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Abstract

In mixed-reality environments it is essential to integrate virtual objects seamlessly into a real
scene. Virtual objects should have similar appearances to those of real objects captured by a
video camera. This is useful for many real-life application scenarios, including product adver-
tising and visualization, edutainment systems or for enhancing cultural heritage sites.

Typical problems in this domain are to match the current ‘color mood’ of the video camera
scene with the colors of virtual (rendered) objects. The color mood depends on the global
illumination conditions as well as the hue, saturation or white balance settings of the camera.

The aim of this paper is to integrate existing methods of histogram transfers used in the
domain of computational photography into mixed-reality environments. These methods allow us
to simulate current luminance conditions in the scene and changes in the camera driver settings
to apply them onto virtual objects.

This thesis contains two fast-running approaches to provide a color mapping between virtual
objects and the real scene, which can be used in real-time applications. The results show that
these methods increase the immersion of virtual objects in a real scene.
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CHAPTER 1
Introduction

1.1 Mixed-reality applications

Mixed-reality attempts to embed virtual objects into the real world. This is typically done by
using a video stream of a camera, merging rendered objects into the video input and presenting
the result on an output device, like a PC monitor or a mobile device. One goal might be to
create a perfect illusion so that virtual objects cannot be distinguished from real, existing objects.
These techniques may be used in (but not limited to) product designs, architectural and urban
visualizations or for marketing reasons. To create such an illusion, different approaches already
exist. Klein and Murray [6] introduced methods to simulate camera artifacts, e.g. distortion,
chromatic aberrations and blur on virtual objects. These artifacts are applied onto the virtual
objects, before they are merged with the video stream. Other methods [7] are taking direct and
indirect illumination effects into account to simulate mutual lighting effects between real and
virtual objects.
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1.2 Problem statement

Although existing methods [6], [7] create accurate results, these methods don’t consider match-
ing the actual colors between the virtual objects and the camera scene. Therefore virtual objects
are still easily distinguishable from the real scene by the user.

Knecht et al. [8] developed a method to match the colors between virtual objects and the
camera scene. This is done by creating color sample pairs based on matching similar colors as
well as through a heuristic function. A color mapping function is then derived from the color
sample pairs. The method performs well if there are similar colors on virtual and real objects.
If there is not enough matching information in the camera scene or the differences between the
colors of virtual and real objects are too extreme, a correct mapping will likely fail and lead to
incorrect colors in the final result.

To resolve these issues, the primary goal is to find a stable color mapping function to transfer
the ‘color mood’ of the camera scene onto the virtual objects. This is done by converting the
colors of the virtual objects to match those of the camera scene. In addition the function must
perform reasonably fast, because of its use in real-time applications.
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CHAPTER 2
Related Work

2.1 Definition and concepts

Differential Instant Radiosity

Knecht et al. [7] developed a method called ‘Differential Instant Radiosity’ (DIR), which is
the core of the framework used in this paper. Its purpose is to combine differential rendering
(DR) and instant radiosity to be used in mixed-reality applications. By doing so it is possible to
calculate effects like shadow casting and indirect illumination between real and virtual objects.
The main aspect used in this paper is the work about differential rendering. To use DR the
following information is needed:

• The camera image (CI)

• One global illumination (GI) solution containing virtual and real objects (LSrv)

• One GI solution containing only the real objects (LSr)

The actual DR process is done by creating the difference between LSrv and LSr after both
solutions have been tone and color mapped. The difference (i.e. LSrv − LSv) is then applied to
a masked CI to obtain the final result.

By using a virtual representation of real objects (i.e. LSr) it is possible to measure the
difference between LSr and the CI. This measurement can then be used to do the actual mapping
between virtual objects and the real scene. This will be discussed in more detail in Chapter 4.

