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Figure 1: (a) 3D visualization of a CT data set. (b) Automatically detected cervical vessels visualized with size-based color-coding (thick vessels
in red, thin ones in blue). (c) Vessel lumen of the whole vasculature with halos (red) and context (Maximum Intensity Projection), rendered by
the proposed Centerline Reformation technique. (d) Automatically detected vessels (blue). (e) Vessels filtered according to length and thickness
in order to select specific vessels (orange). (f) Carotis delineated with halos (red) and embedded into a context (Maximum Intensity Projection).

ABSTRACT

Visualization of vascular structures is a common and frequently per-
formed task in the field of medical imaging. There exist well es-
tablished and applicable methods such as Maximum Intensity Pro-
jection (MIP) and Curved Planar Reformation (CPR). However,
when calcified vessel walls are investigated, occlusion hinders ex-
ploration of the vessel interior with MIP. In contrast, CPR offers the
possibility to visualize the vessel lumen by cutting a single vessel
along its centerline. Extending the idea of CPR, we propose a novel
technique, called Centerline Reformation (CR), which is capable of
visualizing the lumen of spatially arbitrarily oriented vessels not
necessarily connected in a tree structure. In order to visually em-
phasize depth, overlap and occlusion, halos can optionally envelope
the vessel lumen. The required vessel centerlines are obtained from
volumetric data by performing a scale-space based feature extrac-
tion. We present the application of the proposed technique in a fo-
cus and context setup. Further, we demonstrate how it facilitates the
investigation of dense vascular structures, particularly cervical ves-
sels or vessel data featuring peripheral arterial occlusive diseases or
pulmonary embolisms. Finally, feedback from domain experts is
given.

∗e-mail: gmistelbauer@cg.tuwien.ac.at
†e-mail: varchola@cg.tuwien.ac.at
‡e-mail: hamed.bouzari@oeaw.ac.at
§e-mail: juraj.starinsky@gmail.com
¶e-mail: a.koechl@wienkav.at
‖e-mail: ruediger.schernthaner@meduniwien.ac.at
∗∗e-mail: d.fleischmann@stanford.edu
††e-mail: groeller@cg.tuwien.ac.at
‡‡e-mail: milos.sramek@oeaw.ac.at

Index Terms: Computer Graphics [I.3.3]: Picture/Image
Generation—Display algorithms Computer Graphics [I.4.6]:
Segmentation—Edge and feature detection

1 INTRODUCTION

The precise analysis and visualization of vascular structures play
a crucial role in therapy-centric visualization tasks. Understanding
vessel morphology and spatial relationships can lead to better di-
agnosis and planning of further treatment. Vascular trees are often
very complex, with hundreds of branchings, which might occlude
each other in rendering. Their reconstruction and visualization is
therefore a challenging problem [31].

Medical volume data with a focus on vessels typically comes
from clinical Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) angiography. Although the vascular structures are
usually contrast enhanced, their intensities are not perfectly sepa-
rated from other structures such as bones. In the case of patholo-
gies that occur on vessel walls, such as plaque and calcifications,
it is difficult to assess the vessel lumen, due to occlusion effects.
Because of various limitations, in many cases conventional visu-
alizations like iso-surface extraction, Maximum Intensity Projec-
tion (MIP), or Direct Volume Rendering (DVR) with simple trans-
fer functions do not provide diagnostically satisfactory images.
Curved Planar Reformation (CPR) [13] is an advanced visualiza-
tion method for vessel diagnosis, where a 2D visualization of the
vessel lumen is obtained by reformatting a curved cut along the
vessel centerline.

The main contribution of this work is Centerline Reformation
(CR), as a new visualization method with the objective to visual-
ize complex vessel trees for diagnostic purposes, as presented in
Fig. 1(c) on the example of cervical vessels. Our method was mo-
tivated by the CPR technique described by Kanitsar et al. [13] but
goes beyond its restrictions. The core novelty of the technique is the
way how the lumen of vessels is reformatted. A rotation indepen-
dent approach is used, which is based on centerline reconstruction



and wavefront propagation of the centerline information within the
vessel extent (radius). This new approach offers the possibility to
reformat and visualize the lumen of spatially arbitrarily oriented
vessels and arbitrarily complex vascular structures. The centerlines
and radii are determined in a preprocessing step and are used for the
lumen reformation. Their knowledge allows extending the visual-
ization by halos, by vessel filtering according to various criteria and
user interaction. Furthermore, the visualization can be augmented
in the focus and context sense, for example by the VesselGlyph
technique [26, 27].

The remainder of this paper is organized as follows. The sub-
sequent section gives related work concerning multi-scale analysis
and CPR. Section 3 describes the applied vessel-detection pipeline.
Section 4 explains our novel CR technique. Section 5 describes im-
plementation details. In Section 6 results and discussions are pre-
sented and a clinical evaluation of CR is given in Section 7. Con-
cluding remarks and future aspects are described in Section 8.

