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1. Quantitative Representations of Uncertainty

partially abstract, top-down

mainly based on:  Zhenyuan Wang, George J. Klir
Generalized Measure Theory, Springer 2009

2. Probabilistic Modeling of Uncertain Fields

mostly concrete, bottom-up

mainly based on:  recent work at ZIB with
Kai Pothkow, Christoph Petz, Britta Weber




Part 1. Quantitative Representations of Uncertainty

Why bother at all ?

» Consideration and quantification of uncertainties
is of great importance in many practical applications

* Vis & VA: part of the data analysis chain + support decision taking.

* Thus we need to understand the data — including their
shortcomings,
value,
relevance,
which largely depend on presence/absence of uncertainties.

= We need to
e understand quantified uncertainty and deal with it
e perform uncertainty quantification by ourselves




What is Uncertainty ?

uncertainty < lack of information

* Uncertainty due to randomness aleatoric uncertainty
¢ Results by chance
e Lack of information is objective
e Example: daily quantity of rain in Seattle

» Uncertainty due to lack of knowledge epistemic uncertainty
e In principle we could know, but in practice we don’t know
e Lack of knowledge is subjective
e Example: birth date of last Chinese Emperor

Uncertain Propositions - Examples

« “The value of x is between 0.1 and 0.3” p(z)
0.1 0.3 xr
« “The value of x is normally distributed p(z)
with zero mean and standard deviation 5.0”
/\ T
0 8
e “The value of x is normally distributed” p(z)

* “Bobis middle-aged” ?2?7?




Insertion: Fuzzy Sets

* Let X be a nonempty set

(X = the “universe” of discourse)

Fuzzy set in X characterized by membership function m : X — [0, 1]
m
« Example: fuzzy set X=[-3,3]CR 1
m(x) = gt
ul
L 1
-3 3
 Example: (crisp)set X =[-3,3] CR 1 m
m(x) =1
-3 3

Example: Modelling of Imprecise Age Statements

« Measure in years; age interval of human beings: X = [0,100] C N

L m
1 14
1 ifx <25
young m(z) =482 if25<z<40 old
0 if 2 > 40
0 T T T T T T T T 3: 0 T T T T T T
0 50 100 0 50 100
ML m
1 1
not 0 if v <25 not
young m(x) = % if 25 <o <40 old
1 if x > 40
0 T T T T T 3: O T T T T T T
0 50 100 0 50 100




Example: Modelling of Imprecise Age Statements
* Age interval of human beings: X = [0,100] C N

1. 0 if z <25
neither young =2 jf25 <z <40
nor old ‘.'?.'.(:L') =41 if > 40
(middle-aged) ‘5 if50 <a <65

0 if 2 > 65

O T T T T T T T T T

0 50 100
Puzzles and Problems
Paradoxon of total ignorance
Is there life beyond Earth ?
Case 1: beyond Earth: life no life
Ignorant’s response: Yo Yo
Case 2: animal life plant life no life
Ignorant’s response: 1/3 1/3 1/3
Answers inconsistent: from case 2: P(life) = 2/3 > 1/2 = P(no life)

from case 1. P(animal life) = 1/4 < 1/3 = P(no life)

=>» Uniform probabilities on distinct representations of the state space are inconsistent.
=>» A probability distribution cannot model ignorance (maximal incompleteness).




Puzzles and Problems

Imprecise measurement with digital outcome : —F—3
0 1
: . : discount rate
* Observations at the boundaries of the intervals function
are unreliable
= they should be properly discounted Y
\ N 1
01
» Taking measurements for union of the 2 events
=2 one of the discount rate peaks is not applicable
2 same observations produce more evidence for
single event 0 U 1 then for 2 disjoint events 0, 1 Ay )
01

> prob(0U 1) > prob(0) 4+ prob(1)  non-additive !

Mathematical Modelling of Uncertainty

* A variety of types of uncertainty occur in practice, including mixtures.

* Quantification of uncertainties, including mixtures,
requires a unifying mathematical framework.

» Establishing such a mathematical framework is *difficult* !
(it already required centuries ...)

* Development of such a theory is not yet fully accomplished,
but silhouettes start to become visible !




What | will outline here

* What is the overall picture ?

* What are the major types of modeling ?

* What is the general mathematical framework behind ?
* Where can | find further information ?

