
SEGMENTING MULTIPLE RANGE IMAGES WITH PRIMITIVE SHAPES

Irene Reisner-Kollmann ∗

Vienna University of Technology

Stefan Maierhofer

VRVis Research Center

ABSTRACT
We introduce a novel method for automatically segmenting
multiple registered range images by detecting and optimizing
geometric primitives. The resulting shapes provide high level
information about scanned objects and are a valuable input
for surface reconstruction, hole filling, or shape analysis. We
begin by generating a global graph of sample points cover-
ing all input frames. The graph structure allows to compute
a globally consistent segmentation with a memory and time-
efficient solution, even for large sets of input images. We it-
eratively detect shapes with a Ransac-approach, optimize the
assignments of graph nodes to shapes, and optimize the shape
parameters. Finally, pixel-accurate segmentations can be ex-
tracted for each source image individually. By using range
images instead of unstructured point clouds as input, we can
exploit additional information such as connectivity or varying
precision of depth measurements.

Index Terms— segmentation, shape detection, surface
fitting, range data

1. INTRODUCTION

Recent developments of RGB-D sensors provide a cost-
efficient, easy to use, and fast way of digitizing interior
scenes. While Microsoft Kinect was initially created for
gaming, the generated depth and color maps can also be
converted to 3D point clouds of real-world objects.

In this paper we present a novel method for segmenting
the 3D point cloud into geometric primitives. The detected
primitives provide a higher level of abstraction for effectively
using, analyzing or editing 3D data. Especially man-made
objects, such as CAD-models or interior scenes, contain large
parts which can be approximated by basic shapes. Besides
surface reconstruction, the generated segmentation might be
used for dividing large scenes into smaller parts for simplify-
ing further processing.

We use multiple registered depth images with known in-
trinsic and extrinsic camera parameters as input. While depth
maps can be easily converted to 3D point clouds, they provide
additional useful information. The organization in 2D grids
implicitly provides connectivity information. The precision
of depth measurements usually decreases with the distance to

∗Supported by Doctoral College on Computational Perception.

Fig. 1. Segmentation of an interior scene.

the camera. This knowledge allows to use different distance
thresholds across a scene for handling accurately defined as
well as noisy parts at the same time.

Providing a fast and memory-efficient algorithm is diffi-
cult for large scenes. We meet the challenge by dividing the
problem into two parts. First, a globally consistent segmenta-
tion is computed for sample points covering the whole scene.
Second, a pixel-accurate segmentation is computed individu-
ally for each frame. An example for our segmentation can be
seen in Figure 1.

2. RELATED WORK

Segmentation is an important task in many areas of image
processing and computer vision. Several approaches have
been proposed for segmenting single range images with prim-
itive shapes, e.g. with RANSAC [1], region growing [2], or a
recover-and-select strategy [3]. In contrast to these methods
we consider multiple registered range images.

Video segmentation exploits temporal coherence to achieve
stable segmentations over time. Hierarchical approaches and
dividing the video in small clips for processing handle the
large amount of pixels [4]. These approaches could also be
used for depth cameras, but we support unordered sequences
of images and thus do not use any temporal information.



Multiple range scans of a moving object can be segmented
based on its articulated motions [5]. Subsequent frames are
registered by applying rigid transformations to differently
moving model parts. Then a global optimization iteratively
alternates between solving the transformation assignment
with graph cuts and optimizing the transformation itself. Our
approach is similar, but handles static scenes and points are
assigned to shapes instead of transformations.

Graph cut optimization has also been used to segment im-
age sequences, oriented with structure-from-motion [6]. All
images are individually segmented into small regions, which
are then divided into foreground and background by a global
graph cut approach. The segmentation can be refined along
the boundary with a pixel-based graph cut optimization. We
use a similar coarse-to-fine solution, but due to the dense
mapping between frames we are able to start with a global
graph instead of segmenting each frame individually.

Very good results for segmenting unordered point clouds
into shape primitives have been achieved with a RANSAC-
approach [7]. We use this algorithm for initializing the seg-
mentation, but we globally optimize the results with the con-
nectivity given by depth maps.

3. ALGORITHM DESCRIPTION

Multiple depth images are aligned to each other, e.g. with
iterative closest points (ICP), and optionally improved by a
denoising algorithm [8]. The oriented frames can be inter-
preted as a large graph of 3D points, in which neighboring
pixels within one frame as well as corresponding points of
different frames are connected by graph edges. As the whole
data from multiple frames would be too large, we apply the
segmentation first on a set of sample points and compute the
final segmentation for each frame based on the global seg-
mentation. This approach allows to globally segment multiple
frames with efficient time and memory consumption.

3.1. Graph setup

The central data structure for our algorithm is a sample point
graph which is formed from a subset of points sampled from
all input frames. Whenever a new frame is added, the sam-
ple graph has to be updated to include newly captured areas.
The point cloud is sampled such that the average distance be-
tween neighboring points is approximately τ . This parameter
adjusts the number of node in the graph and provides a trade-
off between accuracy and computational time.

