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Figure 1: Visualization of a dynamic point cloud scene with 1 Million points. The raw point position data is streamed onto
the GPU, where our algorithm performs an instant surface reconstruction that produces surface-aligned splats for illuminated
rendering. The complete frame is computed in 94 ms at a resolution of of 1700 × 900 pixels.

Abstract

Capturing real-world objects with laser-scanning technology has become an everyday task. Recently, the acquisi-
tion of dynamic scenes at interactive frame rates has become feasible. A high-quality visualization of the resulting
point cloud stream would require a per-frame reconstruction of object surfaces. Unfortunately, reconstruction
computations are still too time-consuming to be applied interactively. In this paper we present a local surface
reconstruction and visualization technique that provides interactive feedback for reasonably sized point clouds,
while achieving high image quality. Our method is performed entirely on the GPU and in screen space, exploit-
ing the efficiency of the common rasterization pipeline. The approach is very general, as no assumption is made
about point connectivity or sampling density. This naturally allows combining the outputs of multiple scanners in
a single visualization, which is useful for many virtual and augmented reality applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.4.1 [Image Processing an Computer Vision]: Digitization and Image Capture—
Imaging geometry

1. Introduction

Laser scanning devices have become a common tool to ac-
quire 3D object geometry. Recent work [WLG07,WAO∗09]
has made it possible to scan dynamic objects in real time,
which allows for instant acquisition and processing of real-
life film sequences. This trend to more flexible acquisition at
ever increasing quality is very likely to grow in the near fu-

ture. Common applications can be found in the film industry,
rapid prototyping and augmented reality. The scanned point
clouds are typically converted to a polygonal mesh, which
is still a very time-consuming process. In particular, recon-
structing a complete mesh is not possible if dynamic point
clouds should be visualized directly from the scanner feed
or during editing operations. A different, well-established
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approach is to visualize point clouds directly. A continuous
surface can be obtained by drawing a splat for each point. A
splat is a circular or elliptical surface element that is aligned
with the surface tangent and covers an area according to the
local point density. This method requires knowledge of the
local surface tangents and point densities, which again im-
plies lengthy preprocessing.

In this paper, we propose a technique to interactively es-
timate the above splat parameters for every output frame on
the GPU. No prior knowledge is required about the incom-
ing points, except for their 3D positions (and optional col-
ors). We introduce a new screen-space algorithm to com-
pute the k nearest neighbors (KNNs) of each point for local
surface fitting. One main idea of our approach is to work
directly in screen space, utilizing the features of the com-
mon graphics pipeline to process many points in parallel.
Most importantly, working in screen space reduces the re-
construction workload to the required minimum, i.e., the vis-
ible points. Using a KNN search naturally accounts for sam-
pling problems that arise from noisy data or spatially varying
point density, for example, if point data coming from dif-
ferent sources are processed simultaneously. Furthermore,
outliers are identified and excluded in order to maintain a
high reconstruction quality. Our on-the-fly splat generation
for large, dynamic point data enables high-quality visualiza-
tions using state-of-the-art splatting techniques without any
preprocessing.

2. Related Work

A huge amount of work has been done in the field of point
rendering, and we refer the interested reader to an excel-
lent book [GP07] and surveys on this topic [Gro09, KB04].
Almost all existing techniques assume per-point normals as
input (and optionally splat sizes), with a few exceptions that
will be discussed below. In contrast, the main goal of this pa-
per is to interactively compute normals and splat radii on the
fly for the visible part of a given point set, to further apply
any appropriate point-rendering technique for visualization.

Numerous offline algorithms have been presented for
surface reconstruction for both static (e.g., Mullen et
al. [MDGD∗10]) and dynamic scenes [WJH∗07, SAL∗08,
LAGP09]. Mitra et al. [MNG04] gives a broad discussion
on normal estimation in noisy point cloud data and analyzes
the influence of the noise factor, error bounds and similar
factors. A further related problem is the consistent propa-
gation of normal orientations in point clouds. König and
Gumhold [KG09] proposed an offline algorithm.

