Uncertainty d Parameter Space Analysis		Specific literature	
d Parameter Space Analysis			
		[1] C. Johnson and A. Sanderson, "A next step: Visualizing errors ar	nd
in Visualization		uncertainty," Computer Graphics and Applications, IEEE, vol. 23, no 10, 2003	o. 5, pp. 6
-		 [2] A. Pang, C. Wittenbrink, and S. Lodha, "Approaches to uncertain visualization," The Visual Computer, vol. 13, no. 8, pp. 370–390,199 	ty 7.
Session 4: Structural Uncertainty		[3] T. Pfaffelmoser, M. Reitinger, and R. Westermann, "Visualizing the	he Ior fielde '
nalyzing the effect of uncertainty on the		in Computer Graphics Forum, vol. 30, no. 3. Wiley Online Library, 2	011, pp.
ppearance of structures in scalar fields		951–960. [4] T. Pfaffelmoser and R. Westermann, "Visualization of global corr structures in uncertain 2d scalar fields," in Computer Graphics Foru	elation m, vol. 31
Rüdiger Westermann and Tobias Pfaffelmoser Computer Graphics & Visualization		 no. 3. Wiley Online Library, 2012, pp. 1025–1034. [5] T. Pfaffelmoser and R. Westermann, "Correlation Visualization for Structured Uncertainty Application," in Jurged of Uncertainty, Quantification, 2016;103 	or
		Structural Oncertainty Analysis, in Journal of Oncertainty Quantinica	uon, 201
atics	tՄ ^{3D}	Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser	tس
München	ПШ	Technische Universität München	π
Structural uncertainty		Part 1: Structural uncertainty	
Structural uncertainty [3] [5]			
astic modelling of uncertainty			
ce as an uncertainty indicator			
tions of variance as an uncertainty indicator			
astic dependence and correlation			
ocal and global correlation visualization [4]	51		
rements and challenges			
correlation tensor			
based correlation visualization			
correlation clustering			
ocal and global correlation visualization [4] [4 rements and challenges	5]		
astic dependence and correlation .ocal and global correlation visualization [4] [4 rements and challenges	5]		

ТШП

Uncertain scalar fields

- Uncertain scalar field $Y: M \to \mathbb{R}$ on compact domain $M \subset \mathbb{R}^n$
- Discretely sampled on nodes $\{x\}_{i \in I}$ with values $\{Y\}_{i \in I}$
- We assume a stochastic uncertainty model: $\{Y\}_{i \in I}$ are (correlated) Gaussian distributed random variables

• $Y(x_i) = \mu_i$ is the most likely configuration

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШТ

Multivariate Gaussian distribution

• Uncertainty parameters in the multivariate case – The degree of uncertainty is modeled by the Covariance Matrix Σ $p(\mathbf{y}) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp(-0.5(\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu}))$

-)

For 3 grid points:

$$\Sigma = \begin{pmatrix} \sigma_1^- & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{pmatrix}$$

/ _2 _

$$\sigma_i^2 = var(Y_i) = E(Y_i - \mu_i)^2$$

$$\sigma_{ij} = Cov(Y_i, Y_j) = E((Y_i - \mu_i)(Y_j - \mu_j))$$

ТЛП

Uncertainty visualization for an iso-surface in the mean values of a 3D temperature

Color coding of stochastic distance Color coding of Euclidian distance along normal curves [3]

Technische Universität München

ТЛП

Variance as uncertainty indicator

Uncertainty visualization for an iso-surface in the mean values of a 3D temperature ensemble

Limitations of variance as uncertainty indicator	Limitations of variance as uncertainty indicator
 The standard deviation describes the local uncertainty but does not allow inferring on possible variations at different positions relative to each other e.g., if mean values and standard deviations at two adjacent points are identical, but the realizations of the random variables at both points behave independently, it cannot be predicted whether there is a positive, zero, or negative derivative of the data between the two points In general, the effect of uncertainty on structures which depend on random values at multiple points cannot be predicted from the mean values and standard deviations alone The effect is to a large extent arbitrary if the realizations of the random values are stochastically independent, while a structure's shape can be assumed stable if the realizations are stochastically dependent 	 Variations of an uncertain curve due to uncertainty Curve points Y₁ = Y(x₁) are modelled via a multivariate Gaussian random variable with smoothly varying mean values (green curve) and a constant standard deviation (blue curves show corresponding confidence interval) ^(a) ^(a) ^(b) ^(b) ^(b) ^(b) ^(b) ^(b) ^(c) ^(c)
Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfalfelmoser	Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Plaffelmoser

