

Input:  E (set of all edges in the scene)
Output: I (set of all intersections)

for each edge e of E in parallel
  T ← triangles of local tile
  for each triangle t of T in parallel
    o    ← get global memory offset 
           // with atomics
    I[o] ← add intersections of e and t
  end for
end for

Hidden surface elimination
We walk along each edge and use the sorted intersections to count 
the number of triangles that occlude each intersection. A scan is 
used for this task. All visible edge segments, which are the output 
of this stage, are then stored in global memory.

A shading function is defined on each triangle depending on the as-
signed material and the local illumination. Our goal is to prefilter 
and then sample this function on the visible regions of all scene tri-
angles. The output of the analytic visibility stage is used for this pur-
pose.
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To perform exact filtering of the shading 
function, it has to be symbolically integra-
ble in order to obtain a closed-form solu-
tion. If this is not the case, the visible area of 
each triangle is prefiltered to obtain the ex-
act weights for sampled shading (this can be 
seen as a ground truth solution for multisam-
pling).

Integral computation
For the given sample locations (usually the 
pixel centers of the output image) the contri-
bution of all triangles to them is computed. 
At each sample location a radial prefilter is 
placed and convolved with the shading func-
tion of the visible region of all triangles.

The visible region of each triangle is given by 
its boundary, i.e. the line segment output of 
the analytic visibility stage.
Each line segment and the sample location 
spans an integration domain that is clipped 
against the support of the filter over which is 
integrated.

Input:  B (set of boundary segments of the 
           visible regions of all triangles)
        S (set of sample locations)
Output: C (set of pixel colors)

for each sample location s of S in parallel
  L ← boundary segments of B of local tile
  for each segment l of L in parallel
    c    ← compute prefilter convolution of l
    C[s] ← add color c
  end for
end for

Rasterization

Unfiltered output

Analytic output

Supersampled output

as long as possible. For ex-
ample, visibility and shading 
computations are executed 
in this format. Only the very 
last step is the actual rasteri-
zation.
The standard graphics pipe-
line design, in contrast, per-
forms most computations 
in raster format. Thus, we 
cannot use a shader based 
programming model (Open-
GL, DirectX,...) but rely on 
the GPGPU capabilities of 
modern GPUs. For our im-
plementation we use NVidia 
CUDA C.
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•	Closed-form solution 
for prefiltering

•	Artifact-free near-per-
fect anti-alising

•	Exact shading for sim-
ple shading models

•	Exact visibility 
weighting for com-
plex models

Parallel hardware ad-
aptation
•	Formulated as highly 

parallel algorithm
•	Efficient implemen-

tation on SIMD hard-
ware

•	Interactive perfor-
mance

Load Balancing Analytic Visibility Analytic Shading

Pseudo-code of the intersection computation

Pseudo-code of the integration computation
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