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Abstract

Scene graphs are a common way of representing 3-dimensional scenes for graphical applica-
tions. A scene is represented as a hierarchical structure of nodes which represent 3D geometry,
spatial transformations, surface properties, and other—possibly application specific—aspects.
Scene graph systems can be designed to be very generic and flexible, e.g. by allowing users
to implement custom node types and traversals or by providing facilities to dynamically create
subgraphs during a traversal. This flexibility comes at the cost of increased time spent in pure
traversal logic. Especially for CPU-bound applications this causes a performance drop.

This thesis proposes a scene graph caching system that automatically creates an alternative
representation of selected subgraphs. This alternative representation poses a render cache in
the form of a so-called instruction stream which allows to render the cached subgraph at lower
CPU cost and thus more quickly than with a regular render traversal. Additionally, a number
of optimizations for render caches were implemented to further increase the performance gain
with respect to uncached rendering.

In order to be able to update render caches incrementally in reaction to certain scene graph
changes, a dependency system was developed. This system provides a model for describing and
tracking changes in the scene graph and enables the scene graph caching system to update only
those parts of the render cache that needs to be updated without necessitating a full rebuild of
the cache.

The actual performance characteristics of the scene graph caching system were investigated
using a number of synthetic test scenes in different configurations. These tests showed that the
caching system is most useful in scenes with a high structural complexity (high geometry count
and/or deep scene graph hierarchies) and moderate primitive count per geometry. In this kind
of scene the scene graph caching system, with all optimizations enabled, reduced average frame
times by a factor of 5 to 8 with all objects in the scene changing their transformation each frame.
This performance gain could be achieved at the cost of startup times increased by 3 to 4 seconds
for scenes with 3000 to 8000 geometry nodes. The additional main memory consumption was
measured at 4 MiB for the scene with 3000 geometries and a flat transformation hierarchy and
20 MiB for the scene with 8000 geometries and a deep transformation hierarchy.
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Kurzfassung

In grafischen Anwendungen werden 3-dimensionale Szenen häufig als sogenannte Szenengra-
phen dargestellt. Die Knoten in einem solchen Szenengraphen repräsentieren dabei geometri-
sche Formen, deren räumliche Transformationen, Oberflächeneigenschaften und andere, mög-
licherweise anwendungsspezifische, Aspekte. Szenengraphensysteme können sehr flexibel und
erweiterbar gestaltet werden, indem z.B. die Definition eigener Knoten- und Traversierungsty-
pen erlaubt wird. Dieses Flexibilität bringt aber meist aufwendigere Laufzeitlogik mit sich, was
besonders in CPU-beschränkten Applikationen zu einer niedrigeren Ausführungsgeschwindig-
keit führt.

Um dieses Problem zu verringern, schlägt diese Arbeit ein Caching System für Szenengra-
phen vor. Dieses System legt automatisch sogenannte render caches für ausgewählte Subgraphen
an. Ein render cache enthält dabei einen sogenannten instruction stream, der es erlaubt den ge-
cachten Subgraph effizienter zu rendern als dies mit einer herkömmlichen Traversierung der Fall
ist. Zusätzlich wurde eine Reihe von Optimierungen für render caches implementiert, die eine
weitere Leistungssteigerung ermöglichen.

Damit render caches nicht bei jeder Szenengraphänderung komplett neu erstellt werden
müssen, wurde ein sogenanntes dependency system entwickelt. Dieses System erlaubt es, be-
stimmte Änderungen in der Szene zu beschreiben und automatisiert darauf zu reagieren. Als
Folge können render caches inkrementell auf dem neuesten Stand gehalten werden, was eine
wesentliche Effizienzsteigerung bedeutet.

Die tatsächlichen Leistungscharakteristika des Caching Systems wurden in einer Reihe syn-
thetischer Testszenen in verschiedenen Konfigurationen getestet. Diese Tests haben gezeigt, dass
das Caching System in Szenen mit hoher struktureller Komplexität (d.h. hohe Anzahl an Geo-
metrieknoten und/oder tiefer Szenengraphhierarchie) und moderater Anzahl von Dreiecken pro
Geometrie den größten Nutzen hat. In dieser Art von Szene führte das System (mit allen Opti-
mierung aktiviert) zur einer Reduktion der durchschnittlichen frame time um einen Faktor von
5 bis 8. Die Testszenen waren dabei voll dynamisch, d. h. alle Objekte änderten ihre räumliche
Transformation jeden frame. Diese Leistungssteigerungen wurden zum Preis erhöhter Ladezei-
ten und erhöhten Speicherverbrauchs erreicht. Die Ladezeiten erhöhten sich um 3 bis 4 Sekunden
für Szenen mit 3000 und 8000 Geometrieknoten. Der zusätzliche Hauptspeicherverbrauch lag
bei 4 MiB für die Szene mit 3000 Geometrien und einer flachen Transformationshierarchie, und
bei 20 MiB für die Szene mit 8000 Geometrien und einer tiefen Transformationshierarchie.
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CHAPTER 1
Introduction

Scene graphs are a common way of modeling 3-dimensional scenes for graphical applications.
There are many existing toolkits like Performer [40], OpenSceneGraph [8], OpenSG [44], or
SceniX [17]. A scene graph is a directed acyclic graph (DAG) where nodes represent geometric
models and their properties. Geometry nodes are typically located at the leaves of the graph. The
internal nodes of the graph describe a number of different attributes like spatial transformation
or surface properties. These attributes are inherited along the edges of the graph until they reach
a geometry node. This way a geometry node is assigned a set of attributes which are used to
display it on the screen (see Figure 1.1).
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Figure 1.1: A scene graph with attribute annotations.

A scene graph can be rendered by traversing it depth-first, starting at the root. Whenever
an attribute node is encountered, the attribute it publishes is stored in the current traversal state.
Some attributes—like surface properties—replace the existing attribute value in the traversal
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state, while others—like transformation matrices—are combined with the existing value to form
a new one. When the traversal reaches a geometry node, the currently active traversal state
represents the attributes of the geometry. At this point the geometry can be drawn with the
appropriate settings.

Scene graph systems can be designed to allow for great flexibility. Users might be able to
define their own traversals for collecting data or mutating the graph. They might also be able to
create new node types that describe application-specific attributes. It is even possible to allow
for dynamically creating entire subgraphs during traversals. These possibilities strive to enhance
the expressiveness and usability of scene graphs as a modeling facility.

Unfortunately, as is often the case, increased expressiveness and ease of use are accompanied
by increased execution complexity. For flexible, easily extensible systems—like the AARDVARK

rendering framework [42] which provides the implementation context of this work—pure traver-
sal logic will often make applications CPU-bound.

1.1 Aim of this Work

The scene graph caching system presented in this thesis tries to reduce the time spent purely
on traversing the scene graph and accumulation attributes. A detailed description of goals and
scope of the thesis is given in Section 3.1—in short, however, the aim is to create a system that
automatically caches an optimized representation of the scene graph (or parts thereof) which
will then allow for more efficient rendering. At the same time the system is intended to be
non-intrusive and should not require tedious configuration work from the user.

1.2 Methodological Approach

In order to test the proposed scene graph caching system, a prototypical implementation is
created. This includes the basic caching system mechanism and a host of additional, optional
optimizations. With the prototype in place, a number of performance tests using synthetic scenes
are conducted. Each test is designed to contrast several configurations against each other: with
and without caching or with different sets of optimizations enabled. The resulting difference
in the time needed to render the scene is analyzed and discussed. Where appropriate, memory
consumption and startup times are also investigated. The synthetic test cases are parameterized
to represent different classes of scenes in order to find the cases the caching system is useful in
and the ones where it is not. The results of these performance tests are listed in Chapter 4.
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1.3 Structure of the Thesis

The thesis is structured as follows:

• Chapter 2 investigates the state of the art on two related areas: scene graph optimization
and incremental computation.

• Chapter 3 constitutes the main part of this thesis and composes itself listed below:

– At first the Goals and Scope of the scene graph caching system presented in this
work are defined.

– The Implementation Context of the caching system prototype is laid out: What are
the lower-level APIs the prototype is built against? What does the scene graph toolkit
look like that the caching system is embedded in?

– Next, the fundamental principles and architecture of the caching system are pre-
sented in Caching Architecture.

– The so-called Dependency System is proposed which—through meta-data annotations—
allows to selectively track changes within a scene graph. This section not only intro-
duces the basic concepts of the dependency system but also examines some impor-
tant properties which can be inferred from these basic concepts.

– The section Dependency-Aware Scene Graph Caching shows how the previously
presented dependency system can be used to update a render cache incrementally
for a certain class of scene graph changes.

– The next section demonstrates a host of Optimizations that can be applied within the
caching system.

– Towards the end of the main part, the two most common types of render caches are
described in Default Cache Types.

– Finally, the system presented so far is discussed with respect to the initial goals and
related work.

• Following the main part, Chapter 4 investigates how the caching system fares in a number
of synthetic test cases.

• Chapter 5 brings the thesis to its conclusion and points out possible future work.
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CHAPTER 2
Related Work

The related work section can be divided into two different fields. First, the scene graph caching
system presented in this work is a form of scene graph optimization. Second, the caching system
can be seen as a special case of incremental computation.

2.1 Scene Graph Optimization

Optimizations for scene graphs are very common and have different levels of support in most
scene graph toolkits. There are two different approaches to optimizing a scene graph: (1) apply-
ing persistent transformations to the scene graph (commonly before runtime), and (2) keeping
an additional, optimized runtime representation of the scene graph. Note that these approaches
do not necessarily preclude each other. The following sections will examine both cases in more
detail and will provide some examples of specific optimization transformations. The next sec-
tion goes on to discuss existing scene graph toolkits and their use of the described optimizations.
In the concluding section, it will be discussed how all of the above relates to the scene graph
caching system presented in this work.

2.1.1 Persistent Transformations

The defining characteristic of this approach is that the optimization process is applied only once
and the outcome of the transformation completely replaces the input scene graph. As is common
for optimizations in general, the transformed scene graph should comply to some criterion of
equivalence or at least approximate equivalence. In the case of graphical applications an obvious
criterion can be that the pictures resulting from rendering both the original and the optimized
scene graphs are sufficiently similar to each other. What is deemed as sufficient will depend on
the specific application the scene graph is used in. Non-graphical applications such as physical
simulations might have stricter constraints on optimization transformations.

The optimization process can have different goals. Typical examples are: reducing the time
needed to render the scene, the reduction of traversal cost, or a lower memory footprint. Which
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of these goals are desirable will also depend on the specific application and technical context,
such as the hardware and software platforms the application is targeted at. The goals can also be
conflicting (as, for example, is often the case for rendering time and memory footprint).

As the transformation is only applied once, the computational effort needed to perform it
is of less importance than in a runtime or interactive scenario. Depending on the information
needed by the optimization process, transformations can be applied early in the content cre-
ation process, at load time, or on demand at runtime. Some transformations might benefit from
information about the actual execution platform1and are therefore better performed at load or
runtime. Others might always yield the same result and could already be applied by the ex-
porter of a modeling program or an offline step in a build process, with the benefit of sparing the
execution environment the computational workload.

Transformation Examples

The following section will show some examples of optimizing scene graph transformations.
Strauss [34] and Boudier [35] provide the main sources for the sections below but implementa-
tions of these examples can be found in many of the available scene graph toolkits, as will be
shown later in section 2.1.3. Strauss [34] describes three common transformations:

Pull up costly state changes. Changing the state of the rendering pipeline, such as changing
the currently active vertex or fragment program, can be a costly operation:

A change in state may have an adverse impact on the performance throughput of a
graphics system. For example, such a change may require transferring the new state
information to step 230, and then reconfiguring (for example, resetting a processing
pipeline) the apparatus performing step 230. Either of such steps may impede the
throughput performance of a graphics system, and such state changes may therefore
be undesirable. [34, p. 11]

In order to decrease the number of state changes, this transformation rearranges the scene
graph. Due to the nature of scene graphs, descendant nodes inherit attributes introduced by
their ancestor nodes. Because of this, it is possible to pull up and merge nodes that apply the
same state and consequently it is often possible for a given scene graph to find a semantically
equivalent graph that requires fewer state changes while traversing it. Figure 2.1 shows an
example of such a transformation. Traversing the original scene graph on the left would require
setting state A to a different value four times and state B two times. Assuming that changing
state A is more costly than changing state B, the transformed scene graph on the right allows
for a cheaper traversal: state A is only changed three times while B is changed two times.

Push transformations into vertices. In a scene graph spatial transformations such as transla-
tion, rotation, or scaling can be represented as nodes. The transformation specified in such a
transformation node is applied to every descendant node. Also, more than one transformation
node is allowed to appear on a traversal path. In this case, transformations are applied one after

1For an example see Boudier’s description of the Promote Attribute optimization. [35, pp. 20-21]
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Figure 2.1: Transforming a scene graph to reduce state changes

the other in the order they are encountered on the path. Spatial transformation is thus a special
kind of attribute that is inherited down the scene graph with an aggregation-semantic instead
of a replacement-semantic.

However, applying a transformation through such a node incurs a computational overhead.
Typically, currently active transformations are kept as a stack of transformation matrices and
every time a transformation node is encountered the top-most matrix on the stack is multiplied
with the matrix stored in the node and pushed onto the stack. These matrix multiplications have
to be performed anew every time the scene graph is traversed and thus cause enduring runtime
overhead.

One way to alleviate this problem is to pre-compute the transformations for every vertex con-
tained in the geometry leaves of a subgraph and remove the now redundant transformation
nodes from the scene.2 Consequently, the transformations do not have to be computed every
frame. Figure 2.2 shows a simple example where it is possible to remove three transformation
nodes.

Yet, there are also detriments. First, this optimization is only applicable if none of the transfor-
mations can change dynamically, for example as reaction to user input or as a function of time.
Second, the vertices of a geometry leaf cannot store more than one (transformed) position or
normal. If a geometry leaf is reachable via more than one path containing different transforma-
tions, the vertex data has to be copied to account for the different global positions the geometry
adopts for each path. Naturally this comes at the cost of additional memory consumption.
Whether this is a worthwhile tradeoff has to be decided by the user.

Convert Geometry to Triangle Strips. Strauss also suggests to convert vertex-based geometry
into triangle strips. The triangle strip is one kind of «primitive topology» supported by graphics
APIs such as Direct3D and OpenGL. A description and list of primitive topologies supported in
Direct3D 11 are available in the respective documentation. [11] Triangle strips are an efficient

2Note that simply reducing the number of transformation nodes by combining them, will also already reduce the
number of necessary matrix multiplications.
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Figure 2.2: Pushing transformations down into vertex coordinates

way of representing vertex-based geometry. After the first triangle every following triangle
is specified by adding just one additional vertex without the need for index data. This saves
memory space and bandwidth and—because of the structures inherent data locality—allows
for good cache utilization on the graphics hardware. For an extensive overview on triangle
strip algorithms see Vanček and Kolingerová, 2007. [43]

Vertex data can also be converted into other optimized representations apart from triangle strips.
For example, Nehab et al. [32] and Sander et al. [41] describe methods for reordering index
data. Vertex indices are reordered in a way to «improve post-transform vertex cache efficiency
as well as for view-independent overdraw reduction» [41, p. 1].

Boudier [35] presents a generic optimization system that allows the user to define how a set
of prioritized and parameterized atomic optimizations is applied to some input scene graph.
An optimization manager uses a database of atomic optimizations indexed in an optimization
registry containing meta data about each algorithm, such as input parameters or priority infor-
mation which models constraints on the application order of the algorithms. The manager can
be configured by the user through configuration files, a user interface, or by some other means—
depending on the actual implementation. The configuration supplies the manager with a set of
optimizations to apply and optional input parameters.

The system is meant to be used as a post-processing step while or after exporting the scene
graph from a modeling program. [35, p. 18] However, the general principle could also be used
at load time in a runtime context.

Boudier also gives an exemplary list of possible atomic optimizations. Some of these are
better described as validity checks or transformations to adapt the scene data for a specific ex-
ecution platform. These include the normalization of texture coordinates and alpha values, and
converting image file formats.

Also described are optimizations that have already been discussed above, such as pre-computing
spatial transformations and storing the result directly in vertex coordinates (here as part of Col-
lapse Hierarchy), and converting geometry data into triangle strips. Finally, the Promote At-
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tributes transformation can be seen as a variation of pull up costly state changes described above
(p. 6).

However, Boudier’s list also includes many transformations that have not been mentioned
yet. These transformations provide good examples of typical changes that can be made to a
scene graph in order to improve it with respect to some criterion. Below, they are described as
part of two broader, recurrent categories:

Removing Redundancies. One important category of scene graph optimizations works by re-
moving redundant nodes or edges from the graph while keeping the graph semantically equiv-
alent. This generally reduces memory consumption (fewer nodes have to be stored), traversal
cost (fewer nodes and edges have to be visited), and—in some cases—drawing time (if redun-
dant API calls are implicitly omitted). 3

Flatten Hierarchy is a simple representative of this category: Scenes and models created by
people—or sometimes also procedurally—may contain hierarchies of group nodes that are an
artifact of some organizational principle in the modeled object which helps the artist in handling
her creation. Yet, the hierarchy may not be needed in this verbose form and can be replaced
with an equivalent but more compact substitute (see Figure 2.3).

G1 

G2 G3 

G4 G5 

G4 G5 
G3 

G1 

Figure 2.3: Flatten Hierarchy optimization

Collapse Hierarchy is very similar. Boudier mentions two examples: First, pushing a trans-
formation directly into child geometries and subsequently removing the transformation node.
Second, removing a group node that only has a single child, as it does not add any additional
information to the scene graph.

Another optimization in this category is Remove Attributes. According to Boudier, «Many
modelers and exporters put attributes in an exported scene graph by default, so as to reflect as
closely as possible the data in the modeler» [35, p. 21]. As not all of this information may be
needed (depending on the application), the optimizer may be able to remove certain attributes
without loss of critical data.

3If the application is traversal-cost-bound then the overall drawing time also is improved if traversal cost is
reduced. Often this is the more pronounced effect, as will be shown later.
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The next atomic optimization dealing with redundancies is Share Attributes. It is a common
case that different attribute node instances represent the same state, such as applying the same
material to different sub-graphs. The object representing the state may be costly to store and
storing the same value in many different instances is a waste of memory. This transformation
makes sure that any attributes having the same state also share the same state-object instance.
This saves memory and makes it possible to compare state equality by just comparing point-
ers instead of actual values, which might allow for more efficient implementation of runtime
system routines. See figure 2.4 for an illustration.

Figure 2.4: Share Attributes optimization

Finally, there are Generate Macro Texture and Collapse Geometry. Both follow the principle of
combining multiple items of some type into one larger item of the same type. Generate Macro
Texture will create a texture atlas from various source textures. The texture coordinates of
objects that have used one of the source texture are adjusted to the new texture space of the atlas.
As a result there may be fewer state changes (because there are fewer textures to be activated),
but this optimization can also increase the number of cases where Collapse Geometry can be
applied.

Collapse Geometry combines multiple geometry nodes having the same state into one: «In
particular, the input scene graph is traversed and, for each node, a determination is made as to
whether the subtree consists of geometry. If so, the geometries of the subtree are combined.»
[35, p. 19] The result is (slightly) reduced memory usage and fewer state changes. Figure 2.5
shows an example of Generate Macro Texture and Collapse Geometry applied at once. Both
transformations discard redundant structural information, so to speak.

Computing Optimization Data Structures. The atomic optimizations in the second category
do not remove but add data to the scene graph. This additional data is used to speed up certain
runtime tasks. For example, Create Bounding Boxes will, as the name says, compute bounding
boxes for scene graph nodes. These bounding boxes can be used at runtime in order to perform
view frustrum culling.

The second optimization in this category is Spatial Partition which again improves frustrum
culling performance. There are many spatial partitioning schemes that can be used to hierar-
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Figure 2.5: Collapse Geometry and Generate Macro Texture optimizations

chically subdivide or index the scene graph. Which is most suited depends on the given scene
graph and has to be specified by the user.

In a way, also Generate Macro Texture and Collapse Geometry can be seen as belonging to this
category, as both create additional, more optimal data structures that help to enhance runtime
performance. The difference is that source data is not retained by these algorithms and thus no
additional persistent memory is needed.

The validation and adaption transformations briefly mentioned above constitute a third category.
However, as they do not really optimize the scene and are of little interest in the context of this
work, they will not be described in any more detail.

2.1.2 Alternate Runtime Representation

Another way of implementing scene graph optimizations is to keep an optimized runtime rep-
resentation of some subgraph in parallel to the original scene graph. At the cost of additional
storage space, this alternate representation is tuned to support some special task more efficiently.
Mostly this task is rendering but there are also other cases with different requirements such as
collision detection. As opposed to the persistent approach described before, the optimized scene
graph representation needs to be kept in sync with the source scene graph it represents—even if
the source data undergoes changes during runtime. As will be shown, the additional representa-
tion can be another scene graph—elaborated on below in the section «Dual Scene Graphs»—or
it can be something else completely, as presented in «Scene Graph Acceleration Structures».

Dual Scene Graphs

Hopcroft et al. present a system that keeps two (or more) representations of the same scene
graph. [31] The first of these representations is called the user scene graph (USG). It acts as
the source or blueprint for the second scene graph which is called the rendering scene graph
(RSG). The USG is meant to be created and manipulated by a human and its purpose is to be
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easily understandable and editable with the intended user not having to consider how scene graph
properties—such as logical grouping, or spatial distribution—may affect rendering performance.
The system will, automatically and transparently to the user, create the rendering scene graph in
the background, the purpose of which is already given by its name: The RSG is transformed and
optimized to be better suited for being consumed by the rendering hardware. This is achieved
by doing a number of things:

• The scene’s geometry granularity is adjusted by merging or splitting geometry nodes. This is
done in order to reduce the amount of time spent for preparing geometry nodes for rendering
(when merging many small nodes into one large node); or to increase culling possibilities
(when splitting a large node into smaller ones). Merging geometry has already been discussed
before as Collapse Geometry (p. 10).

• The spatial organization of the scene graph may be changed to improve culling performance.
This is done by splitting and regrouping geometries, similar to the Spatial Partition optimiza-
tion mentioned earlier (see Computing Optimization Data Structures, p. 10).

• Once again, the graph may be restructured to reduce the number of necessary state changes.
This seems to be achieved in a similar fashion as described by Strauss (see Pull up costly state
changes, p. 6).

• Level-of-detail nodes are created to improve rendering performance while maintaining an
approximate level of output image quality.

• Curves and curved surfaces can be presented and edited as such in the USG, while they are
automatically tessellated into triangles for rendering in the RSG.

As already mentioned above, the RSG is kept in parallel to the USG. It also is incrementally
updated whenever a change is made to the USG. For example, when a node is simply moved in
the USG, it may have to be removed in the RSG and then re-inserted at a completely different
place in the hierarchy to account for the different spatial organization of the RSG. Unfortunately,
Hopcroft et al. do not go into much detail on how these incremental updates are performed. This
would be interesting, especially in the light of having to incrementally apply a modification to
the already transformed RSG.

Scene Graph Acceleration Structures

The parallel, optimized representation of the scene graph does not always have to be another
scene graph. Typically, a graph structure—especially as created by humans—and rendering
APIs such as OpenGL or Direct3D are not a good match for each other. As a result, it can be
beneficial to introduce new kinds of data structures that additionally keep the scene in a form
more suited for rendering or some other purpose. A few possible approaches will be described
in the following.

Sowizral et al. propose a system that generates and manages a number of ancillary struc-
tures which aid in updating and rendering the scene graph. Each structure is responsible for a
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certain aspect of the scene data and its processing; they do not mirror the scene graph hierarchy
directly but represent a vertical subdivision of responsibilities. One example given is the geome-
try structure which maintains a bounding-box hierarchy of renderable objects used for querying
and culling. Analogously the rendering-environment structure keeps the state of all spatially lo-
cated but non-renderable objects (lights, fog, etc.) and provides for querying those. Render bin
structures manage a set of currently visible objects. They may sort the objects before rendering
or apply local optimizations on them, such as combining or splitting geometry.

This parallel representation can take on the original scene graph’s functions in varying de-
grees:

This may include (. . . ) the use of ancillary structures to reduce the extent of traversal
of the original structure, replacement of the original structure by one or more ancil-
lary structures thereby reducing references to the original structure (scene graph), or
even the complete replacement of the original structure by new structures contain-
ing sufficient information to render and execute the associated scene-graph-based
program (. . . ) [25, p. 7]

The initial parallel structure is created from the scene graph when the scene is loaded but can be
updated incrementally during runtime. Each of the specialized managers is updated concurrently
by its own update thread. Appropriate to this concurrent processing model, communication and
change propagation is accomplished via a message passing scheme. Each message receives
a logical time-stamp to permit a consistent chronological ordering of these messages and the
changes they represent. Concurrency, however, is limited by logical dependencies between the
tasks the various structures perform. In an example given by Sowizral et al. the Transform-
Structure has to finish updating before any other subsystem as most of them rely on consistent
object positions and orientations. The resulting necessity of proper update scheduling is pro-
vided by the so-called MasterControl thread which coordinates the ancillary structures and is
also in charge of time-stamping all messages in the system.

The system presented by Durbin et al. [18] shows the most similarities to the scene graph
caching system this thesis is about.

Viewed from the perspective of a rendering API, such as OpenGL, the scene graph is just
the sequence of API function calls which are generated by performing a render traversal. The
hierarchical graph structure is involved in producing these calls, but it is not used in any way by
the rendering API itself. Consequently, to render a scene, the scene graph would not even be
needed if the sequence of API calls for rendering the scene was available. Of course, the scene
graph is useful in other ways, such as when creating or manipulating the scene; but for drawing
the scene, anything that can produce the desired sequence of API calls (parameterized with the
same data) is sufficient. This is what the approach of Durbin et al. takes advantage of.