In contrast to the above methods, we want to perform
the reconstruction online. Zhou et al. [ZGHG11] sample the
points into an octree structure and extract an implicit sur-
face. To obtain high resolution and thus high reconstruction
quality, the octree should tightly enclose the scene. For many
real-world applications, this is not easily possible, especially

considering large scanned data sets. A standard approach
for per-point splat estimation is to compute each point’s
k nearest neighbors and fit a surface in this neighboring
point set [HDD∗92]. For these methods, the performance-
critical part is the computation of the K-neighborhood for
a large number of points, which mostly requires spatial ac-
celeration data structures like grids or trees. Various tech-
niques have been developed to perform KNN-Search in-
teractively, mostly by utilizing modern graphics hardware
[ZHWG08, PLM10, QMN09, LTdF∗09, GDB08, JGBZ10].
While these approaches are able to reach fast peak perfor-
mances, their efficiency mostly depends on carefully chosen
parameters, which only perform well up to a certain data size
due to hardware limitations (number of threads per block,
shared memory occupancy, etc).

Aiming at a surface reconstruction for point cloud visu-
alization, it is not efficient to reconstruct the surface on the
complete data set, most of which might not even be visible.
Our approach thus tries to limit the necessary reconstruction
computations to the set of visible points. We compare our
method to the work of Zhou et al. [ZHWG08], who perform
a surface reconstruction on a deforming point model with a
constant number of points by building a kd-tree on the com-
plete point set and searching for the point’s KNNs on the
GPU in each frame. While fast performance can be achieved,
the user needs to choose an initial search radius to provide
an efficient reconstruction. Also, the KNN search efficiency
strongly depends on parameters that were chosen for the dif-
ferent stages in the tree build-up phase. As our technique per-
forms the KNN search after projecting the points in screen
space, we do not rely on user-defined input parameters for
KNN search acceleration. Furthermore, in our approach the
size of the rendered point set is not restricted by GPU mem-
ory as for an object-space based approach. Computations are
only bounded by scene complexity in image space.

Several point rendering methods apply a screen-space ren-
dering approach as we do [MKC07, RL08, DRL10], but as-
sume precomputed per-point normals as input. Some meth-
ods lift this restriction by also performing reconstruction in
screen-space: Diankov and Bajcsy [DB07] applied erosion
and dilation operations to fill holes, but the resulting image
quality is not very high. Kawata et al. [HK04] base their re-
construction on a downscaled image, which is not applicable
to input with varying point densities due to a user-provided,
fixed grid size.

3. Overview

Our system allows for instant high-quality visualization of
dynamic point sets from raw position data by performing a
per-frame computation of surface aligned splats. The input
to the algorithm is a set of n 3D points S = {xi,yi,zi|i= 1..n}
containing only the point positions of the current frame. In
addition, a parameter k defines the number of neighbors to
take into account for splat normal and radius estimation.
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Figure 2: Overview of the main steps of the algorithm

This parameter defines a tradeoff between feature preserva-
tion and noise reduction.

The complete computation pipeline consists of three main
phases, as depicted in Figure 2. First, each point is projected
to its 2D pixel position in the current output image, where its
3D position information is stored. Then, the occupied output
pixels are read back to a pixel position buffer that is used
to address the points in the screen in the following steps
without having to reproject the whole point cloud again. In
the next step, each screen point finds its k nearest neigh-
bors (Section 5). Based on the KNN, we perform surface
fitting by computing a normal and a radius for each point
(Section 6). Finally, we render the according splats to create
the output image (Section 7). Note that all above compu-
tations are performed directly in screen space, utilizing the
common graphics pipeline and programmable shaders to ef-
ficiently process points in parallel. In particular, the KNN
search and normal and radius computation use a new paral-
lel algorithm for communication between different screen-
space splats which we describe in Section 4.

4. Parallel Splat Communication

This section describes how neighboring points can ex-
change information through screen-space rendering opera-
tions, which is a central building block for the KNN compu-
tation and surface estimation. Van Kooten et al. [vKvdBT07]
use screen space splats in a particle system to distribute in-
formation from a point to all its neighbors within a given

influence radius. This is similar to the distribution pass we
describe below, but we also show how to efficiently gather
information from a point’s neighbors. Using both distribu-
tion and gathering allows us to iteratively compute the KNNs
of each individual point.

