
AngioVis Patient Persistency
Object Relation Mapping for Large Relational

Datasets of Binary Data

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

by

Manuel Andre
0925715

in
Medical Informatics

Georg Ursits
1025726

in
Media Informatics and

Visual Computing

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Univ.–Doz. Dipl.–Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.–Ing. Gabriel Mistelbauer

Vienna, September 29, 2013
(Signature of Author) (Signature of Author)

(Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

A usual workstation in medicine processes a significant amount of patients per day. It is critical
in a clinical daily routine, to retrieve, store and access analysed data in a fast pace. An application
in this context needs to be responsive and speed up current processes. Due to the necessity
of storing all these data, current development in database technologies provides opportunities
to improve their management. In this thesis, we will investigate, how such a technologies
can be transferred to a specific application scenario. Furthermore there are several application
parameters, like load time, response delay and integrity of the stored data that can be improved,
to have a positive impact on a medical workflow. Apart those performance related parameters
there are several other factors like extendibility, scalability and structure that are taken into con-
sideration as well.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3

2 State of the Art 5

3 Method 7
3.1 Data Driven Design . 8
3.2 Business Processes . 10
3.3 Entity Management . 11
3.4 Binary Data Management . 12
3.5 Results . 14

4 Conclusion 15

A Integration and Lifecycle Documentation 17
A.1 Preface . 17
A.2 Phase 1 - External requirements . 18
A.3 Phase 3 - Model Lifecyclemanagement . 22

B Entity Relationship Diagram 25

C UML class diagram 27
C.1 Management and Configuration classes . 28
C.2 Entity Classes . 30
C.3 Data Abstraction Object Classes . 32
C.4 Custom Types and Enumerations . 34

Bibliography 37

v

List of Figures

1.1 AngioVis PatientDB Draft . 1
1.2 AngioVis PatientDB Data Flow . 4

2.1 layered architecture . 5

3.1 Layered Architecture - Persistency Layer in greater detail 7
3.2 AngioVis Patient Persistency Obfuscation . 13
3.3 AngioVis Patient Persistency Checksum Generation 13

A.1 MySQL daemon as windows service . 19
A.2 MySQL Workbench connection settings . 20
A.3 MySQL Workbench successful configuration . 21
A.4 MySQL Workbench EER Diagram administration screen 23
A.5 MySQL Workbench forward engineering dialogue 24

B.1 Entity Relationship Diagram . 25

C.1 Management and Configuration classes . 28
C.2 abstract Entity, Patient, Study, Series, File and FileType class 30
C.3 Data Abstraction Object classes . 32
C.4 Custom types and enumerations to introduce abstract types for Patients, Studies,

Series, Files and FileTypes and the collections to store them 34

vii

CHAPTER 1
Introduction

AngioVis (Angiographic Visualization) is a diagnosis tool for visualisation of large peripheral
CTA (Computer Tomographic Angiography1) datasets. The main goal of this framework is to
detect and categorise arterial diseases for clinical diagnosis and treatment planning. The frame-
work uses the DICOM (Digital Imaging and Communications in Medicine) Standard which was
developed by the DICOM Standards Committee. This Standard specifies the interaction between
two or more devices, also across the network (with TCP/IP) in a specific file format as explained
in Chapter 3.

1.1 Motivation

Figure 1.1: AngioVis PatientDB Draft

Arterial diseases becomes more frequent over the
last years. With the AngioVis framework it is pos-
sible to load several DICOM files. These files
will be converted into the f3d format for further
processing. The f3d file format contains the 3D
volume data for the volume rendering pipeline.
Beside this pipeline there are many more others
implemented. Through these different rendering
pipelines the framework requires different persis-
tency strategies. The framework consists of many
plugins. Every plugin has a different job and
is connected to the PluginManager of AngioVis.
This manager handles a plugin’s lifecycle, that ba-
sically means creates, deletes or registers a new
plugin instance. Figure 1.1 shows a schematic rep-
resentation of the AngioVis program layout in the context of PatientDB.

1visualisation of arteries, veins of interest (medical imaging technique)

1

The main goal of this thesis it to be as generic and as extendible as possible. Our meta
requirements are an easy scalable architecture that stores many types of data especially huge
amount of binary data. Another requirement is that available data from CT equipment can be
imported, or, in other words, that available data can be inserted into the database.

To fit as many requirements, technically and functional as possible, we intend to build a layer
to abstract the underlying persistency functionality, it is called AngioVisPatientPersistency (see
Figure 1.1). The produced binary is loosely coupled to the main framework and is managed by
the plugin mechanism.This plugin solves two inherent issues:

• offer the relational organization of patient meta data acquired from DICOM files

• manage certain specific files like the workspace of a patient, with the corresponding data
and vessel tree

A similarity of all persistency layers is that they need to be interoperable, that means our
target is to implement a layer which is built upon a RDBMS in the context of AngioVis. The
aim of AngioVisPatientPersistency is, to be cross platform, allowing the above mentioned scale
out and avoiding to be an architecture breaker for future extensions. The persistency layer might
serve as a facade for a future client server architecture.

Persistence is one of the most important properties of a program that interacts with or stores
data in a database. There are several important milestones during the development of such a
system in order to establish or keep data integrity. How can huge amount of binary data be
stored in a database? The communication between the program itself and the database shall be
as fast as possible with a minimum of database requests (Chapter 3.3 - Caching). Because of that
fact and the questions mentioned above there are several problems to solve to get an efficient and
for the radiologists and physicians transparent workflow between the program and the database.

