Outline

1. Quantitative Representations of Uncertainty

 partially abstract, top-down
 mainly based on: Zhenyuan Wang, George J. Klir
 Generalized Measure Theory, Springer 2009

2. Probabilistic Modeling of Uncertain Fields

 mostly concrete, bottom-up
 mainly based on: recent work at ZIB with
 Kai Pöthkow, Christoph Petz, Britta Weber
Part 1: Quantitative Representations of Uncertainty

Why bother at all?

- Consideration and quantification of uncertainties is of great importance in many practical applications.
- Vis & VA: part of the data analysis chain + support decision taking.
- Thus we need to understand the data – including their shortcomings, value, relevance, which largely depend on presence/absence of uncertainties.

➡️ We need to
- understand *quantified uncertainty* and deal with it
- perform *uncertainty quantification* by ourselves
What is Uncertainty?

uncertainty \Leftrightarrow lack of information

- Uncertainty due to randomness
 - aleatoric uncertainty
 - Results by chance
 - Lack of information is **objective**
 - *Example*: daily quantity of rain in Seattle

- Uncertainty due to lack of knowledge
 - epistemic uncertainty
 - In principle we could know, but in practice we don’t know
 - Lack of knowledge is **subjective**
 - *Example*: birth date of last Chinese Emperor

Uncertain Propositions - Examples

- “The value of x is between 0.1 and 0.3”

- “The value of x is normally distributed with zero mean and standard deviation 5.0”

- “The value of x is normally distributed”

- “Bob is middle-aged”
Insertion: Fuzzy Sets

- Let \(X \) be a nonempty set \((X = \text{the “universe” of discourse}) \)

 Fuzzy set in \(X \) characterized by membership function \(m : X \rightarrow [0, 1] \)

- Example: fuzzy set \(X = [-3, 3] \subset \mathbb{R} \)
 \[m(x) = e^{-x^2} \]

- Example: (crisp) set \(X = [-3, 3] \subset \mathbb{R} \)
 \[m(x) = 1 \]

Example: Modelling of Imprecise Age Statements

- Measure in years; age interval of human beings: \(X = [0, 100] \subset \mathbb{N} \)

 young
 \[m(x) = \begin{cases} 1 & \text{if } x \leq 25 \\ \frac{40-x}{15} & \text{if } 25 < x < 40 \\ 0 & \text{if } x \geq 40 \end{cases} \]

 not young
 \[m(x) = \begin{cases} 0 & \text{if } x \leq 25 \\ \frac{x-25}{15} & \text{if } 25 < x < 40 \\ 1 & \text{if } x \geq 40 \end{cases} \]

 old
 \[m(x) = \begin{cases} 0 & \text{if } x \leq 25 \\ \frac{x-25}{15} & \text{if } 25 < x < 40 \\ 1 & \text{if } x \geq 40 \end{cases} \]

 not old
 \[m(x) = \begin{cases} 0 & \text{if } x \leq 25 \\ \frac{x-25}{15} & \text{if } 25 < x < 40 \\ 1 & \text{if } x \geq 40 \end{cases} \]
Example: Modelling of Imprecise Age Statements

- Age interval of human beings: \(X = [0, 100] \subset \mathbb{N} \)

![Graph showing age distribution](image)

\[
m(x) =
\begin{cases}
0 & \text{if } x \leq 25 \\
\frac{x-25}{15} & \text{if } 25 < x < 40 \\
1 & \text{if } x \geq 40 \\
\frac{65-x}{15} & \text{if } 50 < x < 65 \\
0 & \text{if } x \geq 65
\end{cases}
\]

Puzzles and Problems

Paradoxon of total ignorance

Is there life beyond Earth?