In their system, for every node in the scene graph a flat list of graphics calls is generated
and stored. This list, called the streamlined array of the node, is a persistent representation
of the API calls that would be issued by a render traversal when encountering the node. This
streamlined array represents a cache for the node that, when executed, reproduces the API calls
and, accordingly, the output image of the object the node models.
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Keeping these small caches around has a couple of benefits:

• Caches can be constructed in a hierarchical manner, so that the cache of a parent node
is equivalent to the combination of the caches of all its children, and by extension, of
all its descendants (Figure 2.6). In other words: Executing the streamlined array of the
parent produces the same results as rendering the whole subgraph and can thus completely
replace a render traversal of the parent node and everything below.

streamlined array 

Figure 2.6: «Streamlined arrays» in a scene graph hierarchy

• A linear list of graphics commands can easily be optimized in a couple of ways. First,
the final result of multiplying any transformation matrices can be stored directly with the
command and hence does not have to be recalculated for every call. This optimization
can be compared to Push transformations into vertices (p. 6). Second, redundant calls for
setting render state can be filtered out from the sequence (Figure 2.7). The result is equiv-
alent to keeping track of the current render state in the render traversal, and conditionally
making a state setting call only if the state would actually change. The difference between
the former and the latter is that the condition only has to be evaluated once during the
optimization step instead of at every API call. 4 Durbin et al. use the term «peephole
optimizations» [18, p. 13] in reference to the small, locally bounded optimizations done
by many language compilers.

Figure 2.7: «Peephole optimization» of a streamlined array

• Executing the flat, linear streamlined array of a whole subgraph is much cheaper than
performing a full-blown render traversal. From the perspective of memory access locality,

4Note that removing these redundant state setting calls is not the same as reducing state changes, as is done,
for example, by pulling up costly state changes (p. 6). Rather, these two optimizations complement each other—the
latter providing the former with best-case input data. This will be shown in more detail in Section 3.6 of this work.
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call stack depth, and especially effort needed to prepare the API call and its parameters,
the precomputed array of commands is pretty much as good as it gets.

However, this way of caching graphics commands has some implications that need to be taken
care of. Since the streamlined array always only contains a snapshot of the current state of a cer-
tain node, the caches need to be invalidated when changes occur. In this case, the system marks
the affected caches as dirty and can re-build them at a later point in time. As a consequence of
the hierarchical cache dependencies, a change in some node X not only invalidates the cache of
X but also the caches of all ancestor nodes of X .

Building the caches and optimizing them can be expensive while at the same time a cache
may be invalidated after just one usage. To remedy this, Durbin et al. let their optimizer estimate
whether creating a cache is a good investment of computation resources.

2.1.3 Scene Graph Toolkits

Many available scene graph toolkits support a subset of the optimizations mentioned above:

IRIS Performer [40] was one of the first scene graph toolkits with a strong focus on rendering
performance. It natively supports some of the persistent transformations mentioned above, as
well as a form of parallel scene graph representation as a means of aiding in multiprocessing.

• Static transformations (represented by pfSCS nodes) can be pushed down into vertex coor-
dinates. This one-time transformation of a scene graph is implemented by the pfFlatten()
routine [40, Section 3.1.4] and is an instance of the Push transformations into vertices
optimization (p. 6).

• The pfPartition node creates an internal spatial index of the underlying subgraph at load-
time. This index can then be used to speed up geometry intersection testing at run-time.
[40, Section 3.1.4] This is an example for an Acceleration Data Structure optimization
(p. 10).

• Performer uses a pipelined multiprocessing architecture where different stages (applica-
tion logic, intersection queries, culling traversal, drawing) can be performed in different
processes. To facilitate data synchronization between processes in a consistent and effi-
cient manner, each stage (except drawing) has its own view of the scene graph, called the
pfBuffer of the stage. Changes to the scene graph made by the application logic stage are
propagated down to subsequent stages in a frame-accurate manner, meaning that the state
of the scene graph in a specific frame is consistent across all stages. [40, Section 3.2.3]
These multiple views on the scene graph can be considered a form of Alternate Runtime
Representations (p. 11).

• The drawing stage of Performer’s rendering pipeline does not access the scene graph
directly. Instead, the culling stage produces a pfDispList that is consumed and executed
by the drawing stage. This pfDispList is a sequence of commands similar to a streamlined
array in the system presented by Durbin et al. (p. 13), however, it is not stored persistently
but regenerated for every frame. It only contains commands for drawing objects which
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are currently visible and can optionally be sorted to reduce unnecessary state changes.
This can be seen as a runtime version of pull up costly state changes (p. 6). Both use a
flattened representation of the scene graph, a list of fully defined render jobs, to determine
a good execution order, with Performer then directly executing the list and pull up costly
state changes using it to create a transformed scene graph.

OpenSceneGraph [8] supports many persistent scene graph transformations through its
osgUtil::Optimizer class. [33] Table 2.1 shows a selection of possible optimization flags defined
in the osgUtil::Optimizer::OptimizationOptions enumeration together with the corresponding
optimization described in this document.

REMOVE_REDUNDANT_NODES Collapse Hierarchy and Flatten Hierarchy
(p. 9)

MERGE_GEOMETRY Collapse Geometry (p. 10)
TRISTRIP_GEOMETRY Converting geometry to triangle strips

(p. 7)
SHARE_DUPLICATE_STATE Share Attributes (p. 9)
FLATTEN_STATIC_TRANSFORMS_
DUPLICATING_SHARED_SUBGRAPHS

Push transformations into vertices (p. 6)

FLATTEN_STATIC_TRANSFORMS Same as above but without subgraph dupli-
cation

SPATIALIZE_GROUPS Spatial Partition (p. 10) using a quadtree or
octree

TEXTURE_ATLAS_BUILDER Generate Macro Texture (p. 10)

Table 2.1: osgUtil::Optimizer::OptimizationOptions (selection)

In addition to these one-time optimizations, OpenSceneGraph also will, prior to rendering, sort
render jobs pertaining to opaque geometry to minimize unnecessary state changes.

OpenSG The main focus of OpenSG [44] lies on providing a flexible data management scheme
for concurrency. Nonetheless, it supports many of the same one-time optimizations as Open-
SceneGraph. The scene graph can be persistently manipulated via so-called GraphOps which
can «traverse the scene graph and do optimization operations on the nodes» [38]. Among these
GraphOps are implementations of Push Transformations into Vertices, Convert Geometry to
Triangle Strips, Share Attributes, and Collapse Geometry. Also, like OpenSceneGraph and
Performer, OpenSG will sort render jobs to reduce state changes. [38]

NVIDIA Scenix provides OptimizeTraversers [17] which can transform a scene graph in sev-
eral ways:

• The CombineTraverser performs transformations similar to Collapse Geometry (p. 10)

• The EliminateTraverser removes a number of redundancies. It includes Collapse Hierarchy,
Flatten Hierarchy (p. 9), and some actions specific to SceniX.
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• In SceniX transformation nodes can have multiple children. If a transformation node only
contains an identity matrix, the IdentityToGroupTraverser can replace it with a simple
group node.

• The UnifyTraverser applies a very generic version of the Share Attributes (p. 9) optimiza-
tion to the scene graph.

2.1.4 Relation to this work

As already mentioned, the scene graph caching system presented in this thesis has many sim-
ilarities to the system described by Durbin et al. ( [18]), and as such is an Alternate Runtime
Representation (Section 2.1.2). The cornerstone of the caching system is the representation of
selected scene graph parts as sequences of render instruction, comparable to the streamlined
arrays described above. These instruction streams, as they will be called in this work, have the
chief benefit of reducing traversal cost; but they also allow for many optimizations to the same
effect as the ones already described. Examples are sorting for state (pull up costly state changes,
p. 6) and sharing hardware resources (Share Attributes, p. 9). As implicit side effect of using
instruction streams, the structural complexity of the cached subgraph does not affect runtime
performance, thus making transformations like Collapse Hierarchy, Flatten Hierarchy obsolete.
Details on the optimizations facilitated in the caching system will be given in the main part of
this work, most prominently in Section 3.6.

Some sophistication has also gone into keeping a scene graph cache up-to-date once it is
built and, consequently, extending its lifetime. This is important, as building a cache is a costly
operation and could negate any positive effects on performance if it was necessary too often. The
next section will examine this problem of incrementally keeping complex structures up-to-date.

2.2 Incremental Computation

The scene graph caching system presented in this work is not only a form of scene graph op-
timization. Important parts of the mechanism behind it can be seen as a form of incremental
computation. What is incremental computation? Ramalingam and Reps give a concise descrip-
tion in the introduction of their «Categorized Bibliography on Incremental Computation»:

The abstract problem of incremental computation can be phrased as follows: The
goal is to compute a function f on the user’s ”input” data x—where x is often some
data structure, such as a tree, graph, or matrix—and to keep the output f(x) updated
as the input undergoes changes. [37, p. 1]

In case of the scene graph caching system presented here, the input data x is some (sub-)
scene graph and the incremental function f is the function that yields a cache for x, and keeps
the cache up-to-date incrementally. The details of how this is facilitated are given in the main
part of this work, Sections 3.4 and 3.5.

A particularly interesting work is Acar’s Self-Adjusting Computation [1] and subsequent
publications (e.g. [2], [23], [4]). Therein Acar describes a general approach to creating incre-
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mental programs by integrating needed constructs and runtime support directly into program-
ming languages, both imperative ( [3], [23]) and functional ( [1], [5]). The execution of the
incremental program—the instantiated call graph—is represented and stored in memory as a
so-called dynamic dependence graph (DDG). If the program input is changed later on, the DDG
allows to efficiently propagate the changes down to the output. By additionally integrating
memoization into the change propagation mechanism (to avoid re-executing computations), the
output of the program is thus updated with minimal effort.

However, there are several reasons why the above method was not chosen as the implemen-
tation strategy for incremental cache updates:

• There is no language or library support available for the implementation language C#. A
complete reimplementation of the described system would have been out of the scope of
this work—even more so, as the system would not have been needed in all of its generality.

• The scene graph system that constitutes the implementation context of this work does not
provide means to explicitly track changes. Yet, the change propagation algorithm needs
such a set of changes as initial input. Requiring all scene graph mutations to be tracked
would have been too much of an imposition on production code.

• The above approach has a significant disadvantage in the context of scene graph caching:
Change propagation is always performed in an eager manner. At the same time, large parts
of a scene may not need any updates due to visibility culling. Applying the above meth-
ods directly for facilitating incremental updates may—depending on the scene graph and
view configuration—result in redundant updates. This is especially detrimental because
large parts of the «output» to be updated consist of resources residing in GPU memory.
Mutating them unnecessarily would result in costly driver calls and waste of bandwidth
on the memory bus. This is a problem-inherent constraint that would stay in effect even if
the two constraints above, specific to the implementation context, were voided.

For these reasons, a different approach for handling incremental caching was chosen for
the system proposed in this work. Nonetheless, Acar’s work provided valuable inspiration,
particularly, the idea of using a form of memoization to further improve incremental resource
updates.5 Also, we do not preclude the possibility that self-adjusting computations can be used
in beneficial ways in conjunction with a caching system as proposed here. For now, however, an
approach specialized for the task was chosen.

Because of the above considerations concerning visibility culling, in this context a lazy
evaluation strategy is preferable to an eager one. Hudson [27] introduces an algorithm for in-
crementally evaluating attributes in a graph—a problem which is very similar to updating a
scene graph cache, and for which efficient (eager) solutions have already been proposed earlier
( [26], [6]). Again, like most incremental algorithms, dependency information is used to par-
tially re-compute attribute values. An attribute can have parameter attributes which are needed
to compute the attribute’s value. Consequently, the attribute depends on its parameter attributes.
The algorithm works in two phases: First, using the set of changes as input, all nodes and edges

5See section 3.6.7 for details.
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in the graph that are influenced by any of the changes, are marked as such. This marking phase is
executed in an eager fashion, but is rather light-weight. Second, starting at leaf nodes that have
a demand for being updated (that are not «culled»), the algorithm recursively evaluates attribute
values. This recursive evaluation implicitly causes attributes to be updated in a topologically
sorted order and thus avoids repeated, unnecessary computations of the same attribute. And,
because the recursion only descends into parts of the graph which are marked as «influenced»,
the update complexity is bounded by the size of the change and is independent of the size of the
complete graph.

Unfortunately, Hudson’s algorithm again relies on an explicit set of changes as input and
can therefore not be implemented in the context of this work. The incremental cache updating
mechanism needs to have a way of determining whether some cached part of the scene graph
has changed. Luckily, we can present a way of implementing this efficiently in the main part of
this work. Sections 3.4 and 3.5 will give a detailed description of the system in question.
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CHAPTER 3
Scene Graph Caching

This chapter will present the scene graph caching system, which is the subject of this work. The
first section will set the scope of the system by specifying clear goals for it to attain. The section
Implementation Context will lay out the environment the system is embedded in. The next
section Caching Architecture will show the basic functional principle of the caching system and
elaborate on its benefits and limitations. In Dependency System a mechanism will be presented
that allows to overcome some of the aforementioned limitations. Dependency-Aware Scene
Graph Caching will show how this mechanism can be used to enhance the basic caching system.
The next section Optimizations will discuss a number of improvements made possible by the
system’s architecture and show how to implement them. Default Cache Types will describe
the two specialized kinds of caches that have been implemented for this work and will show
examples of their usage. Finally, the concluding section of this chapter will discuss whether the
proposed system meets the goals set out in the beginning.

3.1 Goals and Scope

In order to create and implement a clean and elegant design, it is important to clearly state the
purpose and scope of the system to be developed. This section will give the aims the system will
strive to achieve sorted by their relative importance.

Reduce Traversal Cost. This is the main purpose of the caching system. As graphics hardware
and drivers have much improved over the years, applications can now easily become CPU
bound and, in the case of scene graph based applications, traversing the scene graph to ag-
gregate the parameters for rendering calls often has become the performance bottleneck. The
caching system should try to improve the average number of frames rendered per second (FPS)
by optimizing this process.

Allow Partial Caching. It should be possible to manually control which parts of a scene graph
are cached and which are not. Caching may result in increased usage of both main memory
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and graphics memory. Also, some parts of a scene might not be amenable to caching because
they are very dynamic or behave in some non-standard way. Therefore the creator of a scene
should be able to actively select for which parts of the scene a cache will be built.

Allow Modification. The user should be able to modify a cached subgraph, with as many kinds
of modifications as possible resulting in a fully automated update of the cache. As a fallback
for cases where an automated update cannot be facilitated, the user should be able to trigger a
full rebuild of the cache.

Easy Configuration. The system should allow for configuring cache settings in a simple way.
For the purpose of this thesis we will define this goal as follows:

• A single cache should be configurable by simply setting the appropriate flags on it. A
cache configuration consists of the set of optimizations that will be applied within the
cache and for which render passes a cache will be built.

• To cache a certain subgraph it should suffice to simply mark the root node in some way.

• Whenever possible, well-defined and practicable default settings and values shall be sup-
plied. In cases with special requirements it should be possible to change the configuration;
but setting up a system using only default values should already yield a fully functional
setup.

Extensibility. The system should provide points of extension by adhering to the Open-Closed
principle [30, p. 57] and other sound software design practices. In particular, the system should
allow to incorporate custom scene graph nodes, cache types, and dependency predicates into
the existing infrastructure.

Optionally Replace Cached Subgraph. It should be possible to erase a cached subgraph with
the cache taking over all responsibilities for rendering and resource management. The precon-
dition to this is that the subgraph is not dynamic, meaning it does not change in any way.

Use the Graphics Hardware Efficiently. To further improve rendering performance, the graph-
ics hardware should be used as efficiently as possible. When there is potential to automatically
exploit some hardware optimization or characteristic, the caching system should be able to do
so. Yet, concerning performance, this is only a side goal. The main focus of the system is still
reducing traversal cost.

The last section of this chapter (p. 87) will provide an evaluation of the system and the fulfillment
of the goals listed above. To further define the scope of this work, we will also list a few
restrictions and things the caching system will not do:

Leave Original Scene Graph Intact. The caching system should not modify any part of the
existing scene graph. In other words, the system should store an alternate runtime represen-
tation (p. 11) and not apply any persistent transformations (p. 5). The original scene graph
should stay available for the user to be modified—with the additional option of explicitly dis-
carding the original scene graph and letting the cache take over, as mentioned above.

22



Avoid Duplicating Large Datasets. Very often the vast majority of storage space needed for
a scene graph is geometry data, in particular vertex and index data. Structural data, such as
groupings and transformation are comparably light-weight. Since it is a requirement that the
original scene graph stays unmodified and fully functional, we chose not to duplicate geometry
data for the cache. It rather is shared between original scene graph and caches. That being
said, there are scenarios where optimizations like Collapse Geometry (p. 10) are beneficial and
incorporating this functionality into the caching system might prove interesting in the future.

GPU Programs are not modified. The caching system does not modify shader code in any
way. This is a topic of its own and would exceed the limited scope of this work. See Graphics
Pipeline in the next section for further information.

3.2 Implementation Context

The first part of this section will describe the graphics pipeline model used for reasoning about
possible implementations of the caching system. The second part will then shortly describe
the rendering backend used in the prototypical implementation of the caching system. This
rendering backend constitutes the low-level interface the system is programmed against and
abstracts the underlying hardware and software API. The last part of this section will present the
scene graph environment that hosts the prototype.

3.2.1 Graphics Pipeline

In order to identify possible points of performance optimizations one needs a model of the
hardware and software processes which are active while rendering a 3-dimensional scene using
modern graphics hardware. Such a structured model allows to pinpoint possible bottlenecks in
the processing pipeline and consequently find specific solutions to improve overall throughput.
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Figure 3.1: Direct3D 11 graphics pipeline
of a scene graph application

Figure 3.1 shows an overview of the various
stages involved in drawing a scene graph into a
render target. 1 The main sources for this section
are documentation provided by Microsoft ( [12],
[14]), Giesen (2011) [22], and NVIDIA’s GPU
Programming Guide [16]. First, the scene graph
needs to be traversed in order to generate com-
mands for the rendering backend, which sits on
top of the actual graphics API such as Direct3D
or OpenGL. The backend calls into the graphics
API runtime, which communicates with the part
of the graphics driver that runs on the CPU in
user-mode, which in turn accesses the kernel-mode
part of the driver. From here on, work is exe-
cuted on graphics hardware. The Input Assem-
bler reads index and vertex data and prepares it
as primitives for the rest of the pipeline. The Ver-
tex Shader processes single vertices, at least trans-
forming them into screen space. Hull Shader, Tes-
sellator, and Domain Shader allow for hardware-
based tessellation of higher-order surfaces. The
Geometry Shader processes geometry on a per-
primitive level and can, for example, discard an
entire triangle from the pipeline. Next, primitives
are rasterized into individual pixels which are then
processed by the Pixel Shader. Finally, the Out-
put Merger writes the pixels coming from the Pixel
Shader into the render target, using a configurable
semantic like alpha blending.

It is important to note that data and commands
between the different stages may be passed in
larger batches as opposed to single items. For
example, the user-mode graphics driver accumu-
lates a command buffer which it only sends to the
kernel-mode driver if it is explicitly told to do so
or if the buffer reaches a certain size. [15] This
batching is performed because switching to kernel-
mode is a costly operation. As a side effect, it be-
comes harder to accurately measure graphics per-
formance, as it cannot be predicted if an API call
triggers the execution of the command buffer.

1The diagram shows the setup on Windows 7 running DirectX 11. Other operating systems and graphics APIs
can have a slightly different configuration.
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For an overview of the complexities involved in profiling an application based on Direct3D
9 see Accurately Profiling Direct3D API Calls (Direct3D 9) [10].

Almost any of these stages can become the performance bottleneck of an application. [16,
p.11] However, the scene graph caching system will only influence the very first item in Figure
3.1 directly: scene graph traversal. As mentioned, we chose to avoid modifying vertex data and
shader program code directly. The former can help in reducing vertex shader load—like when
using level-of-detail techniques2—and the later may reduce the processing cost for all shader
stages. While some sort of automated level-of-detail support could be incorporated into the
caching system, the optimization of shader code is a very complex issue and would warrant a
work of its own.3

Nonetheless, certain parts of the pipeline on the GPU can benefit from being fed data in a
different order, allowing them to utilize memory caches more effectively or use special graphics
hardware features, such as Early Z Culling. The caching system supports optimizations that try
to aid in this direction (see 3.6.3 State Sorting, p. 65 and 3.6.4 Overdraw Sorting, p. 65). Mostly
however, the caching system is focused on reducing scene graph traversal cost and consequently
reducing CPU workload.

3.2.2 Rendering Backend

The AARDVARK scene graph toolkit—which provides the implementation context of this work—
comes with a rendering backend that acts as an abstraction layer over the actual graphics API
such as Direct3D or OpenGL. The programming language interfaces and types it provides are
closely modeled after the Direct3D 11 API, with resource types such as index, vertex, and con-
stant buffers and a renderer interface similar to ID3D11DeviceContext.

Apart from providing an abstraction over different graphics APIs, the main benefit of this
backend is its ability to «compile» single instructions provided in the renderer interface into
persistent objects. This instruction object encapsulates a renderer call, such as setting a buffer
reference or drawing a range of vertices, and can be re-executed at any time. As the arguments of
the renderer call are bound to the instruction when it is compiled, resource handles can be stored
as resolved implementation-specific references and thus do not need to be resolved for every
execution. The main advantage of a persistent form of render instructions is that a sequence
of such instructions can be stored, analyzed, and reasoned about. The positive consequences
of this properties will be shown later in the sections 3.3.1 Instruction Streams (p. 26) and 3.6
Optimizations (p. 64)

3.2.3 Scene Graph Environment

The caching system prototype was implemented within the AARDVARK scene graph environ-
ment. AARDVARK is developed at the VRVis Research Center where it is used in a number of

2Note that using level-of-detail techniques is not precluded by the scene graph caching system.
3In addition, the most worthwhile optimizations mostly result from choosing a smarter algorithm to solve a

specific problem and can therefore not be performed automatically.
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different projects. It provides all of the common scene graph functionality: geometry, transfor-
mation, surface, and group nodes to represent data; traversals to implement operations.

A prominent trait of AARDVARK’s scene graph model is its extensibility and flexibility.
New node and traversal types are easily defined, especially because of the generic scene graph
traversal semantic the system employs. This frees implementers of new node and traversal
types of the burden of handling interaction with existing traversal and node types by providing a
traversal forwarding mechanism. In effect, this reduces the implementation effort fromO(T ·N)
down to the strictly necessary traversal/node combinations. [42, p. 4-5]

Another important feature of AARDVARK is its support for separating the semantic scene
graph from the rendering scene graph, somewhat similar to the approach presented by Hopcroft
et al. (p. 11). A node type can be implemented as an Instance/Rule pair, where the Instance is the
declarative, semantically clean representation of the node, while the Rule dynamically provides
the rendering representation of its Instance. This allows to model scenes on a higher abstraction
level with implementation details generated programmatically instead of by the artist. It also
provides a uniform mechanism for modeling dynamic state because Rules describe a translation
from semantic to rendering scene graph which may also incorporate changing, global state. [42,
p. 2-4]

Note that the caching system presented in this thesis does not critically rely on any of these
special features. Nonetheless, they certainly made implementing the prototype quite a bit easier.

3.3 Caching Architecture

This section will present the basic architecture of the scene graph caching system. First, the
fundamental mechanism of the system is shown in Instruction Streams. Next, the section Cache
Nodes & Render Caches will show, how instruction streams can be integrated with the scene
graph and Cache Creation will elaborate on the process of building render caches. Finally, the
chief limitation of the system presented so far will be discussed, namely the problem of Cache
Invalidation.

3.3.1 Instruction Streams

The first question to answer is: What constitutes a cache in this system? What does it mean
to cache part of a scene graph? The answer has already partly been given in the Related Work
section. Similar to the approach by Durbin et al. [18] the caching system creates so-called
instruction streams which are a persistent representation of the commands sent to the rendering
backend when performing a render traversal on a subgraph. An instruction stream can be stored
in memory and, when re-executed, yields the same result as a render traversal would, albeit at
much lower computational expense.

An instruction encapsulates a single command to be executed by the rendering backend.
A command consists of the API routine to be executed and the arguments for executing this
routine. In the rendering backend described above, the possible routines map very closely to the
methods available in ID3D11DeviceContext. A partial listing is given in Table 3.1.
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ROUTINE PARAMETERS

SetPrimitiveTopology a primitive topology
SetVertexShader a vertex shader
SetShaderInputLayout a shader input layout
SetFragmentShader a fragment shader
SetGeometryShader a geometry shader
SetVertexBufferBinding a vertex buffer binding
SetIndexedVertexBufferBinding an indexed vertex buffer binding
SetConstantBuffers a set of (slot-index, constant buffer) pairs
SetShaderResourceBuffers a set of (slot-index, constant buffer) pairs
DrawIndexed start index and element count
DrawArrays start vertex and element count

Table 3.1: Instruction Types

An instruction stream is just a linear sequence of instructions, comparable to the byte-code
of an interpreted language. As every type of instruction must implement an Execute() method
(which simply calls the stored routine with the stored arguments), a full instruction stream can
be executed by iterating over the sequence and calling Execute() on each instruction. As can
be observed in Table 3.1, instructions often reference resources such as constant buffers as their
arguments. Figure 3.2 gives an example of small stream. In practice the number of instructions
per stream can go well into the tens of thousands.
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Figure 3.2: A small instruction stream with resources as instruction arguments.