Let P be a point in world space and let r be a radius that
defines a neighborhood around P. We call any 3D point with
an Euclidean distance to P smaller than r a neighbor of P. In
screen space, this neighborhood projects to a general ellipse
on the view plane, which we approximate by a tightly cover-
ing 2D neighborhood box (Figure 3). This box is guaranteed
to contain the projections of all world-space neighbors of P.
A naive way for P to gather information from its neighbors
is to carry out texture lookups for all pixels covered by this
neighborhood box. However, this would be prohibitively ex-
pensive due to the large number of required texture lookups
especially for larger neighborhoods. We therefore introduce
a gathering operation that is based on a distribution pass:

Distribution To pass information from P to all its
neighbors in parallel fashion, we assign this information to
the rendered box splat. For each pixel containing a point in
the splat, we test (via a simple distance comparison) whether
this point is a neighbor of P in world space. If so, the as-
signed information is written to the respective pixel, other-
wise, the pixel is discarded.

Gathering If P needs to gather information from its
neighbors (an operation that is used multiple times in our
approach), we perform a distribution pass so that all neigh-
bors write their information into the pixel of P. Note that for
this task, since it is carried out for all points in parallel, the
radius of the sphere that defines the screen splat for a point Q
has to be the distance to the furthest point P that has Q as its
neighbor. We call this distance the feedback radius r f . Con-
trary to the distribution pass, for each point P covered by the
splat of Q we test whether Q lies within the neighborhood
sphere of P. If so, Q is a neighbor to P and we can perform
a feedback write at the pixel coordinates of P. To compute
r f for the neighbors of P, we perform a distribution pass that
writes the world-space distance |Q−P| to the splat pixel of
each neighbor Q. Using MAX-Blending, each point ends up
with the distance r f to the furthest point for which it serves
as neighbor.

Using distribution and gathering, we can accumulate in-
formation from each point’s neighbors in parallel. Note that
by the above definition, each point P is its own neighbor.
However, we can always choose whether to operate on the
entire neighbor point set or only on the neighbors Q 6= P, by
discarding a pixel at Q in the fragment program if it equals
the position of the distributing point P.

To minimize the number of fragment threads required for
splat communication, we take advantage of the hardware’s
Early-Z culling ability that is implemented in most mod-
ern GPUs. We only need the GPU to start a fragment thread
for the “non-empty” pixels within a neighborhood box, i.e.,
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Figure 3: Projecting the sphere (P,r) to the viewplane re-
duces the search space for the neighbors of P inside r to
an elliptical region containing all points inside the frustum
that is defined by the ellipse. An inside-outside test with the
sphere on each point in this region yields the neighbors of P.

those which actually contain a projected point. To achieve
this, we create a depth mask in the z-buffer at the time of ini-
tial point projection, which causes all empty pixels to fail the
depth-test and to not launch a fragment thread. The remain-
ing pixels in the neighborhood box contain both true neigh-
bors (actually within world-space range) and false neigh-
bors, as depicted in Figure 3.

To further increase the efficiency, the depth buffer is set
up in a way that allows the hardware to discard about 50%
of false neighbors at Early-Z: After initial projection at the
beginning of each frame, the depth buffer contains the nor-
malized depth footprint for all visible points and depth 1
for all empty pixels. When drawing the splat that defines
the neighborhood box for a given point P in the screen, we
pass its fragments a biased depth z′P = f (zP + r), where zP
is the view space z-coordinate of P, r is the neighborhood
radius that defines the communication range of P, and f is
a mapping from view-space depth to clip space depth. Set-
ting the depth comparison function to “GREATER” lets the
z-buffer cull all points at Early-Z that lie beyond the depth-
border represented by z′P (see Figure 4), while still main-
taining Early-Z discards for empty pixels. Note that depth-
writes have to be disabled during the whole splat commu-
nication phase of the algorithm to maintain the state of the
initial depth footprint.

5. Neighborhood Computation

We define the k-neighborhood of a point P by the k-radius rk
that encloses the k nearest neighbors of P. Once this radius
is found, we are able to perform operations on the KNNs in
parallel by using it as communication radius threshold for
the distribute and gather mechanisms in our system. The k-
radius rk is found by an iterative range search in the non-
continuous, monotonically increasing neighbor-count func-
tion σ(r) over the radii r. Starting with an initial estimator r̃0,
in each iteration, the number of points in the current range is
determined and used to update the search range until a range
r̃i is found that counts σ(r̃i) = k points.

zP zC zP‘ znear zfar

r

zD

Figure 4: P communicates with its neighbors within a range
r by rendering a neighborhood splat, which in screen space
contains false positives A and D. By choosing a splat depth
of z′P, depth test discards all splat fragments containing
points with z > z′P. Thus, D is Early-Z culled.