Tone mapping

Tone mapping (also known as tone reproduction) is the operation of converting high dynamic
range (HDR) images to low dynamic range (LDR). The problem is known from analog photog-
raphy where it’s a common task to convert the HDR of real world luminances to the LDR of
print media. In computer graphics the same problem occurs when trying to map a virtual scene
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as an output to a LDR screen. Luminances in the real world are spanning a wide range, while
in LDR media, the range of light is much narrower. To resolve this discrepancy, the range of lu-
minances are scaled down, while still maintaining the hue values. For the method in this paper,
tone mapping is necessary to map virtual objects to the LDR of the camera input, in order to
calculate the differences between virtual and real scene and to finally merge the virtual objects
into the real scene. Because only the luminances are changed, a color mapping is still necessary
(which will be discussed in Section 2.2).

The tone mapping operator chosen in this paper is based on the work of Reinhard et al. [14].
Only the global tone mapping operator is used, which consists of the following steps. First, by
calculating the log-average luminance, which is an approximation for the scene lighting (known
as ‘key’) of the image to be mapped:

Lavg = exp(
1

N

∑
log(δ + Lw(x, y))) (2.1)

where N is the total number of pixels in the image, δ is a small factor to avoid problems with
zero values and Lw(x, y) is the ‘world’ luminance of pixel (x, y). The new luminance, using a
‘key’ value a to match, is calculated by using:

L(x, y) =
a

Lavg
Lw(x, y) (2.2)

Which must be scaled to be within displayable range:

Ls(x, y) =
L(x, y)

1 + L(x, y)
(2.3)

2.2 Transfer of color statistics

The first popular method by Reinhard et al. [12] matches the mean and standard deviation of a
source image to that of a target image. This is done separately for each color channel in Lαβ
color space (see Section 3.3). Based on this method Kim et al. [5] proposed a method which also
works in Lαβ color space but is using an additional pre-processing of the source image’s colors
and transforms only the α and β channels. Although the method of Reinhard et al. produces
convincing results, it works with statistical data of the whole image and thus can create new
colors in the result by mixing up two or more colors of the target image. Xiao and Ma [17] tried
to solve this problem with histogram matching (sometimes called histogram specification) and
a post-processing step to preserve the gradients of the source image. Histogram matching (HM)
is the transformation of one image’s color histogram to another histogram. By using HM, the
tonal distribution is changed, allowing to control the relative frequency of each tonal value.

Another way of performing histogram matching is to create an image dependent color space
instead of using a fixed one. This is done by eliminating the coherence between the color chan-
nels, also with the idea to perform color mapping on each color channel separately. A non-linear
mapping with this approach has been proposed by Grundland and Dodgson [3]. Similarly, not
depending on a fixed decorrelated color space, Xiao and Ma [18] decompose the source and
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target image data into its principal components (with singular value decomposition) to perform
a one-dimensional color mapping.

Besides these methods which perform color mapping on each color channel, there are those
which are trying to solve the color mapping in N-dimensions. Neumann and Neumann [9] are
using a computationally simple, permissive, or optionally strict 3D histogram matching. Instead
of using opponent color channels they are using a cylindric color space to map hue, lightness and
saturation as their main attributes. Another N-dimensional mapping has been proposed by Pitié
et al. [10]. In their work they use a N-dimensional probability density function transformation
with an involved post-processing step, which matches the gradient field of the output image to
the source image.

The requirements of a color mapping function, for usage in real-time mixed-reality applica-
tions are to transfer the colors without additional user interaction and to allow real-time framer-
ates. Methods which allow the user to control the amount of transformation (like [11]) are useful
for a manual matching of arbitrary images, but in real-time applications simple, fast-running
methods are necessary, which must be well suited for generic automated tasks. Additionally
by working with a virtual representation of the real world (i.e. LSr) we have a somewhat less
complicated environment for color mapping. This is because LSr and the real world (i.e. the
camera image) typically are similar to each other, both in shape and color appearance.
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CHAPTER 3
Color Spaces

3.1 Introduction

As stated in the previous section, color mapping algorithms can typically be categorized into two
classes. There are those which operate in a N-dimensional color space and those which operate
on each color axis separately. The mapping algorithms presented in this paper are working on a
per-color-axis basis. It has been observed that if the channels can be made strongly decorrelated
then image processing can be done in each channel independently [12]. So it is assumed, that the
choice of the color space is important for algorithms which perform one-dimensional matching.