There are several benefits an instruction stream has over a scene graph representation in the
given scenario:

Minimal Traversal Cost. As an instruction stream is just a flat sequence—an array in the pro-
totypical implementation—iterating over it is very fast. Apart from the dynamically bound call
to Execute() there is no branching code required in the iterator loop, while traversing a scene
graph typically requires more complicated navigation logic.
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Pre-Resolved Resource Handles. The rendering backend uses lazy resource handles to refer-
ence resources like vertex buffers. On the first use, the requested resource is created by a factory
closure stored by the handle. For the underlying graphics API (D3D or OpenGL) to use the
resource, the native value first has to be extracted from the backend wrapper object and cast to
the correct type. Since instructions are «compiled» by the backend at runtime, they are already
specialized for the underlying graphics API and can thus directly store the pre-resolved, native
resource reference. 4

Compactness and Cache Coherency. Instructions only store the information that is absolutely
necessary and in most cases the execution order of an instruction stream does not change once
it is created. 5 Consequently, it is easy to allocate an instruction stream with optimal layout for
sequential access by placing the instructions in memory in execution order.

Easy to Analyze. Once an instruction stream is created it can be reasoned about and possibly
optimized. Because of its strictly linear structure and the absence of jumps and branching, the
semantic impact of a code transformation can easily be determined. The section on Optimiza-
tions will show examples of exploiting this characteristic.

Caching of Computational Results. For spatial transformations the regular scene graph ren-
der traversal every frame has to recompute the accumulated transformation matrix required at
the leaf nodes. As the instruction stream is generated with full knowledge of the traversal state
at a given leaf, the SetConstantBuffers instruction setting the transformation can store the accu-
mulated matrix already at build time. Later executing the stream will just use the stored value
without doing any recomputation.

However, in addition to these positive properties instruction streams have one important
disadvantage: When an instruction stream is created it can always only take a snapshot of the
scene state at the time of creation. As the underlying scene graph changes, the semantic of the
graph and the stream drift apart: The cache becomes stale. The section on Cache Invalidation
will go into more detail on the problem and Dependency-Aware Scene Graph Caching will show
how this problem can be coped with efficiently in many situations.

Another problem to solve is how to exactly integrate instruction streams with the scene
graph system. The next section will show how this question has been answered in the case of
the system presented here.

3.3.2 Cache Nodes & Render Caches

To actually use instruction streams for caching a scene graph, they have to be created, stored
and maintained somewhere. This can be implemented several ways: storing them at the node
level like done by Durbin et al. [18], keeping them in an external caching manager outside of the

4Conceptually, this is also possible in a scene graph representation. However, the result would be very similar to
storing a small, local instruction stream at the node level.

5That is, there are no conditional jump instructions. Examples of when the execution order does change are: (1)
when transparency necessitates back-to-front rendering (see 3.7.2 TransparencyPassCache), and (2) when performing
front-to-back rendering as an optimization (see 3.6.4 Overdraw Sorting).
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scene graph, or—and this is the approach that has finally been chosen by us—introducing a new
type of scene graph node, the so-called cache node.

To select a subgraph for caching, a cache node is placed at the root of the subgraph. From
then on the cache node will take on all responsibilities for building, maintaining and using in-
struction streams for rendering. A cache node can contain a separate render cache for each ren-
dering pass it supports. A render cache is an object that implements the IRenderCache interface.
The default cache types supported by the prototype are SolidPassCache and TransparencyPass-
Cache, which will be discussed later in 3.7.1 and 3.7.2. Each render cache holds a type-specific
number of instruction streams or it may not use instruction streams at all, as the IRenderCache
interface does not prescribe the implementing class to do so. Figure 3.3 shows relationships
between the various entities.

CacheNode IRenderCache 

SolidPassCache 
Transparency 
PassCache 

IInstruction 
Stream 

* 
1 

1 

1 

* 

1 

Figure 3.3: Relationships between cache nodes, render caches, and instruction streams

Semantically, a cache node caches all of its descendants, which may include group nodes,
transformation nodes, surface nodes, geometry nodes and any other node type that implements
the ICacheable interface. 6 Figure 3.4 shows examples of valid setups (blue nodes denote cache
nodes).

It is not allowed, however, to place a cache node within a subgraph that is already cached
by another cache node. The subgraphs of two cache nodes may overlap, although this is not
recommended as it will lead to duplicate storage and maintenance efforts. Figure 3.5 shows
examples of these invalid, respectively, discouraged configurations. The intended configuration

6Due to the generic traversal algorithm [42, p. 4] of the scene graph environment used for implementing the
prototype, node types not implementing ICacheable are automatically ignored. In most cases, this is the desired
behavior. If not, the system stays extensible by allowing custom implementations of ICacheable.
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Figure 3.4: Valid placements of cache nodes in a scene graph.

is that a cached subgraph has its single root below the cache node and is not reachable by any
other path.

! 

(a) (b)

Figure 3.5: A nested—and therefore invalid—cache node placement (a) and a configuration with
overlapping, cached subgraphs (b)

Using this method of placing cache nodes above certain subgraphs, the render traversal can
execute a cache node’s instruction stream instead of descending into the subgraph. This is where
the major performance improvements are to be gained. Figure 3.6 shows a comparison of node
processing by a render traversal with and without caching.

3.3.3 Cache Creation

Now that the basic caching structure has been set forth, the cache creation process will be demon-
strated using the example of a cache node supporting a single render cache with a single in-
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Figure 3.6: Render Traversal with and without cache nodes
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struction stream. As will be shown later, this configuration already is very similar to the default
SolidPassCache type. The process as presented in this section will undergo various extensions
in the rest of this chapter and the complete, final version will be shown in Section 3.7.1. Yet, the
following description maintains its validity as the fundamental principle of the cache creation
algorithm stays unaltered.

The goal of the creation procedure is to construct the instruction stream within the render
cache. This is achieved by a pipelined process that transforms the scene graph into an instruction
stream through various stages.

1. If a cache node determines that it needs to build a new render cache (because it does not
already own a cache for the current pass), it will ask the RenderCacheFactory to create a
new instance.
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Figure 3.7: Two scene graphs and their corresponding SlimSG.

2. The factory starts an ExtractCachingDataTraversal at the cache node. The traversal will
invoke the ExtractCachingData method from the ICacheable interface on every imple-
menting node in the subgraph. This way a filtered, hierarchical representation of the sub-
graph is created. This representation, called the SlimSG, has the structure of the depth-first
traversal tree of the subgraph: Every path from the root to a leaf of the subgraph will end
in a distinct leaf in the SlimSG. If a leaf node in the subgraph is reachable by two paths, all
nodes starting from the first divergence of the two paths will be duplicated for the SlimSG.
If the subgraph already is a tree, the structure of the SlimSG will be equal to the structure
of the subgraph. Figure 3.7 shows a few examples of this transformation.

Each leaf node of the SlimSG holds references to the resources that are needed to render
the leaf—most notably index, vertex, and constant buffers. Ownership and life-cycle man-
agement of the various resources will be discussed later in 3.5.2 Resource Management.

3. Once the SlimSG is built, the RenderCacheFactory internally selects a factory function ap-
propriate for the current rendering pass. At this point, the cache construction process may
diverge for different render cache types. As stated above, this example will show the con-
struction of a very simple SolidPassCache instance. All subsequent steps are specialized
for this type of render cache.

4. The ISlimSg interface implemented by all SlimSG node types contains a CreateRender-
Jobs() method which takes a RenderJobBuilder instance as sole parameter. This con-
stitutes an implementation of the Builder design pattern [21, p. 97], with the SlimSG
taking the role of the director and the generated list of render jobs being the product.
The RenderJobBuilder possesses a «renderer-like» interface (Listing 3.1) which allows
the CreateRenderJobs() methods to simply mimic the sequence of rendering commands
that would be generated by performing a normal render traversal on the original subgraph.
CreateRenderJobs() is called on the root of the SlimSG and will propagate itself recur-
sively down into the leaves, all the while setting appropriate state on the builder object.
Internally the builder will create a list of render jobs. Each render job encapsulates a sin-
gle call to one of the Draw*() methods of the underlying graphics API, plus the complete
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state of the rendering pipeline at the time of the draw call: active shaders and shader input
layouts, vertex, index, and constant buffer bindings, etc.

interface RenderJobBuilder
{

void SetPrimitiveTopology(PrimitiveTopology pt);
void SetInputLayout(IShaderInputLayout inputLayout);
void SetSurface(Surface surface);

void SetConstantBuffer(int slot, IConstantBuffer buffer, ShaderType shaderType);
void ClearConstantBuffer(int slot, ShaderType shaderType);
void SetShaderResourceBuffer(int slot, IShaderResourceBuffer buffer,

ShaderType shaderType);
void ClearShaderResourceBuffer(int slot, ShaderType shaderType);

void SetIndexBuffer(Buffer indexBuffer);
void BeginVertexBufferBinding();
void BindVertexBuffer(String semantic, Buffer buffer);
void EndVertexBufferBinding();

void DrawIndexed(int startIndex, int elementCount);
void DrawIndexed(int elementCount);
void DrawArrays(int startIndex, int elementCount);
void DrawArrays(int elementCount);

}

Listing 3.1: RenderJobBuilder Interface

5. Since each render job is self-contained, the list of render jobs can be sorted in any order.
This can be utilized to perform State Sorting at this point in the process.

6. Once the render jobs are in the desired order, a code generator algorithm produces a
sequence of instructions from each render job by simply producing one instruction for
every item of state in the render job, setting the appropriate shaders, bindings and so on.
The instructions produced by the generator are so-called semantic instructions, meaning,
they fully define the semantics of the stream but are still independent of a specific graphics
API. Semantic instructions are comparable to an intermediate representation of a program
in a compiler, like LLVM IR [28], which is not yet translated into machine code for any
specific architecture.

7. In the last step, the semantic instructions are handed over to an IInstructionStreamFactory
instance which translates them into so-called native instructions. A native instruction
is bound to a specific graphics API and is directly executable. The sequence of native
instructions is the final instruction stream and with it the render cache is complete.

Figure 3.8 shows the process in form of an UML activity diagram. As can be seen, the process
is quite involved and consequently can be very expensive, especially because a potentially great
number of resources (mostly constant buffers) are created when the SlimSG is built by the Ex-
tractCachingDataTraversal. It is therefore crucial to avoid the need to rebuild the cache as much
as possible; otherwise any positive performance effect of the caching might be negated by the
time-consuming cache construction process. Not only could the average FPS actually be lower
than without caching—as cache construction blocks the rendering thread, it might also intro-
duce a noticeable, indeterministic stutter into the application. The next section will investigate
the conditions of cache invalidation as a first step to overcome this undesirable behavior.
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Figure 3.8: Simplified render cache construction process
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3.3.4 Cache Invalidation

The chief detriment of the caching system presented so far is caches becoming stale due to small
changes in the original scene graph and consequently necessitating a full rebuild of the cache.
This section will investigate the circumstances that can cause the instruction stream in a render
cache to grow out-of-date. There are a number of mutations that influence the mapping from
source scene graph to instruction stream:

• Adding a geometry leaf to a cached subgraph must be reflected in the stream by additional
draw call instructions and other instructions setting the appropriate state for the draw
call(s), such as index, vertex, and constant buffer bindings.

Correspondingly, when a geometry leaf is removed from the cached subgraph, the draw
call instructions rendering the contained geometries must be omitted from the stream. In
addition, the instructions setting the state for the draw call should be removed in order to
avoid unnecessary API calls. Note, however, that this is not entirely trivial, as a single
state-setting instruction affects the state active at any subsequent draw call unless another
state setting instruction of the same type starts a new «scope». A state-setting instruction
that is thus «bound» by another draw call must not be removed from the stream.7 Adding
or removing geometry leaves outside of a cached subgraph does not have any effect on the
cache.

• Leaf nodes in a scene graph are a special case because the semantic of no other node
depends on them. For nodes setting pipeline state the situation is more complex: Every
geometry leaf reachable from the node is influenced by it (except if the same state is
«overwritten» by another node down the path). Thus, changing for example the material
in a single MaterialApplicatorNode might change the material of any number of geometry
leaves and necessitate mutating many constant buffers referenced by instructions scattered
all over the stream.

The most important consequence of this «path-based» semantics exposed by scene graphs,
however, is that a change outside of a cached subgraph can influence the semantic of the
subgraph and, as a result, render the cache and its instruction stream stale: Mutating a
state-setting node on a path from the root to a cache node will require changing all in-
structions and resources referencing the changed state in some way. Figure 3.9 shows an
example of a change outside the cache affecting nodes inside the cache (a) and a change
contained inside the cache (b). Yet, it is important to note here that neither the number nor
the linkage of instructions and resources is altered, leaving the instruction stream struc-
turally equivalent. Only argument values stored in resources or directly in instructions
are mutated. Neither are any instructions added or removed, nor do they reference any
different resource instances than before. This circumstance will later become of great
importance.

7The topic of state scope in instruction streams will be further discussed in Overdraw Sorting where it is of vital
importance.
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Figure 3.9: Attribute mutations outside and inside a cached subgraph can cause cache invalida-
tion.

• Transformation nodes are a special case of the above, as their values do accumulate down
the path instead of being overwritten. This means that changing the matrix in a trans-
formation node may potentially influence even more graph leaves than changing other
attributes.

• Creating new edges between existing nodes can also make an instruction stream stale, as
a new edge can introduce new paths via which a geometry leaf is reachable and conse-
quently causing it to be drawn twice or more times (with different states or transforma-
tions). Again, like with geometry nodes, removing edges may cause the opposite effect
of draw calls needing to be removed. Since changing a single edge can add or remove
any number of paths in the scene graph, such a comparatively small change in the origi-
nal scene graph can mean a very significant change to its semantic and therefore also an
instruction stream modeling it.

Creating new paths within the cached subgraph will have a similar effect as adding new
geometry leaves to the subgraph. However, making the cache node at the root of the sub-
graph reachable via a new path will «duplicate» the whole subgraph. The prototypical
implementation of this work deals with this situation by creating two entirely separate
render caches, respectively a separate render cache for each path the cache node is reach-
able by. An alternative would be to create one cache containing all concrete instantiations
of the subgraph. But having separate render caches allows for the possibility of handling
them independently when doing visibility culling.

• Adding or removing nodes other than geometry leaves has very similar consequences to
changing the attribute value in an existing node—as long as no new paths are introduced.
If for example a new transformation node is introduced along an existing path (Figure
3.10a), the effect is the same as when just multiplying the new matrix with the value
of either the preceding or the subsequent transformation node (in the right order). The
instruction stream stays structurally unaltered.
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Figure 3.10: Additions of attribute nodes causing instruction stream mutations. In (a)
the number of paths from root to leafs is the same before and after the change. In
(b) there are two paths before the change—{(a, b, c, d), (a, b, c, e)}—and four paths after—
{(a, b, c, d), (a, b, c, e), (a, x, c, d), (a, x, c, e)}

When adding the transformation node while also introducing a new path, for example by
placing the node parallel to another one and connecting it to form a diamond shape with
the existing node (Figure 3.10b) then the same rules apply as when adding new edges in
any other way. This case is just a composite of (1) adding a new node, not introducing
a new path, (2) adding a new edge, not introducing a new path, (3) adding another edge,
this time also creating one or more new paths.

MUTATION TYPE STRUCTURAL CHANGE NODE CHANGES SIGNIFICANT

Add | Remove Geometry Leaf Graph & Stream Within Cache
Add | Remove Attribute Node Graph Within & Above Cache

Add | Remove Edge Graph & Stream Within & Above Cache
Change Attribute Value None Within & Above Cache

Table 3.2: Different changes to a scene graph and how they affect cache invalidation.

Table 3.2 gives a compact overview of the different cases and their characteristics. In summary,
an instruction stream (and the resources it references) is very sensitive to changes in the scene
graph it maps. The caching system as presented so far has therefore a very narrow set of use
cases; mainly speeding up the rendering of completely static portions of a scene, such as ter-
rain or buildings. While the system is not entirely useless, we can do better than this. This is
where the dependency system presented in the next section comes into play and the section after
the next—Dependency-Aware Scene Graph Caching—will show how it allows to significantly
reduce the number of times the cache needs to be fully rebuilt.
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3.4 Dependency System

The purpose of the dependency system is to provide a way of updating resources only when
needed. This is facilitated by establishing a simple ontology that allows to model the logical
dependencies of resource values and how they can be recomputed on demand.

At the beginning of this section the Assumptions and Requirements applying to the depen-
dency system will be discussed. The rest of the section will then show the implementation that
was chosen to fulfill the given requirements. First, the Basic Concepts the system is based on
will be presented and then several implications arising from these concepts are described, such
as Resource Construction, Resource Composition, Resource Equality, and the Evaluation Order
of Dependencies and Dependent Resources.

3.4.1 Assumptions and Requirements

Arising from the scene graph environment the dependency system is developed for, there are
some special assumptions that differ from the ones applying to a general purpose incremental
computing solution:

• Updating a resource can be very costly as the majority of resources resides in graphics
memory and changes will have to be transmitted over the PCI Express bus.

• There is always the possibility of (a large number of) objects being culled from the current
view which should require as little computational resources as possible.

• Due to the scene graph environment the system is to be used in, there is no preexisting
way to explicitly track changes made to the scene graph.

• The dependency system will be used to support the caching system.

Under these assumptions the following requirements for the dependency system were formu-
lated:

1. The system must provide a way to update resources if and only if they actually need to be
updated. For example, if an existing constant buffer stores the transformation matrix for
some geometry, this constant buffer should not be mutated unless the transformation of
the geometry actually changes.

2. Asserting whether a resource is not up-to-date anymore must be considerably cheaper than
performing the resource update.

3. The system must not prevent employing a scene graph toolkit’s frustrum and occlusion
culling mechanisms, as these optimizations can be very important to rendering perfor-
mance. Having to disable them can in many cases negate any positive effects of the
caching system altogether. Ideally, the dependency system should even support the culling
process and should itself profit from culling, if possible.
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4. Since the whole caching system prototype is implemented in an existing scene graph
environment actively used in production, the dependency system—same as the caching
system—must avoid breaking any interfaces or cause any other unnecessary implementa-
tion overhead for the existing user base. Where possible, interfaces should be extended
without changing their current meaning and the dependency system’s impact outside the
caching system should be as small as possible.

5. As with the caching system in general, the dependency system—if actually used—is per-
mitted to cause some additional computational effort at startup. For parts of a scene graph
that do not make use of it, the system should not cause any significant performance over-
head.

With these requirements laid down a concrete system has to be designed that implements
them. The rest of this section will show our result to this challenge.

3.4.2 Basic Concepts

The dependency system, as we chose to implement it, has three basic concepts at its foundation.
These concepts form an ontology that allows to assign roles and relations to the various scene
graph entities, which in turn allows to implement the desired selective updating mechanism.
These concepts are:

(1) Dependencies - A kind of metadata that allows for change tracking.

(2) Value Sources - Everything that provides input values needed for resource updates.

(3) Dependent Resources - All resources that should support smart, selective updating.

In the following paragraphs these three concepts are described in more detail:

Dependencies A dependency is a stateful predicate. A dependency provides a way of determin-
ing if some item has changed with respect to some former state of the item. It can be used
to model predicates like «Is object X within range (a,b)» or «Has the camera moved more
than 10 units since the last check». This functionality is implemented by a version num-
ber. Every time the observed object changes—according to the dependency’s definition of
change—the version number is incremented. This way every distinct state the observed
object takes during its lifetime has a unique version number. This version number can
be used by other objects as an abstract reference to a specific state of an object. Conse-
quently, other objects can determine if their view of the observed object is still up-to-date
by a simple comparison of the dependency’s current version number and the version num-
ber the dependency had when last used by the other object. This ability to quickly check
for changes is key to efficiently determine if a dependent resource needs to be updated or
if its state is still valid.

A dependency instance is also allowed to store arbitrary state (although, the less the better).
This can be used to store reference values to compare against when modeling conditions
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such as «Has the position of object X changed more than Y units?» To evaluate such a
condition, the object’s former position must be known.

Arbitrary new kinds of dependencies can be created by implementing the IDependency
interface shown in Listing 3.2.

interface IDependency
{

// Returns the current version number of this dependency instance.
DependencyVersion Version { get; }

// Check whether the change criterion of the dependency is met
// and if so, increments the dependency instance’s version number
void Evaluate(Traversal t);

}

Listing 3.2: The IDependency Interface

The implementing class can store any data it needs as instance fields and have an arbitrary
constructor to initialize them. The DependencyVersion structure is just a thin wrapper
around an integral value providing an abstraction of the underlying type (unsigned int in
the current implementation) and some convenience methods easing its use. The Evaluate()
method must implement the change tracking and increment the dependency instance’s
version number to indicate a change. It can use the Traversal object passed as argument
to access environmental state, such as the current transformation stack or the current time.

input: Dependency d,Traversal t

1 if distance(d.RefPosition, d.ObservedObject.Position) > d.Epsilon then
2 d.RefPosition← d.ObservedObject.Position
3 d.Version← d.Version + 1

4 end
Algorithm 3.1: Evaluating a positional change dependency.

Algorithm 3.1 shows an example implementation of a simple dependency that tracks posi-
tional changes of some object. The dependency must be supplied with an instance-specific
epsilon value that allows to adjust the tracking sensitivity, and the object to be tracked. It is
recommended to store such instance parameters in readonly fields of the concrete depen-
dency class. The dependency instance also stores a mutable reference position to compare
the object’s current position against and increments the dependency version if the object
has moved more than epsilon from the reference position. At the same time the reference
position is set to the current value. The Traversal argument is not needed in performing
this check.

Values Sources A value source is an item in the scene graph or global environment that is
needed when computing the value of a dependent resource. An example for a value source
would be a transformation node, the value of which is needed to calculate the model-
transformation of a leaf some way down the scene graph.

A value source holds a set of dependencies. This set of dependencies must accurately
reflect when the value of the value source changes. For example, if the transformation
node mentioned above always changes whenever a key is pressed, then the node must have
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a dependency that increases its version number whenever this event occurs. Dependencies
are the designated means to get information about changes of value sources. Listing 3.3
shows how value sources a represented in code.

During traversal value sources are collected in a list in the traversal state so that all value
sources on the path from the root to the current node are always available and can be used
later to construct the update action for a dependent resource as explained below.

// Something that is needed by an IDependent
// to update its value.
interface IValueSource
{

IEnumerable<IDependency> Dependencies { get; }
}

Listing 3.3: The IValueSource Interface

Since a value source does not just hold a single dependency but a set of dependencies,
the semantics of dependency changes have to be clarified. What does it mean if one of n
dependencies increases its version number while the others do not? What does it mean
if a dependency set of a value source is empty? The answer to these questions should be
consistent with intuition: If an object has two dependencies, it depends on both—a change
(i.e. a version number increment) in one of the dependencies means that the object is out
of date. Only as long as none of them changes the object is up-to-date. Correspondingly,
if an object has no dependencies then that should mean that it never changes. Thus, for a
set of dependencies «change» is defined disjunctive:

changeddepset({d1, . . . , dn}) = ∃i(changeddep(di))

Dependent Resources A dependent resource has three defining properties:

(1) It has a semantic

(2) It can determine if it is up-to-date

(3) It knows how to bring itself up-to-date (the update action)

Property (1), the semantic of a dependent resource defines what the value of the resource
represents.8 Consequently, it also determines how the value can be (re-)calculated and
therefore (together with the value sources of the dependent resource) determines the up-
date action discussed below. Examples for different semantics are ModelTransformation,
ModelViewProjection, or TransparencyIndexBuffer.

Like value sources, a dependent resource also has a set of dependencies.9 To implement
defining property (2) the dependent resource stores the set of its dependencies together
with a corresponding set of version numbers. For every dependency of the resource this
second set keeps the version number of the dependency that was effective at the time the
resource was last updated. If there is a mismatch between one of these version numbers

8Instead of semantic, the term type could also have been used.
9How the dependencies of value sources and dependent resources relate to each other is explained below
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and the current version number of the corresponding dependency then the resource is not
up-to-date anymore. This set of version numbers can be seen as the composite version
number of the dependent resource. More formally, the version of a dependent resource
r from domain R with a set of dependencies {d0, d1, . . . , dn} is given by the function
versionres which is defined as

versionres : R→ Nn

r 7→
(
versiondep(d0), versiondep(d1), . . . , versiondep(dn)

)
Property (3) of a dependent resource is that it must have a so-called update action. The up-
date action is a procedure with the postcondition that the dependent resource is up-to-date
afterwards. The concrete implementation of this procedure depends on a the resource’s
semantic but typically an update action stores references to a number of value sources
and uses them to (re-)compute the value of the dependent resource. It is therefore more
than just the code segment implementing the update logic: Two update actions using the
same update code (because they stem from the same resource semantic) but different sets
of value sources are not considered equal. 10 For example, the update action of a Mod-
elTransformation resource would be to recompute the accumulated model-transformation
from a fixed set of transformation nodes (implementing the IValueSource interface) on the
path to the resource.

Apart from its postcondition, the update action must also fulfill another condition: Two
subsequent invocations of the same update action must yield the same result in the form
of setting equal state in the owning resource. That is, an update action should not set any
external state that will have an effect on the next invocation. The result of computations
in an update action must only depend on the value sources it references and state in the
global environment that does not change during a render traversal.11 This makes update
actions predictable and easier to reason about.