2

1.2 Problem Statement

Considering the in the motivation described environment the problem we solve, is the refactoring
and optimization of a persistency solution heavily based on XML. The current solution stores
numbers of XML-Files on the hard disk. One of the biggest limiting factors of this implemen-
tation is the slow read/ write speed of the hard disk, without proper optimizations. Beside the
architecture being not scalable with respect to further extensions, every Workstation stores these
XML-Files and forms a non managed decentralised architecture. The discussion of advantages
or disadvantages of a decentralised or centralised architecture does never end. With a centralised
architecture (client/ server) or with a data driven architecture (Chapter 3.1) the data is stored in
a database, which can offer the best of both approaches. One the one hand it can guarantee strict
integrity constraints, and on the other hand it can scale out like a decentralised architecture via
clustering. Our program is based on a data driven architecture which replaces the XML-based
infrastructure through three new Entities based on the DICOM Standard [5]:

Patient: The Patient entity contains Attributes which are associated with the Patient Information
for example Patient’s name (further details, see Chapter 3.1).

Study: The Study entity is connected with the Patient through the Patient’s Primary Key with
certain Study Information for example description, date and time (further details, see
Chapter 3.1).

Series: The Series entity is connected with the Study through the Study’s Primary Key with
certain Series Information (further details, see Chapter 3.1).

The workflow of AngioVis shall be that several files (*.avw2 , *.f3d3 and vesseltree.xml4)
will be loaded through the AngioVis framework. The plugin manager redirects these files to the
AngioVis Patient Persistency Plugin. This plugin transforms their filenames with a obfuscation
method (see Chapter 3.4) to a random string. After the obfuscation every file will be stored in
the database and on the hard disk on a specific working directory. Storing this huge amount of
binary data in the database is a challenge, because complete files will be stored. For example
*.f3d-Files consuming a lot of disk space. Consider the scenario that these *.f3d-Files will be
stored in the database. There are several advantages and disadvantages of storing binary data in
a database or on the hard disk. On the one hand the binary data will be stored in the database so
a unknown person cannot access information in an easy manner. But one of the disadvantages
are that the database, or, in our, case the program cache (see Chapter 3.3) will be overloaded
with a mass of binary data. On the other hand, the binary data will be stored on the hard disk,
which implies the necessity to take care to obfuscate sensitive information. It is much easier to
take a backup or to archive the working directory after a working day compared to a database
setup. If the binary data will be stored in the database the whole database has to be backed up
completely and brings further problems with it.

2Represents the AngioVis-Workspace and stores informations regarding the current working session.
3Is a specific internal data format of AngioVis for storing the 3D volume in an optimised way.
4Contains structured data to specially represent the vessels extracted from the 3D volume. [1]

3

Considering these issues, a possible solution to store the binary data needs to evaluated. One
possible solution would be to store the data in a specific working directory on the hard disk. Only
filenames will be stored in the database and because of the working directory it is easy to find
and load the requested file. This solution and many more need to be considered and evaluated
to optimise the current setup. Figure 1.2 shows the workflow of the reimplemented PatientDB.
First of all files are passed through by the AngioVis framework to the new implemented plugin
which takes care of them. These files will be stored in two locations, on the one hand in the
database and on the other hand on the hard disk (see Chapter 3.4).

Figure 1.2: AngioVis PatientDB Data Flow

4

CHAPTER 2
State of the Art

This c PatientDB. To cover the most significant aspects, this section is divided into three topics,
Layered Architecture and it’s influence on our software design, persistency relevant design pat-
terns and best practices, and finally the problems of mapping relational data into programming
language entities.

Figure 2.1: layered architecture

The choice of a layered architecture for a highly data
driven application is standing to reason for a structured ap-
plication design reasoned by the following deliberations.
Every layer fulfils a specific purpose, handles a definite set
of problems and communicates with its preceding or suc-
ceeding layer or set of layers. Layers are an easy mecha-
nism to encapsulate functionality and differentiate each of
them via clearly defined interfaces. There are numerous
interpretations of this paradigms nowadays as discussed in
Savolainen et al [11]. A meta view on the vast amount of layers, discussed in [11], allows
a rough categorisation in three types of layers, starting from the bottom the Persistency layer,
building on top of it Business Logic layer and the uppermost Presentation layer as depicted in
Figure 2.1.

The AngioVis main framework covers the upper two layers, Presentation and Business Logic
of the stack shown in Figure 2.1 The PatientDB Plugin implements the persistency layer for An-
gioVis, which is the foundation of any layered architecture. It’s purpose is to ensure integrity and
identity of stored data in the context of layered architecture. In terms of the above stated rough
categorisation the PatientDB Plugin realises the persistency layer. As mentioned in Savolainen
et al [11] there is a tendency to split every layer up into sublayers to define an application archi-
tecture of fine granularity.

Beside the layered architecture there are several other best practices and software develop-
ment patterns that apply quite well to the requirement of an ORM (Object Relation Mapping).
The automated generation of ORM code is quite complex and incorporates various mechanism
such as correctness verification, type deduction based on available meta information of a SQL

5

(Structured Query Language) schema, and relational algebra as discussed in Mehra et al [9]. Ir-
respective of the type hierarchie’s origin, formalised in an ERD (Entity Relation Diagram), there
is one pattern, the DAO (Data Access Object) pattern, that fits the purpose of an extendible ORM
outstandingly well. The main reason for using a DAO pattern is to differentiate the code and or
mechanism to actually retrieve the data of various entity’s. All implications and side effects
of this process are completely separated from the objects that are used for the internal flow of
the application. Cheng [7] discusses an adapted version of the traditional DAO pattern to over-
come certain limitations and restrictions regarding the dynamic extendibility of an application
architecture.