Reinhard et al. [13] compared the quality of color mapping in the domain of different color
spaces (e.g. CIELab, Lαβ, HSV, XYZ) in combination with several environment settings (e.g.
indoor, day, night). Although it seems plausible to see more indoor-specific mixed-reality ap-
plications, color mapping in mixed-reality environments cannot make assumptions about the
environment it is used in. Therefore it is necessary to choose a color space with overall good
performance results. Reinhard et al. [13] concluded in their work:

‘Surprisingly, we find that CIELAB, if used with illuminant E as the white point leads on
average to the best performance, yielding a plausible colour transfer in 77 % of all cases

tested.’

Because CIELab (E) performs well in all tested environments and especially in indoor areas, it
is the color space of choice in this paper.

The color space Lαβ is used in several color mapping algorithms [5, 12, 16, 17], including
the original color transfer method of Reinhard et al. It is mentioned in this paper as well.

3.2 RGB color space

The device dependent RGB color space consists of red, green and blue chromatic axes. It is
device dependent, because the actual displayed colors, represented by RGB values, vary from
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device to device or even when altering settings (like brightness or contrast).
This color space tends to have axes, which are strongly correlated. An example is displayed

in Figure 3.1. In this example, the values are typically small in each channel, if the pixels are
dark. The values are getting larger as the luminance rises. If the blue channel’s values are large,
then most values in the red and green channels are getting larger, too. This results in an almost
diagonal distribution between the axes, which signals a strong correlation.

Therefore, when changing the color of a pixel to match another one, it is necessary to change
all color channels simultaneously. This results in more complex color matching techniques,
especially when trying to compute each color channel separately. Thus, in this paper, the RGB
color space will not be used to perform color mapping.

(a) Input image

(b) RGB correlation (c) Lαβ correlation (d) CIELab correlation

Figure 3.1: Decorrelation properties of color spaces. The bottom row shows pixel values plotted in
three-dimensional space for different color spaces. The top image is used as input. RGB shows an almost
diagonal distribution on each pair of axes. Lαβ distribution is along L and α axes. CIELab distribution
is along L* and b* axes. Plots created with ColorSpace [2]

3.3 Lαβ color space

Ruderman et al. [15] discovered in their work the logarithmic color space Lαβ. It is a transfor-
mation of the LMS cone space 1. Its axes are strongly decorrelated for natural images. The first
axis represents an achromatic channel. It is a measurement for equal logarithmic fluctuations in
all three LMS channels (see Eq. 3.4). Such a fluctuation would occur if a scene would change in
radiance. Thus the first axis is generally referred as the ‘radiance’ (or luminance). The other two

1The LMS color space is based on human’s perception of colors. It is named after the sensitivity of the human
eye to long (L), medium (M) and short (S) wavelengths of light.
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axes are representing the blue-yellow and red-green chromatic opponent channels. Because of
the decorrelation between the axes of this color space, it is suitable for operating on each color
axis separately.

Lαβ color space was primarily intended for natural images, which need not be the main
focus of mixed-reality. Therefore in this paper CIELab (E) has been chosen instead of Lαβ,
which also shows better performance results (see Section 3.1).

