STATISTICAL UNCERTAINTY From Quantification to Visualization

Kristi Potter

Scientific Computing and Imaging Institute University of Utah

VisWeek 2012 Tutorial

Statistical Uncertainties

Random fluctuations of measurement

Sources

PARAMETER UNCERTAINTY

- input parameters to models
- exact values unknown, cannot be controlled by experiment

Sources

SCI

Model Inadequacy

- aka model bias, model discrepancy
- lack of knowledge of the underlying problem
- accuracy of the model to reality
- result of model being an approximation

Sources

Algorithmic Uncertainty

- aka numerical uncertainty
- numerical errors, approximations
- translation of mathematical model to the computer

Sources

Experimental Uncertainty

- aka observational error
- variability of experimental measurements

Sources

INTERPOLATION UNCERTAINTY

- lack of available data from simulation/experiment
- must interpolate/extrapolate for desired response

Categories

Epistemic Uncertainty

- aka systematic uncertainty
- things we could in principle know but don't in practice
- i.e. insufficient measurement or modeling, missing data

REDUCIBLE: can be alleviated by better models, more accurate measure

Categories

ALEATORIC UNCERTAINTY • aka statistical uncertainty • unknowns that differ on each run

• i.e. throwing dice

Irreducible: cannot removed/suppressed through improvements in models or measurements

Categories

Intention of uncertainty quantification reduce epistemic uncertainties to aleatoric relatively straightforward quantification

generally how we think of uncertainty in vis

Statistical Uncertainties

Representations for visualization

Representations

RANGE • outcome known to lie within some interval

> Interval Arithmetic set bound on errors define operations on intervals

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs)

• approximate outcome through a probability function

Probability Density

continuous random variables repetition of outcome values

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) • approximate outcome through a probability function

> Categorical Distribution discrete random variables finite set of values

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) measures on PDFs MEAN expected value, arithmetic mean

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) measures on PDFs

> Standard Deviation spread of values

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) measures on PDFs

MODE most frequently occurring value

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) measures on PDFs

 TAIL

 region of least frequently occurring values

Representations

PROBABILITY DISTRIBUTION FUNCTIONS (PDFs) measures on PDFs

SUPPORT interval where value probability is not zero

Ensembles

 $Multi\text{-}Run \ Simulations$

- explore space of parameters
- mitigate model error
- cover range of initial conditions / outcomes
- combine multiple models

Ensembles

Collection of Datasets

Data

- members, realizations
- full simulation run for each parameter set/input condition

Ensembles

- dimensional
- variate

simulate over many variables

many vales for each variable/location

spatial domain & time

Two Datasets

Electrical Conductivity of the Heart

Electrocardiogram

Simulate how signals from the heart propagate across the torso
Distinguish normal changes (breathing, movement) from abnormal heart function

Potentials Data

•Study the impact of variation on input conductivity

•Vary lung conductivity uniformly +/-50% from the reference

•10,000 realizations, estimate a PDF

Weather Forecasting

Short-Range Ensemble Forecasts (SREF)

NOAA / NCEP

- Domain across North America
- Forecast weather variables out to ~3.5 days

GOAL

• Public notification, warnings, aviation

Graphical Data Analysis

Traditional Display of Uncertainty

Error bars

- convey accuracy by amount of +/- error
- std dev or std error

Bounded Uncertainty

numeric interval guaranteed to contain data value
no assumptions about the pdf within the interval

Visualizing Data with Bounded Uncertainty. C. Olston, J.D. Mackinlay. InfoVis, 2002.

Traditional Display of Uncertainty

Boxplots

quartile range including median,outliers
assume Gaussian

Boxplot Modifications

VISUAL MODIFICATIONS refinement for aesthetic purposes

Charting Statistics. Mary Eleanor Spear. McGraw-Hill, 1952

Boxplot Modifications

VISUAL MODIFICATIONS refinement for aesthetic purposes

Exploratory Data Analysis. John W.Tukey. Addison-Wesley, 1977

Boxplot Modifications

VISUAL MODIFICATIONS refinement for aesthetic purposes

Boxplot Modifications

DENSITY MODIFICATIONS add indication of value prevalence

Opening the Box of a Boxplot. Y. Benjamini.The American Statistician, 42(4), 1988.

The Visual Display of Quantitative Information. Edward Tufte. Graphics Press, 1983.

Boxplot Modifications

DENSITY MODIFICATIONS add indication of value prevalence

The Box-Percentile Plot. W. Esty, J. Banfield. Journal of Statistics Software, 8(17), 2003.

Boxplot Modifications

DENSITY MODIFICATIONS add indication of value prevalence

Violin Plots. J. Hintze, R. Nelson, The American Statistician, 52(2), 19

Boxplot Modifications

Data Characteristics sample size, confidence levels

Variations of Box Plots. R. McGill, J.W.Tukey, W.A Larsen. The American Statistician, 32(1), 1978

Boxplot Modifications

Additional Statistics • moments, modality

Can the Box Plot Be Improved? C. Choonpradub, D. McNeil. Songklanakarin J Sci Technol, 27(3), 2005,

Boxplot Modifications

SUMMARY PLOT combine 4 plots into one augment with more descriptive statistics indicate quantity & location of uncertainty

2D Box Plots

Scatterplots •2D position of samples RangeFinder Plot • I D boxplot per axis Two-Dimensional Boxplot •Robust line partition Bagplot •Halfspace depth (spatial quartiles)

Functional Box Plot Surface Box Plots Box Plot percentiles on 2D functions • compute the amount of time a function lies within the full set of functions Extension to 3D • band-depth used to order data

- highest band-depth is median
- indicate envelopes for central region,
- maximum, non-outlying region

Ying Sun, Marc G. Genton. Functional Boxplots. Journal of Computational and Graphical Statistics 20:2, 316-334.