5.1. Initial Estimator

Having a good estimator for the initial range r̃0 is critical for
fast convergence of the iterative search. We propose an auto-
matic approach to determine r̃0 individually for each point,
which is important for scenes with spatially varying point
densities. In contrast, in their online surface reconstruction
technique, Zhou et al. [ZHWG08] require the user to man-
ually set r̃0, and to obtain correct results, their approach re-
quires r̃0 to be conservative, i.e., encompass rk.

We apply a screen-space approach to obtain r̃0: A low-
resolution grid that contains the projected points is laid over
the screen, and the number of points within each grid cell
is counted by performing an accumulation pass. Each frame,
the grid resolution is chosen based on the current point count
in such a way that on average, k screen points fall into one
cell. For each grid cell, we choose r̃0 based on its point den-
sity. Since we presume to operate on points that describe an
object surface, it makes sense to assume a two-dimensional
distribution of the points within a cell. Let A be the cell’s
pixel area and n the number of points in that cell. The aver-
age cell area covered by k points is estimated by A k

n , and the
pixel radius rscreen of a circle covering the area of k points
by

rscreen =
√

A
π

k
n .

The initial world-space estimator r̃0 of a point can then be
derived by unprojecting rscreen based on the point’s view-
space depth. If the points in the cell describe one single
unwrapped surface, this estimator roughly pinpoints the ex-
pected KNN radii. On the other hand, if several depth layers
are projected to the screen (e.g., the front- and the backfac-
ing part of a closed object), the number of cell points will
be too high. This is acceptable, however, since in the worst
case, this estimator causes the initial screen splat defined by
r̃0 to be smaller than intended, and it will be expanded in the
next step.
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Figure 5: K-radius search algorithm and textures used for
data writes and reads. The texture boxes show the stored
main information and the used blend modes. After each iter-
ation, the number c of converged points is counted. Iteration
is finished if c exceeds some desired threshold tconv.

5.2. Iterative Radius Search

Figure 5 illustrates the iterative k-radius search. For each
point, we use the initial estimator r̃0 as starting value for
searching the target value rk on the function σ(r). Similar
to a histogram-based KNN search in a kd-tree [ZHWG08],
the search is performed using a multi-sampled bracketing
approach that iteratively narrows the location of rk by two
bounding radii a (lower bound) and b (upper bound). In
every iteration, each point’s upper bound defines its cur-
rent neighborhood. The number of neighbors σi within this
neighborhood can be queried using a distribution pass to the
neighbors to obtain the corresponding feedback radius r f i.
A following gathering pass with r f i-sized feedback splats
then accumulates a counter from each neighbor, yielding
the current neighbor count σi. Instead of taking just one
neighbor-count function sample σi at b, multiple samples
{s j| j = 1..m} are taken at m regular steps between a and
b. The total number of neighbors σi is therefore represented
by sm. To query multiple samples, m feedback counters are
accumulated in each gathering pass, stored in several tar-
get texture channels in the radius textures (we use m = 4 in
our implementation). Multisampling results in faster conver-
gence since in each iteration it significantly raises the chance
to find rk and allows for a much tighter narrowing of the
bounds. Based on the current bounds ai, bi and the counter
samples {s j}, the adapted bounds ai+1, bi+1 for the next
iteration are then computed. This adaptation occurs in two
phases:

Expanding As long as σi < k holds, b is enlarged.
The new upper radius bound b is chosen by extrapolating
the current neighbor count σi to k assuming a constant two-
dimensional point density. This linear relation between sur-
face area and point count yields the radius increase factor

α =
√

k
σi

.

Bracketing For a point count σi > k, a and b are iter-
atively narrowed until a radius with corresponding neighbor
count sample s j = k is found. Bracketing is necessary to en-
sure a view-independent reconstruction. A faster but more
naive approach would be an approximate nearest neighbors
search that stops after the expanding stage and uses the re-
sulting neighbor count κ ≥ k for reconstruction. However,
since the iterative search is initialized based on the point dis-
tribution in image space, this would lead to a different κ and
thus a different splat reconstruction under different views,
resulting in temporal flickering artifacts under camera move-
ment, even for static point scenes.