RGB to Lαβ

Transforming images from RGB to the Lαβ color space is done by first converting them to
the device independent XYZ space. The conversion depends on settings (like white point and
gamma correction) of the device, where the images are intended to be displayed on. This infor-
mation is typically not available. Therefore we will map white in the CIE 1931 xy chromaticity
diagram to white in RGB space and vice versa. Illuminant E is used as white point definition,
which’s chromaticity coordinates are (x, y) = (13 ,

1
3). Reinhard et al. [12] provided a matrix for

conversion, which is a modified version of the International Telecommunications Union (ITU)
standard conversion matrix. The original matrix (CIE XYZitu601-1) is based on illuminant D65.
The modified conversion matrix for illuminant E is:

ME =

0.5141364 0.32387860 0.16036376
0.2650680 0.67023428 0.06409157
0.0241188 0.12281780 0.84442666

 (3.1)

The conversion from RGB to XYZ color space is done through:

XY
Z

 =ME ·

RG
B

 (3.2)

After which the values are converted to LMS space:

LM
S

 =

 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464
0.0000 0.0000 1.0000

RG
B

 (3.3)

And finally converted to Lαβ:

Lα
β

 =


1√
3

0 0

0 1√
6

0

0 0 1√
2


1 1 1
1 1 −2
1 −1 0

 logL
logM
logS

 (3.4)
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Lαβ to RGB

These are the inverse steps to transform images back to RGB color space. First step is to get
back to logarithmic LMS space:

 logL
logM
logS

 =

1 1 1
1 1 −1
1 −2 0



√
3
3 0 0

0
√
6
6 0

0 0
√
2
2


Lα
β

 (3.5)

Then, after raising ten to the power of the logarithmic LMS values to go back to linear color
space, the transformation from LMS to RGB can be achieved by using:RG

B

 =

 4.4679 −3.5873 0.1193
−1.2186 2.3809 −0.1624
0.0497 −0.2439 1.2045

LM
S

 (3.6)

3.4 CIELab color space

CIELab (also CIE L*a*b*) is a device independent color space with three axes. ‘L’ represents
the lightness of the color with a range from 0 (black) to 100 (white). The other two axes are rep-
resenting the blue-yellow (channel ‘b’) and red-green (channel ‘a’) chromatic opponent channels
with an unbounded range. It is a non-linear transformation of the CIE XYZ color space, while
still remaining reversible. It is considered to be perceptually uniform. This means, that the
euclidean distance of two colors in CIELab are reflected as equally distant in perception. The
color space is based on the XYZ tristimulus values of the reference white point. In this paper
the values of standard illuminant ‘E’ will be used for conversion.

As already stated in the introduction (Section 3.1) this color space has been chosen because
of its good performance results in the domain of color mapping.

RGB to CIELab

Transforming images from RGB to CIELab (E) color space is done by first converting them
to the device independent XYZ space (see Eq. 3.2). After which the values are converted to
CIELab:

L∗a∗
b∗

 =

 0 116 0 −16
500 −500 0 0
0 200 −200 0



x1
x2
x3
1

 (3.7)

Where xi is defined as:

∀i ∈ {1, 2, 3} : xi =
{

7.787ai +
16
116 if ai ≤ 0.008856

3
√
ai otherwise

(3.8)
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and a1a2
a3

 = diag(E)−1 ·

XY
Z

 (3.9)

With standard illuminant E as the white point, which is [Xn, Yn, Zn] = [100, 100, 100].

CIELab to RGB

The inverse transformation from CIELab to RGB is done through the following steps. First by
transforming CIELab to device independent XYZ color space:XY

Z

 = diag(E) ·

f(b1)f(b2)
f(b3)

 (3.10)

again with illuminant E as the white point and

f(b) =

{
(b+ 16

116)
3 if L∗ > 7.9996

b
7.787 otherwise

(3.11)

Where bi is calculated through:b1b2
b3

 =


1

116
1

500 0
1

116 0 0
1

116 0 − 1
200


L∗a∗
b∗

 (3.12)

The final transformation from XYZ to RGB color space is done by:RG
B

 =

 2.5651 −1.1665 −0.3986
−1.0217 1.9777 0.0439
0.0753 −0.2543 1.1892

XY
Z

 (3.13)
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CHAPTER 4
Method

4.1 Introduction

The method is based on Differential Instant Radiosity (see Section 2.1). It is assumed that geo-
metric representations of real world objects (at least some objects) are available. The LSr and
LSrv solutions contain geometric models of high dynamic range (HDR). Because the captured
camera image is only in low dynamic range (LDR) a tone mapping operation (see Section 2.1) is
necessary. After the tone mapping has been applied, all information is in a common LDR color
space.