2 RELATED WORK

Volume visualization is an important part of Computed Tomogra-
phy Angiography (CTA), which is a non-invasive diagnostic proce-
dure to evaluate patients in hospitals. CT scanners can produce an
angiogram with a simple injection of a contrast agent into a periph-
eral vein. Quantification of vascular anomalies generally involves
the definition of a centerline, which is a line-like representation of a
3D object [28], either directly by path tracing, or indirectly, by first
segmenting the lumen [32].

2.1 Vessel Detection
A pipeline for vessel extraction is proposed by Selle et al. [23] and
Hahn et al. [8]. Frangi et al. [7] describe a vessel-enhancement fil-
ter based on the eigenvalue analysis of the Hessian matrix in scale-
space. Vessel-enhancement filters improve the visibility of vessel
structures, which are geometrically described as curved tubular ob-
jects [20]. The so called multi-scale analysis is performed by first
convolving the image with Gaussian derivative filters on different
scales and subsequently analyzing the second-order derivatives, i.e.,
the Hessian matrix, at every image element [19, 15]. This approach
is applied in our vessel-detection pipeline in order to retrieve ves-
sels of various sizes. The high computational cost of the Hessian
analysis on multiple scales in the 3D data can be reduced by per-
forming local instead of global operations [1]. Lesage et al. [18]
give an overview of vessel-lumen segmentation-techniques, includ-
ing multi-scale analysis. Joshi et al. [12] describe a non-parametric
entropy-based vessel detection that handles bifurcations better.

A comprehensive curve-skeleton survey can be found in the work
of Cornea et al. [4, 3]. Thinning methods iteratively remove points
from the boundary of an object while preserving topology. This is
the method we apply to retrieve the skeleton of vessels obtained
from the multi-scale analysis. In distance-field methods, ridges
in the distance field correspond to voxels that are locally centered
within the object [21]. Tagliasacchi et al. [29] describe a method
that uses the rotational symmetry axis of a point set to obtain its
skeleton. Zhu et al. [35] propose smooth harmonic skeletons of a
triangulated representation of the vessel surface.

Jones et al. [11] give an overview of several techniques for com-
puting distance fields. They distinguish between two approaches
based on sweeping and on wavefront calculation. The first one
calculates the distance field by sweeping through the data multi-
ple times, whereas the second one propagates the distances from
a starting point to its vicinity. Sethian [24, 25] describes the Fast
Marching Method (FMM), which is a wavefront method and used
by our proposed CR technique for lumen rendering. Distances are
computed by expanding the wavefront in the normal direction of a
set of points. Telea et al. [30] augment the FMM method for com-
puting skeletons and centerlines.

Streaming approaches have been investigated to reduce the mem-
ory load of the vessel-detection pipeline. Law et al. [16] give key
principles for streamable data and describe a block-based streaming
technique by partitioning a volume into blocks. Varchola et al. [33]
describe slice-based streaming of volumetric data, which is the ap-
proach applied in this paper.

2.2 Vessel Visualization
Reformation is a visualization technique to display interpolated val-
ues along a cutting surface. Multi-planar reformation is a traditional
technique which enables orthogonal and later also oblique cutting
planes through the data.

Reformation in CPR is performed over a non-planar surface.
Kanitsar et al. [13] distinguish three types of CPRs, namely pro-
jected, stretched and straightened CPRs. In order to generate the
curved reformation along a vessel centerline, lines-of-interest have
to be determined, as shown in Fig. 2. They can have any orienta-
tion, although this might lead to problems, such as overlappings,
when vessels are curved or their radii are too large. Otherwise, if
only horizontal or vertical lines-of-interest are used, artifacts as, for
example, thinning of the vessel might occur.

The Multipath Curved Planar Reformation (mpCPR) technique
has been initially designed to investigate the peripheral arterial oc-
clusive disease of the arteries of the human lower extremities [14].
These peripheral vessels split first into two branches (femoral arter-
ies left and right) and each later on into another three branches (pos-
terior, anterior and peroneal arteries), leading to six main branches.
The mpCPR method [14, 22] exploits the specific geometry and
spatial orientation of the vessel-tree to partition the image accord-
ing to the branchings. These image parts are rendered separately
using CPR and are combined to the final image, which leads to ar-
tifacts at the boundaries of the partitions.

Jianu et al. [10] explore the brain connectivity by projecting 3D
fiber tracts into 2D and subsequently cluster them, with each cluster
having one centroid and many non-centroid tracts. They account for
visibility by depth sorting the centroid tracts according to the depth
of the center of the corresponding 3D segments. In our case, we use
the distance along the graph of all projected vessels together with
the depth of a projected centerline voxel to determine proper visi-
bility. This leads to a smooth lumen visualization at the connections
of consecutive segments.

