

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

A Survey of Urban Reconstruction

Przemyslaw Musialski Peter Wonka Daniel G. Aliaga Michael Wimmer Luc van Gool Werner Purgathofer

Who are the Authors?

- Przemyslaw Musialski:
 - Postdoc (TU-Wien/ASU), formerly researcher at VRVis
 - Field: Graphics, Image Processing
- Peter Wonka
 - Associate Prof (ASU/KAUST)
 - Field: Graphics, Image Processing

Daniel Aliaga

- Associate Prof (Purdue University)
- Field: Vision, Graphics

Michael Wimmer

- Associate Prof (TU-Wien)
- Field: Graphics
- Luc van Gool
 - Full Prof (ETH Zurich & KU Leuven)
 - Field: Vision, Photogrammetry & Remote Sensing
- Werner Purgathofer
 - Full Prof (TU-Wien) and Scientific Director (VRVis)
 - Field: Graphics

What is Urban Reconstruction?

- Creating digital models of real cities
- Cities are large collections of man-made objects at many LODs

Possible Applications

- Cyber-Tourism
- Computer Games
- Movie-Industry and Entertainment Industry
- Digital Maps and Routing
- City-Planers and Architects
- Archeological Research
- More Sciences (Sociology,...)

Scope

We cover geometric reconstruction

- Graphics, Vision and some Photogrammetry & Remote Sens.
- Different Levels of Detail
- Interactive and Automatic Methods

We do NOT cover

- Manual Reconstruction (CAD-Modeling)
- Procedural Modeling
- Mobile- and Mapping-Technology
- Geo-Sciences
- Architecture & Civil Engineering
- Hardware, Sensors, Electrical Engineering

Contributions from Different Fields:

Computer Graphics

- Usually Interactive Modeling
- Inverse Procedural Modeling
- (Procedural Modeling)

Computer Vision

- Automatic Reconstruction
- Inverse Procedural Modeling
- Photogrammetry and Remote Sensing
 - Measuring and Documenting the Earth

Input Data

Challenges

Full Automation

- The Chicken-Or-Egg Dilemma
- Top-Down versus Bottom-Up

Quality and Scalability

- User-Interaction does not scale well
- Fully-automatic systems lack production quality

Acquisition Constraints

- Real buildings are often not easy to capture
- Occlusions, Reflections and other obstacles

• A. Point Clouds & Cameras

- Fundamentals of Stereo
- Structure from Motion
- Multiview Stereo

• B. Buildings & Semantics

- Image Based Modeling (IMB)
- LiDAR-Based Modeling
- Inverse-Procedural Modeling (IPM)

• C. Façades & Images

- Façade Image Processing
- Façade Parsing
- Façade Modeling

D. Blocks & Cities

- Ground Based Reconstruction
- Aerial Reconstruction
- Massive City Reconstruction

A. Point Clouds & Cameras

• A. Point Clouds & Cameras

- Fundamentals of Stereo
- Structure from Motion
- Multiview Stereo

• B. Buildings & Semantics

- Image Based Modeling (IMB)
- LiDAR-Based Modeling
- Inverse-Procedural Modeling (IPM)

C. Façades & Images

- Façade Image Processing
- Façade Parsing
- Façade Modeling

D. Blocks & Cities

- Ground Based Reconstruction
- Aerial Reconstruction
- Massive City Reconstruction

B. Buildings & Semantics

Image-Based Modeling LiDAR-Based Modeling Inverse Procedural Modeling

• A. Point Clouds & Cameras

- Fundamentals of Stereo
- Structure from Motion
- Multiview Stereo

• B. Buildings & Semantics

- Image Based Modeling (IMB)
- LiDAR-Based Modeling
- Inverse-Procedural Modeling (IPM)

C. Façades & Images

- Façade Image Processing
- Façade Parsing
- Façade Modeling

D. Blocks & Cities

- Ground Based Reconstruction
- Aerial Reconstruction
- Massive City Reconstruction

• A. Point Clouds & Cameras

- Fundamentals of Stereo
- Structure from Motion
- Multiview Stereo

• B. Buildings & Semantics

- Image Based Modeling (IMB)
- LiDAR-Based Modeling
- Inverse-Procedural Modeling (IPM)