5 C

• volume-based band-depth

14

24

Visualization

47

Challenges

Increased complexity

- Visual clutter
- Data concealment
- Confusion

Information-Seeking Mantra

"Overview first, then zoom and filter, and finally, details on demand."

-Ben Shneiderman

Overview ----> Summary ----> Details

Overview vs Summary

Overview

- Show all data at once through many charts
- Manual search for patterns
- Finite screen resolution

:	a com	6	 ~	a Critic	0
		//=	-24		//=
		∬ ⇒			∬⇒
		<u>J</u> =	7		<u>J</u>
		∬⇒	-	in in its	//⇒
		∬ ⇒	-		∬⇒
		N=	7		Ø.,

Overview vs Summary

Summary

- Aggregate data along some dimension
- Automation through statistics/machine learning
- Have an idea of the questions

Aggregation for Visualization

REDUCE DATA USING SUMMARIES • mimic human visual system • done implicitly

> phenomena modeling floating pt quantization limited # of pixels

Aggregation for Visualization

BUT How?

- In what dimension do we summarize?
- Is mean/standard deviation appropriate?
- Do we need multiple summarizations?

Global Summaries

Questions:

What is the average model temperature at a given time step?Where do the models vary?

Global Summaries

- Aggregate over models at each grid point
- Colormap & contour
- Show one timestep

Time Summary

Questions:

How does the temperature change across time? What time step am I most interested in?

Time Summary

Small multiples of overview summary (low resolution)
User interaction to scroll through time

• Select step of interest, reflect to overview

Contour Summaries

Questions:

- Where does a particular value exist for each model?
- Where does that value move across time?

Contour Summaries

Isocontour of value across
spatial domain for each
model

 Model bundle shows variation, <u>outliers, divergence</u>

Spatial Summaries

Questions:

What is the trend of the models over a region?What is the average trend?

Spatial Summaries

Query Summaries

Questions:

- Where does the data express particular characteristics?
- What fraction of the data expresses it?

• SQL type queries to filter the data

• average per model

• overall average/ boxplot

• Contours of ensemble fraction that predicts the

Using the 3rd Dimension

Summarizing reduces to 2D use the free 3rd dimension for encoding

Displacement Mapping

Change on Z axis

- height encodes mean
- color encodes standard deviation

Towards the Visualization of Multi-Dimensional Stochastic Distribution Data

Layering

Four Statistics

- (top) deform by standard deviation
- color by interquartile range
- bar glyphs equal difference between mean/median

Visualizing Spatially Varying Distribution Data David Kao and Alison Luo and Jennifer L. Dungan and Alex Pang. Information Visualisation, pp. 219--225, 2002.

Cutting Planes

SLICE SPACE INTERACTIVELY

- mean plane as summary
- reduce space by choosing cross-sections via probe
- project onto back walls to see PDFs for points under lines

Visualizing Spatially Varying Distribution Data David Kao and Alison Luo and Jennifer L. Dungan and Alex Pang. Information Visualisation, pp. 219--225, 2002.

Local Surface Graphs

DISPLACE BY DENSITY

- \cdot height + color easier to see
- combine with cutting planes

Visualizing Spatially Varying Distribution Data David Kao and Alison Luo and Jennifer L. Dungan and Alex Pang. Information Visualisation, pp. 219--225, 2002.

olume

Direct Volume Rendering

- z-axis represents input value (low to high)
 stack realizations/slices
- 2D slices occlude each other
- not clear how to use transparency
- overall not effective

Isosurfaces

Based on Density Estimate • show structure of distribution • global attributes

curves in isosurface indicate dependence on input

Streamlines

- Gradient field of the output potentials
- Further investigate the changes in potentials
- Streamlines follow the change in potential
- Horizontal streams show
- independence
- Length indicates strength of change

Particle Tracing

- Seeded particles follow gradient
- Similar to streamlines
- Faster speed indicates greater dependence
- Arrow glyphs better for images, 2D presentation

Are we asking the right questions?

Torso Data

- •What is the average potential across the domain?
- What is the variation of potential across the domain?

Global Summary

mean/standard deviationshow each separately

But is it meaningful?

• know pdf of parameter input is roughly uniform

• are mean & standard deviation appropriate statistics?

• can we look at the data without individually inspecting each grid point?

Torso Data

New Questions

- what do the PDFs look like across the domain
- where are the PDFs similar or different?

ProbVis

VISUALIZATION & EXPLORATION FOR DISTRIBUTIONS

- show differences between PDFS
- summarize all data in a single view

Method

Comparison Between Two PDFS

- compare all data points to a single PDF
- get a single metric for each data point
 compare each pts metric

Method

DEFINE A DIFFERENCE MEASURE • shape: L1 Norm or Hellinger Distance

DEFINE A DIFFERENCE MEASURE • interval: (range of sample values)

Method

LIBRARY OF CANONICAL DISTRIBUTIONS

	Uniform		CHAN	3E/MODIFY
5.811	5.	982	6.153	
	Gaussian		CHAN	GE/MODIFY
	_			
5.811		6.0	14	6.153
	B	Beta	CHAN	GEMODIFY
	_	_		_
5.811		6.0	14	6.153

Visualization

Colormap distance measure

Visualization

Colormap distance measure

Interactivity

Summary

Aggregation takes place everywhere

• required for visualization

• controllable for certain questions

Future Directions

More work is needed!

- increase our vocabulary of uncertainty measures
- further the visual metaphors used for uncertaint
- interaction will be required for most applications

QUESTIONS • KAUST No. KUS-C1-016-04 • DOE NETL DE-EE0004449

Uncertainty ace it kid, Not even Mr. Owl knows how many licks it tak