And what not:

e Any technical details about the theories
* lllustrating examples

Fundamental Setting

« X : set of all elementary events (= the “universe”)
+ Situation with possible outcomes or occurrences of “events” A, B, C, ...

« EventsA, B, C, ... are subsets of X, i.e. elements of power set of X

> Tasks:

Measure the
evidence that event A happened

degree of truth of the statement “event A happened”
probability that event A will happen




Measures in Mathematics

to measure = to assign real numbers to sets

» Classical task in metric geometry:  assign numbers to geometric objects
for lengths, areas, or volumes

* Requirement: assigned numbers should be invariant
under displacement of respective objects

* Inancienttimes: to measure =to compare with a standard unit

Measure in Mathematics

* Soon: problem of incommensurables

Hippasos (~500 BC)
? Plato (~400 BC)
1 ? 3 4
. 1415926535m...._.. :. : "
j W'

1

> Measurement is more complicated than initially thought.
It involves infinite processes and sets.

« 1854: First tool to deal with the problem: Riemann integral Riemann (1826-66)
> Enables to compute

lengths, areas, volumes for complex shapes
(as well as other measures).




Measures in Mathematics

* ~1870s and 80s: Riemann integral has a number of deficiencies

e Applicable only to functions with finite number of discontinuities

e Fundamental operations of differentiation and integration are
in general not reversible in the context of Riemann theory

e Limit processes can in general not be interchanged:

b b
/ lim f,(z)dz and lim f fu(z)dz may differ.
a n—roo a

L—+00

Measures in Mathematics

« 1898: Emile Borel developed classical measure theory
Borel (1871-1956)

set union of countably many sets

and set complement ’

« Defined measure p that associates a number € R
with each bounded subset in the o-algebra

—
* Defined o-algebra = class of sets that is closed under #

¢ The measure is additive:

wA+B)=pu(A)+u(B) fANB=(




Measures in Mathematics

« 1899-1902: Henry Lebesgue defined integral Lebesgue (1875-1941)

+ Based on a measure that subsumes the Borel measure
as a special case

* Connected measures of sets and measures of functions

e 1933: Andrey Nikolaevich Kolmogorov developed
the concept of probability measure

e Used classical measure
e Added: measure 1 is assigned to the universal set

= Classical Probability Theory

Measures in Mathematics

* About 50 years later: additivity requirement became a subject of controversy
e Too restrictive to capture e.g. the full scope of measurement:
Works well under idealized error-free measurements
Not adequate when measurement errors are unavoidable

» The two basic types of uncertainties in relation to experiments: 0

e Aleatoric: results differ each time she/he runs an experiment 0
phenomenon is truly random; results ,,depend” on chance
= probabilistic modeling

e Epistemic: in principle we could know the exact results,
but we don’t know in practice;
due to errors that practically cannot controlled;
= non-probabilistic modeling




Measures in Mathematics
Choquet (1915-2006)

1954 Gustave Choquet developed a (potentially infinite) family
of non-additive measures (“capacities”)

* For each given capacity there exists a dual “alternating capacity”

* Integral based on these measures (Choquet integral)
* non-additive
* can be computed using Riemann or Lebesgue integration
« applied specifically to membership functions and capacities

Dempster-Shafer Theory

Dempster (~1930 -)

Motivation: precision required in classical probability
not realistic in many applications

1967 Arthur P. Dempster introduced imprecise probabilities
» Dealt with convex sets of probability measures rather than single measures

» For each given convex set of probability measures he introduced

e 2 types of non-additive measures: lower & upper probabilities
super- & supra-additive

Allows to represent probabilities imprecisely by intervals of real numbers.




Dempster-Shafer Theory

Shafer (~1946 -)
1976 Glenn Shafer

analyzed special types of lower & upper probabilities
called them belief & plausibility measures

* Theory based on these measures = Dempster-Shafer theory (DST)
or evidence theory

« DST is capable of dealing with interval-based probabilities:
[belief measure, plausibility measure] = ranges of admissible probabilities

e Turns out: belief measures
plausibility measures

Choquet capacities of order oo
alternating capacities of order oo

Measures in Mathematics
Sugeno (1940 -)