During implementation of an ORM there is one essential issue, namely the ORM Impedance
Mismatch [13]. It is intrinsically hard to realise a data mapping from a table-based kind of data
to a object oriented type of entity. While facing this problem, there is a indirect correlation
between handling special characteristics of the underlying RDBMS and a dynamically typed
highly abstracted application architectures. There are many possible solutions to cope with the
intrinsic issues of implementing an ORM. Atwook [6] discusses a set of possible solutions and
their implications from an implementation perspective.

6

CHAPTER 3
Method

This Chapter discusses the overall object oriented architecture of the PatientDB plugin. Further-
more, an object oriented design formalises real world entities and represents them in an intuitive
way.

Figure 3.1: Layered Architecture -
Persistency Layer in greater detail

The PatientDB plugin is part of a layered ar-
chitecture and is internally structured into layers
as well, depicted in Figure 3.1. PatientDB repre-
sents the persistency layer in the context of Angio-
Vis. The first sublayer contains all entities, Patient,
Study, Series, File and FileType, that represent the
relational part of data stored by the PatientDB Plu-
gin. This circumstance is depicted in Appendix
C.2. On top of this layer builds the second sub-
layer that contains all DAO classes. All DAOs are
described as abstract classes. Every single entity’s
DAO therefore describes what functionality is of-
fered and what the interface looks like. All ab-
stract DAOs provide the recipe to implement further mechanisms of storing data, for example to
use different databases. All DAOs have one default implementation for the underlying MySQL
Database. Further ways of storing the data can be added with ease by providing additional imple-
mentations of the abstract DAO. The third and last sublayer encapsulates the management layer
that implements all mapped business processes and advanced mechanisms like Lazy Loading,
certain caching strategies and persisting binary and relational data in an underlying heteroge-
neous storage.

The full stack of all these three sublayers provides the the mapping from objects to rela-
tions needed and implements the business process model required by AngioVis. The following
chapters further explain the various fields covered by this persistency layer and provide imple-
mentation details.

7

3.1 Data Driven Design

The NEMA (National Electrical Manufacturers Association) started a cooperation with the ACR
(American College of Radiology) in 1983 to develop the DICOM standard. This industry lead-
ing standard for clinical applications defines basic approaches to

• „... Promote communication of digital image information, regardless of device
manufacturer

• Facilitate the development and expansion of picture archiving and communi-
cation systems (PACS) that can also interface with other systems of hospital
information

• Allow the creation of diagnostic information data bases that can be interro-
gated by a wide variety of devices distributed geographically. ...“

DICOM standard’s introduction [3]

Hence the standard defines how data from different vendors is encoded, stored and trans-
mitted. Furthermore a stack of meta data is standardised as well. Every entity defined by the
DICOM standard possesses a certain set of attributes describing the modality of each individual
entity. The standard even goes one step further in specifying each entity and provides verbose
explanations instead of only defining each attribute. Each entity and attribute is described in a
clinical context to give precise decisions of the actual data format. After this description that
would suffice to deduce technical formal definitions like ERDs or other data modelling dia-
grams, small parts of these diagrams are drafted to communicate actual entities, relations and
their cardinalities. [4] [5]

Analysing the reference implementation by DICOM@OFFIS, the DCMTK (DICOM- Toolkit
[2]), is an easy way to explore the DICOM standard in greater detail. The DCMTK is written in
C++ which is beneficial for usage with the AngioVis environment, because it seamlessly inte-
grates into the current framework. The use of this API significantly eases the process of parsing
DICOM files, compared to writing a parser from scratch. The detailed standard and the imple-
mentation DCMTK, practically predefines the entities mapped into the database schema depicted
in Appendix B. Our implementation does not fully store the vast amount of attributes provided
by DICOM, but rather a certain subset. Attributes are stored if they contribute by identifying a
data set for the actual end user, or contribute to visualization purposes.

Exactly three entities have been deduced from the DICOM standard, patient, study and se-
ries. All three entities serve valuable information for associating the DICOM file to a patient in
a structured way. Based on the cardinalities1 and the overall structure suggested by the standard
[5], these three entities form a graph that strictly matches the characteristics of a tree (ever node
has a set of children, only one parent and the whole graph does not have any circles). Each
entity, described in the order below, takes up on level of the tree’s depth. On each level multi-
ple entities of the same type reside and are connected to exactly one parent entity and possibly
multiple child entities. Exactly this hierarchy is described in the DICOM standard as well [5,

1In mathematics, the cardinality of a set is a measure of the „number of elements of the set“. [12]

8

46]. To match the requirements provided by the problem statement (see Chapter 1) two further
entities are introduced. These two entities (File and FileType) are the leaves of the entity tree.
These entities allow to connect binary data to the relational data from the standard.