As a result the method creates a merged image which consists of the camera image, virtual
objects, shadows and reflections. By using a suitable color mapping function it will merge virtual
objects seamlessly into the surrounding environment, defined by the camera image.

4.2 Application flow

Figure 4.1 shows the abstract application flow of this method with the help of an example. In the
camera image four real existing objects are available. The wooden surface and the color chart
have similar geometric representations in the application. The red figure and the book have no
virtual representation. Therefore LSr contains the wooden surface and the virtual representation
of the color chart. LSrv contains in addition to the content of LSr, the object to be rendered into
the real scene, which is another color chart.

The actual color mapping process is divided into stages, which will be explained next.

Stage 1

After LSr and LSrv have been tone mapped, they are converted together with the CI to the
CIELab color space. This is done to minimize correlation between the color axes, so that ma-
nipulations of one color axis don’t affect the other axes as well.
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Camera image (RGB)

Camera image (CIELab) LSr (CIELab)

Color mapping functionCalculate characteristics

LSrv (CIELab)

Mapped LSr Mapped LSrv

-

mask camera image

+

LSr HDR (RGB) LSrv HDR (RGB)

Di�erence bu�er (LSdif)

Final result

Tone mapping

RGB to CIELab conversion

CIELab to RGB conversion

Stage 1

Stage 2 Stage 3

Stage 4

Figure 4.1: This figure shows the application workflow. By calculating the characteristics of the real-
world in comparison to LSr, the color mapping function is applied to the LSr and LSrv solutions. The
color mapping operates in the decorrelated CIELab color space. The difference between the buffers is
then merged with the camera image to create the final result.
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Stage 2

For the actual color mapping function we need to calculate the differences between our repre-
sentation of the real-world (i.e. LSr) and the actual real-world itself (i.e. the camera image).
By determining the characteristics between these two images, the resulting values can be used
by the ‘color mapping function’ (CMF). Depending on what CMF algorithm is used, different
characteristics are collected. This will be explained together with the CMF in Section 4.3.

Stage 3

The CMF applies the characteristics to both, LSrv and LSr, in order to convert their colors to
match those of the camera image. Possible algorithms of the CMF will be explained in depth in
Section 4.3.

Stage 4

The CIELab conversion was only necessary to calculate the characteristics and perform the color
mapping. So after the color mapping is done, LSrv andLSr will be converted back to RGB color
space.

Obtaining the result

We get the final result by calculating the difference

LSdif = LSrv − LSr

and adding the difference buffer to a masked version of the camera image.

4.3 Color mapping function

Color transfer

This mapping function is based on the work of Reinhard et al. [12]. Although its primary purpose
is to transfer the colors between two images, in this paper three images will be involved. This
is done by imposing the color characteristics between LSr and the camera image to use them
not only for LSr, but also for LSrv. The algorithm works on each color axis separately and
therefore needs a decorrelated color space.

The first step is to calculate the mean and standard deviation of the source (i.e. LSr) and
the target (camera) images. Denoted by µs, µt and σs, σt. The next step is to subtract the source
mean from each data point (dp) of the LSr and LSrv solutions:

dp′ = dp− µs

After which the data points are scaled by factors determined by the standard deviations:

dp′′ = dp′
σt
σs

15



And finally the data points are moved by adding the target mean:

dp∗ = dp′′ + µt

Because the same transformation is applied to LSrv and to LSr, colors which are the same in
both solutions will remain equal after the mapping. This is an important feature, necessary for
differential rendering.