// Something that is dependent on something else and knows if it is up-to-date
// and how to update itself. Any underlying objects or values managed by an IDependent
// must not be accessed if the IDependent is out-of-date. If unsure, call Update()
interface IDependent
{

// Dependencies of this object
IEnumerable<IDependency> Dependencies { get; }

//Updates this object iff needed.
void Update(Traversal traversal);

}

// A resource with dependencies
interface IDependent<out TResource> : IDependent
{

// The underlying resource instance. Do not access unless the
// dependent resource is up-to-date.
TResource Resource { get; }

}

Listing 3.4: The IDependent Interfaces

10In practice this can be implemented by creating a update action class for each semantic and subsequently
individual instances binding a specific set of value sources.

11This is similar to uniform and varying parameters in shader code, where value sources correspond to varying
input (vertex data) and global state corresponds to uniform input.
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In the source code dependent resources are implemented as two interfaces (Listing 3.4):
IDependent and its generic specialization IDependent<TResource>. The base interface
IDependent shows properties (2), the set of dependencies, and (3), the update action.
Property (1), the semantic, is not explicitly represented in the interface but rather implicitly
contained in the implementation of the update action.

The generic version of the interface also adds an accessor for the underlying resource,
such as a constant or index buffer. The dependent resource concept is represented by
two interfaces because the underlying resource is not needed for most purposes. Once a
dependent resource and its wrapped resource instance are created, the base IDependent
interface allows to manage it opaquely by providing a common supertype. The generic
version of the interface is only used be the creator of the dependent resource which knows
the type of the wrapped resource.

These three concepts—dependencies, value sources, and dependent resources—form the foun-
dation of the dependency system. They define roles that can be taken by different objects in
the scene graph by implementing the presented interfaces. Figure 3.11 shows a class diagram
depicting the relationships in the system more formally.

«interface» 
IDependency 

«interface» 
IDependent<TResource> 

uses for 
updating 

«interface» 
IDependent 

«interface» 
IValueSource 

* 

* 

* 

* 

* 

has 

has 

Figure 3.11: Class diagram showing the relationships between the base concepts of the depen-
dency system.

43



To further illustrate the system, Figure 3.12 shows an example scene graph with depen-
dency information. The scene graph consists of three transformation nodes (t1, t2, t3) and three
geometry nodes (a, b, c). The transformation nodes are value sources, each with a set of depen-
dencies. Now for every geometry node a dependent resource ri modeling its transformation can
be constructed. The table shows the resulting sets of value sources and dependencies for each
dependent resource.

Figure 3.12: A scene graph with dependency metadata
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D = {d1, d2} 
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D = {} 
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r3 

r2 

r1 

DEPENDENT GEOMETRY VALUES DEPENDENCIES
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r1 a (t1) {d1, d2}
r2 b (t1, t2) {d1, d2, d3, d4}
r3 c (t1, t2, t3) {d1, d2, d3, d4}

The next chapter Dependency-Aware Scene Graph Caching will show in more detail how
the dependency system can be integrated with the scene graph caching system. But first, some
further properties of dependent resources and the system in general will be explored.
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3.4.3 Resource Composition

With the properties of dependent resources given so far, it is possible to define a simple com-
position semantic for dependent resources with the result of such a composition again being a
valid dependent resource. As described above, a dependent resource must have three properties:
a semantic, a set of dependencies, and an update action. Consequently, the composite of several
resources must have these properties too and they must behave as expected:

• The semantic must describe what the value of the composite resource represents.

• The set of dependencies must contain all dependencies of the value, meaning that

1. the composite resource is up-to-date as long as none of its dependencies experiences
a version change, and

2. any version change renders the resource out-of-date, i.e. there are no dependencies
that have no effect on the resource.

• The update action of the composite resource must bring the whole resource up-to-date.

As will be shown shortly, the above requirements can be fulfilled by combining a number of
dependent resources in a tuple- or record-like manner, where every resource from the input set
becomes an entry in the composite. Additionally, a function ⊗res can be defined that yields a
valid composite from a set of input resources.

Let a dependent resource be defined as a tuple (σ,D, λ) ∈ R, where σ is the semantic, D
is the set of dependencies, and λ is the update action of the dependent resource. Then ⊗res is
defined as: 12

⊗res : Rn →R

((σ1, D1, λ1), . . . , (σn, Dn, λn)) 7→

⊗sem(σ1, . . . , σn)
⊗dep(D1, . . . , Dn)
⊗up(λ1, . . . , λn)


where the composition of semantics is a tuple of semantics

⊗sem(σ1, . . . , σn) = (σ1, . . . , σn)

defining a product type [24, p. 95] semantic.The composition of the dependency sets Di is the
union of the sets:

⊗dep(D1, . . . , Dn) =
⋃

1≤i≤n
Di

The composite resource is built from a set of sub-resources, each with its own set of depen-
dencies. Since a resource as a whole is out-of-date if a part of the resource is out-of-date, the
composite must inherit the dependencies of all of its parts:

changed(rc) = ∃rp(changed(rp)), rp ∈ parts(rc)

12The right side of the definition is given as a column vector only for formatting reasons. ⊗res yields a standard
dependent resource of the form (σ,D, λ).
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This is very similar to the change-semantics defined earlier for sets of dependencies (p. 41).
The last function ⊗up combines the update actions of the sub-resources. An update action λ
is defined here as a procedure that, using some computation rule with the value sources of a
dependent resource as input, mutates the value of the resource to be consistent with the current
state of the its value sources. The value of a composite resource can be seen as the tuple of the
values of its sub-resources.

value(rc) = (value(rp.1), . . . , value(rp.n)), rp.i ∈ parts(rc)

Now, it is the task of the composite update action λc to bring rc up-to-date. Being able to use the
update actions λp.i of the composite’s sub-resources, λc = ⊗up(λp.1, . . . , λp.n) can be defined
as

λc(rc) = (λp.1(rp.1), . . . , λp.n(rp.n)), rp.i ∈ parts(rc)

or in pseudo code notation which is better able to capture the impure, state mutating nature of
update actions:

1 procedure Update(DependentResource rc, TraversalState st)
2 begin
3 foreach rp ∈ rc.SubResources do
4 Update(rp, st)
5 end
6 end

In the end ⊗res yields a composite dependent resource that exhibits all the properties of a
regular dependent resource. Later in this work, it will become apparent how this is very useful
for modeling constant buffers and other structured objects as dependent resources.

3.4.4 Resource Equality

What is a useful definition of equality for dependent resources? According to Leibniz’ principle
of the identity of indiscernibles, two objects are identical if they have the same properties. [20]
More formally:

∀F (Fx ⇐⇒ Fy) =⇒ x = y (3.1)

For two dependent resources (σ1, D1, λ1) and (σ2, D2, λ2) this would mean that they are equal
iff all of their components are equal:

(σ1, D1, λ1) = (σ2, D2, λ2) ⇐⇒ (σ1 = σ2) ∧ (D1 = D2) ∧ (λ1 = λ2) (3.2)

In the context of the dependency system, however, the significant property of a dependent re-
source is its value, e.g. the state of the underlying constant buffer. In other words, the set of
properties F which have to satisfy (3.1) can be reduced to properties pertaining to the state of
the underlying resource; whereas the set of dependencies and the actual update action are mere
bookkeeping appendage. Consequently, a more practical definition is that, from the users point
of view, two dependent resources can be considered equal if their values are always perceived
equal. Or, formulated in analogy to the Liskov substitution principle [29]:
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Definition 3.1. A dependent resource r1 is equal to a dependent resource r2 if every occurrence
of r2 can be replaced with r1 without changing the semantic of the program.

This definition is of practical impact, as will be shown at the end of this section. It is not
immediately clear, however, whether two objects equal according to Definition (3.2) satisfy this
desired condition of substitutability.

To prove that equality as defined in (3.2) is an instance of equality as given in definition 3.1
the contract established by the IDependent interface (Listing 3.4) has to be taken into account:
The concept of dependent resources forbids to use its value unless it is up-to-date. Thus, a client
using a dependent resource may only ever access the latest version of its value. Anything else
is a breach of the usage protocol and can therefore be ignored as far as resource equality is
concerned. In other words, only the current, most up-to-date state of two dependent resources
has to be equal in order for the resources to be able to replace each other.

Theorem 3.1. Two dependent resources r1 = (σ1, D1, λ1) and r2 = (σ2, D2, λ2) satisfy the
substitutability condition as given by definition (3.1) if they are equal according to definition
(3.2).

Proof.

(1) As both resource instances have exactly the same set of dependencies (D1 = D2) their
up-to-date respectively out-of-date state are always equal at any given point in time. If r1
becomes outdated so does r2.

(2) Because λ1 and λ2 are equal it can be taken for granted that they are implemented by the
same program code and reference the same value sources.

(3) A value source cannot not change state during an equality comparison of two dependent
resources. If a value source changed stated, both resources referencing it would by defi-
nition be out-of-date and thus the equality comparison would be illegal in the first place.

(4) The computation of an update action must only depend on the referenced values sources
as defined earlier (p. 42)

(5) From (2) ∧ (3) ∧ (4) it follows that the same code operating on the same constant value
source will have the same effect on the respective dependent resource.

(6) As a consequence of (1) ∧ (5), if both r1 and r2 are up-to-date their legally accessible
state must be equal, which proves the proposition.

Having this concept of equality is very valuable because it allows for an important optimization:
All equal dependent resources can be folded into a single instance. For example, a dependent
constant buffer containing widely visible data such as view and projection matrices can be shared
by a large quantity of render jobs in a completely automated fashion. Once the dependency meta-
data is in place, the dependency system can take care of reusing resource instances if it is legal
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to do so. This optimization is reminiscent of common subexpression elimination [9] in program-
ming language compilers. The next section will show how it can be directly incorporated in the
construction process of dependent resources.

3.4.5 Resource Construction

In order to easily facilitate the creation of new dependent resource instances the dependency
system provides an extensible resource factory that already implements the above mentioned
resource sharing. To create a dependent resource the triple (σ,D, λ) is needed. The semantic
σ has to be specified by the creator but the dependency set D and the update action λ can be
extracted from the traversal state st once the desired resource semantic is known. The resource
factory implements thus a partial function ν

ν : S× ST → S×D × U
(σ, st) 7→ (σ,D, λ)

where D and λ can be computed as follows:

• The resource factory contains an internal registry of functions that can create an update
action from the current traversal state st. These functions—from now on called type-
info factory—are indexed by resource semantic. When the factory receives a request
to create a new dependent resource, it uses the semantic σ it received as argument to
select the correct type-info factory. It then invokes this function with traversal state st
as argument. The type-info factory uses st to collect all value sources needed. All value
sources encountered on the current traversal path are available in a list in st. Depending
on the semantic this list is filtered to only the relevant sources. Having retrieved these, the
type-info factory can create and return the update action.

The dependency system already provides default type-info factories for common resource
semantics such as ModelTransformation or ModelViewProjection but the registry can be
extended with additional factories in order to support new resource semantics.

• The set of dependenciesD of a dependent resource is—like the update action—determined
by semantic and value sources. As the type-info factory already is specific to the given
semantic and already has collected the relevant value sources, it can easily be extended to
also compute the dependency set D which is the union of all sets of dependencies of its
value sources:

depsres(r) =
⋃
v∈V

depssrc(v), V = sourcesres(r)

This is because whenever one of the value source changes, also any resource dependent
on it changes. Thus the relationship between a dependent resource and its value sources
is the same as the relationship between a composite dependent resource to its component
resources.

changedres(r) = ∃s(changedsrc(s)), s ∈ sourcesres(r)
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Having gathered all the information needed, the resource factory could now create a new
dependent resource instance. Yet, as already mentioned, the factory implements automated
resource sharing too avoid unnecessary redundancies. Using the now available triple (σ,D, λ)
as resource identifier, the factory queries an internal cache for an instance equal to the requested
resource. If there is a match then the cached resource is returned; else a new instance is created,
added to the cache and then returned.

Note that update actions are compared indirectly, as there is no readily available way of
determining whether two update actions, represented as C# delegates have equal implementa-
tions. Yet, since the update action is chosen based on resource semantic and may only use value
sources as inputs, it suffices to compare those: If two dependent resources have equal semantic
and equal sets of value sources then their update actions are also equal. Since the combination
of semantic and value sources also determines the set of dependencies of a resource, the two of
them being equal not only means that update actions are equal but the whole resource. Conse-
quently, the information needed for implementing a cache lookup is resource semantic and the
set of value sources. This pair (σ, sourcesres(r)) can be considered the signature of the depen-
dent resource. The type-info factory has already been extended to also return D in addition to λ
and it is only consistent to let it also return sourcesres(r) which it already must have computed
anyway. The final resource construction process is shown in Algorithm 3.2.

input : Semantic σ, TraversalState st
output: DependentResource r

1 typeInfoFactory ← FactoryLookup(σ)
2 typeInfo ← typeInfoFactory(st)
3 signature ← (σ, typeInfo.ValueSources)

4 if ¬(r ← CacheLookup(signature)) then
5 r ← (σ, typeInfo.D , typeInfo.λ)
6 CacheInsert(signature, r)

7 end

8 return r
Algorithm 3.2: Creating a dependent resource with automated resource sharing.

3.4.6 Evaluation Order of Dependencies and Dependent Resources

In general, the update order of interdependent objects is determined by the structure of depen-
dencies between the objects. If object a depends on object b—that is, if the value of object b is
needed to compute the value of object a—then b must be updated before a.

update(a) uses b =⇒ a depends on b =⇒ update(b) before update(a) (3.3)

Otherwise, if a is updated before b then the value of a might grow stale when b is updated. This
general principle also applies to the dependency system, however it is not immediately clear how
this translates into a concrete implementation. This is what will be investigated in this section.
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In the dependency system the three types of entities that can change state are:

Dependencies have a state consisting at least of their version number.

Value Sources have their value, the changes of which are indicated by their dependencies.

Dependent Resources have a value that is computed from their value sources and they also
have dependencies which are used to determine whether the dependent resource needs to be
updated.

There is one obvious consequence from this: Dependent resource must be updated after value
sources, as the value sources are used to re-compute resource values. But how do dependencies
fit into the picture? To answer this question, one needs to look at how and when the state of
dependencies (i.e. their version number) is used and modified:

• The only time the version number of a dependencies can be modified is during the depen-
dency’s Eval() method. Consequently, the Eval() method constitutes the «update» of the
dependency and therefore—in accordance to (3.3) with the dependency being a here—any
inputs used by Eval() must already have been updated. The input which can be used in
an Eval() implementation is (1) state which is external to the scene graph (such as time or
input device state) and (2) the value source the dependency describes. Concerning case (1)
external state can be considered constant during a scene graph traversal. As a result, any
external object or value used by Eval() can be considered up-to-date because there is no
way for these objects or values to become «stale». For case (2) the situation is different:
If value sources are given the chance to mutate their state when they are traversed they are
not constant. Thus, in order not to violate (3.3), the Eval() method of a dependency must
be executed after the value source it describes has been traversed (and possibly changed).
This gives a lower bound on the point in time when Eval() has be executed.

traverse(sd) before eval(d)

where sd is the value source described by d.

• Looking at when the version number of a dependency is used will provide an upper bound
for the interval the version number must be updated in. Again (3.3) is used but this time
the dependency takes the place of b. The role of a is taken by any dependent resource that
contains the dependency in its set of dependencies. This is the case because the conditional
Update() method of the IDependent interface is the only place where the dependency
version number is used. Therefore, when a dependent resource r is updated, the version
numbers of all dependencies in depsres(r) must be up-to-date. In other words, dependency
version numbers, alongside value sources, are an input for Update().

eval(d) before update(rd)

where rd is the first dependent resource where d ∈ depsres(rd)
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In summary, dependencies have to be evaluated between the traversing the value source they
describe and updating the first dependent resource using this value source (and therefore con-
taining the dependency in its dependency set).

In the prototype presented in this work, this is implemented by giving value sources the
responsibility to evaluate all of their dependencies. This has the following implications:

• Any dependencies used by a dependent resource r will have been evaluated when r is
encountered by the traversal. This is the case because of the way dependent resources are
created:

Proof.

(1) A dependent resource r can only be created from value sources which are on the
current traversal path at creation time.

(2) When a dependent resource r is reached by a traversal, the same value sources have
been traversed as when r was created, as every path gets its own dependent resource
instance.13 This is a consequence of resource sharing in the dependent resource
factory (see Resource Construction).

(3) The dependency set of r is the union of the dependency sets of the value sources of
r.

(4) As a consequence of (1) ∧ (2) ∧ (3) the dependency set of r can only contain depen-
dencies that have already been evaluated by a value source when r is reached by the
traversal.

• If a dependency is shared by n value sources it will redundantly be evaluated n times. This
should not be a problem for correctness, as a redundant evaluation should leave the version
number untouched. If the evaluation was very costly, its implementer can add an «early
exit» guard condition that checks whether the dependency has already been evaluated for
this traversal.

• Value sources must not change during the traversal after its dependencies have been eval-
uated. If value source changes are only allowed while traversal is at the value source this
cannot happen, as the value source has to re-evaluate its dependencies immediately after,
even if it is traversed for the n-th time. The only possibility this can be a problem is when
value sources are modified concurrently. This can lead to missed resource updates if the
dependency evaluation still sees the old state of the value source but at the time of the re-
source update the new state of the value source is not recognized as the dependency does
not indicate it.

13Note that this only holds as long as there are no structural changes which introduce new paths after creating
dependent resources.

51



In conclusion, assigning the responsibility of evaluating dependencies to value sources fulfills
the upper and lower bound conditions given above. The condition that value sources will always
be up-to-date when dependent resources referencing them are encountered is also always met
because of point (2) of the proof given above.

As a corollary of all of the above it can be stated that there are two equivalent ways of
implementing the Evaluate() method in IDependency which could be termed «a priori» and «a
posteriori» implementations.

A Posteriori The dependency evaluation is performed by comparing the just traversed and pos-
sibly changed value source to some reference value stored in an instance field of the depen-
dency. This condition is reliant on the value source’s state, and it can only yield the correct
result after the value source has been updated.

P =⇒ changed(s)

changed(s) =⇒ inc(d.Version)

A Priori The dependency evaluation does not use the value source directly but rather tests the
external conditions that are known to always cause a change in the value source. The Evaluate()
method never even has to look at the value source instance it describes.

P =⇒ changed(s)

P =⇒ inc(d.Version)

Given the dependency and resource evaluation scheme described above both strategies will
yield correct results. The a posteriori approach at first is more intuitive and may be easier to
implement. However, the a priori approach will often allow more dependency instances to be
shared between value sources and there can always be a a priori version of a dependency as
there are always external causes to value source modifications (such as the passing of time or
user input) which can be captured by the dependency.
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3.5 Dependency-Aware Scene Graph Caching

This section will show how the Dependency System can be integrated with the Caching Architec-
ture. The first section will show how using Dependent Resources instead of Regular Resources
proves to be very beneficial for cache invalidation. The next section is on Resource Manage-
ment and will describe various characteristics of different (dependent) resource types. The last
section, Updating Dependent Resources: The Dependency Index, will show how a special data
structure can help in updating dependent resources efficiently.

3.5.1 Dependent Resources instead of Regular Resources

As described earlier in Cache Nodes & Render Caches (p. 28), a render cache typically consists
of an instruction stream and the resources this instruction stream references. Later, in the section
on Cache Invalidation (p. 35) it has been shown that different kinds of scene graph modifications
have different kinds of consequences on the instruction stream representing the scene graph.
Most notably—as listed in the last line of Table 3.2—changing the value of an attribute node
does not necessitate a structural change of the instruction stream: just the value stored in a
resource referenced by the stream has to be updated.

As it turns out, these kinds of modifications are the most frequent. Examples range from
camera movement and object transformations to material and lighting changes. Even direct
modifications of index data (e.g. sorting primitives in transparent geometry) and vertex data
(e.g. object morphing) fall into this category. Only structural modifications to the scene graph
cannot be handled by simple resource content updating.

Not entirely coincidentally, smart resource updating is exactly what the dependency system
was developed for—and conceptually it can be integrated with render caches rather easily. By
using dependent resources instead of regular ones when building instruction streams, a whole
class of scene changes does not invalidate the cache anymore. Instead—by bringing all depen-
dent resources up-to-date before executing the instruction stream—the render cache stays valid.
Updating the dependent resources can be considered an «incremental update» of the render
cache and, if implemented correctly, can be much more efficient than rebuilding the cache from
scratch. The next section will elaborate on the various resource types in the scene graph system.

3.5.2 Resource Management

Managing resources is always a very important part of any performance oriented system. For
the scene graph caching system this is no different. The following list of graphics API resources
have to be handled by it:

1. Vertex & Index Buffers

2. Vertex & Index Buffer Bindings

3. Shader Input Layouts

4. GPU Programs
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5. Constant Buffers

These resource types play very different roles in the graphics pipeline and not all of them
represent 3D content. Buffer bindings and shader input layouts are better characterized as book-
keeping data and can be generated automatically. These resources merely being implementation
details also do not need to be modeled as dependent resources as will be shown below. What
follows is a short description of each resource type together with an analysis of its interaction
with the dependency system, its ownership and lifetime, and how an instance of the resource is
constructed in the context of the caching system.

Vertex & Index Buffers

In terms of size these resources hold the majority of the scene data. They contain a represen-
tation of geometry information described in geometry nodes in a vertex-based format natively
consumable by the graphics hardware. Since these buffers contain such a large amount of data it
is highly desirable to share them between the immediate mode renderer and the caching system.
Yet, the immediate mode renderer does not have any concept of change. It just uses buffer data
as is when it encounters it during the render traversal. Changes, such as morphing and sorting
of indices, are applied without the renderer knowing about it. This can lead to two problems:

• When some entity modifies buffer contents for the immediate mode renderer an inconsis-
tency between buffer contents and the dependency information describing it is introduced.
As a consequence, a render cache using the same buffer will wrongly and redundantly ex-
ecute the buffer’s possibly quite expensive update action.

• The logic for updating buffers has to be duplicated and coordinated between the immediate
mode renderer and render caches, adding another source of inefficiencies and inconsisten-
cies.

In order to avoid these pitfalls the prototypical implementation always represents index and ver-
tex buffers as dependent resources. Both, the immediate mode renderer and the caching system
use IDependent.Update to handle buffer modifications. For static geometry no performance
overhead is introduced, as it will have an empty dependency set and hence never has to be
checked for modifications.

Dependence In the AARDVARK scene graph environment geometry nodes reference VertexGe-
ometry objects which contain vertex data in a separate array for each attribute (such as position,
normal, or color). Each of these has a string key. For the prototypical implementation of the
caching system VertexGeometries have been extended to contain a mapping of attribute names
to dependent resource semantics. This mapping specifies which kind of dependent resource is
created for a given attribute array. From the viewpoint of the dependent resource the attribute
array represents a value source. Additional value sources will depend on the given semantic.
For example, a TransparencyIndexBuffer will reference the camera as another value source.
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Figure 3.13: Vertex buffer binding, slots, and shader input layout

Ownership, Lifetime & Construction Because ownership of an index or vertex buffer can be
shared between several geometry nodes and render caches a reference counting scheme is em-
ployed to manage resource lifetime. As described above (p. 49) a dependent resource can be
identified by its signature (σ, sourcesres(r)). Whenever a dependent vertex buffer needs to be
created the dependent resource factory is invoked which creates the signature from the given
traversal state and the semantic. It will then use the signature to query its internal cache for an
equivalent resource. If it finds one, it will increment the resource’s reference count. Else it will
add a new instance to its cache. Render caches and geometry nodes use the factory to acquire
and release references to dependent index and vertex buffers.

Shader Input Layouts, Index & Vertex Buffer Bindings

A vertex buffer binding, in analogy to Direct3D 11, maps certain vertex buffers to so-called
«slots» (with a slot just being a non-negative index). The other half of the mapping are shader
input layouts which map slots to HLSL semantics [13]. This way, the graphics driver knows
which vertex buffer to bind to which input parameter in the shader code. Figure 3.13 illustrates
the concept.

Index and vertex buffer bindings are represented by one interface in the graphics backend
used for the prototypical implementation: IVertexBufferBinding. An instance of IVertexBufferBind-
ing may also contain an optional reference to a index buffer. In the AARDVARK scene graph
toolkit the shaders to be used for a subgraph are specified using so-called surface nodes. A sur-
face is a pair of vertex and pixel shader, plus an optional geometry shader. In other words, the
surface defines active GPU programs. Additionally it also provides some reflection data about
itself. Among other things it can be queried for the varying (~vertex buffers) and uniform inputs
(~constant buffers) it requires. This information is extracted from the HLSL source file of the
shaders assigned to the surface. For varying inputs a mapping from HLSL semantic to a string
key has to be provided at the beginning of the HLSL file. This key must specify under which
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name the vertex buffer data is stored in the geometry data structure in the scene graph. AARD-
VARK defines an extensive set of standard keys (such as «Positions», «Normals», «Colors», etc)
to ease using this system. With this metadata available, vertex buffer bindings and shader input
layouts can be created automatically by the scene graph system.

Dependence The shader input layout depends on the surface it was created for. If the number
or order of varying inputs of the vertex shader changes, the input layout has to be adapted.
Vertex buffer bindings depend on the input layout and thus, by extension, also an the surface. If
a changed input layout maps a given semantic to a different slot, the vertex buffer binding must
remap the buffer in question to the new slot.

In theory buffer bindings and input layouts could be modeled as dependent resources. Their
only value source would be the surface active for them and whenever the surface changes,
their respective update actions could re-run the automated mapping algorithm described below.
However, as these kinds of changes are rather infrequent at runtime, this functionality is not
implemented in the prototype. As a result, vertex buffer bindings and shader input layouts are
treated as being constant and changes to the vertex shader which change the input mapping are
not supported at runtime.