Patient: This entity provides the patient’s id and name, defined by the DICOM file. The id in
this context is not the primary key but rather the id given by a clinical origin, „Primary
hospital identification number or code for the patient.“. The patient’s name is simply
the full name of the corresponding patient. Every Patient can have multiple associated
Studies. [4]

Study: This entity provides the uid, description, date and time. The uid according to the stan-
dard, „The unique identifier for the Study provided for this Requested Procedure.“, and
therefore offers a viable search criterium on this entity, hence is used as unique key. The
study’s description depends on the clinical context of this study, „Institution-generated
description or classification of the Study (component) performed.“. The time and date
information contains the start date and time of the study. Every Study might group one or
more Series. [4]

Series: This entity provides the uid, description, date and time, just as the study does. All
attributes are specified comparable to the study, apart from the description, which is spec-
ified as, „Description of the Series “. Every Series organises a number of Files. [4]

File: This entity is not entirely specified by the standard, it rather serves multiple purposes. On
the one hand it represents a files node in the beforehand mentioned tree structure, and on
the other hand it identifies the binary data of the actual file in the storage directory. The
attributes stored are the name, size, checksum and its relation to a Series and it’s FileType.
The File entity’s checksum is a MD5 hash of the whole binary representation of the file to
guarantee integrity and identity. Based on the attribute’s values the actual path of the file
in the binary store directory is determined.

FileType: The FileType is an entity that makes the File entity more modular. The FileType is
outsourced from the file, because both a Series and a File are associated to a FileType.
Basically this entity only adds a bit of normalization to not store file types duplicated, or
if certain file types change their descriptions to only change them once.

When integrating a persistency layer for example in web environments one quite popular
mindset is CRUD (Create Read Update Delete) [10]. Basically all actions needed to manage an
entity when considering it’s modality in an object oriented paradigm are provided. Apart from
basic interactions, more complex use cases that need more sophisticated queries can be tailored
specifically or are built on top of these actions.

All provided CRUD functions are implemented in the Manager (see Figure C.1 on page
28) and delegated to specific implementations.

• insert{File,Patient,Series,Study} corresponds to Create

• get{File,Patient,Series,Study}ById corresponds to Read

9

• update{File,Patient,Series,Study} corresponds to Update

• delete{File,Patient,Series,Study} corresponds to Delete

3.2 Business Processes

The wide spread cognition of Business Processes is their usage for corporate development, estab-
lishing processes for administration or the usage for production line optimization. But the term
of Business Process gains increasingly importance in IT projects. Requirements are the start of
every project or small program. Business Processes are deduced from requirements and finally
define the frame for the underlying data infrastructure and the Business Logic implemented.

Looking at one out of the many definitions for Business Processes, the relation to the pro-
gramming context is getting more evident.

„a set of linked activities that take an input and transform it to create an output.
Ideally, the transformation that occurs in the process should add value to the input
and create an output that is more useful and effective to the recipient either upstream
or downstream.“

by Johansson et al [8]

This definition fits what the management layer does. As mentioned in Chapter 3 on page 7,
the top and third sublayer of the PatientDB plugin encapsulates all business requirements and
interaction mechanisms. On the one hand simple CRUD related operations are provided, and
on the other more complex Business Processes are implemented. Each of these processes is
implemented as one function in the manager. Every process requires a set of certain parameters,
which are described in [?]. Basically two specific types of functions were needed to fulfil all
initial requirements. All entities of the current schema are structured as a tree, like mentioned
in 3.1. When holding a reference to a specific entity there are obviously four scenarios that are
required:

1. get all entities of a certain type

2. get a entity by a certain attribute

3. get the ancestor of the currently referenced entity

4. get all descendants of the currently referenced entity

These operations are implemented in the Manager class to extend the basic CRUD opera-
tions. This set of operations is the initial one to satisfy these requirements:

• getAll{Files,Patients} - allows to get a full list of all currently stored files/
patients. These two operations are the most significant ones to get all entities of the
corresponding type. Either all files are selected and their ancestors retrieved or all patients
are selected and their descendants retrieved. Each patient represents a main organisation

10

unit for its studies, series and files. Every file is indirectly associated to exactly one patient,
via its series and study.

• get{PatientByPid,StudyByUid,SeriesByUid,FileByName, FileType
ByName} - all these functions help retrieving their entities by unique keys, constraints
that are communicated by requirements or specifications but are not used for the primary
key identifying their entity.

This example demonstrates the ability to retrieve a patient by an unique constraint defined
by the standard, which is not the primary key used (would be a numeric value):

manager->getPatientByPid("pt9871234");

• get{PatientByStudy,StudyBySeries,SeriesByFile} - returns the corre-
sponding ancestor of a study, series or file.

Series *series = manager->getSeriesByUid("uid9871234");

manager->getFilesBySeries(series);

• getAll{StudiesByPatient,SeriesByStudy,FilesBySeries} - provides
a list of all descendants related to the passed entity.

There are generally two different approaches to deduce models for structured data from
Business Processes. Either Business Processes induce all requirements and the whole persis-
tency layer is designed based on technical formalisation of these, or the data already suggests
certain Business Processes to be added and or refined in advance.

3.3 Entity Management

In PatientDB’s architecture entities are the first class citizens. They are the main tools for or-
ganising dataflows and bridging between Business Processes respectively the underlying per-
sistency. Basically, by reading the managers function definitions all currently implemented
Business Processes can be obtained. To handle entities, their provided operations and cur-
rent state, every entity is designed as a simple state machine. An entity’s state is defined by
EntityStatusType, which equals one of the following values, STUB, LOADED or DIRTY.