Implementation Details We use a single feedback tex-
ture TF and two radius textures TR1,2 to store all required
data. Besides the texture data shown in Figure 5, additional
data is stored and ping-ponged between TF and TR, e.g., the
current radius bounds a and b. Using separate blend func-
tions for the RGB and the alpha channel, we achieve accu-
mulating {s j}, MAX-computing r f , and passing along the
additional data at the same time. To reduce fragment writes
to a minimum, we do not actually feed back the counters
from every neighbor within b, but only from those located
within the delta region between a and b. To obtain the re-
quired counter samples {s j}, we also store the last neighbor
count at a and add it to the accumulated counters. If a con-
verged point is about to distribute, a 1-pixel sized splat is
drawn to still pass along the converged k-radius result until
iteration is finished. Similarly, if a point that accumulated a
zero r f i is about to feed back, a 1-pixel splat is required to
pass along the point’s data. The number of converged points
is efficiently counted using occlusion queries by looking up
each point’s current data in the radius textures and emitting
a fragment if it is found to be converged.

5.3. Robustness

This section discusses some robustness issues that arise in
noisy scenes with many outliers and due to the information
loss we trade against performance when reconstructing on a
point set reduced through screen projection.

Outliers Points in the framebuffer that have no neigh-
bors in their immediate neighborhood can appear due to out-
liers in the point data set (e.g. scanner data) or because their
neighbors are occluded by closer points in the depth buffer.
In the expanding phase of the iterative search for rk (Section
5.2), such points would continuously increase their search
radius r̃ without finding any neighbor. This leads to huge
screen splats when projecting the search sphere onto the
framebuffer, which can significantly reduce performance.
Generally, for our approach the classification of such points
is undecidable, since during iterative search we cannot dis-
tinguish between outliers with no real neighbors and points
belonging to a coarsely sampled surface whose neighbors
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Figure 6: Comparison of a bunny model rendered with Auto
Splats (left) and with precomputed normals using the same
normal and radius estimation procedure (right).

have just not been found yet. To reduce visual artifacts pro-
duced by outliers, we discard points with no neighbors after
a certain number e0 of expanding iterations. In all our test
scenes we found that e0 = 3 ∼ 4 is sufficient for a good re-
construction.

Small Point Groups Outlying point groups containing
κ < k points represent a similar problem as single outlier
points. To prevent our system from expanding the search
radii up to k neighbors by bridging large gaps with no points,
the radius expansion is further constrained. In each search it-
eration, the distance dmax of the furthest current neighbor is
tracked. If the circular area defined by the expanding search
radius r̃i grows by a certain factor λ without finding a new
neighbor, expansion is aborted and the radius rk is clamped
to the reduced κ-neighborhood rκ = dmax. In our scenes we
used a λ = 4 to cover surfaces of moderately irregular point
distribution while avoiding too large bridging splats.

6. Surface Fitting

The supporting plane of the splat attached to a point P is
computed by fitting a plane π to the set of points S = {xi|i =
1 . . .k} in a local neighborhood of P by using linear regres-
sion [HDD∗92]. A common method to find the parameters
of π in the form π : n · (x− x̄) = 0 is to compute x̄ as the
mean

x̄ =
1
k ∑

i
xi (1)

of the point set S, and n as the eigenvector to the lowest
eigenvalue of the scaled covariance matrix

cov(S) = ∑
i
(xi− x̄)(xi− x̄)T . (2)

With the KNN radius rk at hand, this computation can be
carried out in three steps in our system (see Figure 2):

Mean Accumulation First we perform a gathering pass
that accumulates the mean x̄ of the points in the neighbor-
hood of P by ADD-blending each neighbor’s world-space

Figure 7: Reconstruction quality in a scene exhibiting large
differences in point density, here showing a Stanford Bunny
sitting on the head of another, larger Bunny (left top). Sur-
face aligned splats can be computed for both the large scale
and the small scale model (left bottom). In the right image,
splat size was scaled down for better visibility of the splats.

position as well as the counter value 1 for counting the num-
ber of accumulated values (Equation 1). The latter is neces-
sary since we cannot be completely sure that each point has
found exactly k neighbors in the KNN-radius computation
pass before (see also Section 5.3).

Covariance Accumulation In a second gathering pass,
we accumulate the terms required for summing the covari-
ance matrix from all neighbors (Equation 2). Each neighbor
contributes the symmetric matrix (x− x̄)(x− x̄)T , where the
mean x̄ is calculated by dividing the accumulated position by
the counter value calculated in the previous pass. Since the
covariance matrix is symmetric, it is sufficient to accumulate
only the 6 values of its upper triangle matrix, which can be
stored compactly within only two render-target textures.