CDF matching

This color mapping function has been chosen as an alternative approach to the ‘color transfer’
algorithm. Similar to the ‘color transfer’ method, the cumulative distribution function (CDF) is
working with statistical characteristics in a decorrelated color space. It is based on the work of
Pitié et al. [10] and Bourke’s [1] ‘histogram matching’.

By calculating cumulative distribution functions (Fs, Ft) from histograms for the source
(i.e. LSr) and target (camera) images, it is possible to reshape the histograms and therefore the
distribution of color values of the LSr and LSrv solutions. To map a color value c from source
to target it is necessary to lookup the probability p of a color to be less than or equal to c in the
source CDF:

p = Fs(c)

Which is then used in the inverse target CDF to lookup the new target color:

c′ = F−1t (p)

where
F−1t (x) = inf{y|Ft(y) ≥ x}

Again, as with the ‘color transfer’, the same transformation is applied to values of LSrv and LSr
and therefore the results can be used for differential rendering.

4.4 Limitations

Because of using differential rendering, the method presented in this paper needs virtual repre-
sentations of real object’s geometry. This is necessary to determine the differences between the
representation and the real scene captured by the camera. These differences are then applied by
using the color mapping function onto the virtual objects. Although the algorithms also work
without a virtual representation of the environment, the results would be less precise because of
the lack of mapping information. Therefore this approach should only be used in mixed-reality
systems which support the representation of the real scene.

Another obvious limitation are the color mapping functions. These functions are working
with statistical data of the whole scene and try to adapt colors of virtual objects to the color
average or histograms of the scene. This doesn’t need to be correct in every possible scenario.
Especially if there are multiple areas in the scene with huge differences in luminance or color
setting, the average of the scene might not be the correct mapping target. A possible solution to
this would be to divide the scene into sections and perform a color mapping for each section.
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The reliability of the ‘cdf matching’ algorithm greatly depends on the given mapping source
and target. Because of matching colors by their relative frequencies, colors which are similar to
each other before the color mapping, could be quite distinguishable after the mapping operation.
Therefore this method may introduce visible artifacts at color transitions.
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CHAPTER 5
Implementation

5.1 Introduction

The color mapping functions were realized on a PC running Microsoft Windows 7 64 bit. The
framework was developed in C# using the DirectX 10 API in conjunction with the SlimDX
library. The goal was to implement as much as possible in shader code, to allow a fast running
real-time-application. The used shader language was HLSL.

5.2 Color Transfer

The main aspect when using the color transfer method of Reinhard et al. is to calculate the color
characteristics in an efficient and fast way. We will concentrate on doing that in the following
paragraphs.

Figure 5.1: This figure shows the LSr solution with two virtual representations of real objects (table,
color-chart). The black area on the left indicates the end of the virtual table. The black area in the center
is the place for the virtual object to be rendered.
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Calculating the mean

The arithmetic mean is defined as:

µ =
1

n

n∑
i=1

xi

where n is the number of data points (xi), which is n = w · h for an image with the dimensions
[w, h].

Calculating the arithmetic mean is easily done by creating mipmaps. Mipmapping will typ-
ically only work on quadratic textures. Creating a quadratic texture from a rectangular one is
done by bilinear point sampling. Because of using linear interpolation the mean does not get
affected.

The mean must be calculated for the camera image as well as for LSr. Although calculating
the mean for the CI is straight forward, this is not the case for LSr. It contains some areas with
no information where there is either no virtual representation for a real object available or where
a virtual object will be placed at. See Figure 5.1 for an example. These black areas must not have
any influence on the calculated mean value. Excluding these areas from the mean calculation is
done by counting the data points to be excluded dpe and correcting the mean µ calculated by the
mipmapping operation. To get the correct mean of an image with the dimensions [w, h] we use:

µcorrect =
µ · w · h

w · h− dpe

Please note that this works only if the data points we want to exclude from the mean calculation
have a value of zero.