We use the modified best-candidate sampling algorithm
provided by [5] for selecting new samples. We first create a
subset of existing graph points, which are projected onto the
current frame or slightly outside of it. Random sample points
from the current frame are generated iteratively and the best
candidate (with the largest distance to existing sample points)
is selected. The average distance of the best candidates is

(a) Initial sampling (b) With adaptation

Fig. 2. Adapting sample points to multiple frames highly re-
duces noise in the sample point graph.

kept over the last 100 trials and adding points is stopped after
it falls below the empirically determined value of 0.4τ .

Graph nodes are connected by an edge if their distance
is below 2τ . Additionally we assign each pixel in the cur-
rent frame to its nearest sample point in 3D space. Edges of
two nodes are only accepted if at least two neighboring pixels
are assigned to the according sample points. This approach
prevents connecting close points of different surfaces, e.g. at
sharp edges. The 3D points of all assigned pixels are also used
for estimating the graph node’s orientation with least squares.

In order to reduce noise in the sample point graph, we
adapt positions and normals when an existing sample point
is visible in a new frame. We compute the weighted aver-
age between an existing node and corresponding points in the
new frame, though points can only move along their normal.
The weights are inversely proportional to the camera depths,
and the weights for new points are decreased with every con-
sidered frame. Thus, we are pushing sample points towards
precisely measured points. Figure 2 shows how noise is re-
moved from the graph and the number of nodes and edges is
reduced.

3.2. Global optimization

The global optimization uses only the sample graph and is
completely independent from the source images. The goal is
to find primitive shapes (plane, cylinder, sphere, cone) in the
graph positions and assign each node to the best shape. The
optimization is divided into three parts, namely detecting new
shapes, optimizing labels and optimizing shapes, which are
repeated until convergence.

Detecting shapes We use a RANSAC approach [7] for de-
tecting primitive shapes in all graph positions which are not
yet assigned to a shape. In the beginning, this will include
all graph positions. The parameter ε defines the maximum
distance between shapes and points.

Labeling Assigning graph nodes to shapes can be for-
mulated as a labeling problem, which we solve with graph



cuts [9]. The optimization objective is defined as Edata +
λEsmooth, where the first term optimizes the distances be-
tween graph samples and shapes and the second term strives
for assigning neighboring graph nodes to the same shape.

Graph nodes should be assigned to a shape, if the distance
to the surface is small and if the point normal coincides with
the surface normal, which leads to the following data term:

Edata =
∑
i∈G

d(pi, Sl(i))

3ε

2

(1− (ni · n(Sl(i), pi))) (1)

G contains all graph nodes, pi and ni denote positions and
normals, l(i) is the index of the assigned shape S. The func-
tion d computes the distance between a point and its closest
point on a shape surface, the function n retrieves the surface
normal at the closest point on the shape.

In order to handle outliers and scene parts that cannot be
modelled by primitive shapes, it is also possible to label points
as unassigned. A constant cost value is applied to such unas-
signed nodes. A low value might lead to large areas of unas-
signed points, while a high value might pollute shapes with
outliers. In our experiments we generally use a value of 0.8
as cost for unassigned nodes.

The smoothness term strives for assigning nearby points
to the same shape. It is defined as

Esmooth =
∑

(i,j)∈E

I(l(i) 6= l(j))(ni · nj), (2)

where E is the set of all edges in the sample graph and I(·) is
the Potts model, which returns 1 if the argument is true and 0
otherwise. All edges are weighted based on their normal de-
viation. If two nearby points have very different orientations,
it is more likely that they belong to different shapes.

Shape Optimization After the set of assigned points has
changed, a refitting step is applied. The geometric error of
the shapes is optimized with weighted least-squares. Shapes
which have no or only very few points assigned are deleted.

Some scene parts might be slightly distorted in the point
cloud, especially when uncalibrated cameras are used and the
scene is captured only from few view points. This might lead
to wrong initial shape types, e.g. a planar wall is represented
by a small part of a cylinder with a large radius. We test all
shapes if they can be replaced by a plane without increas-
ing the average residual more than twice. Cones and spheres
might also be replaced by a cylinder.

3.3. Frame optimization

In this step we generate a per-pixel segmentation for each
frame from the global graph segmentation. Only pixels with
a valid depth value are considered because 3D positions are

(a) (b) (c) (d)

Fig. 3. Frame optimization (white pixels do not have depth
values, black pixels are not included in optimization): (a) Di-
lated pixels with fixed labels, (b) optimized pixels, (c) all pix-
els (optimized and directly used from global graph), and (d)
3D view.