The entity manager or just Manager internally caches entities and their current state. When
the Manager hands out entities, they are never shallow copies. Every entity handed out ref-
erences exactly the same memory used by the Manager to administrate the entity’s data. In
case a not cached entity is accessed, it will be loaded lazily, meaning that not all entities
are fully loaded from the database right away and this is the reason for the existence of an
EntityStatusType of STUB.

There are two EntityLoadingModes available EAGER and LAZY. These two modes are
used to control the behaviour when loading an entity. The default behaviour is loading lazily,
whenever possible. For example when a patient entity is loaded all it’s corresponding studies are
loaded as well, but only their stubs. This offers the possibility of having a slight preview off the
upcoming structure, in terms of count of descendants and their IDs.

11

Implementing this semi-automatic type of lazy loading was quite easy considering the sim-
plicity of the entities and their structure. The caching is quite beneficial, because repeated reads
are cheap and if needed the reloading of data can be forced. Recent changes are reflected in
the cache as well, and are consistently stored before being flushed and written to the database.
The caching strategy definitely takes load off the database connection. The combinations be-
tween the entity state machine and the loading mode are quite interesting. An entity cannot
be loaded in any circumstance. For example if the EntityStatusType is DIRTY and the
EntityLoadingMode is EAGER the entity cannot be updated with the loaded data because
of the possibility of loosing unsaved changes. The caching mechanism implemented in the man-
ager handles this issue and others to maintain integrity and a coherent state of the already loaded
data.

3.4 Binary Data Management

The FileManager class manages the obfuscation, insertion, deletion and checksum genera-
tion of incoming files or filenames. Binary data management is something special, as mentioned
in Chapter 1. Especially the FileManager and the File entity has a deep relationship. The
File entity relies on some function from the FileManager, for example to erase or load the
binary data from hard disk. The clue is that the File entity uses functions that only manipulate
existing data. Data that is about to be modified will be loaded into the cache and marked with
one of the EntityStatus flags. If the correct flag is set, the changes will be done and written
to file. The File entity is an abstraction layer on top of the FileManager class. Another
interesting feature of the File and FileManager collaboration is inspired by smart pointers
and the copy-on-write mechanism.

The FileManager uses a flavour of the COW (Copy-on-write) optimization strategy. Ref-
erenced data is not copied into the current context as long as it is not changed or written. This
optimization strategy provides several benefits. The most evident one is a small memory foot-
print of objects or processes. Every object or process gets a pointer to the resource. The other
idea the FileManager uses are smart pointers. A smart pointer acts like a pointer with more
features. One of the feature is the automatic memory management. Automatic memory man-
agement deals with the topic of abstracting memory allocation and deallocation and usually is
hidden behind a facade type of abstraction mechanism.

The File makes use of some ideas from these mechanisms. It is a small memory footprint
facade, that offers the actual entity’s data. The binary data of the file is only read and passed
through via the FileManager if explicitly requested. Basically the File only offers an API
(Application Programmable Interface) to access the binary data in the working directory, instead
of storing its data in the main memory and bloating the persistency layer.

12

The obfuscation method is a special step which has to be done before the files can be stored
in the actual working directory. Figure 3.2 describes the workflow of the obfuscation method
before the file can be stored. First of all the file is passed from AngioVis to our PatientDB. The
filename is read from the DICOM Header. The next step is converting the filename into a MD5
hashed binary representation which is Base64 encoded. When this process is finished the file is
moved to the working directory with the obfuscated filename.

Figure 3.2: AngioVis Patient Persistency Obfuscation

Only the plain filename will be stored in the database and the checksum. There are several
steps to generate the checksum and store the filename in the database. The first step is the same
like the workflow in Figure 3.2. Files are passed from the AngioVis framework to our PatientDB.
After that step the file will be loaded chunk by chunk and the hash function generates a MD5
representation of the binary data. The result will be stored in the database and just in case a file
is loaded by one of our File entity instances the whole process starts back to front. The specific
filename will be loaded from the database for the Base64 decoding. If the file can be found in
the working directory the two filenames will be compared and the checksum generation process
starts again. Last but not least, if the checksum matches with the calculated checksum the file
integrity is guaranteed. Otherwise it will be rejected.

Figure 3.3: AngioVis Patient Persistency Checksum Generation

13

3.5 Results

To demonstrate the improvements PatientDB gains several test cases prove its advantages. Basi-
cally 5 test cases of various length and load on the overall system are provided. We focused on
the following types of tests:

1. Prove functionality of simple CRUD operations.

2. Test the stubbing and caching strategies.

3. Test more complex business cases apart from simple CRUD operations.

4. Measure the pure binary data throughput with stubbed relational data, to prove the in-
creased import speed.

5. The last test case is a full stack simulation, 360 DICOM files were loaded and the whole
relational tree was constructed based on the DICOM header information.

The default dataset the previous PatientDB implementation was tested with 10 files that in
total make up a binary amount of 1.2GB. The loading process took a long time in any case
and was cancelled before finishing. The PatientDB reimplementation handles this dataset, the
fourth described test case, within one minute and thirty seconds. To further stress test the new
PatientDB, the last test case is used, with a dataset of 360 DICOM files. This test run that totally
reconstructs the database terminated after a six minutes thirty of execution.

14

CHAPTER 4
Conclusion

The implementation of the PatientDB, provides further integrity constraints and organises rela-
tional data and binary data in an easy to administrate fashion.