Technische Universität Münch

Limitations of variance as uncertainty indicator · Variations of an iso-surface in an uncertain 3D scalar field - Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix $\boldsymbol{\Sigma}$ Low stochastic (3) along y dependence: (4) along x and y (5) along z (2) along x (1) High stochastic dependence

Technische Universität München

Technische Universität Münche

dependence

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

ТШП

ТШТ

Limitations of variance as uncertainty indicator

- Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix $\boldsymbol{\Sigma}$ Low stochastic (3) along y dependence: (4) along x and y (5) along z (2) along x (1) High stochastic dependence () Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

· Variations of an iso-surface in an uncertain 3D scalar field

ТШП

ТШП

ТШТ TUT Technische Universität München Technische Universität München Limitations of variance as uncertainty indicator Limitations of variance as uncertainty indicator · Variations of an iso-surface in an uncertain 3D scalar field - Stochastic dependence between scalar values was modelled explicitly - Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix Σ via a respective covariance matrix Σ Low stochastic (3) along y dependence: (3) along y (4) along x and y (4) along x and y (5) along z (5) along z (2) along x (1) High stochastic

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser t0^{3D} · Variations of an iso-surface in an uncertain 3D scalar field

ТШТ

πл

Limitations of variance as uncertainty indicator

Variations of an iso-surface in an uncertain 3D scalar field
 Stochastic dependence between scalar values was modelled explicitly

Technische Universität Münche

Limitations of variance as uncertainty indicator

 Variations of an iso-surface in an uncertain 3D scalar field

 Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix Σ

πп Technische Universität Müncher Limitations of variance as uncertainty indicator · Variations of an iso-surface in an uncertain 3D scalar field - Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix Σ Low stochastic (3) along y dependence: (4) along x and y (5) along z (2) along x (1) High stochastic dependence () Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

ТШТ ТШТ Technische Universität München Technische Universität München Limitations of variance as uncertainty indicator Limitations of variance as uncertainty indicator Variations of an iso-surface in an uncertain 3D scalar field Variations of an iso-surface in an uncertain 3D scalar field - Stochastic dependence between scalar values was modelled explicitly - Stochastic dependence between scalar values was modelled explicitly via a respective covariance matrix Σ via a respective covariance matrix Σ Low stochastic Low stochastic (3) along y dependence: (3) along y dependence: (4) along x and y (4) along x and y (5) along z (5) along z (2) along x (2) along x (1) High stochastic (1) High stochastic dependence dependence

t0^{3D}

tm_{3D}

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

ТШП

Limitations of variance as uncertainty indicator

· Random values in the 3D scalar field shown before were generated using a multivariate Gaussian distribution with constant standard deviation and linearly increasing mean (along z)

 (a) Iso-surface in the mean values
 (b) Confidence volume containing all points that belong to the surface with a certain probability (c) Occurrence of the surface in (a) for one possible realization of the random values

(1) Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

πп echnische Universität Müncher Technische Universität München Structural uncertainty Structural uncertainty · For Gaussian distributed random variables, the stochastic · We call the effect of uncertainty in the data values on structures depending on the values at multiple points a structural uncertainty dependence of random values at two points is given by the It is associated with the occurrence of particular structures in the data correlation: which are affected by the degree of dependence between the values $\rho_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}} = \frac{\sigma_{ij}}{\sigma_i\sigma_j}, \qquad -1 \le \rho_{ij} \le 1$ at two or more data points · Indicators for structural uncertainty are given by the subdiagonals of Σ , which contain covariance information on Positive correlation: $\rho_{ij} > 0$ relative uncertainties between random variables Stochastic independence: $\rho_{ij} = 0$ $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{pmatrix}$ Negative/Inverse correlation: $\rho_{ij} < 0$ () Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D} () Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

tm_{3D}

tm_{3D}

πш

ТШП ТШП Technische Universität München Technische Universität München Stochastic dependence Stochastic dependence · Variability of a scalar value around its mean position: · Variability of a scalar value around its mean position: t0^{3D} tM_{3D} Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

structural uncertainty

tM_{3D}

Low

structural uncertainty

(c)