Case 1: beyond Earth: life	no life
Ignorant’s response: \(\frac{1}{2} \) | \(\frac{1}{2} \)

Case 2: animal life	plant life	no life
Ignorant’s response: \(\frac{1}{3} \) | \(\frac{1}{3} \) | \(\frac{1}{3} \)

Answers inconsistent: from case 2: \(P(\text{life}) = \frac{2}{3} > \frac{1}{2} = P(\text{no life}) \)
from case 1: \(P(\text{animal life}) = \frac{1}{4} < \frac{1}{3} = P(\text{no life}) \)

⇒ Uniform probabilities on distinct representations of the state space are inconsistent.
⇒ A probability distribution cannot model ignorance (maximal incompleteness).
Puzzles and Problems

Imprecise measurement with digital outcome:

- *Observations* at the boundaries of the intervals are unreliable → they should be properly discounted

- Taking measurements for union of the 2 events → one of the discount rate peaks is not applicable

 - *same observations* produce *more evidence* for single event \(0 \cup 1\) then for 2 disjoint events \(0, 1\)

 \[\text{prob}(0 \cup 1) \geq \text{prob}(0) + \text{prob}(1) \]

 non-additive !

Mathematical Modelling of Uncertainty

- A variety of *types of uncertainty* occur in practice, including *mixtures*.

- Quantification of uncertainties, including mixtures, requires a unifying mathematical framework.

- Establishing such a mathematical framework is *difficult*! (it already required centuries …)

- Development of such a theory is not yet fully accomplished, but silhouettes start to become visible!
What I will outline here

- What is the overall picture?
- What are the major types of modeling?
- What is the general mathematical framework behind?
- Where can I find further information?

And what not:

- Any technical details about the theories
- Illustrating examples

Fundamental Setting

- X : set of all elementary events (= the “universe”)
- Situation with possible outcomes or occurrences of “events” $A, B, C, ...$
- Events $A, B, C, ...$ are subsets of X, i.e. elements of power set of X

 ➔ Tasks:

 Measure the
 evidence that event A happened
 degree of truth of the statement “event A happened”
 probability that event A will happen
Measures in Mathematics

to measure = to assign real numbers to sets

• Classical task in metric geometry: assign numbers to geometric objects for lengths, areas, or volumes

• Requirement: assigned numbers should be \textit{invariant} under displacement of respective objects

• In ancient times: to measure = to compare with a standard unit

Measure in Mathematics

• Soon: \textit{problem of incommensurables}

\[
\begin{array}{c}
1 \\
\hline \\
1 \\
\end{array} \quad \begin{array}{c}
? \\
\hline \\
?
\end{array} \quad \pi \approx 3.141592653589793
\]

⇒ Measurement is more complicated than initially thought. It involves infinite processes and sets.

• 1854: First tool to deal with the problem: \textit{Riemann integral}

⇒ Enables to compute lengths, areas, volumes for complex shapes (as well as other measures).
Measures in Mathematics

• ~ 1870s and 80s: Riemann integral has a number of deficiencies
 • Applicable only to functions with finite number of discontinuities
 • Fundamental operations of differentiation and integration are in general not reversible in the context of Riemann theory
 • Limit processes can in general not be interchanged:
 \[\int_a^b \lim_{n \to \infty} f_n(x) \, dx \quad \text{and} \quad \lim_{n \to \infty} \int_a^b f_n(x) \, dx \]
 may differ.

Measures in Mathematics

• 1898: Émile Borel developed classical measure theory
 • Defined σ-algebra = class of sets that is closed under set union of countably many sets and set complement
 • Defined measure \(\mu \) that associates a number \(\in \mathbb{R}^+ \) with each bounded subset in the σ-algebra
 • The measure is additive:
 \[\mu(A + B) = \mu(A) + \mu(B) \quad \text{if} \quad A \cap B = \emptyset \]
Measures in Mathematics

- 1899-1902: Henry Lebesgue defined integral
 - Based on a measure that subsumes the Borel measure as a special case
 - Connected measures of sets and measures of functions

- 1933: Andrey Nikolaevich Kolmogorov developed the concept of probability measure
 - Used classical measure
 - Added: measure 1 is assigned to the universal set