Straka et al. [26, 27] proposed the VesselGlyph to establish focus
and context rendering for CPR and mpCPR. It provides the possi-
bility to visualize vessels with a context created by methods like
MIP or DVR. This is also supported by our technique.

Interrante et al. [9] mention halos as an enhancement of depth
perception in 3D flow visualizations. Wenger et al. [34] give a vol-
umetric approach for halos in order to enhance the visualizations
of blood flows or neural pathways resulting from Diffusion Tensor
Imaging. Everts et al. [6] give a geometrical technique for envelop-
ing neural pathways with halos. We adapt this method in order to
augment the vessel lumen with halos when investigating dense vas-
cular structures.
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Figure 2: Comparison between CPR using parallel scanlines (left)
and normal vectors (center) as lines-of-interest. The proposed CR
technique spreads wavefronts from the centerline outwards (right).



3 VESSEL-DETECTION PIPELINE

Since vessel centerlines are required to visualize the lumen, we
have implemented a vessel-detection pipeline which is based on the
work of Hahn et al. [8]. The pipeline uses multi-scale analysis of
the data set to enhance tubular structures, followed by segmentation
based on Hysteresis thresholding (HT), skeletonization and finally
conversion of the skeleton into a graph representation. This repre-
sentation offers the possibility to filter vessels according to specific
constraints during interactive visualization and lets the user select
vessels by visual queries utilizing brushing. The pipeline is addi-
tionally capable of handling large volumetric data sets by employ-
ing data streaming approaches [33].

In order to relieve clinicians of the time consuming manual ves-
sel segmentation, our pipeline provides them with a semi-automatic
segmentation. The user input has been reduced to the neces-
sary minimum which consists in specifying a range of vessel sizes
(sigma values) and two thresholds for HT that are used for vessel
segmentation. In order to incorporate changes of these parameters,
the pipeline needs to be re-run. Since clinicians usually do not want
to specify and modify parameters, a default choice adapted for their
daily purposes was experimentally defined.

The workflow of the vessel-detection pipeline is outlined in
Fig. 3. It consists of three major steps, which are automatically
executed: preprocessing, scale-space analysis and centerline gener-
ation. Subsequently, they will be discussed in more detail.

3.1 Preprocessing
To support input from various acquisition modalities, preprocess-
ing is a necessary step to feed the pipeline with data in a proper
format and with certain expected properties. Owing to the fact that
various scanners produce data with a different range of values, this
step consists primarily of contrast enhancement, such that vessels
remain the structures with the highest density. This may require
remapping of the density values by a windowing function, in order
to suppress other types of tissues with potentially higher density,
such as bones [26]. Since various types of tissues are not distin-
guishable solely based on their density, unwanted tissues are usu-
ally only partially suppressed.

3.2 Scale-Space Analysis
Scale-space analysis is used for vessel detection, since only one
parameter needs to be specified, namely the Gaussian standard de-
viation σ . The fact that it corresponds to the size of the detected
vessels simplifies the user input for clinicians. Since vessels are
tubular-shaped structures we enhance them with the vesselness op-
erator which is based on an eigenvalue analysis of the Hessian ma-
trix [7]. Other and more advanced vesselness operators are appli-
cable here as well, e.g. the one by Pock et al. [20]. A vesselness
operator enhances tubular-shaped structures of a certain scale and
suppresses others. Thus, in order to enhance all vessels of interest
captured in the data, a batch of filters has to be applied with values
of the Gaussian σ covering the desired range of vessels.

Vessel segmentation is based on the Hysteresis thresholding
(HT) from the Canny’s edge detection framework [5]. This op-
eration is applied to the respective results of the Hessian enhanced
volumetric data sets. The results are binary volumes where the fore-
ground corresponds to the detected vessels of the appropriate scale,
as shown in Fig. 3 in the right image of the scale-space analysis
plate. The advantage of HT resides in the suppression of spurious
and not well pronounced structures and noise.

3.3 Centerline Generation
After all scales have been processed, they are represented as binary
volumetric data sets. A mask of all vessels is obtained as a union
of the vessel masks of the individual scales. Simultaneously, an
auxiliary volume is created which stores for each foreground voxel
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Figure 3: Workflow of the vessel-detection pipeline illustrated on an
artificial data set. The arrows on the right side indicate the auto-
matically processed parts of the pipeline. In the preprocessing step
the data set is converted to the desired representation and vessels
might be initially enhanced using a windowing function. During scale-
space analysis, the Gaussian and Hessian filters followed by HT are
applied for each scale in parallel (three scales are illustrated here).
After combining all scales, the vessel centerlines are detected by
skeletonization and finally converted into a graph representation.

the Hessian scale with the maximum response. If later a position is
identified as a centerline voxel, this value is regarded as the vessel-
radius of the centerline at this voxel.