Note: The corrected mean calculation could have been applied to the masked version of the
camera image, too. The masked version contains black areas at each point where a virtual object
will be placed at. Although it is possible, there are some drawbacks. The black areas are ‘lost in-
formation’. These areas won’t be included in the calculation, so we have less information about
the target environment we want to map to. Therefore we lose precision in the color mapping.
In addition, if a virtual object covers the whole scene, there won’t be any information available
from the CI and thus the mapping would fail.

Calculating the standard deviation

Because the standard deviation is the square root of the variance, we will concentrate on calcu-
lating the variance. The variance for discrete values is defined as:

var =
1

n

n∑
i=1

(xi − µ)2 (5.1)

The variance can easily be calculated. Given a texture with the dimensions [w, h] and n = w ·h,
we first calculate the squared deviation from the mean for each data point in the texture (i.e.
(xi − µ)2). This operation can be executed in one pass in a shader. The next step is to make
the texture quadratic and execute mipmapping to get the arithmetic mean of the sum of squared
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deviations. The result of mipmapping is the variance. Please note again that by creating a
quadratic texture by using bilinear point sampling, the arithmetic mean does not get affected.

When calculating the variance a similar problem occurs as when calculating the mean for
LSr. Because some data points (count is dpe) shall be excluded from the calculation, we need
to correct the variance calculation. Excluded data points have values of zero, so we can rewrite
our variance Eq. 5.1 to be:

var =
1

n
· (dpe · (0− µ)2 +

∑
i∈R

(xi − µ)2) (5.2)

with R being our remaining set of data points and having |R| = n − dpe. Equation 5.2 can be
rewritten to:

var =
1

n
· (dpe · µ2 +

∑
i∈R

(xi − µ)2) (5.3)

The corrected variance must only contain the remaining data points and is therefore, according
to Eq. 5.1:

varcorrect =
1

|R|
·
∑
i∈R

(xi − µ)2

Which is equal to (using Eq. 5.3):

varcorrect =
1

|R|
· (var · n− dpe · µ2) (5.4)

This shows that it is possible to exclude zero valued data points by using the mipmap-calculated
variance and applying Eq. 5.4 to get the corrected variance.

5.3 CDF matching

Creating a cumulative distribution function (CDF) from an image is done by first creating his-
tograms on a per color channel basis. Histograms contain for each color the according color
count. By normalizing these color counts we get the relative frequencies which can be accumu-
lated to get the resulting CDF.

In practical environments not each color will be counted, but the histogram and the CDF will
be divided into sections (called bins). These bins will comprise multiple adjacent colors and for
each bin, a color count will be calculated.

A bin of a CDF is centered around one color value and contains the cumulative sum of
relative frequency of the color counts (i.e. the probability of a color to be less than or equal to
the bin-center-color). To get smooth results, the lookup of the probability of one color is done
by using linear interpolation between the probabilities of two adjacent bins. The reverse lookup
(i.e. the lookup from a quantile to a color value) is also done by linear interpolation of the color
values of two adjacent bins. Without linear interpolation the result image would only contain as
many colors as the bin count.
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Bin count

Calculating the color count for one bin is done in two shader passes. First by determining if a
color is in the corresponding bin (i.e. 1 to be in this bin and 0 if not). And second by summing up
these values. Thus the number of bins greatly affects the speed of the CDF matching algorithm.
Choosing a lower bin count increases performance but decreases the matching quality. Figure
5.3 demonstrates the influence of choosing a bin count on the final result. This example shows
that choosing a bin count of 500 almost perfectly matches the ‘target’ CDF. Choosing a bin
count between 10 and 500 leads to smoother color transitions, especially around the highlights.
Whereas a bin count of 5 does not match the images in a pleasant way.