Ownership & Lifetime The ownership of vertex buffer bindings and shader input layouts de-
pends on whether they are used within a render cache or not. In the cached scenario all buffer
bindings and input layouts are created when the cache is built and subsequently they are also
owned by the containing render cache. Every render cache has its own set of buffer bindings
and input layouts which does not intersect with the resource set of any other render cache or the
resources used by immediate mode rendering. This makes lifetime management rather easy:
The bindings and layouts live as long as their owning cache does; disposing the cache will also
dispose these resources.

As a side effect of this ownership setup and the resources’ immutability, it is also easy to share
input layouts and buffer bindings within the cache. If two geometry nodes happen to reference
the same geometry data under the same surface they can use the same vertex buffer binding.

For immediate mode rendering, vertex buffer bindings are owned by the geometry node the
vertex data of which they reference. Every geometry node holds a small data structure specific
to each surface the node is reachable from. This data structure stores the vertex buffer binding
the content of which depends on the pair (surface, geometry). The binding with key (s1, g1) is
disposed when geometry node g1 becomes unreachable from surface node s1.

For shader input layouts it is different: There is always only one shader input layout for each
surface.14 The same input layout may even be reused for two different surfaces. As a conse-
quence, the overall number of input layouts needed for the whole scene graph is likely to be
rather small. For this reason, shader input layouts are considered globally shared resources,
owned by the scene graph as a whole. They live as long as the scene graph does.

14In theory, there could be as many input layouts per surface as there are slot permutations. However, normally,
there is little reason to generate different input layouts for the same surface.
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Construction Vertex buffer bindings and shader input layouts are created together by an in-
stance of the BindingFactory class. On creation the factory can be configured to reuse binding
and input layout instances if possible. The factory instance thus serves as a resource sharing
context. See Algorithm 3.3 for a pseudocode listing of the combined buffer binding and input
layout creation procedure.

Every render cache has its own factory instance (with reuse of both bindings and input layouts
enabled) and consequently all vertex buffer bindings and shader input layouts are optimally
reused within a cache automatically. The BindingFactory also has a Finish() method which
closes the factory instance and returns a special disposer object that allows to dispose all re-
sources created by this factory instance at once. This way the render cache can take ownership
of bindings and input layouts when it is completely built. When the cache is disposed, it will
use the disposer object to also free these resources.

GPU Programs

GPU programs such as vertex, pixel and geometry shaders are held by surface nodes in the
scene graph. For the rendering backend to actually use them they must be instantiated as API
resources.

Dependence In the current implementation, GPU programs are immutable once they are loaded.
Thus they have no dependencies and are not implemented as dependent resources. Yet, in the
future they might be modeled as such in order to enable automatically reloading GPU programs
when they are changed on the disk. However, the implications of changing shaders at runtime
can be complicated, especially when the number or types of varying and uniform inputs are
modified. Such changes may necessitate adapting quite a few other resource instances, such
as vertex and constant buffers. The exact implications of such modifications have not been
investigated in detail.

Ownership & Lifetime & Construction GPU programs are managed by a reference counting
scheme to facilitate shared ownership semantics. Geometry nodes and render caches alike
register their usage of a surface node which automatically instantiates and disposes GPU pro-
gram resources as needed. See also the following description of constant buffers for additional
information.
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input : Surface s, GeometryData g
output: IVertexBufferBinding vbb, IShaderInputLayout il

1 begin
2 ilDef ← new Dictionary[string → int ]
3 vbbDef ← new Dictionary[int → string ]

4 for slot← 0 to s.Inputs.Count do
5 input ← s.Inputs[slot ]
6 ilDef [input .HlslSemantic]← slot
7 vbbDef [slot ]← g.VertexBuffers[input .GeometryKey]

8 end
9 il ← GetInputLayout(ilDef , s)

10 vbb ← GetVertexBufferBinding(vbbDef )

11 end

12 function GetInputLayout(Dictionary[string → int ] def ,Surface s)
13 begin
14 if (reuse shader input layouts) then
15 cache ← GetCacheFor(s)
16 if ¬(cachedInputLayout ← cache.LookUp(def )) then
17 cachedInputLayout ← new ShaderInputLayout(def )

cache[def ]← cachedInputLayout
18 end
19 return cachedInputLayout

20 else
21 return new ShaderInputLayout(def )
22 end
23 end

24 function GetVertexBufferBinding(Dictionary[int → string ] def )
25 begin
26 if (reuse vertex buffer bindings) then
27 hash ← CreateHashFor(def )
28 if ¬(cachedBinding ← CacheLookUp(hash)) then
29 cachedBinding ← new VertexBufferBinding(def )

CacheInsert(hash, cachedBinding)
30 end
31 return cachedBinding

32 else
33 return new VertexBufferBinding(def )
34 end
35 end

Algorithm 3.3: Creating a vertex buffer binding with matching shader input layout
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Constant Buffers

Constant buffers are the most frequently changing resources. Every camera movement means
that at least one constant buffer instance needs to be changed (because of view, view-projection,
model-view-projection matrices), every transformation change of an object is normally reflected
by different values in a constant buffer. The same is true for changes in lighting and many ma-
terial properties. As a consequence it is important that constant buffer handling is implemented
efficiently.

Constant buffers can be seen as a record with a number of fields. From the viewpoint of the
dependency system each field is a dependent resource with a given semantic (like ModelTrans-
formation). The constant buffer as a whole is a composite dependent resource as described in
3.4.3 Resource Composition.

Dependence Two usage cases of constant buffers have to be distinguished here. Their usage
within a render cache and their usage by the immediate mode renderer. From the viewpoint of
the later there is no dependency system. It only uses regular constant buffer.

Within the caching system constant buffers are treated as dependent resources and all the rules
described in 3.4 Dependency System apply. The dependency set of each field is the union of
the dependency sets of all value sources used by the update action of the field (see p. 41). The
dependency set of the constant buffer is the union of the dependency sets of all its fields (see p.
45).

Ownership & Lifetime Again the distinction between cached and non-cached usage has to be
made. In the non-cached case, surface nodes in the scene graph hold constant buffer instances
needed by their GPU programs. For every constant buffer that is contained in a vertex, frag-
ment, or geometry shader of the surface, the node keeps exactly one constant buffer instance
with the required layout. This instances are reference counted together with the GPU pro-
grams. When the first reference to the surface is registered constant buffers and GPU programs
are allocated and when the last reference to the surface is cleared they are deallocated.

In the cached usage case every render cache gets its own set of constant buffers. The buffers are
not shared between two caches and are not shared between a cache and the immediate mode
renderer. The constant buffers in a render cache are created when the SlimSG is created by
the ExtractCachingDataTraversal and are then owned by the cache that is created from the
SlimSG. When the render cache is disposed, so are its constant buffers.

Construction Constant buffers use the construction process described in Resource Construc-
tion. They are created in ICacheable.ExtractCachingData() using a dependent resource fac-
tory instance owned by the ExtractCachingDataTraversal object. As this factory implements
the resource sharing technique described before every distinct dependent resource gets its own
instance while constant buffers which are equal according to Definition (3.1) are represented by
the same instance. With the right factoring of data into different buffers this can dramatically
reduce the number of buffer instances needed.15

15The «right factoring» in this case means to group uniform data according to their update frequency. This is
already advocated in general, for example in the NVIDIA GPU Programming Guide [16, p. 46]

59



In order to efficiently check whether there already is an equal constant buffer instance available
to be reused, the factory uses dependent resource signatures (p. 49). These signatures act as
key into a dictionary of already created resources. By creating a hash value for signatures
searching for an equivalent constant buffer can be performed in approximately O(1).

Like with the BindingFactory, once the construction of all resources for a render cache is
finished, the dependent resource factory can be closed. This provides a disposer object which
allows the render cache to take ownership of all dependent resources created by the factory.

Updating Because constant buffers are potentially updated very often, special attention should
be given to the implementation of this process. Because re-computing values of single fields
can be quite expensive (like accumulating a current model transformation) redundant updates
should be avoided. For composite dependent resources a single sub-resource being out-of-date
implies that the whole composite is out-of-date. But the opposite is not true: The composite
as a whole being out-of-date does not imply that all of its sub-resources are out-of-date. Just
(at least) one of them. Consequently a possible optimization for updating constant buffers is to
only re-compute value of fields which are not up-to-date. This means that each field must be
check individually, which is easily possible because the dependency set of each field is known
at resource construction time and can be retained with the buffer. The naive implementation is
shown in Algorithm 3.4.

input : DependentConstantBuffer b

1 for i← 0 to b.FieldCount do
2 updateNeeded ← false
3 field ← b.Field [i]
4 for j ← 0 to field .DependencyCount do
5 if field .Dependency [j].Version 6= field .RefVersion[j] then
6 updateNeeded ← true
7 end
8 end
9 if updateNeeded then

10 field .Update()
11 end
12 end

Algorithm 3.4: Naive implementation of updating a dependent constant buffer

However, this approach would necessitate storing the dependency set and corresponding ver-
sion numbers for each field individually. Moreover the nested loop in the algorithm leads to a
complexity of Θ(n ·m) and the version comparisons cause a lot of possibly redundant indirec-
tion. In practice none of this is a crippling problem but a more efficient implementation can be
provided quite easily.

When creating a constant buffer, create a union of the dependency sets of its fields. This is in
accordance to the rules for composite dependent resources. Then for each dependency in the
united set store a bit mask that indicates which fields the dependency affects. Fields have a
fixed index within a constant buffer. If dependency d contained in the dependency set of field
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fi then set bit i in the mask of d. Now it is known which fields need to be updated if d’s version
number has changed. These bit mask for every dependency is stored with the constant buffer
when it is created.

To get the complete set of fields that need to be updated at a given point in time simply iterate
over all dependencies and—if a version has changed—combine their bit masks with a bitwise
or operation. The result is a bit mask containing the indices of all fields that need to be updated.
Iterate over fields and, if their bit is set, update them. See Algorithm 3.5 for a full listing.

input: DependentConstantBuffer b

1 for i← 0 to b.DependencyCount do
2 fieldMask ← 0
3 if field .Dependency [i].Version 6= b.RefVersion[i] then
4 fieldMask ← fieldMask | b.FieldMask[i]
5 end
6 end
7 for i← 0 to b.FieldCount do
8 if bit i is set in fieldMask then
9 b.field [i].Update()

10 end
11 end

Algorithm 3.5: More efficient implementation of updating a dependent constant buffer

Commonly, the number of fields in a constant buffer is not greater than the number of bits in
a machine word. In this case bit masks can be represented by a single integer variable which
allows for efficient bitwise operations and costs little memory. For this reason, the prototype
contains a specialized implementation of dependent constant buffers with less than 32 fields.
For larger buffers—which are rare—the algorithm is still better than the naive implementation
but a bit less efficient.

Overall, this alternative approach has many benefits. Dependency sets and corresponding ver-
sion numbers do not need to be stored for each individual field without field values having to be
recomputed unnecessarily. The number of indirections is reduced as each dependency instance
is only accessed once per update. And the nested loop has been replaced by two regular loops
leading to a complexity of Θ(n+m).

3.5.3 Updating Dependent Resources: The Dependency Index

As has been described before, the Render() method of a render cache must update all dependent
resources used in its instruction stream before executing the stream. In order do make this
functionality easily available to implementers of IRenderCache it has been encapsulated in a
standardized data structure: the DependencyIndex.

The straightforward implementation of updating a set of dependent resources is very similar
to Algorithm 3.4 for updating a constant buffer: Iterate over all resources and call their Update()
method. As the IDependent interface requires the Update() method to only update the dependent
resource if needed there will be no unnecessary resource value computations. However, many
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resources that may not need to be updated will still have to check their dependencies. The ques-
tion is: Can the number of up-to-date checks be reduced? To answer this question, we analyze
the nature of the given problem. Within a cache there is a fixed number of dependent resources,
each with a fixed set of dependencies. When the cache is rendered, it wants to know the set
of dependent resources that really need an update. This set is specified as those resources the
dependency set of which contains a dependency with a changed version number. This situation
is very reminiscent of the setup of constant buffers and in fact the set of dependent resources
within one render cache can again be considered a composite dependent resource as described
in Resource Composition.

In contrast to constant buffers, this time the total number of sub-resources can go well into
the thousands. The total number of dependencies, however, is not expected to be that high as
many dependent resources have an empty set of dependencies and one dependency instance is
expected to be shared by many resources. It is our estimation that in a render cache with n
dependent resources there are (in the average case) log(n) dependency instances.16

The query to be performed is checking for overlaps in sets of dependencies: First, find the
set of dependencies which have changed since the last update. Second, find all resources the
dependency set of which overlaps with the change set. The first step can be implemented by
creating the union set of all dependencies in the render cache and keeping a corresponding
version for each. When the cache is to be rendered, iterate over the union set and collect all
dependencies the version number of which does not match the corresponding version number
stored. For the second step an inverted index [7] of dependencies to their resources can be built
for efficient set intersection testing.

The algorithm for finding all dependent resources that need to be updated can then be spec-
ified as follows:

input : List of Dependencies ds,List of Dependency reference versions vs,
InvertedIndex index

output: Set of dependent resources to be updated rs

1 rs← ∅
2 for i← 0 to ds.Length do
3 if ds[i].Version 6= vs[i] then
4 resourcesWithThisDependency ← index [ds[i]]
5 merge resourcesWithThisDependency into rs
6 vs[i]← ds[i].Version

7 end
8 end

3.5.4 A Note on Resource Update Order

Section 3.4.6 laid out the rules for the update order of value sources, dependencies and depen-
dent resources. Moving along the normal scene graph traversal, these rules are met. Yet, the

16At the moment this is just a guess which may have to be revised after testing the system with more real world
data.
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caching system changes the traversal order: A cached subgraph is not traversed anymore. As a
consequence, care has to be taken to keep update order correct. Before the instruction stream
and dependent resources in a render cache (representing the leaves of the cached subgraph) are
used, the render cache also has to update/evaluate the value sources and dependencies between
cache node and leaves.

For this reason, render caches «pull up» dependencies and value sources from the cached
subgraph and update them before using the DependencyIndex to update dependent resources.
However, value sources do not have a standardized way of being updated; unlike dependent
resources they have no Update() method known to the dependency system. Changes to value
sources are initiated (1) before the render traversal or—conceptually rather uncleanly—(2) in
the Render() method, called by the traversal when encountering them. As a cached value source
is excluded from traversal the caching system introduces the restriction that only option (1) is
used for mutating value sources. This keeps the update order intact in any case by lifting the
lower bound on dependency evaluation described on page 50.

The best way, however, to solve this problem would be to unify the concept of value sources
and dependent resources. IValueSource is already a super type of IDependent and dependent
resources can act as value sources without a problem.17Having only dependent resources would
make data dependencies even more explicit and evaluation order would always automatically be
correct. This change in concept would mean moving from a predominantly imperative scene
graph evaluation model to an entirely declarative, incremental evaluation model. For the current
implementation this was too radical a shift because of the additional integration costs with the
existing code base. However, a more fundamental approach might prove interesting for future
work.

17This is a fact that will be exploited by some of the optimizations presented in the next section
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3.6 Optimizations

The scene graph caching system as described so far—using instruction streams and the depen-
dency system—can be augmented by quite a few optimizations in various areas. This section
will describe each of them in detail.

3.6.1 Removal of Redundant Instructions

The simplest way of creating an instruction stream from a list of render jobs is to iterate over
the list and for each job create a sequence of instructions which sets the full pipeline state,
from primitive topology, GPU programs, shader input layout, and textures to vertex, index, and
constant buffer bindings. Although semantically correct, an instruction stream generated this
way can contain a significant percentage of redundant instructions. Most of the time the correct
primitive topology, GPU programs, et cetera are already set from a previous instruction in the
stream and setting it to the same value again poses a waste of computational resources.

Fortunately, it is rather easy to omit redundant instructions already while generating the in-
struction stream. Every render job contains the full render state that needs be set before its
draw call can be executed. As a consequence the active render state at the current end of the
instruction stream is known to be equal to the render state specified in the render job that was
last processed by the code generator. Thus, the code generator can determine which instructions
need to be generated for the current render job by simply looking at its immediate predecessor.
This is implemented by simple conditional statements of the form

if current.PrimitiveTopology 6= previous.PrimitiveTopology then
yield new SetPrimitiveTopologyInstruction(current .PrimitiveTopology)

end
if current.VertexShader 6= previous.VertexShader then

yield new SetVertexShaderInstruction(current .VertexShader)
end
. . .

This kind of optimizations has already been described in the Related Work section. Durbin
et al use it on their streamlined arrays [18] where they call it a «peephole optimization». Also,
many scene graph toolkits like Performer [40, Section 2.2.3] and OpenSceneGraph [39] will do
a similar filtering of API calls at runtime.

3.6.2 Super Instructions

Superoperators [36] or superinstructions [19, p. 20] are an optimization originating from byte-
code interpreters. Common sequences of atomic byte-code instructions are folded into a larger,
semantically equivalent superinstruction. When used in an interpreter, this has various benefits,
such as smaller code size, less instruction dispatch overhead and improved branch prediction.
For instruction streams used by the caching system, there are similar benefits, mainly the reduc-
tion of the «instruction dispatch» INativeInstruction.Execute() calls.
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3.6.3 State Sorting

Sorting render jobs in order to reduce the number of render state changes is often mentioned as
an important optimization. In the Related Work section it has already been described as Pull up
costly state changes (p. 6), the NVIDIA GPU Programming Guide recommends it [16, p. 20],
and various scene graph toolkits such as Performer, OpenSceneGraph, and OpenSG support it
as a runtime feature (see Rohlf and Helman [40, Section 3.1.3], Osfield [39], and Reiners [38]).

In this context, the optimization is implemented by sorting the list of render jobs before
generating an instruction stream from it. The sorting is performed in two phases:

1. The list of render jobs is grouped by render target, then by the tuple
(vertex shader , fragment shader , geometry shader). This yields a number of shorter,
disjunct lists of render jobs within which the most expensive states are not changed any-
more. The grouping can be implemented rather efficiently by using hashing techniques.

2. Each of the groups generated in the previous step are now sorted to further reduce the num-
ber of state changes. This is done by defining a distance metric between render jobs and
then solving the traveling salesman problem within each group. The more state changes
are required for moving between two render jobs the greater the distance assigned by the
metric will be. If the render state of two jobs is equal, the distance is zero. If two constant
buffer bindings need to be changed it will be greater than if only one needs to be changed,
and so on. Following the shortest path connecting all render jobs will result in the least
state changes. Mind, however, that any path will yield correct results and solving the TSP
only approximately is sufficient to reduce the number of state changes significantly.

3.6.4 Overdraw Sorting

Most modern graphics hardware supports an optimization called Z culling. [16, p. 43] If a pixel
is determined not to be visible because of its depth value, it is discarded from the rendering
pipeline before the fragment shader stage. This way the GPU does not need to compute the
color value of the pixel (done by the fragment shader) and does not need to blend it into the
render target. The performance gain of this optimization will depend on the complexity of the
fragment shader, the size of the render target, and the percentage of pixels that do not need to
be computed because of the optimization. Only the last factor can be influenced by the caching
system. By drawing geometry closer to the camera first, the chance increases that there are
already pixels in the depth buffer which occlude later drawn geometry. This is called front-to-
back rendering. NVIDIA’s GPU Programming Guide recommends to prioritize front-to-back
rendering over sorting by state. [16, p. 20] To draw front-to-back the geometry must be sorted
by distance to the camera position. However, there are two problems which need to be solved
when implementing this:

(1) Geometry data is hard to sort. A geometry node can represent arbitrary shapes, intersect-
ing themselves and shapes of other nodes. Often shapes would have to be split to allow an
accurate sorting, which is a time-consuming process.
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(2) Camera and object positions can change freely every frame. There is no static sort order
that can be determined beforehand. An instruction stream in a render cache must be
dynamically adjusted to the current scene configuration.

This problems can make front-to-back rendering seem unfeasible in the context of the caching
system. Fortunately, both problems can be solved by relaxing the constraints a bit. As long as
the geometry rendered is not transparent, the depth buffer will always guarantee a correct output
image, independent of the drawing order. That means, drawing the geometry in arbitrary order
will have the same result as drawing accurately sorted or just roughly sorted. The only difference
is the number of pixels that can be culled early from the pipeline. This provides some leeway
because a completely correct sort order does not have be guaranteed at any time.

As a result problem (1) can be solved by partly ignoring it. Facilitating an entirely accurate
spatial sorting would be too expensive while an approximated sorting can also bring the desired
outcome. For this reason, the caching system will sort geometries by the distance from the cam-
era to the centroid of the geometries vertices. The centroid is modeled as a dependent resource
so it can be kept up-to-date automatically. This heuristic will work well for small, compact ge-
ometries where the centroid poses a good approximation of geometries’ spatial configuration.
For larger shapes the sorting will be more random. This can negatively affect the number of pix-
els profiting from Z culling but—as already mentioned above—will not compromise the output
image.

The solution for problem (2) is more complicated and consists of several parts:

(a) Determining when to re-sort the instruction stream,

(b) integrating the re-sorting process with the render traversal, and

(c) developing an algorithm that can actually re-sort an instruction stream without breaking
its semantic.

The solution to (a) again profits from the relaxed accuracy constraints. Taking into account
every movement of every object and the camera would very probably result in having to re-
sort the instruction stream every frame. At the same time the sort order might not even change
due to the temporal coherence of many scenes. Also, we expect the benefit of an accurate sort
order over a roughly correct sort order to be negligible. As the geometries drawn are distributed
over the two dimensional render target, sorting just by camera distance can produce arbitrarily
different sort orders for objects not overlapping in screen space without changing the number of
pixels profiting from Z culling.

As a consequence we use a heuristic again: Only the camera position is used to determine
when re-sorting is advisable and only if the camera moves by a certain distance will re-sorting
be triggered. This predicate is implemented as a dependency, looking very much like Algorithm
3.1 (p. 40). The sort order of an instruction stream, same as geometry centroids, is implemented
as a dependent resource with the camera as its value source. When the render traversal reaches
the render cache containing a re-sortable instruction stream the sort order will be updated by
the dependency index. If the dependency indicates that the order is out-of-date, the sort order
resource’s update action will trigger re-sorting the instruction stream.
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This also already illustrates the solution for task (b). For large instruction streams, however,
sorting can take a long enough time to cause a visible stuttering of an animated scene. To rectify
this issue, re-sortable instruction streams are implemented by a specialized class: ReSortable-
InstructionStream. This class stores two copies of the original instruction stream. One always
contains the original sorting, while the second is front-to-back sorted. When the sort order is
out-of-date, the second stream is sorted by a worker thread in the background. If the render
traversal reaches the cache while the second stream is locked by the sorting process it can just
fall back to executing the first stream. This effectively eliminates the stuttering while providing
front-to-back rendering most of the time.

Task (c), making instruction streams sortable, is the hardest part of this optimization. To
find a starting point for this undertaking, one needs to understand the semantic and internal
structure of instruction streams. The purpose of an instruction stream is to issue commands to
the rendering backend, which ultimately draws an image. This image is what matters and any
transformation done to an instruction stream which does not alter the output image will in this
context be considered to yield an equivalent instruction stream. The re-sorting algorithm to be
developed here must be such an equivalence transformation.

To ensure that a transformation does not change the effect of an instruction stream its inner
workings must be analyzed. The rendering backend can be configured by setting different states
(already referred to previously as the render state or pipeline state). Also, draw calls can be
issued to the rendering backend which initiate the actual drawing process using the current state.
A draw call plus the state that is active when it is issued has previously been called a render
job. A render job is self-contained, meaning that it does not dependent on any render jobs
previously processed by the rendering backend. This is the reason why the list of render jobs
can be arbitrarily ordered by the state sorting optimization.18

Yet, once the list of render jobs is transformed into an instruction stream things are more
complicated. A state set by an instruction stays active as long as another instruction overwrites
it. Thus, the «scope» of an instruction—the range within the instruction stream which is influ-
enced by the instruction—can span until the end of the whole stream and over multiple draw
calls. With the remove redundant instructions optimization activated this is the common case,
as this optimization uses exactly this property to shrink the stream. What previously was a self-
contained render job is now one draw call and all the instructions that define the render state
at the time when the draw call is executed. These state-setting instructions can be anywhere in
the stream as long as they are in front of the draw call. As a consequence instructions cannot
be freely moved around. Figure 3.14 shows an example of render jobs mapped to an instruction
stream and the scopes of the various instructions.