C. Façades & Images

- Façade Image Processing
- Façade Parsing
- Façade Modeling

D. Blocks & Cities

- Ground Based Reconstruction
- Aerial Reconstruction
- Massive City Reconstruction

D. Blocks & Cities

Aerial Reconstruction

Massive City Reconstruction

Camera Model

- Central Projection
- Pinhole Camera

- What is Camera Calibration?
- Calibration means to obtain the parameters:
 - Intrinsic Calibration:
 - Projection Parameters
 - (Focal Length, etc.)
 - Using Markers we can infer intrinsic parameters

- What is Camera Calibration?
- Calibration means to obtain the parameters:
 - Intrinsic Calibration:
 - Projection Parameters
 - (Focal Length, etc.)

- Extrinsic Calibration (Pose Estimation)
 - Pose of the camera in the world space

- What is Camera Calibration?
- Calibration means to obtain the parameters:
 - Intrinsic Calibration:
 - Projection Parameters
 - (Focal Length, etc.)

- Extrinsic Calibration (Pose Estimation)
 - Pose of the camera in the world space

- What is Camera Calibration?
- Calibration means to obtain the parameters:
 - Intrinsic Calibration:
 - Projection Parameters
 - (Focal Length, etc.)

- Extrinsic Calibration (Pose Estimation)
 - Pose of the camera in the world space
 - Can be determined from
 5 (7) image correspondences

Stereo Geometry

- Given is the point x1 on the image
- How to determine the 3D point X?

Stereo Geometry

We need a second image with x2 corresponding to x1

Stereo Triangulation

Structure from Motion

- Only images as input
- A high number of images can be registered
- A high number of points can be triangulated
- Since images where taken with a camera in motion

→ Structure from Motion (SFM)

Structure from Motion

- Input: set of images
- Challenges:
 - Correspondence Problem
 - Structure Triangulation Problem
 - Additional product: Camera poses

(a) Structure from Motion

- Correspondence Problem
- Feature Detection and Matching
 - Mutual matching e.g. KD-Tree

- Geometric verification: (RANSAC)
 - Fischler & Bolles [FB81]

Incremental process

- Starting from initial image pair
- Adding more images
- Features and Camera
 Poses are determined
- Image networks are generated

Bundle Adjustment

Non-linear optimization of the whole network

Photo Tourism

- Snavely et al.
 [SSS06,SSS07,SGSS08, SSG*10]
- Use collections of images of sight seeing from the Internet
- Generate sparse point clouds
- Use image-blending in order to smoothly move from image to image

Building Rome in a Day

- Agrawal et al. [ASS*09]
- Optimization of the pipeline
- Over 150 000 images of Rome
- (250 000 from Venice)
- Processed in parallel in a processor-cluster
- Reconstructs sparse point clouds

A.3 Multiview Stereo

Dense Multiview Stereo

- Use sparse stereo and camera networks as input
- Compute dense, possibly water-tight, reconstructions

Input photos

Sparse reconstruction

Dense reconstruction

A.3 Multiview Stereo

- Dense Matching Systems
 - Pollefeys et al. [PvGV*04, PNF*08]
 - Vergauven and van Gool [VvG06]
 - Akbarzadeh et al. [AFM*06]
 - Frahm et al. [FFGG10]
 - Furukawa and Ponce [FP07, PF9]
 - Agrawal et al. [AFS*11,FP09]

A.3 Multiview Stereo

- Problem:
 - Dense reconstructions are not perfectly flat

Solution: Planar Priors

- Manhattan World Priors
 - Furukawa et al. [FCSS09]
- Piece-Wise Planar Priors
 - Micusic and Kosecka [MK09, MK10]
 - Sinha et al. [SSS09]
 - Chauve et al. [CLP10]
 - Gallup et al. [GLP10]

[VvG06]

[FP07]

[MK10]

A. Point-Clouds and Cameras

Summary

- Sparse MVS and SfM are mature and robust
- Dense MVS deliver also quite impressive results
- Systems are very generic not only urban reconstruction
- Scale well as shown by Frahm et al. [FFGG10]:
 - 3 million images on one day on a single PC
- Downside: results are usually dense meshes, not segmented and semantic objects

A. Point Clouds & Cameras

Also referred to as *Photogrammetric Modeling*

Subcategories

- Interactive Multiview Modeling
- Automatic Multiview Modeling
- Interactive Singleview Modeling
- Automatic Singleview Modeling