This challenge was attacked by providing a Layered Architecture that introduces separation
of concerns into the PatientDB plugin. Furthermore, optimizations like caching and lazy loading
are applied to speed up the entity management. Entities are managed coherently in one manage-
ment layer on top and offer an API to manipulate their data in a CRUD way as well as providing
further implementations of more complex Business Processes.

The extendibility of the applied application structure was the focus of this implementation.
The whole persistency layer is designed with principles of object orientation and further best
practices in mind. Future work of this implementation is further increase of extendibility and an
even more generic approach like configure entities on a configuration file basis.

15

APPENDIX A
Integration and Lifecycle

Documentation

A.1 Preface

This Appendix describes the setup procedure for AngioVis in three phases.
Phase one will cover all steps we took to add external dependencies and set external tools

up. This includes the a full Database Management System Stack including the integration into
the Qt framework.

Phase two covers the basic process of forward engineering the mysql model represented by
the avpp.mwb1, model changes and their implications and overall remarks regarding the full
model lifecycle.

1MySQL Workbench

17

A.2 Phase 1 - External requirements

For Phase 1 are basically three external tools/ dependencies needed:

1. MySQL Server, the initial SQL instance PatientDB was developed with

2. MySQL Workbench, not necessarily needed but useful for forward- engineering2

3. QtMySQL Plugin, mandatory qt plugin that needs to be configured and compiled against
the current qt source distribution and the running MySQL server instance.

All three of these setup steps are described in the following three sections.

MySQL Server Setup

Our preferred way of installing a MySQL Server instance was the zip archive distributed by
oracle on the MySQLl website3, mainly because the zip version does not create any side effects
apart from the needed windows service entry.

1. Download a version of the MySQL community edition, we used the most recent version of
MySQL 5.6, in our case http://dev.mysql.com/get/Downloads/MySQL-5.
6/mysql-5.6.11-winx64.zip/from/http://cdn.mysql.com/

2. Unpack the downloaded archive to a preferred location on the Hard disk, we used C:/
MySQL/

3. Open a command line prompt cmd.exe with administrative privileges and navigate to
C:/MySQL/mysql-5.6.11-winx64/bin

4. Execute the following command A.1 to install the MySQL daemon as windows service:

1 C:/MySQL/mysql-5.6.11-winx64/bin>mysqld.exe --install

Listing A.1: Installation of mysql daemon as windows service

5. Depending on the current environment the start type of the MySQL windows service needs
to be adjusted via the service panel in the windows settings. We changed the start type in
our case to manual as illustrated in the figure A.1

2Process of maintaining the PatentDB’s schema on a graphical basis and on the fly conversion to a MySQL Script
that is executed automatically to reflect changes right away on the running MySQL instance

3http://dev.mysql.com/downloads/mysql/

18

http://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-5.6.11-winx64.zip/from/http://cdn.mysql.com/
http://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-5.6.11-winx64.zip/from/http://cdn.mysql.com/
http://dev.mysql.com/downloads/mysql/

Figure A.1: MySQL daemon as windows service

MySQL Workbench Setup

The MySQL Workbench was the administration utility of our choice due to the following rea-
sons:

• easily maintain and administrate user privileges and access rights

• forward- engineering capability to react to schema changes in a fast paced manner

• easily deploy and manage testing datasets

The Workbench’s setup is a standalone setup as well, for the only reason to be able to cleanly
deinstall MySQL without any traces.

1. Download a version of the MySQL workbench, we used the most recent version, that fits
out MySQL community server version, in our case: http://dev.mysql.com/get/
Downloads/MySQLGUITools/mysql-workbench-gpl-5.2.47-win32-
noinstall.zip from http://cdn.mysql.com/

2. Unpack the downloaded archive to the same location as the MySQL server C:/MySQL/

3. Create and softlinks as preferred and desired

4. Bring up the MySQL Workbench application and click on New Server Instance

5. The following wizard guides through the basic configuration of MySQL Workbench in
conjunction with the actual MySQL community server instance. We connect the Pa-
tientDB Plugin as well as the MySQL Workbench via the TCP/IP Stack to our MySQL
server as shown in figure A.2

19

http://dev.mysql.com/get/Downloads/MySQLGUITools/mysql-workbench-gpl-5.2.47-win32-
http://dev.mysql.com/get/Downloads/MySQLGUITools/mysql-workbench-gpl-5.2.47-win32-
noinstall.zip
http://cdn.mysql.com/

Figure A.2: MySQL Workbench connection settings

6. The following steps in the wizard test the connection to the database server and offer the
possibility to configure and test the default configuration file my-default.ini usually
located in the root directory of the MySQL server installation.

7. After successfully configuring the MySQL Workbench two new items should appear in
the main-application, a new connection (as side effect of the connection settings) and the
newly created server instance as shown in figure A.3

8. After these configuration steps it’s easily possible to check and analyse the currently per-
sisted patient data directly and to apply any needed schema changes via forward engi-
neering. To update the schema just open the corresponding avpp.mwb apply all needed
changes and execute the changed schema

QtMySQL Plugin setup

The last step of Phase 1 is to enable the internal MySQL support of Qt via it’s QtMySQL plugin,
that’s directly available in the everywhere distribution we installed previously.

20

Figure A.3: MySQL Workbench successful configuration

1. Detailed and probably most up to date compilation instructions are available at http://
qt-project.org/doc/qt-4.8/sql-driver.html#how-to-build-the-
qmysql-plugin-on-windows, we proceeded following the steps below.