In order to still be able to re-sort the stream the algorithm proposed here will segment the
stream into ranges which represent as much of a render job as possible. Then it will determine
which of these segments can be moved around without changing the stream’s semantic. These
segments are called atomic sections as the instructions within them will always be moved to-
gether when the stream is sorted. An atomic section always ends with a draw call. An atomic
section has a local state which is defined by the state-setting instructions within it. Commonly

18Of course this is only true for non-transparent geometry where the depth buffer will take care correct visibility.
For transparent geometry the drawing order is fixed and neither state nor front-to-back sorting can be done.
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Figure 3.14: Representation of render jobs in an instruction stream with instruction scopes
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Figure 3.15: Instruction stream with atomic sections. The prefixed with L shows the index of
the atomic section the local scope of which the instruction is part of. The line prefixed with E
shows the set of atomic sections the external scope of which the instruction is part of.

this local state will not define the whole render state active at the draw call of the atomic section.
Mind, however, that local state does not mean the actual values applied by the instructions, just
which kind of state is set. For example, rather than {vertex shader = x, buffer binding = y}
the local state would just be {vertex shader , buffer binding}, meaning that these state-fields
are defined, never mind the actual value. Typically local state comprises «per-geometry at-
tributes» such as index and vertex buffer bindings. The rest of the render state (e.g. GPU pro-
grams) is set externally, i.e. before the atomic section. State external to one atomic section is
always the local state of a previous atomic section. An atomic section can thus be seen as a
partially defined render job, like a logical expression containing some bound variables (' local
state) and some free variables (' external state). The free variables are later bound depending
on where the atomic section is placed in the stream. Figure 3.15 shows an example of atomic
sections and their scopes within an instruction stream.
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Initially, the instruction stream can be segmented into its atomic sections with a simpleO(n)
algorithm:

input : InstructionStream s, CentroidMapping cm
output: List of AtomicSections as

1 as← ∅
2 localState ← ∅
3 sectionBegin ← 0
4 for i← 0 to s.Length do
5 if s[i] is state-setting instruction then
6 localState ← localState ∪ {state set by s[i]}
7 else /* s[i] is a draw call ending the atomic section */
8 sectionEnd ← i
9 centroid ← cm[s[i]]

10 a← new AtomicSection(sectionBegin, sectionEnd , localState, centroid)
11 Append a to as
12 localState ← ∅
13 sectionBegin ← i

14 end
15 end

Every draw call signifies the end of an atomic section at which point the algorithm will
create an atomic section object storing the local state which has been accumulated since the last
draw call. Every sections also get assigned a reference to the dependent centroid approximating
the position of the geometry the section draws. The distance from centroid to camera is later
used as sorting criterion as described above.

The next task is to find ranges within this list of partial render jobs which can be sorted
without changing the stream’s semantic. The conditions for two consecutive atomic sections a1
and a2 to be allowed to exchange positions are:

1. They must have the same local state which also implies that they have the same external
state. Because of this they are independent of each other. Every state-field set by a1
will be overwritten in time by a2 and vice versa if they exchanged position because they
set exactly the same state-fields (' local state) and leave exactly the same state-fields
unchanged (' external state).

And because they are consecutive, their «free variables» will be bound to the same values.
a1 will not set a state-field which is external to a2 as their external state is equal. Of course
this also applies to the ordering a2, a1. So the same external state values that were active
when the first section is executed are still active for the second one. Figure 3.16 shows
a visualization of three re-sortable ranges within a list of atomic sections. A re-sortable
range appears as an uninterrupted sequence of equal columns.

2. The first criterion asserts that the draw call of the atomic section being moved keeps its
valid state. However, as said before, the scope of state-setting instructions can span across
multiple draw calls and consequently across multiple atomic sections. This introduces
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Figure 3.16: Re-sortable ranges of atomic sections with instruction scopes
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Figure 3.17: Atomic section a9 must not be moved because a10 to a16 depend on it

dependencies among atomic sections, in particular, an atomic section a depends on all
atomic sections which contain a free variable for which a provides a binding. Thus, when
moving an atomic section, the validity of dependent sections has to be guaranteed: No
free variable of any sections dependent on a moved section must be bound to a different
(wrong) value. This is the second criterion, and the algorithm adheres to it by regarding
all atomic sections which bind free variables in other sections as affixed—sections with
dependencies will not be moved.

Fortunately it is rather easy to detect whether an atomic section has dependencies. As the
scope of an instruction ends when another instruction of the same type sets a new value,
the scope of an atomic section in a certain state-field does never «jump» over another
section, it always extends to the right consecutively. Thus, for an atomic section ai to have
dependent sections, already the first following section ai+1 must be dependent. If the first
following section is not dependent, no other section can be dependent—they could only
be dependent on ai+1 which must have overwritten any local state of ai to be independent
of it. ai+1 can act as a kind of «scope barrier». As a result determining whether an atomic
section must stay fixed is the same as determining whether the local state of its successor is
a real subset of its own local state. Figure 3.17 shows an example configuration containing
a fixed atomic section.
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Having these two criteria an algorithm finding re-sortable ranges within a list of atomic
section can be defined as follows:

input : List of AtomicSections as
output: Set of re-sortable ranges rs

1 rs← ∅
2 rangeBegin ← 0
3 for i← 1 to as.Length do
4 if (s[i] is affixed) ∨ (localstate(s[i]) 6= localstate(s[i− 1])) then
5 newRange ← [rangeBegin, i[
6 if newRange.Length ≥ MINSIZE then
7 rs← rs ∪ {newRange}
8 end
9 rangeBegin← i

10 end
11 end

12 lastRange ← [rangeBegin, as.Length[
13 if lastRange.Length ≥ MINSIZE then
14 rs← rs ∪ {lastRange}
15 end

All in all a ReSortableInstructionStream stores the list of atomic sections, the list of re-
sortable ranges, and two copies of the instruction stream, one for sorting, one for reference.
This data is all that is needed to dynamically keep the stream roughly in front-to-back drawing
order.
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3.6.5 Interleaved Resource Upload

Normally, the DependencyIndex will update the values of dependent resources which are out-
of-date and then immediately trigger the value to be uploaded to graphics memory. As a conse-
quence all resource values are uploaded before the first rendering command is issued from the
instruction stream (Figure 3.18).

ʎ »
  ʎ »
  ʎ »
  ʎ »
  ʎ »
  ʎ »
  

DEPENDENCYINDEX UPDATE 

ʎ 

INSTRUCTION STREAM EXECUTION 

»
  UPDATE ACTION VALUE UPLOAD 

TIME 

Figure 3.18: Resource update protocol where values are uploaded to immediately

For some reason, this protocol seems to be detrimental to rendering performance. In order to
alleviate this problem, render caches support an alternative resource update protocol. As before,
the DependencyIndex will update dependent resources values where necessary; but it will not
automatically trigger the upload of the new values. Instead uploading gets interleaved into the
execution of the instruction stream. This is easily facilitated by introducing upload instructions
holding a reference to the resource to be uploaded (Figure 3.19).
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Figure 3.19: Resource update protocol with interleaved values uploads

As all resources maintain a «dirty flag» which indicates whether its value has changed since
the last upload, the upload instructions can be inserted into the stream at build-time without
impairing the streams semantic. Inserting the upload instructions is implemented by a simple
augmentation of the process translating semantic instructions to native instructions. Each time
before a semantic instruction is translated it is queried for all dependent resources it uses.19Then,
if the resource has not already been updated for a previous instruction in the stream, an upload
instruction is inserted in front of the instruction using the resource. This way every resource gets
uploaded once right before its first usage. See Algorithm 3.6 for a full listing of the process.

19Mind that dependent resources with zero dependencies can safely be ignored because their value will never
change and thus never needs to be uploaded during execution.
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input : List of semanticinstructions semantic
output: List of nativeinstructions native

1 native ← ∅
2 uploaded ← ∅
3 for i← 0 to semantic.Length do
4 foreach Resource r used by semantic[i] do
5 if (r has dependencies) ∧ (r 6∈ uploaded) then
6 Append new UploadInstruction(r) to native
7 uploaded ← uploaded ∪ {r}
8 end
9 Append (compile (semantic[i])) to native

10 end
11 end

Algorithm 3.6: Injecting resource upload instructions into an instruction stream

3.6.6 Concurrent Resource Value Computation

This optimization only works in conjunction with the previous optimization Interleaved Re-
source Upload. The following principle is used to leverage multiple processor cores concur-
rently: The DependencyIndex, after determining which dependent resources need to be updated,
delegates the task of updating to a number of worker threads and gives back control to its owning
render cache. The render cache then immediately starts executing the instruction stream. Since
computing resource values often takes a large percentage of the time needed to render a frame,
this can result in major performance gains.

However, there is a race condition between the resource value computations and the inter-
leaved resource uploads which needs to be handled by proper synchronization. In the prototype
this is implemented by allocating a ManualResetEventSlim (referred to as events from here on)
for each dependent resource that needs synchronization. After the DependencyIndex has deter-
mined the set of resources to update, it locks these resources by resetting their corresponding
events. Then it starts the worker threads which pick the resources one by one from a queue,
update them and then, after each individual update, unlock the resource by signaling its event.
At the same time the instruction stream is executed by the main thread. To facilitate synchro-
nization here, upload instructions are replaced by synchronized upload instructions. This in-
structions will always wait on the event associated with the resource to be uploaded. This way
no resource upload is triggered before the value of the resource is update-to-date. Figure 3.20
shows an exemplary instruction stream execution with concurrent value computations.

The optimization can be further aided by partitioning the stream into two section when it
is created. The first section only contains instructions using dependent resources with zero
dependencies. As their values are constant they never have to be synchronized. The second
partition contains resources which will probably need updates. In the end there is still just one
instruction stream but the worker threads will have a little more time before stream execution
blocks for the first time.
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Figure 3.20: Resource update protocol with interleaved values uploads and concurrent value
computations

Another improvement is to put the resources into the update queue in the same order they
occur in the stream. This avoids the situation that stream execution is blocked early by a re-
source which is updated late, leading effectively to the case that most or all resource values are
computed before the stream is executed.

3.6.7 Memoization

One of the most expensive tasks to perform for rendering a frame is the computation of transfor-
mation matrices during traversal. Although the dependency system can optimize recomputations
of constant transformations away, for frequently changing transformations the matrices of all
transformation nodes on the path to the resource have to be accumulated anew in the update
action. There are two sources of inefficiencies in this setup:

(1) Because update actions do not interact with each other by default they cannot share com-
mon intermediate results. Yet, these occur quite often due to the tree structure of most
scene graphs where many transformation nodes are shared by a multitude of paths. In
contrast, regular scene graph traversals do re-use intermediate results by using a stack for
computing transformations.

(2) The update action must multiply all transformation nodes along the path; even if only
one matrix actually has a different value. Yet, if intermediate multiplication results along
the path where available it would only be necessary to re-multiply matrices starting at the
changed one while re-using the intermediate result from before the change.

For these reasons it becomes obvious that there is some optimization potential. At the very
least point (1) should be solved as it makes transformation computations in very dynamic set-
tings more expensive when using the caching system than when doing regular traversals. The
following paragraphs will show how a variant of memoization can—at the expense of some
storage space—solve both problems.
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Normally, memoization designates caching the results of function calls for different sets
of parameters. This is easily implemented when function are assumed to be free of side ef-
fects. In the context of transformations within a scene graph this would mean that a function
transformation from traversal path to transformation matrix would always yield the same ma-
trix for the same path. Unfortunately this is not the case. Matrices in a transformation node
can change any time, which also changes the accumulated transformation of all paths containing
the node. However, the dependency system allows to still implement a form memoization that
exploits the information about when the value of a transformation node has changed. Whenever
a transformation node has changed, all memoized transformation values depending on it can
correctly be updated.

The transformation function of a path p can be (recursively) defined as

transformation(p) =

{
value(p) if p is a single node
transformation(prefix(p)) ∗ value(last(p)) else

(3.4)
where prefix(p) is p without its last node. Executions of this function for a number of paths
can be memoized in a forest structure where each node holds the function result for a complete
path p and the parent of the node holds the result of the recursive function call for prefix(p) (see
Figure 3.21 for an example).
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Figure 3.21: A scene graph with transformations and its memoization forest

The nodes are called memo nodes and for every path in the scene graph which starts at the
root the forest contains one such memo node storing the path’s transformation matrix. Another
way of looking at it is that there is exactly one memo node for every state the transformation
stack takes during a render traversal. Dependent resources using the transformation (e.g. Mod-
elViewProjection) can store a reference to the memo node for the needed path (i.e. the path to
the node the dependent resource is created at) and query it for its value. In the prototype, the
whole forest is wrapped in a data structure that indexes every memo node by a hash value of its
path, which allows to efficiently check whether there already is an entry for a given path/prefix.
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The major task in the setup—and the reason why memo nodes keep a reference to the memo
node representing their prefix—is to keep the memoized matrices up-to-date. As long as there
are no changes, the memoized values stay correct. However, if a transformation node does
change, all its corresponding memo nodes20 and their descendants need to be updated. That is,
changes always need to be propagated downward in the tree.

How can the system know about changes that happened? The answer is: Through the depen-
dency system which is already in place and already tracks changes of transformation nodes. On
closer examination, a memo node can be considered a dependent resource and a memo node with
ancestors is a composite dependent resource. However, in this case a parent node is at the same
time a value source and a dependent resource. This poses no problem but has some implications:

• Because the value source is also a dependent resource, it must always be up-to-date before
its value may be used.

• Same as with regular composite dependent resources, the dependency set of a memo node
is the union of the dependency sets of its value sources. In this case the union of the depen-
dency set of its corresponding transformation node (=value source 1) and the dependency
set of the parent node (=value source 2).

• The update action of the memo node has to bring the transformation matrix for its path
up-to-date. As shown in (3.4), this computation is recursive and uses the accumulated
value the prefix of the path in question. This prefix value can simply be read from the
parent node, as long as the parent node is guaranteed to be up-to-date.

• If the value of the parent node is indeed up-to-date no further recursion is required.

• Similar to dependent constant buffers, dependencies in a memo node can be encoded in a
bit mask. And since the dependency set of a parent node is always a subset of the child
node’s dependency set, a bit mask generated for a child node is also compatible with the
parent node’s bit mask.

• Also the dependency set of the transformation node can be encoded in a bit mask of the
same format. This allows to use the same bit mask for both value sources of a node.

• As memo nodes might be accessed simultaneously by several threads, they must be prop-
erly synchronized. The prototype uses light-weight per-node spin locks to this end. As
nodes are always locked in the same order (from child to parent) there cannot be any
deadlocks.

The final algorithm for safely reading the memoized value from a memo node then looks as
shown in Algorithm 3.7.

Creating a memo node node is a simple matter of creating the dependency set bit mask,
storing a reference to its transformation node and linking to the right parent node (identified
by the prefix of the node’s full path). To utilize the memoization system, the update action of
resources using the transformation just needs to use the right memo node as their value source.

20A transformation node can have more than one corresponding memo node. If a transformation node is reachable
via n paths it will have n corresponding memo nodes.
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input: MemoNode memoNode

1 acquire memoNode.Lock
// build dependency change mask

2 changeMask ← 0
3 for i← 0 to memoNode.DependencyCount do
4 if memoNode.Dependency[i].Version 6= memoNode.RefVersion[i] then
5 memoNode.RefVersion[i]← memoNode.Dependency[i].Version
6 changeMask ← changeMask | (1«i)
7 end
8 end

// check own value
9 if (((changeMask & memoNode.ValueSourceMask) 6= 0)) then

10 thisValue ← memoNode.ValueSource.Value
11 end

// build aggregate value for whole path
12 if memoNode has parent node then

// check parent value
13 if ((changeMask & memoNode.ParentMask) 6= 0) then
14 parentValue ← GetMemoValue(memoNode.Parent) ; /* recursive call */
15 else
16 parentValue ← memoNode.Parent.AggregateValue ; /* no recursion */
17 end
18 memoNode.AggregateValue← thisValue ∗ parentValue

19 else
20 memoNode.AggregateValue← thisValue
21 end
22 release memoNode.Lock
23 return memoNode.AggregateValue

Algorithm 3.7: The GetMemoValue() algorithm

3.6.8 Disposing Cached Subgraphs

Once a render cache is built it can take over any rendering responsibilities of the subgraph it
is an representation of. Hence, assuming the cached subgraph will not undergo any changes
in the future, it can be discarded just below the cache node. This will free up main memory
resources, especially the main memory representation of vertex buffers, which often constitutes
a substantial part of the scene graph’s memory usage. Only object’s which are referenced by the
render cache through update actions will be retained. The reference counting scheme described
above will take care of keeping GPU resources such as vertex buffers and GPU programs alive.
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3.6.9 Cached Culling Hierarchy

View frustrum culling is one of the most important optimizations in graphical applications and it
is often augmented by using a bounding volume hierarchy (BVH). It would be counter productive
to the purpose of the scene graph caching system if it precluded view frustrum culling. This
section will show how the dependency system can even aid at keeping a BVH up-to-date with
information already available.

We set the following goals for the integration of a BVH-based culling solution with the
caching system:

(1) Obviously, parts of the scene graph not intersecting the view frustrum should not be ren-
dered.

(2) Not quite as straight forward, dependent resources within culled parts of the scene graph
should not be updated.

(3) Bounding boxes within the BVH should be kept up-to-date through changes with minimal
effort.21

These goals are achieved by the following algorithm: A special node type, the Cached-
CullingRoot is placed at the root of the BVH. The leaves of the BVH are constituted by cache
node—consequently a cache node is the smalled unit of culling in this setup.22 The internal
nodes of the BVH are BoundingBoxAttribute nodes which the scene graph environment already
uses for hierarchical culling in non-cached scenarios.

Using a BuildCachedCullingHierarchyTraversal, the CachedCullingRoot creates an inter-
nal, light-weight representation of the BVH (Figure 3.22). As expected, this representation has
a tree structure and every node stores the bounding volume of its subtree. Additionally, every
node also stores a flat list of all render caches in subtree. When render traversal reaches the
CachedCullingRoot, this internal tree is used for rendering, the actual subgraph is not touched.

Processing the BVH for rendering follows a straightforward algorithm:

21This does not encompass changing the structure of the hierarchy by moving nodes to different subtrees. Hence,
the algorithm described later on cannot keep a hierarchy from degenerating when objects within the same node drift
to far apart.

22Although it would be possible to implement some kind of intra-render cache frustrum culling support if the
need arose.
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Figure 3.22: A bounding volume hierarchy with a CachedCullingRoot at the top and cache nodes
as leaves.

1 procedure RenderNodeBVH(node, viewFrustrum)
2 begin
3 if node is a leaf then
4 node.RenderCache.Render()
5 else
6 visibleChildren ← {c | c ∈ node.Children, c intersects viewFrustrum}
7 if visibleChildren.Count = node.Children.Count then

// Render complete subtree, no further recursion
8 foreach cache ∈ node.RenderCaches do
9 cache.Render()

10 end
11 else

// Recursive decent into child nodes
12 foreach child ∈ visibeChildren do
13 RenderNodeBVH(child , viewFrustrum)
14 end
15 end
16 end
17 end

Algorithm 3.8: Algorithm for rendering a bounding volume hierarchy (BVH)
This algorithm satisfies goals (1) and (2). Render caches containing no geometry intersect-

ing the view frustrum will not receive a call to their Render() method and consequently their
dependent resources will not be touched.

However, there is still the question of keeping bounding volumes up-to-date. As has already
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been the case a few times when dealing with change, the dependency system provides the fa-
cilities to implement this efficiently. Render caches can be configured to keep their bounding
volume as a dependent resource. The bounding volume of a render cache is the union of the
bounding volumes of all contained geometries which are also modeled as dependent resources.
As transformations and morphing of geometries are already tracked by the dependency system,
all the information needed for keeping geometry and render cache bounding volumes up-to-
date is available. Similar to memo nodes (p. 75), bounding volumes are composite dependent
resources having other dependent resources as value sources: Vertex data and transformations
comprise the value sources of geometry bounding volumes, which in turn are the value sources
of render cache bounding volumes. Going further up the culling hierarchy, the bounding volume
of an internal node is a dependent resource with the bounding volume of its children as value
sources. Following this pattern, dependent bounding volumes can be constructed for each node
in the BVH up until the root.

Modeling bounding volumes as dependent resources has a couple of beneficial side effects:

• A dependent bounding volume having an empty dependency set is guaranteed to never
change and hence never has to be updated.

• Some of the child volumes of a dependent bounding volume might have dependencies
while others do not. Those child volumes without dependencies are also guaranteed to
never change and hence it suffices to created their union once at the beginning. This union
can then be re-used for updating without having to recurse into the static child volumes.

• Similarly, dependency-less bounding volume will always act as a recursion bound, even if
it is high up in the hierarchy.

As a result of these properties very little work is needed to keep the BVH up-to-date.
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3.6.10 Optimization Composability

This section will investigate whether the different proposed optimizations can be enabled at the
same time. Table 3.3 shows an overview of optimization composability with cases that need
special attention explained in more detail. As can be seen in the table all optimizations can be
enabled at once.

SI SS OS IRU CVC MEM SD CULL

RR X X X X X X X X
SI X (1) (2) X X X X
SS X X X X X X
OS (3) X X X X
IRU X X X X
CVC X X X
MEM X X

SD X

RR . . . Redundant Instruction Removal CVC . . . Concurrent Value Computation
SI . . . Super Instructions MEM . . . Memoization
SS . . . State Sorting SD . . . Subgraph Disposal
OS . . . Overdraw Sorting CULL . . . Culling
IRU . . . Interleaved Resource Uploads

(1) As beginning and end of atomic sections are defined by the position of instructions in
the instruction stream they may need to be adapted when the introduction of a super
instruction shifts instruction indices. Also, a super instruction cannot be inserted if it
crossed the bounds of an atomic section.

(2) If a super instruction replaces a range of instructions which need resource uploads then
any upload instructions necessitated by a replaced instruction must be moved in front of
the super instruction.

(3) Upload instructions must always be in front of their resource’s first usage in the stream. To
prevent stream re-sorting from breaking this condition, any upload instructions contained
within a re-sortable range must be moved in front of the range. This way, they are not
moved by sorting.

Table 3.3: Optimization composability
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3.7 Default Cache Types

The prototypical implementation of the scene graph caching system supports two types of render
caches for the most common use cases. This section will describe them in more detail, especially
how they relate to the concepts and optimizations presented above.

3.7.1 SolidPassCache

The SolidPassCache is used to store non-transparent geometry and it is where all of the above
comes together. It uses a single instruction stream to render all of its geometry. It uses the
DependencyIndex class to keep the dependent resources it contains up-to-date. Finally, it can
use all of the optimizations described in the previous section. The complete process for building
a solid pass cache is as follows:

(1) The cache node decides that it needs to build a SolidPassCache.

(2) The cache node calls RenderCacheFactory.Create(pass, traversal, cache node).

(3) The RenderCacheFactory selects the factory function registered for the render pass (the
constructor of SolidPassCache in this case).

(4) The RenderCacheFactory starts an ExtractCachingDataTraversal below the cache node:

• The ExtractCachingDataTraversal builds the SlimSG for the subgraph using the
ICacheable interface implementations in the scene graph.

• This will create all (dependent) resources needed.

• At this point the dependent resources may have already been set up to use
Memoization (p. 74) during their creation process.

• OUTPUT: SlimSG

(5) The RenderCacheFactory packs the SlimSG, a cache node reference, and a ResourceDis-
poser23 into a CachingInfo object. OUTPUT: CachingInfo object

(6) The RenderCacheFactory calls the previously selected factory function ('SolidPassCache
constructor) with CachingInfo and traversal as arguments.

(1) The SolidPassCache constructor reads the cache configuration from the cache node

(2) IF configured for interleaved resource uploads THEN create a DependencyMap-
ping24

23The ResourceDisposer object allows to dispose all resources created when the SlimSg was built. This disposer
is used later by the render cache to cleanly dispose all resources it owns.

24The DependencyMapping object is a means of communication between instruction stream factories and the
DependencyIndex constructor. Both need to use the same ManualResetEventSlim instances for synchronization. The
DependencyMapping provides a mapping of resources to their ManualResetEventSlim instances. The instruction
stream factory can also provide a hint on the position of a resource’s first usage in the instruction stream. This allows
the DependencyIndex to order resource updates roughly the same as they occur in the instruction stream.
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(3) The SolidPassCache constructor builds the semantic instruction stream, which con-
sists of the following steps:

(1) A RenderJobBuilder is created
(2) The RenderJobBuilder is sent through the SlimSG. OUTPUT: List of Render-

Jobs
(3) At this point RenderJobs can optionally be sorted to minimize state changes

(State Sorting, p. 65).
(4) The code generator creates a list of SemanticInstructions, not generating redun-

dant instructions. (Removal of Redundant Instructions, p. 64)
(5) OUTPUT: List of SemanticInstructions

(4) The SolidPassCache constructor selects the appropriate of IInstructionStreamFac-
tory based on configuration. This can be one of:

• SimpleInstructionStreamFactory
• InterleavedInstructionStreamFactory
• ResortableInstructionStream.Factory

Factories are supplied with the DependencyMapping created earlier.

(5) The SolidPassCache constructor calls IInstructionStreamFactory.Create()

SimpleInstructionStreamFactory Simply translates each semantic instruction to
its native instruction counterpart.

InterleavedInstructionStreamFactory Same as the above but will also inject (pos-
sibly synchronized) resource upload instructions for dependent resources.
(Interleaved Resource Upload, p. 72 and Concurrent Resource Value Compu-
tation, p. 73)

ResortableInstructionStream.Factory Analyzes the semantic instruction stream
and creates metadata needed for re-sorting the stream as described in Overdraw
Sorting (p. 65). May also inject resource upload instructions if configured to
do so.

All of the above may also apply the Super Instructions (p. 64) optimization on the
translated stream.
OUTPUT: a native instruction stream (implementing IInstructionStream)

(6) The instruction stream is stored in an instance field of the SolidPassCache.

(7) The SolidPassCache constructor collects all dependencies from the SlimSG and stores
them in an instance field.

(8) The SolidPassCache constructor collects all dependent resources from the SlimSG
and builds two DependencyIndices from them, a «pre cull» and a «post cull» index,
using dependent resources and the DependencyMapping as arguments:

• The DependencyIndex constructor builds an inverted index structure for fast
queries.
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• The DependencyIndex constructor uses the DependencyMapping to build syn-
chronization bookkeeping data for the dependent resources.

(9) The SolidPassCache constructor stores pre and post cull DependencyIndices in in-
stance fields.

(10) The SolidPassCache constructor optionally creates a dependent bounding box used
for culling and stores it.