Façade (Debevec et al. [DTM96])

- Primitive polyhedral elements
- Parallel and Orthogonal
- Constrained to each other to reduce the parameter space

Good layer of abstraction

- Low-level features are difficult to deal with
- Surface model is implicit

- Façade Modeling Process [DTM96]
 - Multiview Input
 - Automatic edge detection in images
 - User establishes corresponding edges in images interactively
 - System optimizes in background (non-realtime)
- Iterative modeling process

 Finally projective texturing from input images

- Photobuilder:
 - Cipolla and Robertson [CR99,CRB99]
 - Automatic edge detection
 - User interactively labels a few parallel and orthogonal edges
 - Camera parameters can be determined

1. Original uncalibrated photographs

2. Primitive definition and localisation

3. Finding vanishing points and camera calibration

• Photobuilder:

- Cipolla and Robertson [CR99,CRB99]
- Automatic edge detection
- User interactively labels a few parallel and orthogonal edges
- Camera parameters can be determined
- System computed this model

4. Computation of projection matrices and camera motion

5. Triangulation, 3D reconstruction and texture mapping

- Interactive Modeling from Video (VideoTrace)
 - Van den Hengel et al. [vdHDT*06, vdHDT*07]
 - Camera and point-cloud network from SFM as input
 - Hierarchy of primitive shapes as model
 - User-input to establish relations
 - Automatic optimization in background (near-realtime)

- Interactive Multiview Modeling from Unordered Sets of Photographs
 - Sinha et al. [SSS*08]
 - Image-Network as input
 - Automatic detection of vanishing points
 - Simple interactions like rough sketching
 - Realtime interactive optimization in background

Further methods and improvements

- Combination of ground and aerial imagery
 - Lee et al. [LHN00, LJN02, LN03,...]
- Database with reusable elements
 - El-Hakim et al. [EhWGG05,EhWG05]
- Automatically snapping polygons
 - Arikan et al [ASW*12]

Automatic Multiview Modeling

- Buildings are well suited due to parallelism and orthogonality
- Line features, contours and vanishing points can be found automatically
- Using least-squares and robust estimation (RANSAC) planes can be fitted
- Automation of the Interactive Modeling Approach
 - Libowitz and Zisserman [LZ99]
 - Coorg and Teller [CT99]
 - Werner and Zisserman [WZ02]

Automatic Multiview Modeling

- Dick et al. [DTC00, DCT04]
- Probabilistic model with predefined prior distributions
- Parameters fitted from a set of images using MCMC
- Semantically annotated objects

- Single Image Interactive Modeling
 - Utilize the symmetry of the building to reconstruct 3d structure Jiang et al. 2009 [JTC09]
 - Interactively determine a frustum
 - Determine camera pose (calibration)
 - Use mirror-symmetry for stereo-reconstruction

Summary

- There is a large number of approaches
- Some methods attempt automatic solutions
- Nonetheless, the quality of fullyautomatic systems is still below expected production standards
- Due to the demand of high-quality models, interactive/semi-manual modeling is still interesting

Overview

- LiDAR (Light Detection and Ranging)
- scans are well suited for reconstruction, but
- Problems:
 - Point cloud contains holes due to occlusions

Especially in ground-based LiDAR

- LiDAR scans are well suited for reconstruction but
- Problems:
 - Oblique scanning angles
 - Laser energy attenuation on range
 - Especially in ground-based LiDAR

- Interactive Modeling from LiDAR (SmartBoxes)
 - Nan et al. [NSZ*10]
 - User assembles small sets of "boxes" from primitive shapes

These are automatically fitted

to the point cloud minimizing a sum of two energies:

- Data: how well does each box fit to the local point cloud
- Context: how well are the boxes synchronized

- Interactive Modeling from LiDAR (SmartBoxes)
 - Nan et al. [NSZ*10]

- Automatic Modeling from terrestrial LiDAR
 - Scans of buildings are well suited for automatic reconstruction
 - Stamos and Allen [SA00, SA02]
 - Früh and Zakhor [FZ03,FZ04]
 - Pu and Vosselman [PV09]
 - Vanegas et al. [VAB12]
 - and more
 - Segmentation into planar regions
 - Clustering of Normals
 - Plane Fitting
 - RANSAC
 - Least-Squares
 - Fitting of Outline Polygons