2. Navigate to the QtMySQL plugin directory in the Qt distribution, execute the qmake com-
mand with adapted parameters and run nmake to build the needed plugin.

1 cd %QTDIR%\src\plugins\sqldrivers\mysql
2 C:\Qt\4.8.4\bin\qmake "INCLUDEPATH+=C:/MySQL/mysql-5.6.11-

winx64/include" "LIBS+=C:/MySQL/mysql-5.6.11-winx64/lib/
libmysql.lib" mysql.pro

3 nmake

Listing A.2: Compilation of QtMySQL plugin

3. To make use of these libraries, the generated, lib and dll files in qt/plugins/sqldrivers
/ (qsqlmysqld4.dll, QtSql4.dll) and the MySQL dll C:/MySQL/mysql-5.6.11-
winx64/lib/libmysql.dll needs to be copied next beside the actual generated
binary

21

http://qt-project.org/doc/qt-4.8/sql-driver.html#how-to-build-the-
http://qt-project.org/doc/qt-4.8/sql-driver.html#how-to-build-the-
qmysql-plugin-on-windows

A.3 Phase 3 - Model Lifecyclemanagement

This Phase covers the basic usage of the MySQL Workbench to manage the lifecycle of the used
SQL Schema. Two basic operations will be explained:

1. Editing the basic model represented by the avpp.mwb, changing default insert values and
managing foreign key constraints

2. Forward engineering the changed model to achieve two things:

• reset the current database status to factory status

• reflect all changes to the model in the new database status

The MySQL Model and MySQL Workbench

To operate on the MySQL Model avpp.mwb provided, the second column Data Modelling in
figure A.3 offers all operations needed.

1. To load the MySQL workbench file avpp.mwb click on the menu entry Open Existing EER
Model as depicted in figure A.3.

2. An entry avpp will appear, click on this menu item.

3. The opened view provides the following capabilities:

• The EER Editing Screen as shown in figure A.4 is a graphical editing tool to manip-
ulate the current Schema.

• The operations on the left side allow to change foreign key constraints and there-
fore relationships between our Entities. Take care while changing anything in this
scheme, changes here are not automatically reflected in the AngioVis Patient Persis-
tency Plugin.

• The most important section are the tabs on the bottom pane. These tabs allow to
change the current default inserts and intrinsics of the tables like datatypes used in
the schema.

4. One of the probably most important operations of the Data Modelling Suite of MySQL
workbench is the forward engineering functionality, that directly applies changes made on
the EER screen to the current Schema instance represented by the MySQL server.

This operation is easily achieved by pressing Ctrl + g while viewing the EER Screen.
This operation brings up a popup that allows specifying further details. The most im-
portant step is the configuration screen, shown in figure A.5, of the forward engineering
process that allows configuring what and how will be applied to the current database in-
stance.

22

Figure A.4: MySQL Workbench EER Diagram administration screen

23

Figure A.5: MySQL Workbench forward engineering dialogue

24

APPENDIX B
Entity Relationship Diagram

Figure B.1: Entity Relationship Diagram
The entity relationship diagram depicted in Figure B.1 shows all five entities deduced from

the standard, patient, study, series, file and file type. Every patient is related to zero or more
studies and stores the patient name and patient id. One study belongs to zero or one patients and
is related to zero or more series’. One series is related to zero or one study and organises zero
or more files. Study and series share a common set of attributes, uid, description, date and time.

25

One file knows its name, size, checksum and type. Both a series and a file are restricted to one
file type. In case of the series this means one series stores one or many files of the same type.

26

APPENDIX C
UML class diagram

This Appendix contains all diagrams of relevant classes to the PatientDB plugin of the AngioVis
Framework. All classes are categorised into the three layers depicted in Figure 3.1:

Management layer DAO layer Entity layer
class Manager class PatientDao class Entity
class FileManager class PatientDaoSql class Patient
class Connection class StudyDao class Study
class PsqlConnection class StudyDaoSql class Series
class SqlHelper class SeriesDao class File
class Settings class SeriesDaoSql class FileType

class FileDao
class FileDaoSql
class FileTypeDao
class FileTypeDaoSql

27

C.1 Management and Configuration classes

Figure C.1: Management and Configuration classes

• class Manager is the aggregation of the whole API, all business cases are provided
via this class. Internally the caching strategy and the lazy loading are implemented in the
Manager as well.

• class FileManager encapsulates the file access and is tightly coupled to the File
entity.

• class Connection is an abstract class that defines the base interface implemented
by specific connection classes. The assumption is that a connection to the underlying
persistency mechanism is needed, bearing the base requirement of a RDBMS in mind.

• class PsqlConnection is the default implementation to persist via SQL. This class
implements the beforehand mentioned abstract class Connection and specifies be-
haviour related to SQL.

28

• class SqlHelper is a convenience class that offers heavily reused and therefore en-
capsulated functionality for interaction with the underlying sql API.

• class Settings helps loading a JSON settings file and accessing the configurations
provided.

29

C.2 Entity Classes

Figure C.2: abstract Entity, Patient, Study, Series, File and FileType class

• class Entity is an abstract class that defines basic details regarding every entity, like
having an id (artificial integer keys only), referencing the manager and being in a certain
status.

• class Patient encapsulates all attributes (pID, name), access functions and a unified
way to validate this entity.

• class Study encapsulates all attributes (date, description, patient, time, uid), access
functions and a unified way to validate this entity.