(a) Source (b) Target

Figure 5.2: Source image (as in the one whose colors we’re changing) on the left. Target image (as in
the one whose colors we want to match to) on the right.
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(a) 5 bins

(c) 10 bins

(e) 100 bins

(g) 500 bins

Figure 5.3: CDF matching by using the images from Figure 5.2 with different bin counts. On the left side
is the CDF of channel ‘b*’ of the CIELab color space with the corresponding result on the right.
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CHAPTER 6
Results

6.1 Test setup

The PC used for the test results has an Intel Core i7-950 Quad 3.06 GHz CPU with 6 GB RAM
and a nVIDIA GeForce 9800 GTX+ graphics card. Details about the developing environment
and the operating system are mentioned in the implementation Chapter 5.

As seen in Figure 6.1 the test setup contains multiple real-existing objects. A wooden sur-
face, a book, a red figure and a color chart to the right. The application has only two registered
virtual objects, which is the wooden surface and the color chart. Broadly speaking there are
three different environments, in which the methods operate. These are

• the ‘default state’ without tweaks of the camera driver settings

• scenes with changed camera settings (contrast, saturation)

• environments with obstacles hiding the color chart

The goal is to render a virtual color chart object (placed left of the real-existing one) which
matches the color settings of the surrounding environment. The virtual object representation
should match the real object’s appearance. If there is no real object for comparison available,
the virtual object should fit into the environment in a harmonic way.

6.2 Comparison

The following methods have been compared:

• Color transfer (see Section 4.3)

• CDF matching (see Section 4.3)
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• Adaptive camera-based color mapping by Knecht et al. [8]

• Photographic tone reproduction (tone mapping) by Reinhard et al. [14]

The tone mapping operation by Reinhard et al. is influenced by the global illumination solution
and does not react on changes in the scene or camera settings. It is a tone mapping operator and
not a color mapping function. Thus it can be seen as a comparison of how the virtual object
would look like without any color mapping.

The CDF matching algorithm has been configured with a sufficient bin count of 50. A higher
bin count didn’t change the result in a relevant way. The algorithm does not adapt well to low
saturation or contrast scenes leaving black areas of the color chart untouched. In addition there
are visible artifacts in the color gradient without smooth color transitions in most of the test
scenes. Another serious drawback is the performance. It is by far the slowest of the tested color
mapping operations. Changing the implementation of the CDF matching algorithm could result
in significantly improved performance results, although visible artifacts would still remain.

The method of Knecht et al. adapts well to changes in the camera settings but the built in
heuristic function fails to find a color mapping with the real-existing color checker board (Gre-
tagmacbeth - ColorChecker Digital SG). In the last scene with only some real-existing colored
paper spread out, the method nearly completely adapts to the existing colors in the scene, which
typically isn’t the desired result. It outperforms the CDF matching algorithm and compared to
the tone mapping operation, it is a reasonably fast color mapping technique.

Using the ‘color transfer’ method results in a good adaptation to changed camera settings, but
some color intensity is lost in the yellow, green and cyan areas of the virtual object. Especially
when using a high contrast level or the color checker board. In the scene with only some colored
paper spread out, the method does not adapt to the new colored environment but only attempts
to darken the colors, when compared to the ‘tonempaping’ operator. The performance results
are quite similar to the results of Knecht et al.

Essentially, the conclusion of the tests is that the ‘color transfer’ method is the best choice
for color mapping in mixed-reality applications.
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Figure 6.1: Comparison of different algorithms with different settings and environments.
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CHAPTER 7
Summary

7.1 Conclusion

Existing methods, known from computational photography, for transferring the color distribution
from one image to another have been combined with differential rendering to a novel approach,
usable in the field of mixed-reality applications. Two color mapping techniques have been pre-
sented, which dynamically adapt in each rendered frame to the internal changes of the camera
settings. By using this method, colors of virtual objects are closely related to the colors of the
camera image, which results in a better immersion of virtual impressions in a real scene.

It has been shown that the presented ‘color transfer’ mapping algorithm is superior to exist-
ing approaches. Furthermore by combining this color mapping with the simulation of camera
artifacts [6] (like distortion and blur) a high quality illusion could be created, resulting in virtual
objects, which may be undistinguishable from real ones.
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