(11) Now the SolidPassCache is completely built. OUTPUT: the SolidPassCache in-
stance.

(7) The RenderCacheFactory returns the SolidPassCache to the cache node.

(8) The cache node stores the SolidPassCache instance in its dictionary of caches with Pass.Solid
as key

The process for rendering a SolidPassCache is shown in Algorithm 3.9.

input: SolidPassCache c,Boolean doPreCull

1 if doPreCull then
// If the pre-cull tasks have not already been executed by the culling hierarchy

2 foreach d ∈ c.DependenciesToEvaluate do
3 d.Evaluate()
4 end

// Update pre-cull dependent resources containing the dependent bounding box
5 c.PreCullIndex.Update()
6 if ¬(c.BoundingBox intersects view frustrum) then
7 return
8

9 end
10 c.PostCullIndex.Update()
11 c.InstructionStream.Execute()

Algorithm 3.9: Algorithm for rendering a SolidPassCache
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3.7.2 TransparencyPassCache

The TransparencyPassCache is different from the SolidPassCache because transparent geometry
always has to be rendered back-to-front in order to get correct visual results. This has a number
of consequences:

• The sorting algorithm must be able to freely apply a render order to all transparent geom-
etry. No preexisting grouping (such as assignment to a render cache) must impede this.
A simple, general solution to this problem is to place all transparent geometry in a single
render cache.

• There cannot be a static instruction stream because the render order has to be adapted
dynamically depending on the camera position.

• Some optimizations are not possible anymore such as State Sorting or Overdraw Sorting.
Others, such as Removal of Redundant Instructions have to be applied after every change
of the instruction stream, which makes them a lot less attractive.

Sorting

Geometry sorting is provided by a two-level BSP-Tree algorithm (kindly provided by Robert
F. Tobler). All transparent geometry is subdivided and regrouped into non-intersecting geome-
try nodes of a single material. For each of these nodes, a BSP-Tree is created which allows to
quickly sort the individual primitives back-to-front. This way the index buffer of each geometry
node can be updated before rendering. On top of these nodes sits another BSP-Tree which is
used to sort the geometry nodes back-to-front too. This way all transparent primitives in the
scene can be sorted. In the scene graph this algorithm is represented by a TransparentScene-
Graph node, below which all transparent geometry nodes must be contained. This node is used
by the immediate mode renderer as well as by the caching system. The TransparentSceneGraph
node type implements the ICacheable interface and the caching system can use the Extract-
CachingDataTraversal to retrieve all necessary data from it.

Cache Implementation

The TransparencyPassCache in the prototype is implemented as follows:

1. Instead of creating a single, big instruction stream as in the SolidPassCache a small in-
struction stream segment is created for each render job that is identified when building
the cache. This segment contains all instructions needed to perform the rendering of one
transparent geometry node.

2. The render order of the instruction stream segments is extracted from the Transpar-
entSceneGraph node as a dependent resource internally referencing the top-level BSP-
Tree mentioned above. Executing the update action of this dependent resource will bring
the instruction stream segments in the desired order.
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3. The index buffers of the single geometries are modeled as special TransparencyIndexBuffer
dependent resources, each referencing the BSP-Tree used for sorting the primitives of the
geometry. Executing the update action of such a TransparencyIndexBuffer will sort it in a
way that primitives are back-to-front with respect to the current camera position.

As a result, updating all dependent resources of the cache—including TransparencyIndexBuffers
and the top-level render order resource—will bring it in a state that is ready for rendering. After
that the individual instruction stream segments just have to be executed according to the render
order resource.

Figure 3.23 shows a usage example of the TransparencyPassCache within a larger scene
graph.

Cache Node  
/w TransparencyPassCache 

TransparencySceneGraph Node 

Cache Node  
/w SolidPassCache 

Figure 3.23: A cache node with TransparencyPassCache within a larger scene graph.
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3.8 Evaluation

The last section of this chapter will investigate how the prototypical implementation of the
caching system fares in relation to the goals set at the beginning of the chapter (p. 21).

Reduce Traversal Cost. As described in 3.3.2 Cache Nodes & Render Caches the render traver-
sal does not need to descend into cached subgraphs. Instead the instruction stream located at
the cache node at the root of the subgraph is executed. The performance analysis in the next
chapter will show that this can result in significant performance improvements.

Allow Partial Caching. Section 3.3.2 Cache Nodes & Render Caches shows how cache nodes
can be placed very flexibly at selected positions within the scene graph, allowing for fine-
grained control over which scene graph parts will be cached and which will not be.

Allow Modification. Section 3.3.4 Cache Invalidation describes various classes of scene graph
modifications. Section 3.5 Dependency-Aware Scene Graph Caching shows how dependency-
aware render caches are able to incrementally adapt to the most common modification class
encompassing non-structural changes like positional updates of objects or cameras.

Easy Configuration. Marking a certain subgraph for caching can simply be achieved by plac-
ing a cache node at its root. The cache node can be configured via a set of boolean flags
enabling or disabling any of the optimizations described above.

Extensibility. The caching system can be extended at various points. It is possible to im-
plement new types of dependencies (IDependency), dependent resources (IDependent<T>),
scene graph nodes (ICacheable), and render caches (IRenderCache) by implementing the cor-
responding interfaces. This allows to exploit application specific optimization opportunities.

Optionally Replace Cached Subgraph. Section 3.6.8 Disposing Cached Subgraphs shows how
a cached subgraph can be discarded with the render cache taking over all of its rendering re-
sponsibilities.

Use the Graphics Hardware Efficiently. The optimizations State Sorting, Overdraw Sorting,
and Interleaved Resource Upload strive to use the graphics hardware in a way that allows it to
process commands and data in an efficient way. The performance analysis section investigates
how much of a speedup this yields (if any).

In conclusion, the caching system achieves all the goals set out at the beginning. How well
this translates into actual performance gains will be investigated in the next chapter Results.
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CHAPTER 4
Results

This chapter will investigate how the scene graph caching system performs under various test
conditions by putting the system through a number of synthetic test scenes with different scene
and cache configurations.

4.1 Test Setup

Two synthetic scenes are used which can be parameterized for varying degrees of geometry
complexity, dynamicity, and number of used GPU programs.

• The SPHERES scene (Figure 4.1) consists of an n × n × n grid of spheres where n can
be configured, as can be the number of triangles used to model a single sphere. Vertex and
index buffers are not shared between geometries, each sphere has its own set of buffers. By
default, the only moving object is the camera circling the grid. However, a percentage can
be given to designate the number of rotating spheres, necessitating constant buffer updates.
Each sphere uses one of up to eight surfaces with normal and environment mapping.

• The MENGER SPONGE scene (Figure 4.2) uses a Menger sponge structure [45] the re-
cursion level of which can be configured, resulting in geometry counts of 400 (level 2),
8000 (level 3), and 160000 (level 4) cubes. Each recursive sponge structure is nested
within a transformation node and group node, resulting in a comparatively deep transfor-
mation hierarchy. All cubes share the same vertex and index buffers. They also all share
the same surface with normal mapped lighting with 3 light sources. Again, by default
the only moving object is the camera, but the lowest level of transformation nodes can be
configured to apply a time-dependent rotation to the cubes.

Each scene is rendered for a number of frames while the average time needed to render a
frame is recorded. Also, the time needed to build the scene, the graphics and main memory used,
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and the number of instructions is measured.1

Each test configuration is run for 5 iterations. The final result is calculated as the average of
the results of iterations 2 to 5 in order to offset startup costs caused by the Just-In-Time compiler
of the .NET Framework.

Figure 4.1: A screenshot from the SPHERES test scene.

1The main memory used by the scene is measured by calling GC.GetTotalMemory(true) before and after building
the scene. This function provided by the .NET Framework will only give an estimate of the number of bytes allocated
on the heap. Consequently the heap memory consumption numbers should only be considered as a general hint.
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Figure 4.2: A screenshot from the MENGER SPONGE test scene.
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4.2 Result Analysis

4.2.1 Caching Baseline - Static Scenes

The first set of tests will compare the performance of immediate mode rendering with cached
mode with varying numbers of geometries, and varying numbers of vertices per geometry to find
out for which types of scenes the caching system can bring improvements. The only moving ob-
ject in the scene is the camera. These tests are run with no optimizations enabled. Any speedups
are therefore a result of using instruction streams and persistent constant buffers modeled as
dependent resources.

Frame Time

Table 4.1 shows the absolute and relative frame times of the SPHERES scene with varying
combinations of geometry count and geometry complexity. For both, cached and immediate
mode, more complex scenes mean longer frame times. The relative frame times, however, show
that cached mode is consistently faster than immediate mode, ranging from 2.17 to 3.86 times
as fast. This suggests that scene graph traversal (which is replaced with instruction stream
execution in cached mode) is indeed the performance bottleneck when rendering these scenes.

Frame Times (ms) IMMEDIATE 1000 2197 3375 4913

48 16.18 34.97 53.81 79.31
528 16.42 35.26 54.85 80.32

1088 16.43 35.45 54.95 80.22
1520 16.56 35.86 55.69 80.97

↑ Triangles/Geometry

Frame Times (ms) CACHED 1000 2197 3375 4913

48 4.21 9.23 14.25 20.57
528 4.8 10.37 15.62 22.62

1088 5.17 12.04 17.63 30.22
1520 6.16 13.4 24.25 37.29

↑ Triangles/Geometry

Relative Frame Time 1000 2197 3375 4913

48 3.84 3.79 3.78 3.86
528 3.42 3.4 3.51 3.55

1088 3.18 2.94 3.12 2.65
1520 2.69 2.68 2.3 2.17

↑ Triangles/Geometry

← Geometry Counts

← Geometry Counts

← Geometry Counts

Table 4.1: Absolute and relative frame times with cached and immediate mode rendering in
various static configurations of the SPHERES scene using eight surfaces.
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This hypothesis is further backed up when examining the relative frame rates along fixed
axis for geometry count (4.3a) and geometry complexity (4.3b): While the relative performance
gain stays roughly constant with varying geometry count, it drops with increasing geometry
complexity. In other words, the caching system is able to optimize the more complex scene graph
traversal caused by a higher geometry count, but it cannot optimize the increasing influence of
higher complexity per geometry.
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Figure 4.3: Relative frame times in the SPHERES scene with fixed geometry counts and com-
plexity.

The frame times for the MENGER SPONGE scene a given in table 4.2. Again, frame times
are consistently smaller with caching enabled. This time even up to 14.24 times faster for the
medium sized scene and still 5.56 times faster for the small scene. The higher performance gain
can be explained by the deeper transformation hierarchy in the MENGER SPONGE scene. The
caching system only needs to calculate the accumulated transformation matrices once while the
immediate mode renderer has to do this every frame.

Frame Times (ms) 400 8000 160000

IMMEDIATE 5.84 116.21 2383.03

CACHED 1.05 8.16 188.66
RELATIVE 5.56 14.24 12.63

↑ Render Mode

← Geometry Counts

Table 4.2: Absolute and relative frame times with cached and immediate mode rendering in
static configurations of the MENGER SPONGE scene.

In conclusion, frame times in both scenes were significantly reduced by using the caching
system without any further optimizations. The next section will compare the durations of scene
loading to analyze how much this performance gain costs at startup.
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Startup Time

Table 4.3 shows absolute and relative startup times for the SPHERES scene with the same config-
uration as above. The startup time is measured as the duration it takes for loading the scene and
performing an initial render traversal, in order to make sure that any resources asynchronously
loaded by the graphics driver have actually been uploaded to the GPU. The table containing
relative duration shows that startup times in immediate mode are always within 90 percent of
cached mode when no further cache optimizations are enabled.

Startup Times (s) IMMEDIATE 1000 2197 3375 4913

48 6.19 6.93 7.68 8.53
528 6.68 8.21 9.76 11.82

1088 7.37 9.75 12.33 15.83
1520 7.94 10.94 14.3 18.73

↑ Triangles/Geometry

Startup Times (s) CACHED 1000 2197 3375 4913

48 6.27 7.13 8.14 9.11
528 6.86 8.43 10.25 12.37

1088 7.5 9.96 12.78 17.3
1520 8.12 11.53 15.5 20.28

↑ Triangles/Geometry

Relative Startup Times 1000 2197 3375 4913

48 0.99 0.97 0.94 0.94
528 0.97 0.97 0.95 0.96

1088 0.98 0.98 0.96 0.91
1520 0.98 0.95 0.92 0.92

↑ Triangles/Geometry

← Geometry Counts

← Geometry Counts

← Geometry Counts

Table 4.3: Absolute and relative startup times with cached and immediate mode rendering in
various static configurations of the SPHERES scene.

The results are a little different for the MENGER SPONGE scene as shown in Table 4.4.
For the small scene, startup times are still similar, for the medium scene building the cache
already takes three times as long as just loading the scene graph, and for the large scene creating
the scene with cache takes more than ten times as long because the cache building process
completely dominates loading times. Note, however, that cache creation times increase roughly
linearly with the size of the scene.

In summary, building the render cache will take more time than using the scene graph di-
rectly. Yet, depending on the scene this additional cost is only a fraction of the time needed to
create and upload other graphics resource such as vertex buffers and textures.
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Startup Times (s) 400 8000 160000

IMMEDIATE 0.6 0.75 3.71
CACHED 0.68 2.15 47.08

RELATIVE 0.88 0.35 0.08

↑ Render Mode

← Geometry Counts

Table 4.4: Absolute and relative frame times with cached and immediate mode rendering in
static configurations of the MENGER SPONGE scene.

Memory Consumption

Table 4.5 shows absolute and relative heap memory consumptions in the SPHERES scene. It
can be observed that in scenes like these—with large amount of geometry and texture data—the
amount of memory needed by the caching system is insignificant in comparison to overall mem-
ory usage. The same is true for graphics memory: The caching system will allocate additional
constant buffers but—as shown in Table 4.6—these contribute very little to graphics memory
consumption. In all these cases the immediate-to-cached ratio is very close to one.

Heap Memory  (MiB) IMMEDIATE 1000 2197 3375 4913

48 15.76 34.34 52.88 76.2
528 77.68 170.8 263.57 381.45

1088 149.99 327.82 503.97 732.67
1520 204.76 448.8 689.82 1003.22

↑ Triangles/Geometry

Heap Memory (MiB) CACHED 1000 2197 3375 4913

48 15.82 35.16 54.17 78.02
528 77.99 171.08 264 385

1088 149.63 329.22 507.91 735.59
1520 204.7 449.45 692.38 1010.62

↑ Triangles/Geometry

Relative Heap Memory 1000 2197 3375 4913

48 0.996 0.977 0.976 0.977
528 0.996 0.998 0.998 0.991

1088 1.002 0.996 0.992 0.996
1520 1.000 0.999 0.996 0.993

↑ Triangles/Geometry

← Geometry Counts

← Geometry Counts

← Geometry Counts

Table 4.5: Absolute and relative heap memory consumption with cached and immediate mode
rendering in various static configurations of the SPHERES scene.
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Graphics Memory  (MiB) IMMEDIATE 1000 2197 3375 4913
48 6.53 14.35 22.04 32.09

528 65 142.81 219.39 319.36
1088 132.3 290.65 446.49 649.96
1520 184.02 404.3 621.07 904.1

↑ Triangles/Geometry

Graphics Memory (MiB) CACHED 1000 2197 3375 4913
48 6.65 14.62 22.45 32.69

528 65.12 143.08 219.8 319.96

1088 132.42 290.92 446.9 650.56
1520 184.14 404.56 621.48 904.7

↑ Triangles/Geometry

Relative Graphics Memory 1000 2197 3375 4913
48 0.982 0.982 0.982 0.982

528 0.998 0.998 0.998 0.998

1088 0.999 0.999 0.999 0.999
1520 0.999 0.999 0.999 0.999

↑ Triangles/Geometry

← Geometry Counts

← Geometry Counts

← Geometry Counts

Table 4.6: Absolute and relative graphics memory consumption with cached and immediate
mode rendering in various static configurations of the SPHERES scene.

In the MENGER SPONGE scene—where the bulk of the data is the scene graph structure
while geometry data is just a simple cube shared by all geometry nodes—the caching data makes
up for a greater part of the overall memory consumption (see Tables 4.7 and 4.8).

Heap Memory (MiB) 400 8000 160000
IMMEDIATE 0.34 5.5 108.77

CACHED 0.67 11.99 244.41
RELATIVE 0.5 0.46 0.45

↑ Render Mode

← Geometry Counts

Table 4.7: Absolute and relative heap memory consumption with cached and immediate mode
rendering in static configurations of the MENGER SPONGE scene.

Overall, the total memory consumption of the caching system can be characterized as modest
and is at most O(n) where n is the number of render jobs described by the scene graph.
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Graphics Memory (MiB) 400 8000 160000
IMMEDIATE 0.002 0.002 0.002

CACHED 0.051 0.978 19.533
RELATIVE 0.036 0.002 0.000

↑ Render Mode

← Geometry Counts

Table 4.8: Absolute and relative graphics memory consumption with cached and immediate
mode rendering in static configurations of the MENGER SPONGE scene.
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4.2.2 Caching Baseline - Dynamic Scenes

The previous section has examined the possible speed ups through scene graph caching in com-
pletely static scenes. This section shows how the caching system holds up as more and more
objects in the scene change their position every frame.

Frame Time

First frame times will be investigated in the SPHERES scene with different percentages of mov-
ing geometries. The results shown in this section are for a scene with 3375 geometry nodes.
The number of triangles per geometry is fixed at 360. Eight different surfaces are distributed
uniformly over the geometries. Table 4.9 shows frame times with and without caching at differ-

Change Rate (%) IMMEDIATE CACHED
0 56,64 15,24
20 59,09 16,00

40 60,97 16,03
60 63,19 20,25
80 65,39 25,67
100 67,46 31,17
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Table 4.9: Frame times (in ms) in the SPHERES scene with 3375 geometries at different per-
centage of rotating spheres.

ent rates of change. It can be observed that frame times with caching enabled are consistently
lower than immediate mode rendering at equal change rates. Moreover, even with 100% moving
objects the caching system is still twice as fast as the immediate mode renderer at 0% change
rate. This shows that for non-structural changes in the scene graph (such as object movement)
the dependency system allows the caching system to remain an useful optimization.

Frame times from the MENGER SPONGE scene show similar results. As can be seen in
Table 4.10 frame times in the cached case are consistently lower than in immediate mode. And
even at its worst the caching system outperforms the competitor at its best by 75%.
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IMMEDIATE CACHED
0 122.355 8.1375
20 129.405 20.53
40 137.6325 32.77
60 143.5025 44.1625
80 149.2725 56.4075
100 155.8225 70.0225

Change Rate (%)
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Table 4.10: Frame times (in ms) in the MENGER SPONGE scene with 8000 geometries at
different percentage of rotating cubes.
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Startup Time

Startup time does not increase by much in the MENGER SPONGE scene (see Table 4.12) or
even not at all for the SPHERES scene (see Table 4.11) as more and more objects in the scene
are dynamic. This is true for both the cached and the non-cached case.

Change Rate (%) IMMEDIATE CACHED
0 8,92 9,46
20 9,00 9,63
40 8,98 9,89
60 9,08 9,54
80 9,00 9,49
100 9,02 9,50
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Table 4.11: Startup times (in s) in the SPHERES scene with 3375 geometries at different rates
of dynamicity.

The difference between the SPHERES and the MENGER SPONGE scenes can be explained
by their structure. The SPHERES scene graph is very flat—all leaves having only a single trans-
formation node and a single surface node above them—while the MENGER SPONGE scene
has a much deeper hierarchy. Especially the multiple, stacked transformation nodes lead to
more complex dependency information being allocated. Because transformation nodes with no
dependencies do not contribute to this additional cost, startup time at lower change rates is rel-
atively smaller. In the SPHERES scene, resource uploads dominate the whole startup process
while the dependency system does not contribute a significant part.

IMMEDIATE CACHED
0 0.76 2.19
20 0.79 2.28
40 0.82 2.39
60 0.87 2.47
80 0.89 2.58
100 0.92 2.67

Change Rate (%)
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Table 4.12: Startup times (in s) in the MENGER SPONGE scene with 8000 geometries at differ-
ent percentage of rotating cubes.
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Memory Consumption

As can be seen in Table 4.13 and Table 4.14 the caching system takes up a little more memory
then the immediate mode renderer—as has already been shown in the static case—but increasing
the change rate has the same effect on memory consumption in both cached and immediate
mode: The relative distance stays the same at different change rates. The caching system does
not use disproportionally more memory when dynamicity is involved.

Change Rate (%) IMMEDIATE CACHED
0 190,07 191,37

20 191,50 192,26
40 190,80 192,52
60 192,95 193,49

80 192,56 200,94
100 193,26 196,00 0 20 40 60 80 100
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Table 4.13: Heap memory consumption in (MiB) in the SPHERES scene with 3375 geometries
at different rates of dynamicity.

Change Rate (%) IMMEDIATE CACHED
0 5.50 11.99

20 8.10 15.45
40 10.82 19.38
60 12.80 23.11
80 14.86 25.07

100 19.82 28.12
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Table 4.14: Heap memory consumption (in MiB) in the MENGER SPONGE scene with 8000
geometries at different rates of dynamicity.

Graphics memory stays completely unaffected by the change-rate. In conclusion it can be
said that the caching system continues to provide significant performance gains in the presence
of non-structural scene graph changes at little to no additional cost compared to the immediate
mode renderer.
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4.2.3 Redundancy Removal

The Removal of Redundant Instructions optimization will remove instructions from the stream
that do not have any effect. For example, an instruction setting the pixel shader to the one that
is already set, can be omitted without changing the instruction streams semantic. The expected
results of this optimization are shorter instruction streams and consequently a smaller memory
footprint and decreased frame times. Table 4.15 shows frame times with and without Redun-
dancy Removal enabled. The SPHERES scene is configured to have 3375 geometries with 360
triangles each and 8 different surfaces. The MENGER SPONGE scene contains 8000 cubes. In
both scenes the camera is the only moving object. It can be observed that rendering is indeed
speed up by the optimization, albeit very little in the SPHERES scene with only 1.7%. In the
MENGER SPONGE scene the performance gain is more pronounced at 26.3%.

Frame Times (ms) SPHERES MENGER
RR Disabled 15.40 7.56
RR Enabled 15.15 5.99

Relative Speedup 1,7% 26,3%
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Table 4.15: Frame times with and without the Redundancy Removal optimization enabled.

Looking at the startup times in Table 4.16, enabling the optimization somewhat unexpectedly
reduces load times. This could be explained by the reduced pressure on the garbage collector,
as redundant instructions will be filtered out in the translation step from semantic to native
instructions. Therefore fewer native instruction instances are created in the first place. The
reduction, however, is not significant. Table 4.17 shows that, as predicted, a smaller memory
consumption can be measured. As instruction streams do not take up much memory in the first
place, this reduction will probably not make much of a difference in practice.

Nonetheless, the absolute numbers of instructions the optimization is able to omit are quite
impressive, as Table 4.18 shows: More than eleven thousand for the SPHERES scene and nearly
fifty-six thousand for the MENGER SPONGE scene. In conclusion, there is no reason not to
enable this optimization. It will never increase frame times or memory consumption and—as
has been shown—does not increase startup time as well.
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Startup Times (s) SPHERES MENGER
RR Disabled 9.47 2.21
RR Enabled 9.40 2.16
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Table 4.16: Startup times with and without the Redundancy Removal optimization enabled.

SPHERES MENGER
RR Disabled 191.36 11.99
RR Enabled 190.78 10.22

Heap Memory (MiB)
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Table 4.17: Heap memory consumption with and without the Redundancy Removal optimization
enabled.

Instruction Count SPHERES MENGER

RR Disabled 37125 88000
RR Enabled 25671 32007
Difference 11454 55993
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Table 4.18: Number of native instructions with and without the Redundancy Removal optimiza-
tion enabled.

103



4.2.4 State Sorting

The performance gained by the State Sorting optimization very much depends on how many
state changes there are in the first place and how many of them are semantically unnecessary.

Frame Time

Table 4.19 shows frame times with different numbers of surfaces in the SPHERES scene with
3375 geometries and 8 different textures. It can be observed that frame times increase with the
number of surfaces in the unsorted case while in the sorted case they stay essentially stable.

Surface Count SORTED UNSORTED

1 9.39 8.86

2 9.69 11.96
4 9.60 13.14
8 8.74 13.40
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Table 4.19: Frame times (in ms) in the SPHERES scene with 3375 geometries with different
surface counts.

This can also be seen when varying the number of textures and surfaces at the same time
(Table 4.20). The more textures, the longer frame times, the more surfaces, the longer frame
times—in the unsorted case. In the sorted case frame times again are stable independent of
texture and surface counts.

SORTED 1 2 4 8 UNSORTED 1 2 4 8
1 9.39 9.44 9.46 9.72 1 8.86 9.51 9.79 10.32
2 9.69 8.65 9.56 9.72 2 11.96 11.68 12.97 13.45
4 9.60 8.66 8.61 9.65 4 13.14 13.10 14.18 14.64
8 8.74 8.64 8.57 9.58 8 13.40 14.30 14.59 15.47

← Textures ← Textures

↑Surfaces ↑Surfaces

Table 4.20: Frame times (in ms) in the SPHERES scene with 3375 geometries with different
surface and texture counts.
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In the case of the MENGER SPONGE scene the picture is quite different. In this scene there
is only one surface and one set of textures available. Accordingly, state sorting cannot reduce
any state changes. As a result, the optmization does have no significant effect on frame times as
can be seen in Table 4.21.