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

- Two different approaches will be discussed, both aim at conveying correlation structures in the data:
 - 1. Local correlation analysis using characteristic correlation tensors
 - 2. Global correlation analysis showing longe-range dependencies such as inverse correlations via **correlation clusters**

ТШТ

Local correlation analysis

· Assumption of a distance dependent correlation model: higher correlations between the data values at points with shorter Euclidean distance

Technische Universität München

Local correlation analysis

Assumption of a distance dependent correlation model implies . that correlation strength depends on grid resolution

ТШП Technische Universität Müncher Distance dependent correlation model · The Gaussian correlation function relates correlation to spatial

Technische Universität Müncher

ТШП

Distance dependent correlation model

. Correlation strength parameter $\boldsymbol{\tau}$ relates correlation to distance and is independent of grid resolution for local correlation analysis

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШТ

Correlation anisotropy

Problem: Correlation values - and thus correlation strength parameters - depend on direction, yielding a directional correlation distribution at each grid point

			_			
			2			
		ι_3	/	τ_1		

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tM_{3D}

Technische Universität München

Correlation strength tensor

- Idea: The (anisotropic) distribution of the correlation strength parameter is modelled by a rank-2 tensor ${\bf T}$
 - The correlation strength tensor T models the correlation strength to 8 (2D) or 26 (3D) neighbors
 - Given T, correlation strength τ at position \boldsymbol{x} into direction rcan be computed via tensor-vector multiplication

 $\tau(\mathbf{x}, \mathbf{r}) = \mathbf{r}$

 $\mathbf{T}(\mathbf{x})\mathbf{r}$

ТШП

ТШТ

πп

Correlation strength tensor

· Given the tensor T, the distance and direction dependent correlation becomes

$$\begin{split} \rho(Y(\mathbf{x}_i), Y(\mathbf{x}_j)) &= \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j) - \Gamma(\mathbf{x}_i - \mathbf{x}_j)}{\|\mathbf{x}_i - \mathbf{x}_j\|} \\ \mathbf{T} &= 0.5(\mathbf{T}(\mathbf{x}_i) + \mathbf{T}(\mathbf{x}_j)) \end{split} \end{split}$$

- · At every grid point a correlation tensor is computed - i.e., correlation data is transformed into a distance dependent tensor model
 - Reduces memory requirments because it avoids storing (global) correlation values explicitly

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tM3D

Correlation strength tensor computation

- T is symmetric and has 3 (2D) or 6 (3D) free values to be determined
- T models the correlation strength to 8 (2D) or 26 (3D) neighbors
- · T is obtained for every grid point by solving an over-determined linear system using a least squares approach

T is independent of the grid resolution, because correlation is set in relation to Euclidean distances

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

Technische Universität Müncher

Correlation visualization on iso-surfaces

- · Goal: Visualizing the structural uncertainty of specific features in the mean data, i.e. an iso-surface
 - Requires correlation visualization with respect to the mean surface's geometric shape

· Idea: Distinguish between correlations in the surface's local tangent planes and normal direction, and visualize these correlations via glyphs

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

Technische Universität Müncher

πп

ТШП

1

tM_{3D}

ТШП

Correlation visualization on iso-surfaces

- · Approach: Correlation values are extracted for the two principal correlation directions in the surface's tangent plane (highest and lowest strength) and normal direction [4]
 - Basis transformation is necessary to obtain correlation strength parameters in principal tangential directions (τ_{tan_max}) and (τ_{tan_min}), and normal direction (τ_{normal}) at every surface point
 - By interactively specifying an Euclidean radius d, correlation values along the three principal directions are computed as $\rho_{normal} = \exp(-\tau_{normal}d)$ $\rho_{tan_min} = \exp\left(-\tau_{tan_min}d\right)$

