
Kontakt: michaelwoerister@gmail.com

Scene Graphs are a data structure for
modelling graphical scenes in the computer.
They are based on directed acyclic graphs
(DAG) where leaf nodes represent
geometric shapes and interior nodes
represent shape properties, such as color,
texture, or position. These properties are
inherited along the edges of the graph.

A Caching System for a

Dependency-Aware Scene Graph

Diplomarbeitspräsentation

Masterstudium:

Software Engineering & Internet Computing Michael Wörister

Technische Universität Wien

Institut für Computergraphik und Algorithmen

Arbeitsbereich: Computergraphik

Betreuer: Univ. Prof. Dipl.-Ing. Dr. techn. Werner Purgathofer

t1

g1 g2

s1 s2

t2

g3 g4

t3

g5 g6

r

s1 s2

t1 s1 t2 s1

t1 s1 g1 t1 s1 g2 t2 s1 g3 t2 s1 g4 t3 s2 g5 t3 s2 g6

s2 t2 t3 s2

t2 s2 g3 t2 s2 g4

A Render Cache is a small program
consisting of GPU commands and their
arguments. Executing this program will
instruct the graphics hardware to produce
an output image. Executing a render
cache is very efficient because instruction
arguments are already prepared in
graphics memory. Like a normal computer
program, render caches can be further
optimized to run even more efficiently.

Traditionally, a scene
graph is rendered by
traversing the graph and
collecting shape properties
along the way. When a leaf
nodes is reached, the shape is
drawn with the current set of
properties.

This algorithm is simple but can
become a performance
problem for graphs with large
numbers of nodes and edges.

Graphics Memory

Instruction
Arguments

GPU Instructions

The Scene Graph Caching system
proposed in this work compiles the
scene graph into a render cache
that—when executed—will yield
the same output image as
rendering the scene graph using
the traditional algorithm.

Output Image

 Executing the render
 cache will produce the
 same output image as
 rendering the scene graph
 with the regular algorithm.
However, the graph does not
have to be traversed and
instruction arguments only have
to be prepared once when the
cache is built.

The scene graph caching system creates
and maintains metadata on the data
dependencies between scene graph nodes
and instruction arguments.

M M M
DEPENDENCY

INDEX

Instruction
Arguments

Dependency
Metadata

Instructions

This allows the system to update the render
cache incrementally as long as the structure
of the scene graph does not change. This
way animated scenes containing moving
objects can be cached too.

Regular

Cached

Cached
(Optimized)

Fr
am

e
 R

at
e

 (
n

o
rm

al
iz

e
d

)

Fr
am

e
 R

at
e

 (
n

o
rm

al
iz

e
d

)

Number of Shape Nodes Percentage of Objects Moving

The graph on the left shows results from a static scene
with approx. 800.000 triangles distributed over a
varying number of shape nodes (x-axis).
Although the GPU workload is roughly the same for all
configurations, using render caches can be up to
4 times as fast for higher node counts. Optimizing the
instruction stream brings additional performance gains.

Performance Test Results The graph on the right shows normalized frame rates
from a scene with a varying percentage of moving
objects.
Updating the render caches incrementally enables the
system to sustain performance gains when the scene
contains dynamic content. With optimized (multi-core)
cache updates, the speedup is nearly constant for all
percentages of objects moving every frame.