The centerlines of the previously segmented and combined ves-
sels are determined by skeletonization in 3D using a thinning tech-
nique [17]. Although more elaborate methods exist, we used this
one due to implementation simplicity. As result a one-voxel thin
26-connected 3D skeleton is obtained.

After analyzing the topology of the skeleton we represent it as
a graph, which is done in a separate step called graph conversion.
An acyclic graph G = (V,E), the vessel-tree, is created, where the
set of vertices V consists of branch-points (with≥ 3 neighbors) and
end-points (with exactly one neighbor). All other points have two
neighbors and correspond to exactly one edge in the edge set E. We
additionally compute the thickness of an edge as the average of the
radii of all its points and the length as the number of all its points.
These two properties are used for interactive filtering of vessels in
order to select a specific subset of the whole vasculature.

4 CENTERLINE REFORMATION

The major contribution of this paper is the Centerline Reformation
(CR) for reformation and visualization of the lumen of vessels and
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Figure 4: Workflow of CR. The vasculature is projected into the im-
age space. Then the lumen is rendered and optionally enveloped by
halos to enhance depth perception. The final image is composed by
adding a context visualization if desired.

other vascular or tube-like structures given as volume data. The
technique belongs to the type of projected CPRs, as categorized by
Kanitsar et al. [13], and therefore uses no flattening or straightening.

The algorithm can be divided into four main parts, as shown in
Fig. 4. First, the whole vessel-tree is projected into the viewing
plane. In the second step, the projected vessel-tree is grown until
the extent of each vessel is reached. Third, halos can be optionally
rendered around the vessel lumen. Finally and fourth, the resulting
image is composed by optionally augmenting the rendered lumen
or halo with a context visualization. In the following sections each
step will be explained in more detail.

4.1 Projection
The first part of our algorithm is the projection. Input is a user-
selected subset sel(G) of the 3D vessel-tree G with centerlines ei as
its edges and v j ∈ ei as their corresponding voxels. We project this
subset into 2D using orthogonal projection

sel(G) 7→ G2D (1)

with e2D
i ∈ G2D as the projected centerlines, where each of them

is a list of pixels p j = (x j,y j). Additionally, the adjacency infor-
mation of G is used to build the graph G2D in the 2D projection
space. Then, we compute for every e2D

i independently the arc-
length, larc(p j), for every pixel p j ∈ e2D

i , by the following recursive
equation

larc(p j) = larc(p j−1)+d(p j, p j−1), larc(p0) = 0 (2)

where d(p,q) is the distance between two pixels, depending on the
currently used distance metric (Manhattan or Euclidean) and neigh-
borhood (4 or 8 connected). This is correlated to the arc-length
parametrization of the edges e2D

i and is similar to the approach pro-
posed by Telea et al. [30]. They parametrize the boundary of an
object according to the arc-length and subsequently move inwards
to compute the skeleton. Since we have the centerline of a vessel
and want to obtain the lumen, we move the other way. Starting from
the projected vessel-tree, we propagate wavefronts outwards, until
the extent of each vessel is reached.

Because multiple vessels might overlap in the 2D projection
space, we use two buffers, a top-level buffer BT (p j) and a candidate
buffer BC(p j) with pixels p j = (x j,y j), in order to render the ves-
sel overlap areas correctly. The top-level buffer contains the lumen
of vessels that are currently visible. All the other, currently hid-
den, vessels are stored in the candidate buffer, because they might
become visible when growing further. Both buffers have the dimen-
sion of the final image and store the following properties for every
pixel, either only once in BT , or in a list in BC:

• a reference to the edge e2D
i the pixel belongs to

• the depth value of pixel p j ∈ e2D
i

• the arc-length larc(p j) of pixel p j ∈ e2D
i

• the voxel vk ∈ ei the pixel belongs to
• the vessel-radius
• the type of the pixel (vessel, halo, background)

Whenever we refer to a pixel in one of these buffers in the remain-
der of this paper, we mean the pixel’s 2D position together with
the pixel’s associated properties. The lists at every pixel of buffer
BC are additionally depth-sorted and contain the information of all
candidate wavefronts, which are currently hidden, but might be-
come visible when spreading further. A pixel of a currently hidden
candidate wavefront can be rejected from spreading further, if its
preceding pixel in the candidate list has a larger vessel-radius, be-
cause the former pixel will always remain behind the latter one.
This reduces the total number of propagated wavefront pixels and,
hence, increases overall performance. The computation of all can-
didate pixels of the initial wavefront, which is the projected vessel
graph G2D, is outlined in the subsequent code-snippet. There, U is
a list of pixels where BC needs to be investigated during the lumen
rendering, because one pixel of each of these candidate lists might
be closer to the viewing plane than the current top-level pixel.