Eigen Solving A final per-pixel pass reads the covari-
ance values and computes the eigenvector to the least eigen-
value using a standard eigensolver procedure [Ebe11] in a
fragment shader program. This eigenvector defines the non-
oriented normal of the supporting plane of the splat. Since
we do not intend to consistently reconstruct the complete
surface, but only the visible parts of the point cloud needed
for rendering, we simply orient the normals towards the eye
point. We can also render elliptical splats by additionally
computing the remaining two eigenvectors, which represent
the minor and major axes of the ellipse. The fraction of their
two eigenvalues is used as the proportion of their respective
lengths [Paj03].

To determine the splat radius, we use a quick estimator
based on the average area coverage of the points in the lo-
cal neighborhood. At k neighbors, the radius of a circle en-
closing the average area covered by each neighbor is defined

by r =
√

rk
2

k . We choose the splat radius to be the average
distance between neighboring points, which we approximate
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Figure 8: A huge laser scan of a cathedral (∼500M points)
rendered by an out-of-core point renderer with Auto Splats.
The renderer streams an amount of∼10M points to the GPU
each frame.

by rsplat = 2r. For elliptical splats, this value is used for the
length of the semi-minor axis.

7. Auto Splat Rendering

After surface reconstruction has finished, we can use the
splat normals and radii for rendering using any existing
splat-based rendering technique. We implemented Surface
Splatting using Gaussian Blending (see [BHZK05]). This
method employs three passes: First, a visibility pass produc-
ing a depth map; second, an attribute pass that uses the depth
map for proper occlusion culling and front-surface attribute
accumulation, and last, a normalization and shading pass,
that applies deferred shading computation. In the following,
we describe two extensions to the technique which improve
the quality and speed of rendering reconstructed splats.

Depth Refinement Our reconstruction started with a
rendering of all points as one-pixel sized point primitives. In
this rendering, there are regions where the foreground sur-
face is quite densely sampled, but there are still holes where
pixels from background surfaces are visible. Most of the ac-
tual neighbors of these background pixels are occluded by
foreground pixels, and therefore KNN estimation can pro-
duce large splats, which can lead to artifacts because they
extend beyond the silhouette of the foreground surface in the
final rendering. Because these points appear mostly in back-
facing or occluded regions, we can get rid of most of these
artifacts by using vertex-based occlusion culling against the
initial depth map. Unfortunately, since the depth map from
the first visibility pass is rendered with those incorrect splats,
the visibility information in the depth map might be corrupt
and we would miss a number of surface points for rendering.

Thus, we extend the usual surface splatting pipeline by an
additional depth buffer refinement stage that produces an im-
proved depth map without artifacts. This is done by two ad-
ditional depth passes. First, all points in the screen are culled
against the initial coarse depth map to render a new, mostly
artifact-free depth map. Then, we cull the points against this

Figure 9: Left: Autosplatted image of a range scan of the
Imperia Statue. Right: closeup on a part of the statue, visu-
alizing the curvature estimates for the points. Like normals
and splat radii, curvature is dynamically computed from the
KNNs provided by our algorithmn.

second map to remove possible holes and obtain a final re-
fined depth map which is used as input for the attribute pass.

Grid Culling In larger point clouds with higher depth
complexity of the reconstructed scene, we often face the sit-
uation that due to perspective projection, the foreground sur-
face is sampled only sparsely in screen space, while back-
ground surfaces densely cover the screen. This can become
inefficient in our framework, as we would spend most of the
time reconstructing the background surfaces, which will fi-
nally be culled against the foreground surface. To improve
such scenarios, we apply a simple optional approximate
culling technique based on the low-resolution grid used to
accumulate densities for the initial KNN radius estimator
(see Section 5.1). While accumulating point counts in this
grid, we also determine the depth di of the nearest point per
grid cell i. For each cell, a culling plane is then defined at
depth d′i = di + si to set all culled points in passive state.
Here, si represents the unprojected side length of screen cell
i in world space at depth di. We then apply reconstruction
(KNN search, fitting, visibility) only for the remaining ac-
tive points. The passive point set is, however, still used for
communication with the active points, i.e., they are still in-
volved in gathering passes (KNN search, fitting) to maintain
a correct reconstruction for the active set. The depth map
obtained from the active set can then be used to perform an
accurate culling pass for the passive points, and apply re-
construction for the small set of points incorrectly classified
by the approximate culling step. For large point clouds, the
overhead incurred for the additional reconstruction pass is
easily outweighed by the reduced workload in the first pass.
We have observed a speed-up of up to 60% for large scenes.
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Figure 10: Performance decomposition of the computation
pipeline for our test scenes for different neighborhood sizes
K and 99.9% convergence. The main part of the frame time
is drawn by the KNN search. The actual time for plane fitting
lies in the magnitude of the final splatting stage. The horses
and the cathedral scene were drawn using grid culling.

