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Outline 

1.  Quantitative Representations of Uncertainty 

  partially abstract, top-down 
   mainly based on:  Zhenyuan Wang, George J. Klir 

     Generalized Measure Theory, Springer 2009 

2.  Probabilistic Modeling of Uncertain Fields 

  mostly concrete, bottom-up 
   mainly based on:  recent work at ZIB with 

     Kai Pöthkow, Christoph Petz, Britta Weber 

    



Part 1: Quantitative Representations of Uncertainty 

Why bother at all ? 

•  Consideration and quantification of uncertainties 
is of great importance in many practical applications 

•  Vis & VA: part of the data analysis chain + support decision taking. 
•  Thus we need to understand the data – including their 

 shortcomings, 
 value, 
 relevance, 

which largely depend on presence/absence of uncertainties. 

 We need to 
•  understand quantified uncertainty and deal with it 
•  perform uncertainty quantification by ourselves 



What is Uncertainty ? 

    uncertainty  lack of information 

•  Uncertainty due to randomness    aleatoric uncertainty 
•  Results by chance 
•  Lack of information is objective 
•  Example: daily quantity of rain in Seattle 

•  Uncertainty due to lack of knowledge    epistemic uncertainty 
•  In principle we could know, but in practice we don’t know 
•  Lack of knowledge is subjective 
•  Example: birth date of last Chinese Emperor 

Uncertain Propositions - Examples 

•  “The value of x is between 0.1 and 0.3” 

•  “The value of x is normally distributed  
with zero mean and standard deviation 5.0” 

•  “The value of x is normally distributed” 

•  “Bob is middle-aged “                            ??? 

0.1          0.3 

0.0      0.2 0.0      0.2 0          8 



Insertion: Fuzzy Sets 

•  Let     be a nonempty set   (    = the “universe” of discourse) 
 Fuzzy set in     characterized by membership function 

•  Example:   fuzzy set  

•  Example:   (crisp) set 
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Example: Modelling of Imprecise Age Statements 
•  Measure in years; age interval of human beings: 
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Example: Modelling of Imprecise Age Statements 
•  Age interval of human beings: 
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 1 
neither young 
nor old 
(middle-aged) 

Puzzles and Problems 

Paradoxon of total ignorance 
Is there life beyond Earth ? 

Case 1: beyond Earth:  life    no life 
Ignorant’s response:   ½    ½ 

Case 2:     animal life   plant life   no life 
Ignorant’s response:   1/3    1/3    1/3 

Answers inconsistent:   from case 2:  P(life) = 2/3 > 1/2 = P(no life) 
      from case 1:  P(animal life) = 1/4 < 1/3 = P(no life) 

 Uniform probabilities on distinct representations of the state space are inconsistent. 
 A probability distribution cannot model ignorance (maximal incompleteness).  



Puzzles and Problems 

Imprecise measurement with digital outcome : 

•  Observations at the boundaries of the intervals 
are unreliable 

 they should be properly discounted 

•  Taking measurements for union of the 2 events 
 one of the discount rate peaks is not applicable 
 same observations produce more evidence for 
 single event           then for 2 disjoint events    ,  
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non-additive ! 

Mathematical Modelling of Uncertainty 

•  A variety of types of uncertainty occur in practice, including mixtures. 

•  Quantification of uncertainties, including mixtures, 
requires a unifying mathematical framework. 

•  Establishing such a mathematical framework is *difficult* ! 
(it already required centuries …) 

•  Development of such a theory is not yet fully accomplished, 
but silhouettes start to become visible ! 



What I will outline here 

•  What is the overall picture ? 
•  What are the major types of modeling ? 
•  What is the general mathematical framework behind ? 
•  Where can I find further information ? 

And what not: 

•  Any technical details about the theories  
•  Illustrating examples 

Fundamental Setting 

•      : set of all elementary events (= the “universe”) 

•  Situation with possible outcomes or occurrences of “events” 

•  Events                    are subsets of     , i.e. elements of power set of  

  Tasks: 
          Measure  the 

      evidence   that event      happened 
          degree of truth  of the statement  “event     happened” 
          probability  that event      will happen 

    
    

     

    ,                                     



Measures in Mathematics 

to measure = to assign real numbers to sets 

•  Classical task in metric geometry:  assign numbers to geometric objects 
       for lengths, areas, or volumes 
        

•  Requirement:      assigned numbers should be invariant 
        under displacement of respective objects 

•  In ancient times:  to measure = to compare with a standard unit 

Measure in Mathematics 

•  Soon: problem of incommensurables 

   Measurement is more complicated than initially thought. 
   It involves infinite processes and sets. 