U ← /0 list of pixels, whose candidate lists in BC need to be investigated

foreach e2D ∈ G2D : ∀p ∈ e2D do for all pixels of all projected edges
computeAndAddProperties(p) compute every associated property
posInList← BC(p)∪{p} insert pixel into candidates
if radius(BC(p)[posInList−1])≥ radius(p) then

BC(p)← BC(p)\{p} reject candidate because of the smaller radius
else if #BC(p) = 1 then only one candidate in list so far?

U ←U ∪{(x(p),y(p))} add the pixel’s position

It is sufficient to store the position of pixel p j for every candidate in
the list BC(p j) only once in U . Finally we get all candidate pixels
of the initial wavefront, ∀pi ∈U : BC(pi) 6= /0.

4.2 Lumen Rendering
Our approach to reformat the lumen of the selected vessels is
based on the Fast Marching Method (FMM) for propagating wave-
fronts, together with their properties, to neighboring pixels. We
parametrize the edges of G2D along their arc-length and extend this
distance parametrization to the whole graph G2D. Finally, we use



(a) no arc-length,
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Figure 5: Comparison when using the arc-length parametrization or
depth buffering for visibility. Since grey value gradients are stored
in the data, they should be clearly reflected in the lumen visualiza-
tion. Artifacts (highlighted with yellow circles) occur in (a) because
pixels are never changed and in (b) since too many pixels are falsely
overwritten. (c) shows the result of our proposed method.

this parametrization to determine the visibility of the vessels during
lumen rendering.

Our method is motivated by the observation that never altering a
pixel once it has been spread to its neighbors, as done by the FMM,
leads to visibility problems. These are illustrated in Fig. 5(a) (high-
lighted with yellow circles). The reason is that a pixel of the same
wavefront would not be changed, even if another one is closer to the
viewing plane, since they are not depth-buffered. If only the depth
information is used, the results would look like in Fig. 5(b), because
always the pixels closest to the viewing plane are taken, regardless
if they will overwrite the lumen of pixels behind them. Hence using
the depth information only is not sufficient to render the lumen cor-
rectly while accounting for proper visibility. Therefore, we have to
find a more sophisticated way when to alter an already grown pixel.

Before we can describe this, we need to define the distance be-
tween two points of the graph G2D as illustrated in Fig. 6. The
distance between two points of the same edge e2D ∈ G2D, called
edge-distance, de, is computed as the arc-length difference of the
two points

de(p,q) = |larc(p)− larc(q)| (3)

and the distance between two points of different edges, namely the
inter-edge distance, die, as

die(p,q) =


∞ if 6 ∃path(p,q)
n−1
∑

i=0
de(Ni,Ni+1),N0 = p,Nn = q if ∃path(p,q)

(4)
where N1 . . .Nn−1 are the nodes of the graph G2D along the path
between the points p and q. The distance is computed by searching
for a path in a depth-first fashion. If such a path exists, it is unique,
because G2D is acyclic. We can now define a distance metric over
the graph G2D, using these two distances, as

dgraph(p,q) =

{
de(p,q) if edge(p) = edge(q)
die(p,q) if edge(p) 6= edge(q)

(5)

for any two points of G2D. This distance metric is utilized during
wavefront propagation to determine visibility of colliding fronts.

edge node 
graph node 

de 

die 

die= ∞ 

Figure 6: Distances dgraph between two points along the projected
vessel graph G2D, which consists of two disconnected graphs (high-
lighted in green and orange).

The growing process can be divided into two parts. First, in an
update pass, all candidates of the list BC(p j) of all pixels p j ∈U are
investigated and checked, whether they become visible and might
contribute to BT (p j). Since the list at BC(p j) is depth-sorted, only
the first element becomes visible if it is closer to the viewing plane
than BT (p j). Then, all candidates, including the first one, spread to
their neighbors, unless they are discarded owing to a larger vessel-
radius of a preceding candidate. The following code outlines how
to determine the pixels that will spread to their neighbors by using
the candidate pixel list U .

P← /0 resulting list of pixels with their properties that need to be propagated
foreach p ∈U do for all pixels that need to be updated

first← BC(p)[0] take first candidate
top← BT (p) closest one is current top-level
if depth(first)< depth(top) then first candidate closer than top?

P← P∪{BT (p)← top← first} assign first to buffer and add to list
BC(p)← BC(p)\{first} remove first from candidates

foreach c ∈ BC(p) do for all remaining candidates
if radius(c)≥ radius(top) then radius of candidate ≥ top?