1978 Michio Sugeno tried to compare
¢ membership functions of fuzzy sets
e with probabilities

not directly possible

* Generalization of additive measure analogous to generalization
crisp sets — fuzzy sets

additive measure @ — fuzzy measure (non-additive)
monotone measure

* Introduced also Sugeno integral with respect to a monotone measure




Measures in Mathematics
Zadeh (1921-)

1978 Lotfi Zadeh defined:

~Possibility function® associated with each fuzzy set
(numerically: membership function)

»Possibility measure” supremum of the possibility function
in each set of concern (both for crisp and fuzzy sets)

* One of several interpretations of the “theory of graded possibilities”

* Connection to DST:

plausibility measures = possibility measures (consonant plausibility measures)
belief measures = necessity measures (consonant belief measures)

Classes of Uncertainty Theories

Using additive measures
« w(AUB) = u(A)+ n(B) expresses no interaction between events

> classical probability + measure theory

Using non-additive measures

. w(AUB ) > u(A) + N(B ) expresses positive interaction between events
2 synergy, cooperation, coalition, enhancement, amplification

. W(AUB) < pu(A)+ u(B) expresses negative interaction between events
= incompatibility, rivalry, inhibition, downgrading, condensation

> (many) uncertainty theories + generalized measure theory




Most Utilized Uncertainty Theories + Further Reading

1. Classical Probability Theory

2. Dempster-Shafer Theory
Simona Salicone:
“Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence”,
Springer, 2007
Jurg Kohlas, Paul-Andre Monney:
“A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence*
Springer, 1995

3. Possibility Theory

Didier Dubois and Henri Prade:

"Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification®,
Annals of Mathematics and Atrtificial Intelligence 32:35-66, 2001

Gerla Giangiacomo:

“Fuzzy logic: Mathematical Tools for Approximate Reasoning*,

Kluwer Academic Publishers, Dordrecht 2001
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Part 2. Probabilistic Modeling of Uncertain Fields
Sources:

Probabilistic marching cubes.
Kai Pothkow, Britta Weber, HCH
Comput. Graph. Forum 30:3, 2011 pp. 931-940.

Probabilistic local features in uncertain vector fields with spatial correlation
Christoph Petz, Kai Péthkow, HCH
Computer Graphics Forum 31:3, 2012, pp. 1325-1334.

Approximate level-crossing probabilities for interactive visualization of uncertain isocontours.
Kai Péthkow, Christoph Petz, HCH
Int. J. Uncertainty Quantification (2012; forthcoming)

Uncertain Scalar Field

Model as discrete random field

For simplicity: use Gaussian random variables

. G- s : —A— — AR
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Each field configuration: conceived as a realization of a multivariate Gaussian RV




Gaussian Random Field

Discrete random field = multivariate Gaussian RV

Y ~ Na(y, ) n=EY1),E(Y2),...,E(Y})]

Y= [COV(Y%\ Yj)]i=1,2‘..‘,n;j=1,2,...,n-

1
(27)7/2 det(3)1/2

Y= exp (—%(y —p)TE Ny - #))

Gaussian Random Field

Compute probability of locally defined events, e.g. i BT SUTIER BRI SR ] = - -
prob(xy € [ay1,b1] and x5 € [ag, b))

L 2

=>» Majority of variables are “integrated out” (marginalized)

=» Then only a few local integrations remain




Gaussian Random Field

Marginalization:

/ dym+1---/ dyn

1

1

(27)™/2 det () 1/2

= fy(,.-

1ym)

(27)"/2 det(T)1/2

exp (-1 - BTSN - 7))

where Y is the reduced random vectorand ¥, 2 and ¥
y, p and 3

are the quantities
with n —m columns/rows deleted corresponding

to the marginalized variables Ym+1-.-Yn

exp (—%(y —p)TsHy - fu))

Gaussian Random Field

Complete
random
field

Local
marginal
distribution
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Probabilities of Classes of Realizations

Constrain m <n RV Y, to subsets ;.
Re-order RV such that constrained ones are the first m ones.

Probability of constrained realization:

Prob (Y1 € 51,...,Ym € S) =

/dyl ---fdymfdym+1 ---fdyn Fr(WryesosUn)
S, S R R

For Gaussian distribution:

/dyl... fdym Wi, Ym)
S: G

Level Crossing Probabilities

For any realization (= grid function g) assume
an CY interpolant taking its extreme values
at the sample points.

t

H,

Consider a particular grid cell ¢ with
vertex indices I € I .