→ Classical Probability Theory

Measures in Mathematics

- About 50 years later: additivity requirement became a subject of controversy
 - Too restrictive to capture e.g. the full scope of measurement:
 - Works well under idealized error-free measurements
 - Not adequate when measurement errors are unavoidable

- The two basic types of uncertainties in relation to experiments:
 - Aleatoric: results differ each time she/he runs an experiment
 - phenomenon is truly random; results „depend“ on chance
 → probabilistic modeling
 - Epistemic: in principle we could know the exact results, but we don’t know in practice;
 - due to errors that practically cannot controlled;
 → non-probabilistic modeling
Measures in Mathematics

1954 Gustave Choquet developed a (potentially infinite) family of non-additive measures (“capacities”)

- For each given capacity there exists a dual “alternating capacity”
- Integral based on these measures (Choquet integral)
 - non-additive
 - can be computed using Riemann or Lebesgue integration
 - applied specifically to membership functions and capacities

Dempster-Shafer Theory

Motivation: precision required in classical probability not realistic in many applications

1967 Arthur P. Dempster introduced imprecise probabilities

- Deal with convex sets of probability measures rather than single measures
- For each given convex set of probability measures he introduced
 - 2 types of non-additive measures: lower & upper probabilities
 super- & supra-additive

Allows to represent probabilities imprecisely by intervals of real numbers.
Dempster-Shafer Theory

1976 Glenn Shafer analyzed special types of lower & upper probabilities called them belief & plausibility measures.

- Theory based on these measures = Dempster-Shafer theory (DST) or evidence theory.

- DST is capable of dealing with interval-based probabilities: [belief measure, plausibility measure] = ranges of admissible probabilities.

- Turns out: belief measures = Choquet capacities of order ∞; plausibility measures = alternating capacities of order ∞.

Measures in Mathematics

1978 Michio Sugeno tried to compare

- membership functions of fuzzy sets
- with probabilities

not directly possible

- Generalization of additive measure analogous to generalization:

<table>
<thead>
<tr>
<th>crisp sets</th>
<th>fuzzy sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>additive measure</td>
<td>fuzzy measure</td>
</tr>
<tr>
<td>monotone measure</td>
<td></td>
</tr>
</tbody>
</table>

- Introduced also Sugeno integral with respect to a monotone measure.
Measures in Mathematics

1978 Lotfi Zadeh defined:

- "Possibility function" associated with each fuzzy set (numerically: membership function)
- "Possibility measure" supremum of the possibility function in each set of concern (both for crisp and fuzzy sets)

- One of several interpretations of the "theory of graded possibilities"
- Connection to DST:
 - plausibility measures = possibility measures (consonant plausibility measures)
 - belief measures = necessity measures (consonant belief measures)

Classes of Uncertainty Theories

Using additive measures
- $\mu(A \cup B) = \mu(A) + \mu(B)$ expresses no interaction between events
 - classical probability + measure theory

Using non-additive measures
- $\mu(A \cup B) > \mu(A) + \mu(B)$ expresses positive interaction between events
 - synergy, cooperation, coalition, enhancement, amplification
- $\mu(A \cup B) < \mu(A) + \mu(B)$ expresses negative interaction between events
 - incompatibility, rivalry, inhibition, downgrading, condensation
 - (many) uncertainty theories + generalized measure theory
Most Utilized Uncertainty Theories + Further Reading

1. Classical Probability Theory

2. Dempster-Shafer Theory

Simona Salicone:
"Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence",
Springer, 2007

Jürg Kohlas, Paul-Andre Monney:
Springer, 1995

3. Possibility Theory

Didier Dubois and Henri Prade:
"Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification",

Gerla Giangiacomo:
"Fuzzy logic: Mathematical Tools for Approximate Reasoning",

Thank you very much for your attention!
Part 2: Probabilistic Modeling of Uncertain Fields

Sources:

Probabilistic marching cubes.
Kai Pöthkow, Britta Weber, HCH

Probabilistic local features in uncertain vector fields with spatial correlation
Christoph Petz, Kai Pöthkow, HCH