P← P∪{top← c} candidate becomes top and is added

BC(p)← /0 finally clear candidate list at pixel p in BC

When the update pass is finished, the second part, namely the prop-
agation, is performed in a breadth-first processing of G2D starting
with the propagation list P that has been obtained from the initial
wavefront. Every pixel of the list P is spread to its neighbors, to-
gether with its properties. The vessel-radius is decreased according
to the chosen distance metric and when it reaches zero, the prop-
agation is stopped. The user is capable to offset the radius by a
constant. This is particularly useful when the vessel-radius, which
has been detected by our vessel-detection pipeline, is not sufficient
to investigate possible suspicious regions on the vessel walls.

Since we propagate the wavefronts by simply iterating through
their pixels, this might lead to different results when using another
order, e.g. reverse iterate. To alleviate this, if multiple pixels spread
to the same neighbor and if they are close together according to
dgraph, all their properties are interpolated. Fig. 7 outlines how the
wavefronts are propagated and when interpolation is taking place.
A user-defined threshold determines when two pixels are consid-
ered close together. In order to relieve clinicians from manually
selecting this threshold, a default value for their application pur-
poses is given. During propagation, all candidates belong to the
same wavefront, since the candidate buffer is cleared at every pixel
after the update pass. However, one must be aware, that interpola-
tion might break the depth-sorted invariance of the candidate lists.
Therefore, all interpolated pixels are removed and added back later.
The propagation is outlined in the following algorithm, where P is
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Figure 7: Illustration of pixels spreading to their neighbors using
4-neighborhood and Manhattan metric. The numbers indicate the
vessel-radius and interpolated pixels are outlined in yellow.



the current propagation list and U is the list of pixels for the next
update pass.

U ← /0 list of pixels whose candidates need to be updated
foreach p ∈ P : ∀n ∈ Nneighborhood(p) do for all neighbors of all pixels

p 7→ n spread p to its neighbor n (radius−−, if halo update depth, . . .)
if dgraph(n,BT (n))> threshold then neighbor away from top?

A← /0, neighborSkipped← f alse A is a list of changed candidates
foreach c ∈ BC(n) do loop through every candidate c of BC at pixel n

if dgraph(n,c)< threshold then neighbor close to candidate?
if halo(n)∧¬halo(c) then skip halo if candidate is lumen

neighborSkipped← true halo does not overwrite lumen
else if ¬halo(n)∧halo(c) then neighbor lumen, cand. halo?

BC(p)← BC(p)\{c} remove candidate from list
A← A∪n lumen can overwrite nearby halo

else if (type(n) = type(c)) then both same type
BC(p)← BC(p)\{c} remove candidate from list
A← A∪ lerp(c,n) interpolate candidate with neighbor

if ¬neighborSkipped∧ (#A = 0) then neighbor not interpolated?
BC(n)← BC(n)∪{n} add neighbor to candidates
if #BC(n) = 1 then U ←U ∪{(x(n),y(n))}

else BC(n)← BC(n)∪A add interpolated candidates back

else if (¬halo(n)∧halo(BT (n))) then neighbor lumen, top halo?
BT (n)← n lumen can overwrite nearby halo

else if (type(n) = type(BT (n))) then both same type
BT (n)← lerp(BT (n),n) interpolate top with neighbor

4.3 Halo Rendering

Once the vessel-radius of a pixel from a wavefront reaches zero, the
pixel is optionally added as halo for propagation again. The halos
will augment the lumen visualization to delineate visibility of dif-
ferent overlapping vessels, as illustrated in Fig. 8 and presented in
Fig. 1(c) with halos in red. The user can select the size of the halo in
pixels. Although halos are rendered in the same way as the lumen,
they are treated slightly differently. Their depth is increased propor-
tionally to the distance to the centerline during spreading (indicated
in the third line of the previous algorithm). Furthermore, only pix-
els of the same type can be interpolated, namely if both are either
halos or not halos.

halo 
depth 

halo 

vessel 
viewing 
direction 

halo lumen 

Figure 8: Illustration of halos (green) around the vessel lumen (red).

4.4 Context Rendering

In order to preserve an overview, a context visualization can aug-
ment the lumen visualization. If the lumen of every selected vessel
has been rendered, possibly with halos, different tasks according
to the type of every pixel p j of the buffer BT (p j) are performed.
There are three pixel types: vessel, halo and background pixels. If
the pixel is a vessel, the volume data is sampled at the stored voxel
position. For halo pixels the user-specified halo color is assigned.
If a background pixel is encountered in the top-level buffer, either
a specific color is assigned or a context, using MIP or Maximum
Intensity Difference Accumulation (MIDA) [2], is rendered. Since

we use orthogonal projection for the lumen visualization, we apply
it for the context rendering as well.