SORTED UNSORTED
Frame Time (ms) 7,49 7,6075

SORTED UNSORTED
0

5

10

F
ra

m
e

 T
im

e
 (

m
s

)

Table 4.21: Frame times in the MENGER SPONGE scene with 8000 geometries with and with-
out state sorting.

Startup Time

Overall state sorting does not contribute much to startup times. Table 4.22 shows that there is
little difference for the SPHERES scene with 3375 geometries, 360 triangles per geometry, 8
textures and varying surface counts.

Surface Count SORTED UNSORTED
1 9.07 9.00
2 9.24 9.08
4 9.37 9.36
8 9.77 9.62
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Table 4.22: Startup times (in s) in the SPHERES scene with 3375 geometries with different
surface counts.

SORTED UNSORTED
Startup Time (s) 2,56 2,23
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Table 4.23: Startup times in the MENGER SPONGE scene with 8000 geometries with and
without state sorting.
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In the MENGER SPONGE scene the results are similar. Table 4.23 shows that state sorting
costs some additional time when building the cache but for a one-time penalty the difference is
rather small at 330ms.

Instruction Count

Another interesting feature of state sorting is its effect on the Removal of Redundant Instructions
optimization. Table 4.24 shows a comparison of instruction counts with different combinations
of the two optimizations. Sorting render jobs by state leads to an instruction stream with much
more redundancy, thus providing the redundancy removal optimization with better input data.

Instruction Count
No Opt 37125

RR 25671

State | RR 16902

No Opt RR State | RR
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Table 4.24: Instruction counts in the SPHERES scene at 3375 geometries with 8 surfaces and
textures with different optimizations enabled.

106



4.2.5 Super Instructions

The Super Instructions optimization combines a sequence of instructions into a single one, thus
reducing instruction dispatch overhead, such as interface calls and parameter casting. However,
as Table 4.25 shows the effect is small and not always positive. In the SPHERES scene with
3375 geometries and 360 triangles per geometry, using super instruction even seems to make
the rendering process slower. In the MENGER SPONGE scene with 8000 geometries rendering
is faster, although only marginally. The reduction of heap memory consumption (Table 4.26)
also is very small. Consequently, we do not recommend to enable this optimization by default.

Frame Times (ms) SPHERES MENGER
SI Enabled 15,72 8,73
SI Disabled 15,34 9,10

SPHERES MENGER
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Table 4.25: Frame Times in both synthetic test scenes with the Super Instructions optimization
enabled and disabled.

Heap Memory (MiB) SPHERES MENGER
SI Enabled 190,90 10,89
SI Disabled 191,13 11,99
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Table 4.26: Heap memory consumption in both synthetic test scenes with the Super Instructions
optimization enabled and disabled.
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4.2.6 Overdraw Sorting

Even though the NVIDIA GPU Programming Guide recommends to prioritize front-to-back ren-
dering over sorting by state [16, p. 20], the Overdraw Sorting optimization does not seem to
bring any performance gains. As Tables 4.27 and 4.28 show, enabling the optimization even
causes a slight performance drop in both the SPHERES and the MENGER SPONGE scene. This
suggests that the CPU overhead of sorting geometries front-to-back is greater than any time
savings on the GPU side. It is still possible that the optimization might be useful at higher reso-
lutions,2 or with more expensive pixel shaders but in the general case, we do not recommend to
enable overdraw sorting.

Geometry Count SORTED UNSORTED
1000 3,01 2,86

2197 6,36 5,67

3375 9,75 9,29
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Table 4.27: Frame times (in ms) in the SPHERES scene using the Overdraw Sorting optimization
at different geometry counts.

Geometry Count SORTED UNSORTED

400 1,36 1,06
8000 6,64 6,00

160000 211,47 187,51

400 8000 160000
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Table 4.28: Frame times (in ms) in the MENGER SPONGE scene using the Overdraw Sorting
optimization at different geometry counts.

2These tests where performed at 1920 by 1200 pixels without any super sampling.
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4.2.7 Memoization

This optimization works by memoizing intermediate results of transformation matrix multipli-
cations and it shows its strengths in dynamic settings.

Frame Time

Table 4.29 shows that this optimization can keep frame times more stable as more and more
objects in the SPHERES scene (3375 geometries, 360 triangles per geometry, 8 surfaces, 8
textures) are moving. Table 4.30 shows similar results for the MENGER SPONGE scene (8000
cubes). Starting out at equal frame times with 0% change rate, the memoized version is 30%
faster at 100% change rate.

Change Rate (%) MEMOIZED COMPUTED
0 15,71 15,53

20 16,33 16,28
40 16,86 16,94
60 17,30 21,11
80 21,14 27,00
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Table 4.29: Frame times (in ms) in the SPHERES scene using the transformation matrix Memo-
ization at different rates of dynamicity.

Change Rate (%) MEMOIZED COMPUTED
0 7,56 7,57

20 14,97 18,92
40 22,55 30,76
60 29,53 41,38
80 36,89 53,04

100 44,73 64,75
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Table 4.30: Frame times (in ms) in the MENGER SPONGE scene using the transformation
matrix Memoization at different rates of dynamicity.
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Startup Time

The time needed to build the scene is increased by enabling the optimization, albeit the difference
is very small in the SPHERES scene (Table 4.31) and does not clearly correlate with the change
rate (which directly influences the size of the memoization table that needs to be created) in the
MENGER SPONGE scene (Table 4.32).

Change Rate (%) MEMOIZED COMPUTED
0 9,98 9,42

20 10,37 10,14
40 10,82 10,47
60 10,90 10,59
80 11,20 11,19

100 13,81 12,10 0 20 40 60 80 100
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Table 4.31: Startup times (in s) in the SPHERES scene using the transformation matrix Memo-
ization at different rates of dynamicity.

Change Rate (%) MEMOIZED COMPUTED
0 2,26 2,20

20 2,85 2,26
40 2,56 2,40
60 2,57 2,54
80 2,89 2,57

100 2,77 2,70
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Table 4.32: Startup times (in s) in the MENGER SPONGE scene using the transformation matrix
Memoization at different rates of dynamicity.
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Memory Consumption

A particularly interesting question concerning this optimization is how much addition mem-
ory the memozation table costs. For the SPHERES scene, where transformation nodes are not
stacked, the additional memory consumption is rather small: around 2 MiB in most cases which
is under 1% of the total memory consumption (Table 4.33). In the MENGER SPONGE scene
with its deeper transformation node hierarchy, the difference is more pronounced at 6 to 8 MiB
(Table 4.34)

Change Rate (%) MEMOIZED COMPUTED
0 193,19 191,13

20 193,98 192,89
40 194,22 192,52
60 195,17 194,99
80 202,54 194,81

100 197,62 195,71
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Table 4.33: Heap memory consumption (in MiB) in the SPHERES scene using the transforma-
tion matrix Memoization at different rates of dynamicity.

Change Rate (%) MEMOIZED COMPUTED
0 17,34 11,99

20 21,63 15,55
40 26,39 19,23
60 30,70 22,09
80 33,13 25,07

100 36,81 30,83
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Table 4.34: Heap memory consumption (in MiB) in the MENGER SPONGE scene using the
transformation matrix Memoization at different rates of dynamicity.

In conclusion, this optimization can bring noticeable drops in frame time when many objects
in the scene are moving. At the same time, the additional cost in startup time and memory
consumption is not significant on modern hardware.
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4.2.8 Interleaved Resource Uploads

Instead of issuing them all at once, this optimization distributes resource uploads (which are
mostly for constant buffers) evenly over the execution of the instruction stream. As Tables 4.35
and 4.36 show, this results in a small but consistent drop in frame times. The optimization was
mostly implemented to enable Concurrent Resource Value Computation. However, since it does
not cost additional memory or startup time, it can be enabled by default.

Change Rate (%) INTERLEAVED PRELOADED
0 15,96 15,74

20 15,78 16,52
40 16,11 16,51
60 20,24 21,31
80 25,74 27,22
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Table 4.35: Frame times (in ms) in the SPHERES scene (3375 geometries, 360 triangles per
geometry) using the Interleaved Resource Upload optimization at different rates of dynamicity.

Change Rate (%) INTERLEAVED PRELOADED

0 7,60 7,62
20 18,86 19,25
40 29,56 30,94

60 40,46 42,56
80 50,39 54,23
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Table 4.36: Frame times (in ms) in the MENGER SPONGE scene (8000 cubes) using the Inter-
leaved Resource Upload optimization at different rates of dynamicity.
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4.2.9 Concurrent Resource Value Computation

This optimization uses a number of parallel worker threads to execute the update actions of those
dependent resources that are out of date. Tables 4.37 and 4.38 show that one worker thread com-
puting resource values—while the main thread starts executing the instruction stream—cannot
provide any significant performance gain over executing update actions and the instruction
stream sequentially. The additional synchronization overhead caused by multi-threaded exe-
cution seems to cancel out any benefits provided by the additional core. Adding a second and
a third thread, however, does incur a frame time drop: In both cases the frame time is reduced
to around a half of the original value. In settings with high dynamicity this is one of the most
useful optimizations—provided appropriate hardware is available.3

0 1 2 3
0 15,05 15,09 15,09 15,19

20 15,52 15,31 15,72 15,62
40 15,97 15,50 16,08 16,07
60 21,04 19,79 16,05 16,24
80 26,54 25,10 17,11 16,70

100 32,00 30,06 20,15 17,90
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Table 4.37: Frame times (in ms) in the SPHERES scene (3375 geometries, 360 triangles per
geometry) using the Concurrent Resource Value Computation optimization at different rates of
dynamicity.

0 1 2 3
0 7,92 7,61 7,46 8,03

20 18,89 18,53 14,41 13,69
40 29,19 29,15 21,01 18,90
60 38,56 38,88 26,91 23,52
80 48,31 48,93 32,90 28,10

100 58,29 59,36 38,88 32,72
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Table 4.38: Frame times (in ms) in the MENGER SPONGE scene (8000 cubes) using the Con-
current Resource Value Computation optimization at different rates of dynamicity.

3These test cases were run on an Intel Core i5 2400 with 4 CPU cores.

113



4.2.10 Transparent Geometry

For transparent geometry it turns out that (in the current implementation) the immediate mode
renderer is just as fast as the TransparencyPassCache. Table 4.39 shows only marginal differ-
ences at varying geometry counts in the SPHERES scene (360 triangles per geometry, 1 surface,
8 textures).

Geometry Count CACHED UNCACHED

125 4,76 5,52
512 20,31 23,92
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Table 4.39: Frame times (in ms) in the SPHERES scene (360 triangles per geometry, 1 surface,
8 textures) using transparency sorting.

Closer profiling shows that sorting and updating the index buffers—which has to be done for
cached and immediate rendering alike—clearly dominates the rendering process, not allowing
the faster instruction stream execution to give any performance advantage. Both versions have
to wait for the index buffers to be uploaded.
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4.2.11 Optimizations Combined

This last section will compare the recommended set of default optimizations to immediate mode
and cached rendering without any optimizations. Comparisons will be done for the SPHERES
scene at 3375 geometries, 360 triangles per geometry, and 8 surfaces using 8 different textures.
The MENGER SPONGE scene is configured to have 8000 cubes. All tests were run at different
percentages of objects moving every frame.

Frame Time

Table 4.40 and Figure 4.4 show absolute frame times in the SPHERES scene. At zero percent
dynamicity, cached rendering is about 4 to 5 times faster than the immediate mode renderer.
Also note, that the enabled optimizations (Memoization, State Sorting, Removal of Redundant
Instructions, and Interleaved Resource Upload) can decrease the frame time by a third relative
to unoptimized caching. Looking at the previous test results for the various optimizations, this
performance gain is most probably solely due to state sorting, as the other optimizations do not
influence frame time at 0% dynamicity (memoization), or only have a very small effect on it
in general (redundancy removal and interleaved resource uploads). The Concurrent Resource
Value Computation optimization too does not decrease frame time for the non-dynamic setup,
as no resource values (apart from the camera matrices) need to be computed.

SPHERES SCENE (Frame Times in ms)

Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)
0 54,58 15,40 9,58 10,24

20 56,63 15,82 8,95 10,61
40 58,51 16,26 10,27 10,65

60 59,81 20,77 13,38 10,85
80 61,80 26,50 16,78 11,05

100 63,50 32,04 20,02 12,60

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.40: Frame times (in ms) in the SPHERES scene at different rates of dynamicity with
various combinations of caching optimizations enabled.

At increasing rates of dynamicity it is the concurrent resource value computation optimiza-
tion that has the most prominent effect. It can keep the frame time almost constant across all
rates of dynamicity. Memoization, on the other hand, does not seem to provide any performance
gain in this scene: The speedup relative to unoptimized caching stays around 1.6 across the
board.

The picture is similar for the MENGER SPONGE scene (Table 4.41 and Figure 4.5) although
there are some notable differences. Cached rendering again is considerably faster than the im-
mediate mode renderer: about 14 times as fast for unoptimized caching and about 20 times as
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Figure 4.4: Frame times (in ms) in the SPHERES scene at different rates of dynamicity with
various combinations of caching optimizations enabled.

fast with fully optimized caching. This time state sorting can reduce frame time by about 25%
for cached rendering.

MENGER SPONGE SCENE (Frame Times in ms)
Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)

0 118,89 8,16 6,00 5,91
20 125,81 19,55 9,74 6,79
40 133,57 30,73 15,28 9,84
60 138,39 41,02 20,19 12,46
80 146,15 51,72 25,40 15,27

100 150,82 62,62 29,45 17,35

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.41: Frame times (in ms) in the MENGER SPONGE scene at different rates of dynamicity
with various combinations of caching optimizations enabled.

In the MENGER SPONGE scene with its deep transformation hierarchy the memoization
optimization brings more of a performance gain than in the SPHERES scene. Starting at 136%
percent relative speed at 0% dynamicity, the relative speed grows 213% at 100% dynamicity
for the single core configuration. Again, redundancy removal and interleaved resource uploads
do not change with different rates of dynamicity. The concurrent resource value computation
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optimization can bring another drop in frame times at higher change rates.
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Figure 4.5: Frame times (in ms) in the MENGER SPONGE scene at different rates of dynamicity
with various combinations of caching optimizations enabled.

In conclusion, for scenes with a high number of individual geometry nodes, the biggest per-
formance gain is achieved by using instruction streams instead of a regular scene graph traversal.
This could increase the frame rate from 4 times as fast in the SPHERES scene to 14 times as
fast in the MENGER SPONGE scene. Adding the state sorting optimization could bring another
25% to 33%. As the percentage of moving objects in the scene increased, the other optimiza-
tions too start to play a role. Most notably memoization for the MENGER SPONGE scene, and
concurrent resource value computation for both scenes.

With all objects moving cached rendering (all optimizations enabled) was still 5 times as fast
as the immediate mode renderer for the SPHERES scene and more than 8 times as fast in the
MENGER SPONGE scene. This shows that scene graph caching, as proposed in this work, is a
viable solution also for dynamic scenes, as long as there are no structural changes in the scene
graph. The next section will examine the costs of these relative speed ups.

Startup Time

As already shown in the previous tests, building render caches will consume some additional
time when loading a scene. Table 4.42 and Figure 4.6 show startup times for the SPHERES
scene. There is no clear correlation between startup times and dynamicity. Enabling optimiza-
tions for the cache will cost additional time. In absolute numbers, however, creating the cache
does only cost between 1 second (unoptimized) and 3 seconds (fully optimized), with cache
creation taking up 15% to 25% of the total startup time.
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SPHERES SCENE (Startup Times in s)
Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)

0 8,92 9,44 12,39 11,58
20 8,95 9,68 11,50 11,20
40 8,97 9,86 11,08 11,05
60 8,92 9,75 11,24 11,11
80 8,93 9,63 11,05 10,87

100 8,95 9,69 10,59 10,59

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.42: Startup times (in s) in the SPHERES scene at different rates of dynamicity with
various combinations of caching optimizations enabled.
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Figure 4.6: Startup times (in s) in the SPHERES scene at different rates of dynamicity with
various combinations of caching optimizations enabled.
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In the MENGER SPONGE scene, building the cache causes a higher increase in startup times
(Table 4.43 and Figure 4.7). While loading the scene without cache takes under 1 second at all
dynamicity rates, doing so with an unoptimized cache takes more than 2 seconds (185%-197%
increase) and with full optimization its more than 4 seconds (370%-500% increase). This high
impact of cache building on the load time can be explained by the little data that needs to be
uploaded to GPU memory: the same, small cube geometry is shared by all geometry nodes and
only uses one diffuse texture and one normal map). At the same time the scene has a much
higher structural complexity than the SPHERES scene, which is what influences cache building
the most: the number of render jobs and dependent resources it needs to allocate.

MENGER SPONGE SCENE (Startup Times in s)
Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)

0 0,75 2,23 2,59 4,50
20 0,78 2,26 2,71 4,58
40 0,82 2,40 2,99 4,80
60 0,84 2,40 2,89 4,70
80 0,87 2,51 3,01 4,66

100 0,92 2,65 3,08 4,33

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.43: Startup times (in s) in the MENGER SPONGE scene at different rates of dynamicity
with various combinations of caching optimizations enabled.

0 20 40 60 80 100
0

1

2

3

4

5

6

NO CACHING

JUST STREAM

MEMO | RR | SS | IL (1 Core)

MEMO | RR | SS | IL (4 Cores)

Change Rate (%)

S
ta

rt
u

p
 T

im
e

 (
s

)

Figure 4.7: Startup times (in s) in the MENGER SPONGE scene at different rates of dynamicity
with various combinations of caching optimizations enabled.

119



Memory Consumption

The same factors that cause the difference between SPHERES and MENGER SPONGE scene
in startup times also have a similar effect on heap memory consumption. As Table 4.44 and
Figure 4.8 show, in the SPHERES scene with its flat structure and large geometry data, caching
does not raise memory consumption by much (at most 2.36% increase). Contrastingly, in the
MENGER SPONGE scene with its deep hierarchy, caching becomes a significant memory factor
with between 120% and 170% memory consumption increase (see Table 4.45 and Figure 4.9).

SPHERES SCENE (Heap Memory in MiB)
Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)

0 189 190 192 191
20 190 192 193 193
40 191 193 194 194
60 192 194 196 196
80 194 197 198 198

100 195 197 199 199

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.44: Heap memory consumption (in MiB) in the SPHERES scene at different rates of
dynamicity with various combinations of caching optimizations enabled.
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Figure 4.8: Heap memory consumption (in MiB) in the SPHERES scene at different rates of
dynamicity with various combinations of caching optimizations enabled.
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MENGER SPONGE SCENE (Heap Memory in MiB)
Change Rate (%) NO CACHING JUST STREAM MEMO | RR | SS | IL (1 Core) MEMO | RR | SS | IL (4 Cores)

0 5,5 12,0 15,1 15,1
20 8,1 15,4 19,5 20,0
40 10,7 18,7 24,4 24,0
60 13,3 23,1 29,7 29,8
80 15,2 25,4 33,2 33,7

100 18,4 28,9 37,5 38,1

MEMO ... Memoization RR ... Redundancy Removal
SS ... State Sorting IL ... Interleaved Uploads

Table 4.45: Heap memory consumption (in MiB) in the MENGER SPONGE scene at different
rates of dynamicity with various combinations of caching optimizations enabled.
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Figure 4.9: Heap memory consumption (in MiB) in the MENGER SPONGE scene at different
rates of dynamicity with various combinations of caching optimizations enabled.
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For graphics memory the picture is quite different. The cache only needs to store a higher
number of constant buffers than the immediate mode renderer. All other graphics resources are
used the same way by both versions. In the case of the SPHERES scene this means a difference
of 420 KiB of graphics memory (see Table 4.46) and for the MENGER SPONGE scene the
difference is 1 MiB (see Table 4.47).

SPHERES SCENE (Graphics Memory in MiB)

NO CACHING ANY CACHING
Graphics Memory (MiB) 620,23 620,64
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Table 4.46: Graphics memory (in MiB) in the SPHERES scene with and without caching.

MENGER SPONGE SCENE (Graphics Memory in MiB)

NO CACHING ANY CACHING
Graphics Memory (MiB) 42,67 43,64
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Table 4.47: Graphics memory (in MiB) in the MENGER SPONGE scene with and without
caching.
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CHAPTER 5
Conclusion

The aim of this work was to develop a way of improving rendering performance for scene graph
based graphics applications. The chosen strategy to achieve this goal was to implement so-
called render caches which contain an optimized representation of some part of a scene graph.
This allows to render the cached subgraph without traversing it. Internally, render caches use
instruction streams to capture the semantic of a render traversal in a form that allows for much
faster execution of the same drawing commands. As traversal cost makes many scene graph
applications CPU-bound, this exclusion of subgraphs from the render traversal can bring major
overall performance gains.

Instruction streams were presented as a sequence of instructions, each encapsulating a call
into the low-level graphics API and the arguments needed for this call. This linear list of com-
mands can represent a program rendering a scene graph much like byte code can represent a
generic program previously in the form of an abstract syntax tree.

The investigation of the circumstances under which a render cache becomes out-of-date
yielded that even small changes, even outside of the cached subgraph can necessitate the render
cache to be fully rebuilt. As rebuilding the cache from scratch is a costly operation this poses a
major limitation of the possible use cases of the system. In an attempt to alleviate this problem
the so-called dependency system was proposed. The dependency system provides means for an-
notating parts of a scene graph with dynamic predicates—so-called dependencies—which allow
tracking changes of the annotated entities. In the terms of the dependency system these annotated
entities are called value sources. Common examples of value sources are transformation and
camera nodes. Using this metadata describing changes in the scene graph, the dependency sys-
tem allows to lazily update so-called dependent resources, which can be vertex, index or constant
buffers or other graphics resources.

Some important and useful properties of the dependency system have been examined:

• A notion of dependent resource equality has been established and proven to satisfy criteria
which allow to optimally reuse dependent resource instances within a given context.
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• A construction mechanism for dependent resources has been presented which implements
the aforementioned instance reuse with an asymptotic complexity of O(1).

• It has been shown that dependent resources can automatically be composed in a product
type-like manner without loosing any of their useful and defining properties: a tuple of
dependent resources is again a dependent resource. This allows to naturally reason about
composite resources like constant buffers consisting of multiple fields.

• The necessary evaluation order of dependency and dependent resource updates has been
investigated and a simple scheme was suggested which implements the requirements
found.

In the chapter Dependency-Aware Scene Graph Caching it has been shown how the depen-
dency system naturally integrates with the concepts of render caches and instruction streams. By
using dependent resources as instruction arguments, render caches can stay up-to-date at small
cost in reaction to the most frequent class of scene graph changes which comprises common
activities such as object or camera movement.

Instruction streams and their execution can be optimized in various ways. The section Opti-
mizations investigates a number of such optimizations and explains their implementation in the
prototype:

• Removal of Redundant Instructions reduces the number of instructions in the stream which
results in fewer calls to the graphics API.

• Super Instructions combine a sequence of consecutive instructions into a single one, re-
sulting in less instruction execution overhead.

• State Sorting prepares the instruction stream in a way as to reduce the number of graphics
pipeline state changes.

• Overdraw Sorting allows to re-sort the instruction stream for front-to-back rendering in
order to exploit the Z culling hardware optimization.

• Concurrent Resource Value Computation enables render caches to update graphics re-
sources on multiple CPU cores simultaneously.

• Memoization works by caching intermediate results of transformation matrix computa-
tions which improves performance in scenes with deep transformation hierarchies.

• Disposing Cached Subgraphs shows that render caches can completely take over all ren-
dering responsibilities from static cached subgraph, allowing to reduce memory consump-
tion.

• Finally, Cached Culling Hierarchy shows that the caching system supports view frustrum
culling at least as well as the existing immediate mode renderer, with potential to surpass
it in certain dynamic scenarios.
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At the end of the main part, the two default types of render caches—based on the concepts
described so far—were presented, namely the SolidPassCache and the TransparencyPassCache.

The last part of the thesis examined the actual performance characteristics of the scene graph
caching system using a number of synthetic test scenes in different configurations. These tests
showed that the caching system is most useful in scenes with a high structural complexity (high
geometry count and/or deep scene graph hierarchies) and low primitive count per geometry. In
this kind of scene the scene graph caching system, with all optimizations enabled, reduced aver-
age frame times by a factor of 5 to 8 with all objects in the scene changing there transformation
each frame. This performance gain could be achieved at the cost of startup times increased by
3 to 4 seconds for scenes with 3000 to 8000 geometry nodes. The additional main memory
consumption was measured 4 MiB for the scene with 3000 geometries and a flat transformation
hierarchy and 20 MiB for the scene with 8000 geometries and a deep transformation hierarchy.

Future Work

The scene graph caching system that is the result of this work should be considered a first
experiment in the direction of incrementally updated scene graph caches. A short time goal for
further research is the automatic utilization of Geometry Instancing [16, p. 52] by render caches.
This can be integrated into the proposed system cleanly.

However, a more interesting step would be to investigate the possibility of a system that can
deal with any kind of scene graph changes incrementally, including changes to the scene graph
structure. Such a system would be similar in function to the one by Hopcroft et al. [31]. A
possible way of implementing the required capabilities, while enabling many optimizations at
the same time, could be based on an approach similar to the one suggested by Hudson [27]. The
resulting system would unify the concepts of Value Sources and Dependent Resources and allow
for clean, incremental graph evaluation.

Before any of this is pursued any further, however, a thorough performance comparison with
other modern scene graph toolkits such as OpenSceneGraph [8], OpenSG [44], and NVIDIA
SceniX [17] should be conducted, in order to find out whether the scene graph caching sys-
tem can bring absolute performance gains as opposed to only ones relative to AARDVAARK’s
immediate mode renderer.
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