Automatic Model Fitting

Manhattan-World assumption in order to improve the robustness of the fit

Automatic Segmentation of LiDAR

- Recursive Heuristic Splitting using Symmetry
 - Shen et al. [SHFA11]

- Automatic Modeling from aerial LiDAR
 - 2.5D dual contouring (Zhou and Neumann [ZN08, ZN10])
 - Detailed results

- Automatic Modeling from aerial LiDAR
 - 2.5D dual contouring (Zhou and Neumann [ZN08, ZN10])

Summary

- LiDAR is accessible for quite a while
- Top-down fitting of buildings into the data delivers good results

- The full potential of LiDARdriven reconstruction is still not explored
- More interesting methods are expected to appear in the near future

Overview

Rather novel approach

- Related to Procedural Modeling
- Idea: derive a grammar from the structure
- façade → Subdiv("Y", 3.5, 0.3, 1r, 1r, 1r)
 (fl1 | ledge | fl2 | fl2 | fl2 }

- Infer from the input (Imagery or LiDAR)
 - (1) A grammar
 - (2) Parameters of the grammar
 - Some methods predefine (1) and infer only (2)

Interactive and Automatic approaches

- Interactive Systems
 - Aliaga et al. [ARB07]
 - Model a geometric model interactively from a few photos

 Segment the model interactively and assign grammar

Interactive Systems

– Aliaga et al. [ARB07]

- Use grammar to generate novel variations of the building

Interactive Systems

– Aliaga et al. [ARB07]

– Use grammar to generate novel variations of the building

Automatic Methods

- Simplification:

predefine grammar and fit only the parameters

- Vanegas et al. [VAB10]
- Using aerial imagery and GIS-data

Automatic Methods

- Generate initial 3D building envelope
 - Use the footprint from GIS and extrude
- Divide the bounding box into floors

Automatic Methods

- Generate initial 3D building envelope
 - Use the footprint from GIS and extrude
- Divide the bounding box into floors
- Adjust each floor automatically from the information from images and the constraints of the grammar

Further methods

- Use partial symmetry to derive shape grammars of 3D models
 - Bokeloh et al. [BWS10]
- Generative Modeling Language (GML)
 - Havemann [Hav05]
 - Hohmann et al. [HKHF09,HHKF10]
- Façade Image Segmentation
 - Coming in the next section!

Summary

- IPM is a quite new field
- It enables a very compact description of the models
- Very suitable for generation of content
- Many further exciting papers to appear!

Overview

C.1 Façade Image Processing

Imagery is essential in Urban Reconstruction

- For a realistic look
- As source for reconstruction

Applications

- Panoramas
- Projective
 Textures
- Source for 3D structure

C.1 Façade Image Processing

Strip-Panoramas

- Agrawala et al. [AAC*06]

Multiview Projective Texturing

• Aliaga et al. [*10]

color equalized

Multiview Projective Texturing

Musialski et al. [MLS*10]

Multiview Projective Texturing

Musialski et al. [MLS*10]

Multiview Projective Texturing

• Musialski et al. [MLS*10]

Symmetry-based façade image repair

Musialski et al. [MWR*09]

Input Image

Output Image

Symmetry-based façade image repair

Summary

- Panoramas are a kind of reconstruction by themselves
- Processing of urban imagery is quite well researched
- There are still challenges
 - Automatic segmentation
 - Parsing and semantic extraction

Overview

Façade parsing

- Automatic semantic segmentation façade data
 - Images or Laser Scans
- Often use of higher-order models, like grammars
- First step is low level processing
 - Feature-, Edge-, Blob-Detection

Façade parsing

- Automatic semantic segmentation of façade data
 - Teboul et al. [TSKP10,TKS*11]

Façade parsing

- Automatic semantic segmentation of façade data
 - Teboul et al. [TSKP10,TKS*11]

Further methods

- Predefined grammar based segmentations of images
 - Allegre and Dalleart [AD04]
- Predefined grammar based segmentations of image and LiDAR
 - Brenner and Ripperda [BR06,RB07,RB09]
- Inference of both grammar and parameters from LiDAR
 - Becker and Haala [BH07,NH09]

Symmetry Detection

- Another example of higher-order knowledge is symmetry
- Number of methods detect symmetry in façades
 - In perspective images
 Wu et al. [WFP10]