Rendering of halos combined with the alternative rendering in
the context area is similar to the focus and context rendering pro-
posed by Straka et al. [27]. They introduce the VesselGlyph which
combines DVR (context) together with CPR (focus) within a single
image. While Straka et al. specify the VesselGlyph geometry by
means of a volumetric model based on vessel centerlines and cor-
responding 3D distance fields, we distinguish between the vessel
lumen, halo and background areas only in the 2D projection space.
Like in the VesselGlyph, this offers the possibility to embed the
lumen smoothly into the context area.

5 IMPLEMENTATION

We integrated our technique in a frame-work which is deployed in a
hospital and is utilized in the daily routine of radiologists. Since this
software currently uses CPU only, the proposed algorithm is imple-
mented on the CPU. However, we can visualize the vessel lumen
at interactive frame-rates, where the performance is inverse propor-
tional to the number and length of the rendered vessels. Although
pixels can be rejected before spreading, the propagation consumes
the major part of the rendering time, whereas the projection and
creation time of the vessel graph remain almost constant. The time
consumption of the update pass scales with the number of overlap-
ping vessels, because more candidates have to be processed.

Since context rendering is also performed on the CPU, we accel-
erated it by pre-computing and caching ray directions only once for
all slices. This is possible as we use orthogonal projection. Never-
theless, a context cannot be rendered in real-time.

6 RESULTS AND DISCUSSION

An overview of several data sets processed by the described vessel-
detection pipeline is given in Table 1. The value ranges of the artifi-
cial helices and the CT data are largely different. Therefore also the
respective Hysteresis thresholds (HT) differ considerably. To sup-
port clinicians in the daily routine, default configurations for the
vessel-detection pipeline are given.

A comparison between mpCPR, using horizontal scanlines, and
CR is given in Fig. 9 for the aorta of a human lower extremity data
set. Fig. 10 demonstrates the advantage of CR over mpCPR for
a data set that includes a bypass connecting both femoral arteries.
Our method correctly processes both vertical and horizontal vessels
in one image, in contrast to mpCPR, because scanlines are not a
proper solution here. In order to visualize the surrounding organs
with CR, the vessel-radius is offset accordingly.

Fig. 11 presents another comparison on the artificial helical data
set. An issue with mpCPR is the overlapping of helices in 2D pro-

Table 1: Configuration of the vessel-detection pipeline for several pro-
cessed data sets. Timings are given for a whole run.

A B C D

Size 2563 5123 5122×575 5122×1227
#Scales 9 6 13 8
Lo/Hi HT 50k/70k 0.6/1.2 0.6/1.2 0.6/1.2
Time PC1a 4.8min 7.2min 23.4minc 21.6minc

Time PC2b 1.3min 4.3min 7.4min 7.7min

A . . . Artificial Helices C . . . Cervical Vessels
B . . . Pulmonary data D . . . Human Lower Extremities
a Intel Core2 @ 2.80GHz / 4GB RAM / GF 8800GTS 320MB
b Intel Core i7 @ 3.07GHz / 12GB RAM / GF 460GTX 1GB
c Individual scales were run sequentially (Fig. 3), since in

parallel their demands exceeded the GPU RAM size.
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Figure 9: Comparison between mpCPR (a) and CR (b) of the aorta
splitting into femoral arteries left and right. The discontinuities (white
arrows) result from the fact that the distance dgraph is used to deter-
mine whether a pixel is interpolated during spreading. However, they
occur only in the surrounding parts and do not affect the lumen itself.
The bright calcification (yellow arrow) is correctly shown by CR, be-
cause the depth of this region is obtained by wavefronts and not by
horizontal lines-of-interest as in mpCPR.
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Figure 10: Data set with a bypass when the aorta splits into left and
right (occluded, shown as dashed line) femoral arteries. The red lines
indicate the direction of the blood flow. (a) mpCPR cannot visualize
the bypass properly. (b) CR clearly delineates it.

(a) (b)

Figure 11: Comparison between mpCPR (a) and CR (b) presented
on several artificial helices.

jection space, which leads to incorrect visibility as shown in the
zoom-in of Fig. 11(a).

A pulmonary data set featuring an embolism is presented in
Fig. 12(a) using mpCPR and in Fig. 12(b) using CR. With mpCPR
the vessels are not distinctly perceivable, whereas CR preserves the
visibility and delineates the embolism clearly. Since the peripheral
pulmonary vessel-tree is rather complex, selecting specific vessels
might be helpful to locate the embolism.

A data set showing the cervical vessels of a human head is pre-
sented in Fig. 1. The use of reformation techniques for cervical
vessels is required by the domain experts. A 3D visualization using

(a) (b)

Figure 12: Pulmonary data set with an embolism highlighted with
yellow circles. The lumen is rendered with mpCPR (a) and CR (b).
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Figure 13: Evaluation of CR with 34 questions. A positive score
favours CR, whereas a negative one CPR or mpCPR. The bullets
show the average and the error indicators the deviation.