%

Figure 11: Convergence behaviour of the k-radius search.
The y-axis denotes the percentage of unconverged points be-
fore each iteration.

8. Results and Discussion

8.1. Reconstruction Quality

Figure 6 compares the reconstruction quality of Auto Splats
with preprocessed normals that were computed using the
same neighborhood size and normal and radius estimation
procedure than used in our algorithm. Despite some minor
artifacts due to information loss at silhouettes, we observe
a similar visualization. Since we are especially interested in
the algorithm’s behavior in scenes with point sets of strongly
varying sample densities, we placed two bunny models with
a large difference in scale into the same scene (Figure 7).
Note that we reduced the splat radii in this image for bet-
ter visualization of the reconstructed splats. Our algorithm
is able to perform a reconstruction that correctly adapts the
splat sizes to the local point densities in world space with-
out relying on user input. Note that in the method of Zhou
et al. [ZHWG08], such a scene can only be rendered with-
out artifacts if the user-specified initial radius estimator r̃0
is chosen large enough for the larger model, which is very
inefficient for the smaller model.

8.2. Performance

The performance of our system has been profiled for four
different scenes (Figures 6, 9, 1 and 8) exhibiting different

Points Pixels kdTree AS Speedup
Scene # # ms ms p.pt. ALL
Bunny 36K 34K 14 9 1,47 1,56
Imperia 546K 291K 95 37 1,37 2,57
Horses 1M 690K 169 117 1,00 1,44
Horses* 1M 690K 169 71 1,64 2,38
Cathedral 10M 1.3M - 264 - -
Cathedral* 10M 1.3M - 123 - -

Table 1: k-radius search times in ms at k = 10 achieved
with Auto Splats compared to a GPU kd-tree [ZHWG08]
with supposed preknown ideal parameters. The horse and
the cathedral scene were measured both with* and without
grid culling. The kd-tree times represent time for tree build-
up plus k-radius search. Speedups are listed per element
(p.pt), i.e., per point or pixel, and overall (all), i.e., taking
into account the savings of handling only visible points in
Auto Splats.

characteristics in the geometry and density of the points. All
measurements have been taken at a resolution of 1760x900
(Imperia was rendered in portrait format) using a GeForce
GTX580 Graphics Card with 1536MB VRAM and an Intel
i7-930 CPU with 2.8 GHz. Figure 10 shows the required ren-
dering times for the test scenes at different neighbor counts
and decomposes the frame computation times according to
the amount of time spent in each pass. The main part of the
computation time is spent in the KNN search stage. For the
shown test scenes, our KNN search requires about 7–10 iter-
ations to converge for 99,9% of the points at k = 10. More-
over, as depicted in Figure 11, we observe a characteristic
convergence graph that is common to all our test scenes, in-
dependent of the number of points. It can be seeen that gen-
erally, 6–7 iterations already provide a good quality.

We also compared the performance of our method to
the GPU kd-tree of Zhou et al. [ZHWG08], which also al-
lows reconstructing some point-based models on-the-fly. We
reimplemented this method and analyzed its performance
characteristics. Since tree build-up parameters are not re-
ported in the paper, we provide a best-case comparison for
their method. We profiled the tree build-up and k-radius
search using several parameter combinations (including the
user-specified initial range r̃0) for our test scenes. As sug-
gested by the authors, we used a histogram resolution of
nhist = 32 and niter = 2 range search iterations. We picked
the lowest achieved timings that came reasonably close to
the k-radius accuracy of 99,9% we use in our scenes and
compared them to the timings of the KNN-search in the Auto
Splatting system (Table 1). Note that the kd-tree timings in-
clude the tree build-up since we assume dynamic scenes. In
all scenes, our system outperforms the GPU kd-tree variant.
On the one hand, this is explained by the fact that our sys-
tem performs the search only on the reduced set of visible
points. On the other hand, even assuming the same number
of points (by considering the average time spent on a KNN-
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Figure 12: A dynamic object scanned by three scanners.

query for a point), Autosplats provide a speedup over GPU
kd-trees. Furthermore, the GPU kd-tree algorithm was not
able to handle larger scenes like the Cathedral scene at all.