- In ortho-rectified, occluded images
 - Musialski et al. [MRM*10]

Symmetry detection in point clouds

- Pauly et al. [PMW*08]

- The symmetries can be used to complete missing data

Summary

- Recent automatic methods provide quite stable results
- The downside is the still quite low level-of-detail
- Also, errors are often difficult to fix
- This field is still in active research

Overview

Interactive Modeling

- Pro: provides very good quality
- Con: slower and does not scale very well

Post-processing of automatic methods

- Xiao et al. [XFT*08]
- Use automatic heuristics to generate initial segmentation
- User interactive post-processing to fix errors in the initial segmentation
- Infer depth from multi-view setups
- Post-process interactively to fix errors

Post-processing of automatic methods

- Xiao et al. [XFT*08]
- Very good results
- But a quite a time consuming task

- Coherence-Based Interactive Modeling
 - Musialski et al. [MWW12]
 - Incorporate the user from the beginning
 - Let the user define high-level structure
 - Group coherent regions
 - Perform automatic splits on overlapping groups
 - Combine these splits for final segmentation
 - Add depth interactively

Coherence-Based Interactive Modeling

- Very good results
- Better high-level structure
- Still quite time-consuming

- Summary
 - Interactive Modeling is slow and does not scale well
 - Today's productions still rely mostly on interactive methods
 - Integration of userinteraction and automatism is still to improve

Overview

D.1 Ground-Based Reconstruction

- Algorithms work well with small data sets
- Challenge: large scale
 - Irschara et al. [IZB07,IZB11]
 - Data acquisition problem: incorporate users to provide photos (Wiki-Principle)

D.1 Ground-Based Reconstruction

Generate reconstructions during acquisition

- Cornelis et al. [CLCvG08]
- Use a vehicle to drive and acquire input images
- Run reconstruction in "real-time", during diving

D.1 Ground-Based Reconstruction

Summary

- Generally limited to smaller areas compared to aerial approaches
- But the only way to provide high-detailed street level models

Overview

- Aerial data is very well suited
- Good for documenting and measuring

Often, combination of different inputs

- Digital Surface Model (DSM)
 - Surface with man-made objects
- Digital Terrain Models (DTM)
 - Pure terrain surface

Often, combination of different inputs

- Lafarge et al. [LDZPD11]
- Extract buildings from DSM
- Treat each building as a 3d parametric block of geometric primitves

Further methods

- Combine aerial and ground imagery
 - Wang et al. [WYN07]
 - Stitch ground-images to panoramas
 - Detect footprints in aerial imagery
 - User interaction for fine tuning
- More automatic methods with DSM
 - Zebedin et al. [ZBKB08]
 - Karantzalos and Paragios [KP10]

Overview

D.3 Massive City Reconstruction

- Imaged-Based ground dense reconstruction
 - Frahm et al. [FFGG*10]
 - Tuning and optimization of existing algorithms
 - 3 Million input images
 - 1 single PC
 - 1 day of computing

D.3 Massive City Reconstruction

Water-Tide Polygonal Meshes from LiDAR

- Poullis and You [PY09,PY11]
- Areas of several thousands of buildings

D.3 Massive City Reconstruction

Massive reconstruction from LiDAR

– Lafarge and Mallet [LM11]

D.3 Massive City Reconstruction

Massive reconstruction from LiDAR

- Lafarge and Mallet [LM11]
- Complete reconstructions:
 - Particular polygonal buildings
 - Vegetation
 - Terrain
- Generalized for any urban environments

D.3 Massive City Reconstruction

D. Blocks and Cities

Summary

- Current results are impressive
- Problems remain in
 - Processing of huge amounts of data
 - Scalable algorithms
 - Integration of different data types

D. Blocks & Cities

Conclusions and Outlook

Automatic reconstructions

- often rely on assumptions which are not true in practice
- Combination of user-interaction and automatic methods can be improved

Collaborative reconstruction

- Many projects incorporate Internet or user data
- Simple methods could animate user to contribute to the reconstructions

More interdisciplinary work

- The borders between Graphics and Vision are thin
- But the interdisciplinary cooperation between those and the Photogrammetry and Remote Sensing could be improved

The End

- Thank you!
- Questions?

The End

- Thank you!
- Questions?