•  1854:  First tool to deal with the problem: Riemann integral 
      Enables to compute 

  lengths, areas, volumes for complex shapes 
  (as well as other measures). 
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Hippasos (~500 BC) 
Plato (~400 BC) 

Riemann (1826-66) 



Measures in Mathematics 

•  ~ 1870s and 80s: Riemann integral has a number of deficiencies 

•  Applicable only to functions with finite number of discontinuities 

•  Fundamental operations of differentiation and integration are  
in general not reversible in the context of Riemann theory 

•  Limit processes can in general not be interchanged: 

              and              may differ.                

Measures in Mathematics 

•  1898: Émile Borel developed classical measure theory 

•  Defined σ-algebra   =  class of sets that is closed under  
    set union of countably many sets 
    and set complement  

•  Defined measure     that associates a number            
with each bounded subset in the σ-algebra 

•  The measure is additive:   

Borel (1871-1956) 

                  



Measures in Mathematics 

•  1899-1902: Henry Lebesgue defined integral 
•  Based on a measure that subsumes the Borel measure 

as a special case 
•  Connected measures of sets and measures of functions 

•  1933: Andrey Nikolaevich Kolmogorov developed 
the concept of probability measure 
•  Used classical measure 
•  Added: measure 1 is assigned to the universal set 

 Classical Probability Theory 

Lebesgue (1875-1941) 

Kolmogorov (1903-87) 

Measures in Mathematics 

•  About 50 years later: additivity requirement became a subject of controversy 
•  Too restrictive to capture e.g. the full scope of measurement: 

•  Works well under idealized error-free measurements 
•  Not adequate when measurement errors are unavoidable 

•  The two basic types of uncertainties in relation to experiments: 
•  Aleatoric:   results differ each time she/he runs an experiment 

   phenomenon is truly random; results „depend“ on chance 
      probabilistic modeling 

•  Epistemic:  in principle we could know the exact results, 
   but we don’t know in practice; 
   due to errors that practically cannot controlled; 
     non-probabilistic modeling 



Measures in Mathematics 

1954 Gustave Choquet developed a (potentially infinite) family 
of non-additive measures (“capacities”) 

•  For each given capacity there exists a dual “alternating capacity” 

•  Integral based on these measures (Choquet integral) 
•  non-additive 
•  can be computed using Riemann or Lebesgue integration 
•  applied specifically to membership functions and capacities 

Choquet (1915-2006) 

Dempster-Shafer Theory 

Motivation:  precision required in classical probability 
   not realistic in many applications  

1967 Arthur P. Dempster introduced imprecise probabilities 

•  Dealt with convex sets of probability measures rather than single measures 

•  For each given convex set of probability measures he introduced 
•  2 types of non-additive measures:  lower   &  upper probabilities 

       super-  &  supra-additive 

Allows to represent probabilities imprecisely by intervals of real numbers. 

Dempster (~1930 - ) 



Dempster-Shafer Theory 

1976 Glenn Shafer 
 analyzed special types  of  lower & upper probabilities 
 called them     belief & plausibility measures 

•  Theory based on these measures  =  Dempster-Shafer theory (DST) 
        or evidence theory 

•  DST is capable of dealing with interval-based probabilities: 
[belief measure, plausibility measure]   =   ranges of admissible probabilities   

•  Turns out:  belief measures   =   Choquet capacities of order 
   plausibility measures  =   alternating capacities of order 

Shafer (~1946 − ) 

Measures in Mathematics 

1978 Michio Sugeno tried to compare 
•  membership functions of fuzzy sets 
•  with probabilities 

not directly possible 

•  Generalization of additive measure analogous to generalization 
   crisp sets        fuzzy sets 

   additive measure   fuzzy measure   (non-additive) 
        monotone measure   

•  Introduced also Sugeno integral with respect to a monotone measure 

Sugeno (1940 - ) 



Measures in Mathematics 

1978 Lotfi Zadeh defined: 

„Possibility function“  associated with each fuzzy set 
    (numerically: membership function) 

„Possibility measure“  supremum of the possibility function 
    in each set of concern (both for crisp and fuzzy sets) 

•  One of several interpretations of the “theory of graded possibilities” 

•  Connection to DST: 
  plausibility measures  = possibility measures (consonant plausibility measures) 
 belief measures      = necessity measures (consonant belief measures) 

Zadeh (1921- ) 

Classes of Uncertainty Theories 

Using additive measures 
•                                                   expresses no interaction between events 

classical probability  +  measure theory 

Using non-additive measures 
•                                                  expresses positive interaction between events 

  synergy, cooperation, coalition, enhancement, amplification 

•                                                  expresses negative interaction between events 
  incompatibility, rivalry, inhibition, downgrading, condensation 