0

Cell ¢ crosses ¥-level of gy, iff not all
X

differences (yi —¥);cj have the same sign.

Level crossing probability Prob,(d¥-crossing) :

Integrate {Y'},.; over sets {y; € R|y; > 9} and{y; € R|y; < d}




Edge with bivariate Gaussian RV Y = [Y}, Y2

Prob.(¥-crossing) =

yl A y2
;) = Prob(Y1 <v,Y> >¥) + Prob(Y; > 9,Y; <)
X = /dm/ dy fY('yhyz)—l—/dyl/ dya fv(y1,2)
X; l9 2 n<d  ya>d >0 ya<d
5()

4 Cases - Corresponding
(after Symmetry Integrals
Reduction)

Py = /d\l/du/d\x/du Fy(31,32,¥3,54)

SVAWNSVAYI>TA Y >

Pyo = /dn/d\o/d\;/du YO,y2,93,4)

ME<OARZOAY; >OA Y >

Q O
Py3 = [d\,/dw/d\;/du S O1sy2,y3,v4)
Q

(M <IAMK<IAY>FAY >T)

Py4 = /d\1/d\7/d\' /du fy(Y1,y2:3:)4)

(M <VAMR>VIAI<TAY>D)




Level Crossing Probabilities on Rectangular Cells,

Types of integrals £ symmetry-reduced Marching cubes cases.

In 2D: 4 distinct cases (1 non-crossing, 3 crossing)

LI

In 3D: 15 distinct cases (1 non-crossing, 14 crossing)

In 4D: 223 distinct cases (1 non-crossing, 222 crossing)

In nD: use Polya’s counting theory

Level Crossing Probabilities — Simplified
# of cases (i.e. integrals) with level crossings grows with dimension ...
Better exploit Probe(dJ-crossing) = 1 — Prob.(J-non-crossing)

only 2 cases without level crossings
=» for all dimensions only 2 integrals!

e.g. for square cells in 2D:
Prob.(¥-crossing) =

/d)’l/d)’Z/d)’3/dY4 Y O1,y2,¥3,v4)

y] <ﬁ/\y2<‘0/\y3 <19/\y4<19
Vi >OAy: >0 Ay >0 Ay, >0)

But dimension of integrals still = # vertices of geometric object !




« Preprocessing

. Estimate pg; for all sample points
. Estimate Cov;; forall 2- or 3-cells

. For agiveniso-value ¢

. Estimate crossing probabilities using
Monte Carlo integration
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Algorithm & Implementation

for each cell ¢ {

L¢ < CholeskyDecomposition(Z.)

#crossings <— 0

for 1...#samples {
y < random numbers yj ...y, ~ U(0,1)
y < BoxMullerTransform(y)
Yy Ley+pe
if(crossingg(y)) #crossings <— #crossings + 1

}

Prob. < #crossings /#samples

}

Impact of Spatial Correlations

synthetic data




Climate Simulation

Data courtesy of ECECMWF

Isotherm of Climate Simulation

spatial
correlations

considered

not considered




Fuel Injection Data Set + Artificial Noise: Uncertain Level Set

Fuel Injection Data Set + Artificial Noise: Uncertain Level Set




Fuel Injection Data Set + Artificial Noise: Uncertain Level Set

Application Example: Isotherm of Climate Simulation

spatial correlations not considered




Application Example: Isotherm of Climate Simulation

spatial correlations considered

Local Features in Uncertain Vector Fields

Probabilistic local features in uncertain vector fields with spatial correlation
Christoph Petz, Kai Péthkow, HCH
Computer Graphics Forum 31:3, 2012, pp. 1325-1334




Previous Work

Wittenbrink, Pang & Lodha
Glyphs for visualizing uncertainty in vector fields
TVCG, 1996

Friman, Hennemuth, Harloff, Bock, Markl & Peitgen,
Probabilistic 4D blood flow tracking and uncertainty estimation,

e

__ 71| | NN

Otto, Germer, Hege & Theisel
Uncertain 2D Vector Field Topology,

Medical Image Analysis, 2011 Eurographics 2010
Discretized Vector Fields
® [
— —
Yo fvﬂ'

crisp vector field

uncertain vector field




Tasks

» Define a model to represent uncertain
vector fields considering spatial correlation

» Establish a framework for local probabilistic feature extraction
from vector fields