 $\rho_{tan_max} = \exp\left(-\tau_{tan_max}d\right)$ and used to model the appearance of circular correlation glyphs

tm_{3D} () Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

ТШ Technische Universität München Technische Universität München Correlation glyphs Correlation glyphs Correlation glyphs encode the correlation values in the first and Correlation ratio between first and second tangent direction is second pricipal tangent and surface normal direction encoded in the shape of the elliptic zone (2) Glyph coloring wrt correlation in surface ... Glyph coloring wrt correlation in surface ... (1) ... normal direction (1) ... normal direction (2) ... first principal tangent direction (2) ... first principal tangent direction (3) ... second principal tangent direction (3) ... second principal tangent direction $0 \rightarrow Correlation \rightarrow$ $0 \rightarrow Correlation \rightarrow$ 1 Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

tM_{3D}

echnische Universität München	тип	Technische Universität München	TUT
Correlation glyphs		Structural uncertainty analysis	
• Absolute and relative correlation anisotropy in plane are encoded via color differences $\rho = 0.1 \qquad \rho = 0.1 \qquad \rho = 0.01$	the surface tangent	Surface realization and glyph base mean surface	ed correlation visualization on
$\rho = 0.9$ $\rho = 0.09$ $0 \Rightarrow$ Col	rrelation → 1	Surface realization	Correlation glyphs
	TIT		
echrische Universität München Structural uncertainty analysis	1111	Technische Universität München Structural uncertainty analysis	τιπ
echrische Universität München Structural uncertainty analysis		Technische Universität Murchen Structural uncertainty analysis	TUT 2011
echesche Universität München Structural uncertainty analysis	TTT	Technische Universität München Structural uncertainty analysis	TUR
Exclusion be Universität Manchen Structural uncertainty analysis Image: Constrainty of the structural uncertainty of the structural uncertainty of the structural uncertainty of the structural uncertainty of the structural uncertainty, R.Westermann, T	TTT 	Technische Universität Märchen Structural uncertainty analysis Image: I	tun and vertical direction why. R.Wastermann, T. Platfelmoar

Structural uncertainty analysis

Low correlation in both vertical and horizontal direction

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Structural uncertainty analysis

TUT

Local correlation analysis summary

- No integration of absolute uncertainty information (e.g. standard deviations)
- · Global dependences are ignored
- Inverse correlation cannot be visualized as correlation model only accounts for correlation strengths (magnitudes)

Technische Universität	München		

ТШТ

Part 2: Local and global correlation visualization

2.2 Global correlation visualization

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Ш

- To analyze long-range spatial dependencies between the data values in uncertain scalar fields, in principle the full covariance matrix needs to be visualized
- This is problematic due to the following reasons
 - For n spatial grid points it requires $O(n^2)$ memory
 - Entries in Σ are not in a spatial contex, making it difficult to infer on spatial dependencies
 - Uncertainty information has to be visually separated from correlation information

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

Global correlation analysis

- · Requirements due to the aforementioned problems
 - The correlation information first has to be condensed
 - Requires to define and seek for the most prominent short- and long-range dependencies

ТШП

Correlation structures have to be embedded into standard visualizations providing spatial relationships

· Approach

- Definition of a measure for the degree of dependency of a
- random variable to its local and global spatial surrounding
- Spatial clustering of random variables based on this measure
- Color coding of data points wrt. cluster IDs

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München	TUTT	Technische Universität München	тлп
Example data set		Correlation strength indicator	
2D temperature ensemble si Medium-Range Weather For	imulated by the European Centre for recasts	 Assumption: the more <u>"correlation partners</u>" a particular p domain has to which the correlation is larger than a given more important this point is 	ooint in the I level, the
		 The sets of partners spread anisotropically across the dom. The expansion in different directions is directly related to the correlation distribution in the respective region 	ain e
		 For a given level and point x_i, the number of partners ind degree of dependency between the random variable Y(x_i local and global spatial surrounding 	icates the i) to its
Mean values Mean val	ues as heightfield Standard deviations	 It counts the most prominent partners of x_i, independent of position in the domain 	their
		 The number of partners is used as the correlation strength 	ndicator
Uncertainty Tutorial, VisWeek 2012, S4: Structur	al Uncertainty, R.Westermann, T. Pfaffelmoser	Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser	tM _{3D}
Technische Universität München	ТИП	Technische Universität München	TUT