Fig. 4. Segmentation of virtually created depth maps of the
joint model. The model is courtesy of AIM@SHAPE.

needed. For each pixel, the graph positions within a dis-
tance of 3τ are investigated. If all have the same label and
the pixel’s 3D position and normal are consistent with the ac-
cording shape, the pixel is labeled with this shape. Otherwise
the pixel is marked as unsolved, and the best label has to be
determined by optimization.

We apply a graph cut optimization for all unsolved image
regions. The regions are slightly enlarged by dilation to en-
sure valid transitions to the rest of the image. A unique label
has already been determined for these dilated pixels. Thus,
we apply a cost value of zero to this label and a very high cost
value for all other labels. For the unsolved pixels the same
optimization objectives are used as for the global graph op-
timization (Eq. 1 and 2). The smoothness cost is applied to
neighboring pixels if they are not divided by large depth dis-
continuities. Additionally, we want to ensure that the label-
ing of the global graph is exactly taken over to the individual
frames. An additional penalty is added to the data costs for
labels not present in the neighborhood of a pixel. Figure 3
shows several stages of optimizing a frame.

Each frame is handled individually and is completely
independent from other frames. This approach is memory-
efficient and multiple frames can be easily processed in paral-
lel. Depending on the application, it might be a problem that
small overlapping areas of different frames are inconsistently
labeled when there are no sharp features.



Fig. 5. Real-world scenes of a kitchen and an office. From
left to right: colored input frames, segmentation of sample
point graph, and all segmented frames.

Fig. 6. Block model: initally detected shapes, and result of
our optimization. The model is courtesy of AIM@SHAPE.

4. RESULTS

We have tested our algorithm on different input scenes. The
results show that basic shapes are successfully detected and
the depth maps are segmented along object boundaries. Fig-
ure 4 shows results on virtually created depth maps and real
world examples can be seen in Figure 5. Figure 6 shows
how our new optimization can improve the initially detected
shapes. In this case, especially the shape parameters of the
left horizontal cylinder have been improved and the left and
right cylinder have been merged. As can be seen in Table 1,
the frame optimization is the most time-consuming part of our
algorithm, but for some applications the global optimization
alone might be sufficient.

Kitchen Block Joint
Frames 104 20 30
Points/Frame 253777 133387 113271
Nodes 22809 6323 14104
Shapes 31 11 11
Init/Frame 0.637 0.256 0.365
Optimization 275.2 3.270 7.708
Opt/Frame 8.101 2.925 1.948

Table 1. Runtime measurements on processed models, exe-
cuted on an Intel Core i7, 2.67 GHz CPU. All timings are in
units of seconds. The frames have a resolution of 640x480
pixels, but not all pixels have a valid depth value.

5. CONCLUSIONS

We have presented a novel method for segmenting multiple
depth maps into basic shapes. We organize the data in a sam-
ple point graph, where we exploit information from depth im-
ages such as connectivity and knowledge about varying noise
levels. Our algorithm is memory and time efficient by divid-
ing it in a global optimization of the sample point graph and
individual optimizations of depth images.

In the future, we would like to combine our approach with
segmentation based on color information or object recogni-
tion. Our algorithm can be improved for ordered image se-
quences by including temporal information. Furthermore, we
would like to investigate if the registration can be improved
with the detected shapes.

6. REFERENCES

[1] P. F. Gotardo, O. R. Bellon, and L. Silva, “Range image
segmentation by surface extraction using an improved ro-
bust estimator,” in CVPR, 2003, vol. 2, pp. 33–38.

[2] M. Djebali, M. Melkemi, and N. Sapidis, “Range-image
segmentation and model reconstruction based on a fit-
and-merge strategy,” in 7th ACM symposium on Solid
modeling and applications (SMA), 2002, pp. 127–138.

[3] D. Marshall, G. Lukacs, and R. Martin, “Robust segmen-
tation of primitives from range data in the presence of ge-
ometric degeneracy,” PAMI, vol. 23, no. 3, pp. 304–314,
2001.

[4] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Effi-
cient Hierarchical Graph-Based Video Segmentation,” in
CVPR, 2010, pp. 2141 –2148.

[5] W. Chang and M. Zwicker, “Global Registration of Dy-
namic Range Scans for Articulated Model Reconstruc-
tion,” ACM Trans. Graph., vol. 30, pp. 26:1–26:15, 2011.

[6] M. Sormann, C. Zach, and K. Karner, “Graph Cut Based
Multiple View Segmentation for 3D Reconstruction,” in
3DPVT, 2006, pp. 1085–1092.

[7] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC
for Point-Cloud Shape Detection,” Computer Graphics
Forum, vol. 26, no. 2, pp. 214–226, 2007.

[8] I. Reisner-Kollmann and S. Maierhofer, “Consolidation
of Multiple Depth Maps,” in IEEE Workshop on Con-
sumer Depth Cameras for Computer Vision, 2011.

[9] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for
optimal boundary & region segmentation of objects in N-
D images,” in ICCV, 2001, pp. 105–112.