  (many) uncertainty theories  +  generalized measure theory 

         



Most Utilized Uncertainty Theories  +  Further Reading 

1.  Classical Probability Theory 
2.  Dempster-Shafer Theory 

   Simona Salicone: 
  “Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence”, 

   Springer, 2007 
   Jürg Kohlas, Paul-Andre Monney: 
   “A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence“  
   Springer, 1995 

3.  Possibility Theory 
   Didier Dubois and Henri Prade: 

  "Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification“, 
  Annals of Mathematics and Artificial Intelligence 32:35-66, 2001 

   Gerla Giangiacomo: 
  “Fuzzy logic: Mathematical Tools for Approximate Reasoning“, 
  Kluwer Academic Publishers, Dordrecht 2001 

Slides:   http://www.cg.tuwien.ac.at/research/publications/2012/VisWeek-Tutorial-2012-Uncertainty 
Short link:  http://bit.ly/QmQfqv 

Thank you very much for your attention ! 

www.zib.de/visual 
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Part 2:  Probabilistic Modeling of Uncertain Fields 
 Sources:  

 Probabilistic marching cubes. 
Kai Pöthkow, Britta Weber, HCH 
 Comput. Graph. Forum 30:3, 2011 pp. 931-940.

Probabilistic local features in uncertain vector fields with spatial correlation
Christoph Petz, Kai Pöthkow, HCH
Computer Graphics Forum 31:3, 2012, pp. 1325-1334.

Approximate level-crossing probabilities for interactive visualization of uncertain isocontours.
Kai Pöthkow, Christoph Petz, HCH
Int. J. Uncertainty Quantification (2012; forthcoming)

Slides:   http://www.cg.tuwien.ac.at/research/publications/2012/VisWeek-Tutorial-2012-Uncertainty 
Short link:  http://bit.ly/QmQfqv 

Model as discrete random field

For simplicity: use Gaussian random variables

Each field configuration: conceived as a realization of a multivariate Gaussian RV

Uncertain Scalar Field 



Discrete random field  = multivariate Gaussian RV�

Gaussian Random Field 

Gaussian Random Field 

Compute probability of locally defined events, e.g.�

 Sum over all configurations that respect to predicate in the argument of  �

 Majority of variables are “integrated out” (marginalized)�

 Then only a few local integrations remain�



Marginalization:�

where      is the reduced random vector and           and    
are the quantities                                                     and

with               columns/rows deleted corresponding
to the marginalized variables  �

Gaussian Random Field 

             
       

           

Gaussian Random Field 
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Constrain               RV        to subsets      .�

Re-order RV such that constrained ones are the first       ones.�

Probability of constrained realization:�

For Gaussian distribution:�

Probabilities of Classes of Realizations 
                  

    

For any realization (= grid function   ) assume
an       interpolant taking its extreme values

at the sample points.

Consider a particular grid cell     with

vertex indices          .�

Cell     crosses    -level of          iff not all�

differences                       have the same sign.�

Level crossing probability                               : �

Integrate              over sets                              and�

Level Crossing Probabilities 

      

    

           

  

                            

                                                            

                                      

  



Level Crossing Probabilities on Edges 

Edge with bivariate Gaussian RV  �

Level Crossing Probabilities on Faces 

4 Cases�
(after Symmetry �

Reduction)         

Corresponding 

Integrals�



Types of integrals �    symmetry-reduced Marching cubes cases.�

In 2D: 4 distinct cases (1 non-crossing, 3 crossing) �

In 3D: 15 distinct cases (1 non-crossing, 14 crossing)�

In 4D: 223 distinct cases (1 non-crossing, 222 crossing)�

In nD: use Polyaʼs counting theory�

Level Crossing Probabilities on Rectangular Cells, … 

# of cases (i.e. integrals) with level crossings grows with dimension … 

Better exploit�

� � � � � �only 2 cases without level crossings�
� � � �         � �  for all dimensions only 2 integrals!�

e.g. for square cells in 2D:

But dimension of integrals still  =  # vertices of geometric object !�

Level Crossing Probabilities – Simplified 



Algorithm & Implementation 

  Preprocessing 

  Estimate       for all sample points 
  Estimate              for all 2- or 3-cells 

  For a given iso-value 

  Estimate crossing probabilities using 
Monte Carlo integration 

Level Crossing Probabilities on Faces 











Algorithm & Implementation 

Impact of Spatial Correlations  

   ϱ=0.65     ϱ=0.95 

   ϱ=0.00 
synthetic data 



Climate Simulation 

Data courtesy of 

Isotherm of Climate Simulation 

spatial

correlations

considered

not considered



Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 

Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 



Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 

Application Example: Isotherm of Climate Simulation 

spatial correlations not considered 



Application Example: Isotherm of Climate Simulation 

spatial correlations considered 

Local Features in Uncertain Vector Fields 

�Probabilistic local features in uncertain vector fields with spatial correlation