30

• class Series encapsulates all attributes (date, description, fileType, study, time, uid),
access functions and a unified way to validate this entity.

• class File encapsulates all attributes (checksum, data, fileType, name, series, size),
access functions and a unified way to validate this entity.

• class FileType encapsulates all attributes (name), access functions and a unified
way to validate this entity.

31

C.3 Data Abstraction Object Classes

Figure C.3: Data Abstraction Object classes

• class Dao the heart of this DAO layer, that defines the basic characteristics of every
DAO. Every DAO holds reference to the Manager and offers getters for its type and its
stored reference to the Manager.

• Patient: class PatientDao, class PatientDaoSql encapsulates abstract inter-
face and all CRUD functions for patients

32

• Study: class StudyDao, class StudyDaoSql encapsulates abstract interface and
all CRUD functions for studies

• Series: class SeriesDao, class SeriesDaoSql encapsulates abstract interface
and all CRUD functions for series

• File: class FileDao, class FileDaoSql encapsulates abstract interface and all
CRUD functions for file

• FileType: class FileTypeDao, class FileTypeDaoSql encapsulates abstract
interface and all CRUD functions for filetypes

33

C.4 Custom Types and Enumerations

Figure C.4: Custom types and enumerations to introduce abstract types for Patients, Studies,
Series, Files and FileTypes and the collections to store them

All in Figure C.4 shown datatypes introduce custom types for collections used to store Enti-
ties or data needed for the caching strategy. Introducing these types serves two purposes. First of
all it increases the code’s readability while making heavy use of the standard library’s template
classes. Last but not least but not least it makes replacing the standard collections fairly easy,
because all usages throughout the codebase are masked by those alias types. For example if the
PatientMap, which associates a patient’s id to it’s entity needs to be stored in a MyCustomMap
instead of an std::map and both classes offer the same interface it’s simply changing this
typedef.

• Patient: PatientMap, PatientStudyMap, PatientList

• Study: StudyMap, StudyStudyMap, StudyList

• Series: SeriesMap, SeriesStudyMap, SeriesList

• File: FileMap, FileList

34

• FileType: FileTypeMap, FileTypeList

• Enumerations:

– DAO_TYPE

0. SQL

– ENTITY_TYPE

0. PATIENT
1. STUDY
2. SERIES
3. FILE
4. FILETYPE

– EntityStatus

0. STUB
1. LOADED
2. DIRTY

– EntityLoadingMode

0. LAZY
1. EAGER

35

Bibliography

[1] AngioVis. http://angiovis.org/. Accessed: 2013-10-16.

[2] National Electrical Manufacturers Association. http://medical.nema.org/dicom/2011/11
_03pu.pdf. Accessed: 2013-07-28.

[3] National Electrical Manufacturers Association. Digital Imaging and Communications in
Medicine (DICOM) - Part 1: Introduction and Overview. National Electrical Manufactur-
ers Association, 2011.

[4] National Electrical Manufacturers Association. Digital Imaging and Communications in
Medicine (DICOM) - Part 3: Information Object Definitions. National Electrical Manu-
facturers Association, 2011.

[5] National Electrical Manufacturers Association. Digital Imaging and Communications in
Medicine (DICOM) - Part 4: Service Class Specifications. National Electrical Manufac-
turers Association, 2011.

[6] Jeff Atwook. http://www.codinghorror.com/blog/2006/06/object-relational-mapping-is-
the-vietnam-of-computer-science.html. Accessed: 2013-07-28.

[7] Fang Cheng. A new dao pattern with dynamic extensibility. In Information and Computing
Science, 2009. ICIC ’09. Second International Conference on, volume 1, pages 23–26,
2009.

[8] H.J. Johansson, P. McHugh, A.J. Pendlebury, and W.A. Wheeler. Business Process Reengi-
neering: Breakpoint Strategies for Market Dominance. Wiley & Sons, 1993.

[9] K.K. Mehra, S.K. Rajamani, S.K. Jha, and A.P. Sistla. Verification of object relational
maps. In Software Engineering and Formal Methods, 2007. SEFM 2007. Fifth IEEE Inter-
national Conference on, pages 283–292, 2007.

[10] O.M. Pereira, Rui L. Aguiar, and M.Y. Santos. CRUD-DOM: A model for bridging the
gap between the object-oriented and the relational paradigms. In Software Engineering
Advances (ICSEA), 2010 Fifth International Conference on, pages 114–122, 2010.

[11] J. Savolainen and V. Myllarniemi. Layered architecture revisited - comparison of research
and practice. In Software Architecture, 2009 European Conference on Software Architec-
ture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, pages 317–320, 2009.

37

[12] Wikipedia. http://en.wikipedia.org/wiki/cardinality. Accessed: 2013-09-02.

[13] Wikipedia. http://en.wikipedia.org/wiki/object-relational_impedance_
mismatch. Accessed: 2013-07-28.

38

	Introduction
	Motivation
	Problem Statement

	State of the Art
	Method
	Data Driven Design
	Business Processes
	Entity Management
	Binary Data Management
	Results

	Conclusion
	Integration and Lifecycle Documentation
	Preface
	Phase 1 - External requirements
	Phase 3 - Model Lifecyclemanagement

	Entity Relationship Diagram
	UML class diagram
	Management and Configuration classes
	Entity Classes
	Data Abstraction Object Classes
	Custom Types and Enumerations

	Bibliography