DVR is presented in Fig. 1(a), the lumen of all vessels is visual-
ized with CR using size-based color-coding and MIP as context in
Fig. 1(b) and with halos and MIP as context in Fig. 1(c). Fig. 1(d)
and Fig. 1(e) show how to refine a selection. In order to navigate
to specific vessels of interest, the vasculature can be filtered using
length and thickness. The desired vessels are then selected using
visual querying by brushing with the mouse.

7 EVALUATION

The proposed CR technique was evaluated by six domain experts
through a questionnaire. They compared CR with CPR and mpCPR
in order to address the clinical relevance of visualizing spatially ar-
bitrarily oriented vessels. We specified four key tasks and subse-
quently summarize them (Fig. 13):

Single vessel visualization. No significant difference between
CPR and CR was found when visualizing a single vertical vessel.
This part should demonstrate that CR is capable of producing the
same results for vertical vessels as the well tested and evaluated
CPR [22]. Furthermore, the visualization of the additional organs
besides the vessel (surrounding parts) is desired. When using CR, it
is helpful to offset the vessel-radius in order to detect calcifications
or other suspicious regions.

Multiple vessel visualization. The clinicians have been partic-
ularly interested in the visualization of arbitrarily oriented vessels,
because they find it helpful to detect pathologies faster or at all.
We presented them visualizations of human peripheral pulmonary
vessels and cervical vessels. For arbitrarily oriented vessels CR is
superior to mpCPR since it preserves the structure of the lumen and
accounts for correct visibility (confirmed with the high scores of
questions 17, 18 and 19 in Fig. 13).

Halos. Generally, halos are very useful in order to depict spatial
relations and enhance depth perception. A small halo size is con-
sidered to be sufficient and in the case of visual clutter it is helpful
to adjust the halo size.

Context rendering. Comparing MIP and MIDA, the latter one
is said to be better, however, both methods have no effect on the
perception of the vessels. Halos are also desired when rendering a
context and selecting specific vessels is highly favored in order to
detect pathologies or reveal them faster.

Our proposed technique got a positive response, especially
when investigating vessels of spatially arbitrary orientation. This
strengthens the application of CR, because handling such vessels is
the main goal of the technique. Enveloping the lumen with halos is
also appreciated when investigating a dense vasculature.



8 CONCLUSION AND FUTURE WORK

We proposed the novel Centerline Reformation technique for lu-
men visualization and reformation of spatially arbitrarily oriented
and branched vessels. The technique is based on vessel centerlines
which are determined by a vessel-detection pipeline and supple-
mented by an estimation of vessel radii. Subsequently, the center-
line and radius information is used in reformation, where vessel,
halo and background areas are detected and rendered in different
ways. Halos augment the vessel lumen in order to provide better
visual cues when visualizing dense vascular structures.

One future aspect is implementing our technique on the GPU to
achieve an interactive visualization together with context render-
ing. Furthermore, geometric methods should be investigated for
the visualization of the vessel lumen. This could avoid the early
discretization and may lead to advantages when using the GPU.
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nostic relevant visualization of vascular structures. In G.-P. Bonneau,
T. Ertl, and G. Nielson, editors, Scientific Visualization: The Visual

Extraction of Knowledge from Data, Mathematics and Visualization,
pages 207–228. Springer Berlin Heidelberg, 2006.

[15] K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset.
Model-based detection of tubular structures in 3D images. Comput.
Vis. Image Underst., 80(2):130–171, 2000.

[16] C. C. Law, W. J. Schroeder, K. M. Martin, and J. Temkin. A multi-
threaded streaming pipeline architecture for large structured data sets.
In Proceedings of the 10th conference on Visualization ’99, VIS ’99,
pages 225–232, Los Alamitos, CA, USA, 1999. IEEE Computer So-
ciety Press.

[17] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building skeleton models
via 3-D medial surface/axis thinning algorithms. Graphical Models
and Image Processing, 56(6):462–478, 1994.

[18] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea. A review
of 3D vessel lumen segmentation techniques: Models, features and
extraction schemes. Medical Image Analysis, 13(6):819–845, 2009.

[19] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1993.

[20] T. Pock, R. Beichel, and H. Bischof. A novel robust tube detection
filter for 3D centerline extraction. In Lecture Notes in Computer Sci-
ence, volume 3540, pages 481–490, 2005.

[21] C. Pudney. Distance–ordered homotopic thinning: A skeletonization
algorithm for 3D digital images. Computer Vision and Image Under-
standing, 72(3):404–413, 1998.

[22] J. E. Roos, D. Fleischmann, A. Köchl, T. Rakshe, M. Straka,
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