» Estimate probabilities for the existence of
critical points and vortex cores

Uncertain Vector Fields

* Again modeled as discrete random field

« For simplicity: Normal distributions Y ~ A,(u, X)
n= Nd

/N

# of sample dimension of
points vectors

1
(2)"/2 det () 1/2

Y(y)= exp (—%(y -w)rE Ny - #))

Y = [Cov(Y;, Yj)]i=1,2,...n:5=1,2,....n-




Marginalization

Local features can be identified
» at each cell (and its neighborhood)

» using local marginal distributions

Ve ~N(@.E)

I
-
(%)

* Feasible for Gaussian fields only

Y Cy — RENXEN

Probabilistic Feature Extraction

Feature indicator

I:Cy xREY 00,1}

Feature probability

PO)= [ v = [ f:¥)1e)
D

RKeN

where  D={ve RN |I(c,v)=1}

dv = E(I(c, "))




Compute Poincaré-index (winding number)

where

AP L(Vi, V(i1 %K)

idx(c,v) =

Y& le;

1 idx(c,v) >0 A div(c,v) >0
Isource (¢, V) = { 0 othferwile v
1 idx(e,v) >0 A div(e,v) <0
Link (¢, V) :{ 0 olht(arwi.)s‘e e
1 idx(e,v) <0
!salddlc(("~v) = { 0 Othgrwiie




Critical Points in 3D

e For linear tetrahedral elements: 12-dimensional random vectors
have to be considered

» Compute the Poincaré-index using solid angles

[ 1 idx(e,v)>0
Le(e,v) = { 0 otherwise

[ 1 idx(e,v) <0
L(c,v) = { 0 otherwise

Vortex Cores

e Indicator for vortices

(Sujudi-Haimes criterion)

e Jacobian J has 2

complex eigenvalues

* Real eigenvector is

parallel to the vector field
» Jis piecewise constant — vortex cores are locally straight lines

» Compute probability for the existence of a vortex core




15t Computational Step: Empirical Parameter Estimation

e Arithmetic mean

p= Vi

-

I
[un—

1
L

1

» Empirical covariance matrix

Lo 1 L ~ A ~ ~
Bo LY iR %)
L—14~

I

2"d Computational Step: Monte-Carlo Integration

« Compute locally correlated
realizations

* Estimate feature
probability using the

ratio of occurrences




Critical-Point Probabilities in Wall-Shear-Stress Fields

WSS = vector field on surface

all critical points of 9 probabilities considering probabilities with correlations
ensemble members spatial correlations of vector components only

* Intensity encodes probabilities
» Color encodes type of CP: sinks in violet, sources in green
« and saddles in blue. Intensities are scaled by the probabilities.

Probabilities of CP and Swirling Motion Cores

Flow features over
a full heart cycle in
a cerebral aneurysm:

Visualized by nested
semi-transparent
isosurfaces.

Streamlines of the
mean vector field
provide context.

Critical point probabilities with Probabilities for swirling
Poincaré index > 0 (blue) motion cores.




Research Questions in Uncertainty Vis

We Need to Understand ...

Uncertainty representations
* Intervals
» Probabilities, PDFs
e Fuzzy sets
» Dempster-Shafer model

» Possibility model

v v v vy

interval computing
probability theory, statistics
soft computing

evidence theory

possibility theory




We Need to Understand ...

Reasoning under uncertainty + decision support

e Formal reasoning =» statistical inference
=» uncertainty in Al

» Defuzzification, decision taking =» risk & decision theory

To be Developed in Visualization

+ UQ in the visualization pipeline

+ Fuzzy analogues of crisp features, UQ for features

+ Visual mapping of uncertain / fuzzy data

+ Evaluation of uncertainty representations, perceptual / cognitive efficiency

+ Visual support for data processing techniques:
data aggregation, ensemble analysis, ...

+ Visual support for de-fuzzification

+ Visual support in decision making

You (1986- )

Insert
your
photo
here




Conclusion

* Uncertain iso-surfaces, critical points and vortex cores

¢ reveals information not visible before

We (still) rely on assumption of normal distribution
 arbitrary number of realizations possible

* more details than with limited number of realizations

Most important research questions
* visual mapping

¢ non-Gaussian random fields

Future of Uncertainty Vis

Thank you very much for your attention !

www.zib.de/visual
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