A Layered Depth-of-Field Method for Solving Partial Occlusion

David C. SchedlMichael Wimmerschedl@cg.tuwien.ac.atwimmer@cg.tuwien.ac.at

Institute of Computer Graphics and Algorithms Vienna University of Technology

WSCG – 26th June 2012

Real life partial occlusion

Intro/Overview

TU

depth-of-field approximation

- post processing
- partial occlusion in realtime

Thin lens

Previous work

Potmesil and Chakravarty, 1981

- CoC equation
- first post-processing method
- blur according to CoCs
- still a reference
- artifacts

Artifacts

color bleeding:

depth discontinuity:

Partial Occlusion

pinhole vs. finite aperture

Partial Occlusion

pinhole:

finite aperture:

Previous work – solve partial occlusion

non-realtime:

- ray-tracing (Cook et al., 1984)
- Accumulation B. (Haeberli and Akeley, 1990)

Iayered methods:

- Kraus and Strengert, 2007
 - occluded scene content only interpolated

Lee et al., 2010

- image composition via ray traversal
- simulate more lens effects
- more complex and slower than ours

Our Method

Our Method

Rendering & Depth Peeling

Matting – functions

Matting – functions

David C. Schedl

Input

Blurring

Blurring

$$L'_{k_{\text{focus}}} = L_{k_{\text{focus}}} L'_0 = L_0 * H_0$$

 $L_1' = L_1 * H_1$

Blurring

 $L_{k_{\rm focus}}' = L_{k_{\rm focus}}$

 L'_8

Compose

alpha-blend back to front

Optimization

reduce filter widthrecursive Gaussians

Optimization - front

Optimization - front

Optimization - front

Optimization - Compositing

 $\hat{L}_{k_{\mathrm{focus}}}$

Results - Homunculus

Results - Dragons

Results – Benchmarks

TU

- Intel Core i7 920, Geforce GTX 480
- OpenGL and GLSL
- 1024 x 1024px

	ours		Lee et. al. 2010	Accum. B.
	optimized r	non-rec.	256 rays	256 views
Homunculus (74k tri.)	102 ms	1.4x	13.2x	47x
Dragons (610k tri.)	98 ms	1.3x	14.7x	42x

Conclusion

- Iayered DoF method
- partial occlusion solved
- comparison to:
 - Accumulation Buffer
 - Lee et al., 2010
- optimized by recursive Gaussians
- efficient composition with alpha blending

Outlook

- screen-spaced antialiasing
- avoid empty layers: clustering
- inaccurate but faster blurring methods
- combine with eye-tracker

Thank you!

slides will be available at:

http://www.cg.tuwien.ac.at/research/publications/2012/schedl-2012-dof/