8.3. Applications

Real-Time Scan Visualization One application where
our technique is especially useful is the setup of real-world
scanning sessions of static and dynamic content, possibly
using multiple scanners. We simulated such a setup, as de-
picted in Figure 12. A dynamic object is scanned by up to
four scanners, each providing a registered 3D point cloud
(assuming mutual scanner registration). The scanners simu-
late varying amounts of Gaussian noise. The auto-splatting
technique allows us to display the scanned surfaces with
high quality in real time. This enables positioning the scan-
ners for optimizing surface coverage and minimizing occlu-
sions in a scene during a film sequence, for example. In addi-
tion, we can apply helpful visualization techniques, like the
size of the K-neighborhood as depicted in Figure 12, where
the red spectrum suggests too sparse sampling. Note that for
such scenarios, we can turn off the outlier removal of our
system to not distort the result. We believe that in the near fu-
ture, more real-time scanning devices will be available (like
Microsoft Kinect), making a fast but high-quality preview
particularly important for many film, VR and AR applica-
tions.

Normal and Curvature Estimation Preview Offline
algorithms performing normal or curvature estimation on
massive point datasets can require up to several hours of pro-
cessing time. However, the reconstruction quality of the hole
dataset is not known in advance and errors in the choice of
the parameters that could require a recomputation are often
only recognized after the processing is finished. Our algo-
rithm can be used to provide an instant preview of the re-
construction of different parts of a data set by an interactive
walk-through. A user might wish to test different parame-
ters for the k neighborhood to find a smooth but still feature-
preserving optimum, or wants to analyze whether a certain
parameter choice leads to uneven quality among the points.
See for example Figure 9 for an instant visualization of cur-
vatures.

Modeling Applications Applications that allow the

user to modify the point cloud cannot rely on a lengthy pre-
processing phase for normal vector estimation. An example
is an application that allows archaeologists to modify a scene
to experiment with different reconstructions of an archaeo-
logical site.

8.4. Discussion and Limitations

Our design choice to locally reconstruct surfaces based on
the points sampled in screen has many advantages. For ex-
ample, there are practically no parameters that influence the
reconstruction quality (except for k for the KNN search),
making the system readily useful for many applications. On
the other hand, because each pixel only stores the front-most
point, a number of points get lost. Generally, this is inten-
tional, especially in large or dense point clouds with high
pixel overdraw where we only want to perform computation
on the the potentially small fraction of visible points in the
front. However, not storing a point can become a problem if
either its splat would still contribute to the final rendering, or
it would contribute to the normal direction of a visible splat
in its neighborhood. This can happen for example at object
silhouettes where spatially neighboring points can get raster-
ized to the same image pixel, leading to misaligned splats.

Another limitation is that we currently do not account
for splat orientation, as this would require computing a
minimum spanning tree in the weighted K-neighborhood
graph [HDD∗92], which seems too costly for a real-time
setup. This sometimes leads to wrongly illuminated splats,
mostly at silhouettes. We are currently investigating meth-
ods to reduce these artifacts.

9. Conclusions and Future Work

We have presented an algorithm for producing interactive
high-quality visualizations from dynamic point clouds by
performing a surface reconstruction of the point clouds on
the fly. Our algorithm uses the frame buffer as search data
structure for nearest-neighbor computation. This comes with
the advantage that we obtain a reduced subset of the possibly
huge amount of points in the scene for reconstruction. The
main strength of our algorithm is that it can be used to in-
teractively render reconstructions for point clouds from any
source, including dynamic point clouds from real-time scan-
ners, or point data from an out-of-core rendering system.

We have shown that our method outperforms a GPU-
based kd-tree approach for KNN search in each of our tests,
even if the parameters required for the kd-tree are chosen
favorably. Our method, on the other hand, does not require
manual parameter tuning, and also works for larger scenes.
In the future, we want to investigate ways to reduce the re-
maining small artifacts that can appear at object silhouettes,
where information for fitting is lost. Also, we will investigate
methods to choose k adaptively in order to further increase
visual quality.
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