Correlation strength indicator

- · Definitions
 - $\begin{array}{l} \text{Correlation neighborhood:} \\ \eta_{\rho^{*}}(x_{l}) \coloneqq \left\{ x_{j} \in D \mid \rho\left(Y(x_{l}), Y(x_{j})\right) \geq \rho^{+} \right\} \\ D: data \ domain \\ \rho_{1}: correlation \ level \end{array}$

Cardinal number: $|\eta_{\rho^+}(x_i)|$

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

 Example showing relation between correlation neighborhoods and cardinal numbers

Correlation strength indicator

ЛЛ

Spatial correlation clustering

- · Basic idea: use correlation neighborhoods as clusters
- Problem: correlation neighborhoods of different points can overlap
 Results in ambiguities in the assignment of points to clusters
- Solution: process correlation neighborhoods sequentially and exclude those neighborhoods which overlap any previously processed neighborhood
- The strategy avoids overlapping clusters but, depending on selection order, will exclude large clusters which overlap small cluster
- Thus, neighborhoods are selected in descending order of cardinality such that the largest clusters are always selected first

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

Correlation clustering algorithm

- Step 1: Select correlation level ρ⁺
- Step 2: Compute cardinal numbers for all points in the 2D domain
- Step 3: Select domain point with largest cardinal number as first cluster center
- Step 4: Create cluster (correlation neighborhood)

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

The second second second second second	A 475 - 1 4 5 - 1 - 1

ТШТ

Correlation clustering algorithm continued

- Step 5: In the set of points not yet assigned to a cluster, search for point p with highest cardinal number whose correlation neighborhood c does not overlap any existing cluster
- Step 6: Create cluster using p and c and repeat with Step 5
- ... generate custers for different levels ρ⁺ (multilevel clustering)

(1) Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität Münche

ТШП

ТШП

Correlation clustering results

- Visualization of correlation clusters and cluster centers on the mean height surface for a particular correlation level ρ^+

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

tm_{3D}

Technische Universität München

TUT

Correlation clustering results for varying levels

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

TUT

Inverse dependencies

- Inverse stochastic dependencies typically exist between spatially separated regions; ie. pairs which are inversely correlated to each other
 - Inverse correlation structures are global features and cannot be
 modeled by distant dependent correlation models

ТШТ

Inverse dependencies

· Inverse stochastic dependencies typically exist between spatially separated regions; ie. pairs which are inversely correlated to each other

Inverse correlation structures are global features and cannot be modeled by distant dependent correlation models

Inverse dependencies

- · Inverse stochastic dependencies typically exist between spatially separated regions; ie. pairs which are inversely correlated to each other
 - Inverse correlation structures are global features and cannot be modeled by distant dependent correlation models

eek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

chnische Universität Müncher

πп

Inverse dependencies

- · Inverse stochastic dependencies typically exist between spatially separated regions; ie. pairs which are inversely correlated to each other
 - · Inverse correlation structures are global features and cannot be modeled by distant dependent correlation models

sche Universität Müncher

πл

ТШП

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods $(\rho(Y(x_i), Y(x_j)) \le \rho^{-})$ and corresponding cardinal numbers for all points
- · Step 3: Select point with largest cardinal number as first cluster center

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tm_{3D}

Technische Universität München

ТШТ

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods (ρ(Y(x_i), Y(x_j)) ≤ ρ[−]) and corresponding cardinal numbers for all points
- Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points to first cluster

tM_{3D} Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШТ

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- **Step 2**: Compute correlation neighborhoods $(\rho(Y(x_i), Y(x_j)) \leq \rho^{-})$ and corresponding cardinal numbers for all points
- Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points to first cluster
- Step 5: Select point in cluster with largest number of inversely correlated points

