Image-Based Approaches for Façade Modeling

Przemyslaw Musialski

Institute of Computer Graphics and Algorithms Vienna University of Technology

What is Façade Modeling?

- Part of Urban Reconstruction
- Creating digital models of real cities
- Cities are large collections of man-made objects at many LODs

Possible Applications

- **Cyber-Tourism**
- **Computer Games**
- **Movie-Industry and Entertainment** Industry
- **Digital Maps and Routing**

- **City-Planers and Architects**
- **Archeological Research**
- More Sciences (Sociology,...)

Image-Based Approaches for Facade Modeling

Challenges

Quality

Demand of realistic quality and high LOD

• Scalability

There are many buildings out there...

Ease of Creation

Non-experts should be able to create content

Full Automation

Chicken or Egg problem
 (e.g. Top-Down vs. Bottom Up)

 A Survey of Urban Reconstruction [MWA*2012] In EG2012 STAR Proceedings

Why Image-Based?

• Easy to acquire (cheap)

- Imagery is essential in Urban Reconstruction
 - For a realistic look
 - As source for reconstruction

Image-Based Approaches for Facade Modeling

Why Interactive Modeling?

• Quality

- Interactive: yes

• Scalability yes? - Interactive: no-

Automatic: no

Automatic: yes

- Ease of Creation
 - Interactive: somewhat
- Full Automation
 - Interactive: no

Automatic: somewhat

Multi-View Façade Image Editing

8/22/2012

Motivation

• Texturing of urban scenes:

- near orthographic projection
- from typical photos
- high quality

Multi-View Façade Image Processing

Multiview Projective Texturing

• Musialski et al. [MLS*10]

Input: Typical, perspective Photographs

Structure-From-Motion

Sparse Reconstruction

Plane Fitting

Image Projection

Interactive Boundary Adjustment

Multi-View Projection

Accumulate in an "Image-Stack"

Image Stack

For each photo (per target pixel)

- 1. evaluate projection quality **q**
- 2. generate occlusion weight **o**
- 3. insert to sorted image stack with *oq*

Image Stack

For each photo (per target pixel)

- 1. evaluate projection quality **q**
- 2. generate occlusion weight **o**
- 3. insert to sorted image stack with *oq*

Image Stack

For each photo (per target pixel)

- 1. evaluate projection quality **q**
- 2. generate occlusion weight **o**
- 3. insert to sorted image stack with *oq*

Multi-View Stitching

• Color space stitched image

• Stitched gradients

Reconstructed image

Interactive Brushing

Interactive Brushing Video

Point Occlusion

- points in front of buildings not part of the facade
- project points to target
- occlusion weight per photo

Section.

Summary

- fast high-quality façade textures
- interactive texture cleanup
- part of complex urban reconstruction pipeline

Façade Image Repair

8/22/2012

Image-Based Approaches for Facade Modeling

Motivation: Occlusion in Images

Motivation: Occlusion in Images

- occluders are a common problem
- especially if only a single view is available

Overview

Input Image

Overview

Input Image

Output Image

8/22/2012

Symmetry Propagation

- Process in x and in y directions independently
- we consider only translations
- infer the symmetry neighborhood for each pixel from the dominant offsets
- collect the symmetry neighborhood of each pixel

Optimization: Outlier Detection

Optimization inspired by Expectation Maximization:

Iteratively compute

$$\mathbf{x}_{i} = \underset{\mathbf{x}_{i} \in \mathcal{S}_{x}}{\arg \max} K\left(\|\mathbf{x}_{i} - \bar{\mathbf{x}}\|^{2} \right)$$

- Remove \mathbf{x}_i
- Recompute mean $\bar{\mathbf{x}}$
- Proceed until $\bar{\mathbf{x}}$ does not change below some threshold

• Symmetry-based façade image repair

• Symmetry-based façade image repair

8/22/2012

Image-Based Approaches for Facade Modeling

Symmetry-based façade image repair

Results

- limited to regular facades
- optimization does not always converge to a nice result

Interactive Coherence-Based Façade Modeling

8/22/2012

• Reconstruction of Façade Models

Input: Ordinary Photo \implies Output: Computer Model

Our Approach

Interactive modeling process

- Input: Single rectified image
- Incorporates the user from the beginning
- Utilizes symmetries across the image
 - Coherence-Based Modeling
- Two crucial operations
 - Automatic Façade Split Operator
 - Synchronized Group Operator

Modeling Process

Modeling Process

Coherence-Based Modeling

Two Crucial Operations

- Automatic Façade Split Operator
 - Also allows automatic selection of similar elements

- Synchronized Group Editing Operator
 - Propagates splits to all instances in a group

Idea: handle the pixel rows as as row vectors!

Input Data Points

- perform **clustering** on rows of the image
- we use agglomerative bottom-up clustering
- number of clusters chosen by the user
- no connection in the spatial domain

- perform a regularization process to the clustering result
 - \rightarrow minimize the boundary between the clusters
- we use dynamic programming (DP)
 - \rightarrow finds minimal energy path between cluster in spatial domain

Automatic Façade Split

- it delivers spatial segmentation
- and, since pixel-rows have cluster IDs
 - \rightarrow also grouping of similar objects

Automatic Façade Split

can be performed for x and y separately

Synchronized Group Editing

- elements with the same cluster-id provide candidates for groups
- groups can be edited
 in a synchronized
 manner

Synchronized Group Editing

- Simply propagate the relative split positions to all members in a group
- Works only if the topology of all shapes is the same
- Other splits possible, but release the grouping

- each element is still a separate instance

- Polygonal shapes at the lowest hierarchy level

- Can also be edited in a synchronized manner

Evaluation

- 7 Test Façades edited to the same LOD
- 5 Modeling Modes:
 - Manual Modeling
 - Edge-Based Interactive
 - (CGA-Grammar-Based)
 - (Coherence-Based Manual)
 - Coherence-Based Interactive
- Metric:
 - Split Ops Count
 - Modeling Time
 - (Select Ops Count)

Evaluation: Split Operations

960 Shapes

4351 Shapes

Image-Based Approaches for Facade Modeling

Evaluation: Split Operations

Split Operations Count

Modeling Time in Minutes

Conclusions

- Problems of automatic segmentation:
 - Splitting heuristics are not robust enough
 - Post-processing of automatic segmentation is time consuming, since errors have to be:
 - localized
 - fixed

Advantages of the incorporation of the user:

- Much better high-level structure
- Less time consuming than fixing
- Higher LOD and quality
- Advantages of coherence-based modeling:
 - More flexibility to combine partial symmetries
 - More stable splitting results

• Yes, the presentation is over.

• No, there is still planty to do in the future!

Future Work

- Other Façade Modeling Approaches
 - Façade Parsing
 - Teboul et al. [TKS*11]
 - Grammar + Machine Learning
 - Inverse Procedural Modeling
 - Aliaga et al. [ARB07]
 - Interactive + Grammar Rules

- Explore further, integrated methods for
 - Scalable and easy user interaction (e.g. sketching)
 - As automatic as possible methods

Thank you! Questions?