Christoph Petz, Kai Pöthkow, HCH

Computer Graphics Forum 31:3, 2012, pp. 1325-1334�



Previous Work 

Wittenbrink, Pang & Lodha
Glyphs for visualizing uncertainty in vector fields

TVCG, 1996�

Friman, Hennemuth, Harloff, Bock, Markl & Peitgen,
Probabilistic 4D blood flow tracking and uncertainty estimation, 

Medical Image Analysis, 2011 

Otto, Germer, Hege & Theisel
Uncertain 2D Vector Field Topology,

Eurographics 2010  �

Discretized Vector Fields 

crisp vector field� uncertain vector field�



•  Define a model to represent uncertain 
vector fields considering spatial correlation 

•  Establish a framework for local probabilistic feature extraction 
from vector fields 

•  Estimate probabilities for the existence of 
critical points and vortex cores 

Tasks 

•  Again modeled as discrete random field 

•  For simplicity:  Normal distributions 

Uncertain Vector Fields 

# of sample 
points�

dimension of 
vectors�



Local features can be identified 

•  at each cell (and its neighborhood) 

•  using local marginal distributions 

•  Feasible for Gaussian fields only  

Marginalization 

Feature indicator 

Feature probability 

where  

Probabilistic Feature Extraction 



Compute Poincaré-index (winding number) 

where  

Critical Points in 2D 

Critical Point Classification 



•  For linear tetrahedral elements:  12-dimensional random vectors 
        have to be considered 

•  Compute the Poincaré-index using solid angles 

Critical Points in 3D 

•  Indicator for vortices 

(Sujudi-Haimes criterion) 

•  Jacobian J has 2 

complex eigenvalues 

•  Real eigenvector is 

parallel to the vector field 

•  J is piecewise constant → vortex cores are locally straight lines 

•  Compute probability for the existence of a vortex core 

Vortex Cores 



•  Arithmetic mean 

•  Empirical covariance matrix 

1st Computational Step: Empirical Parameter Estimation 

•  Compute locally correlated 

realizations 

•  Estimate feature 

probability using the 

ratio of occurrences 

2nd Computational Step: Monte-Carlo Integration 



WSS = vector field on surface 

•  Intensity encodes probabilities 
•  Color encodes type of CP: sinks in violet, sources in green 
•  and saddles in blue. Intensities are scaled by the probabilities. 

Critical-Point Probabilities in Wall-Shear-Stress Fields 

all critical points of 9 
ensemble members  

probabilities considering 
spatial correlations  

probabilities with correlations 
of vector components only  

Flow features over 
a full heart cycle in 
a cerebral aneurysm: 

Visualized by nested 
semi-transparent 
isosurfaces. 

Streamlines of the 
mean vector field 
provide context. 

Probabilities of CP and Swirling Motion Cores 

Critical point probabilities with 
Poincaré index > 0 (blue) 

Probabilities for swirling 
motion cores. 



Research Questions in Uncertainty Vis 

Uncertainty representations�

•  Intervals � � � �    interval computing�

•  Probabilities, PDFs �� �  probability theory, statistics�

•  Fuzzy sets � � �  soft computing�

•  Dempster-Shafer model ��  evidence theory�

•  Possibility model � �  possibility theory�

We Need to Understand … 



Reasoning under uncertainty + decision support 

•  Formal reasoning � � �  statistical inference 
          uncertainty in AI 

•  Defuzzification, decision taking �  risk & decision theory�

We Need to Understand … 

•  UQ in the visualization pipeline �

•  Fuzzy analogues of crisp features, UQ for features�

•  Visual mapping of uncertain / fuzzy data�

•  Evaluation of uncertainty representations, perceptual / cognitive efficiency�

•  Visual support for data processing techniques:
� �        data aggregation, ensemble analysis, …�

•  Visual support for de-fuzzification�

•  Visual support in decision making�

To be Developed in Visualization 
You (1986- ) 

Insert 
your 
photo 
here 



•  Uncertain iso-surfaces, critical points and vortex cores 

•  reveals information not visible before 

•  We (still) rely on assumption of normal distribution 

•  arbitrary number of realizations possible 

•  more details than with limited number of realizations 

•  Most important research questions 

•  visual mapping 

•  non-Gaussian random fields 

•  Future of Uncertainty Vis 

Conclusion 

Thank you very much for your attention ! 

www.zib.de/visual 
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