ТЛП

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods (ρ(Y(x_l), Y(x_j)) ≤ ρ[−]) and corresponding cardinal numbers for all points
- Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points
 to first cluster
- Step 5: Select point in cluster with largest number of inversely correlated points

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods (ρ(Y(x_i), Y(x_j)) ≤ ρ[−]) and corresponding cardinal numbers for all points
- Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points to first cluster
 Step 5: Select point in cluster with largest number of inversely correlated points

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШ

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods $(\rho(Y(x_l), Y(x_j)) \le \rho^-)$ and corresponding cardinal numbers for all points
- · Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points
 to first cluster
- Step 5: Select point in cluster with largest number of inversely correlated points
- Step 6: Assign both clusters to one pair

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität Müncher

Inverse correlation clustering algorithm

- Step 1: Select negative correlation level ρ⁻
- Step 2: Compute correlation neighborhoods (ρ(Y(x_l), Y(x_j)) ≤ ρ[−]) and corresponding cardinal numbers for all points
- Step 3: Select point with largest cardinal number as first cluster center
- Step 4: Assign negatively correlated points to first cluster
- Step 5: Select point in cluster with largest number of inversely correlated points
- Step 6: Assign both clusters to one pair
 Step 7: Proceed with Step 3, taking into account that clusters do not overlap

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШТ

Inverse dependencies for varying negative levels ρ^-

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

· Each pair of inversely correlated spatial regions gets assigned one

distinct colorClusters in each pair are distinguished by differently oriented stripe patterns

Technische Universität München

Inverse dependencies

ТШ

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

15

ТШП

ТШП

ТШТ

ТШТ

Global correlation analysis results

- Example: An uncertain 2D scalar field with constant means and standard deviations. Specific orrelation structures have been enforced:
 - Strong positive correlation within the sets of points colored blue.
 - •
 - Zero correlation between these sets Inverse correlation between the two sets in the upper left region

tM3D Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

ТШТ

ТШП

ТШТ

tm_{3D} ek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser tainty Tutorial, VisV

Technische Universität München

Technische Universität München

Technische Universität München Global correlation analysis results Covar Correlations Standard Deviations

Confidence volume Random realization around mean surface

tm_{3D} rtainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

Global correlation analysis results

ТШТ

ТШ

ТШТ

 Conclusion analysis results

 Correlations

 Correlations

 Gaussian Random Number Generator

 Standard Deviations

 Correlations

 Correlations

 Correlations

 Standard Deviations

 Confidence volume

 Confidence volume

 Confidence volume

 Confidence volume

Technische Universität München

Global correlation analysis results

Global correlation analysis results

ТШТ

Random realization Confidence volume around mean surface

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser UM3D

Technische Universität München

ЛЛ

Global correlation analysis results

Correlation clustering algorithm identifies positively correlated regions correctly

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

ТШП

Global correlation analysis results

Correlation clustering algorithm identifies inversely correlated regions correctly

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

_	 	 	

ТЛП

tm_{3D}

Global correlation analysis summary

- Correlation clustering allows analyzing global correlation structures such as inverse correlations, requiring an amount of memory that is linear in the number of data points
- The clusters' distributions reveal anisotropic correlation effects
- Uncertainty information can be integrated easily, for instance, by extruding clusters depending on standard deviation [5]
- Extension to 3D is possible, but special projection or restriction schemes are required when used to analyze correlation structures on iso-surfaces

Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

Technische Universität München

ТШП

Future work and challenges in correlation visualization

- · Approaches for visualizing correlation structures in 3D
- Correlation analysis/visualization for other data types (e.g. vector fields)
- Integration of correlation information in existing uncertainty visualization approaches (e.g. positional uncertainty of features)
- Quantification of the effect of correlation on the occurence of
 differential quantities and higher order features, like critical points
- Modeling and interpretation of stochastic dependencies in non-Gaussian distributed random fields

() Uncertainty Tutorial, VisWeek 2012, S4: Structural Uncertainty, R.Westermann, T. Pfaffelmoser

tm_{3D}