Approximate level-crossing probabilities for interactive visualization of uncertain isocontours.
Kai Pöthkow, Christoph Petz, HCH
Int. J. Uncertainty Quantification (2012; forthcoming)

Uncertain Scalar Field

Model as *discrete random field*
For simplicity: use *Gaussian random variables*

Each field configuration: conceived as a realization of a multivariate Gaussian RV
Gaussian Random Field

Discrete random field = multivariate Gaussian RV

\[Y \sim \mathcal{N}_n(\mu, \Sigma) \]
\[\mu = [E(Y_1), E(Y_2), \ldots, E(Y_n)] \]
\[\Sigma = [\text{Cov}(Y_i, Y_j)]_{i=1,2,\ldots,n; j=1,2,\ldots,n} \]

\[Y(y) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right) \]

Gaussian Random Field

Compute probability of locally defined events, e.g.

\[\text{prob}(x_1 \in [a_1, b_1] \text{ and } x_2 \in [a_2, b_2]) \]

- Sum over all configurations that respect to predicate in the argument of \text{prob}(\ldots)
- Majority of variables are “integrated out” (marginalized)
- Then only a few local integrations remain
Gaussian Random Field

Marginalization:

\[
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} dy_{m+1} \ldots dy_n \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right)
\]

\[
= \frac{1}{(2\pi)^{m/2} \det(\Sigma')^{1/2}} \exp \left(-\frac{1}{2} (\tilde{y} - \tilde{\mu})^T \tilde{\Sigma}^{-1} (\tilde{y} - \tilde{\mu}) \right)
\]

\[
=: f_{\tilde{\nu}}(y_1, \ldots, y_m)
\]

where \(\tilde{Y} \) is the reduced random vector and \(\tilde{y}, \tilde{\mu} \) and \(\tilde{\Sigma} \) are the quantities \(y, \mu \) and \(\Sigma \) with \(n - m \) columns/rows deleted corresponding to the marginalized variables \(y_{m+1} \ldots y_n \)
Probabilities of Classes of Realizations

Constrain \(m < n \) RV \(Y_i \) to subsets \(S_i \).

Re-order RV such that constrained ones are the first \(m \) ones.

Probability of constrained realization:

\[
\text{Prob} (Y_1 \in S_1, \ldots, Y_m \in S_m) = \int_{S_1} \cdots \int_{S_m} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f_X(y_1, \ldots, y_n)
\]

For Gaussian distribution:

\[
\int_{S_1} \cdots \int_{S_m} f_{\mathcal{N}}(y_1, \ldots, y_m)
\]

Level Crossing Probabilities

For any realization (= grid function \(g \)) assume an \(C^0 \) interpolant taking its extreme values at the sample points.

Consider a particular grid cell \(c \) with vertex indices \(\bar{I} \in I \).

Cell \(c \) crosses \(\vartheta \)-level of \(g(y) \) iff not all differences \((y_i - \vartheta)_{i \in \bar{I}} \) have the same sign.

Level crossing probability \(\text{Prob}_c(\vartheta\text{-crossing}) \):

Integrate \(\{Y_i\}_{i \in \bar{I}} \) over sets \(\{y_j \in \mathbb{R} \mid y_j \geq \vartheta\} \) and \(\{y_i \in \mathbb{R} \mid y_i \leq \vartheta\} \)
Level Crossing Probabilities on Edges

Edge with bivariate Gaussian RV $Y = [Y_1, Y_2]$

$$\text{Prob}(\theta\text{-crossing}) =$$
$$= \text{Prob}(Y_1 \leq \theta, Y_2 > \theta) + \text{Prob}(Y_1 > \theta, Y_2 \leq \theta)$$
$$= \int_{y_1 \leq \theta} dy_1 \int_{y_2 > \theta} dy_2 f_Y(y_1, y_2, \theta, \mathbf{y}) + \int_{y_1 > \theta} dy_1 \int_{y_2 \leq \theta} dy_2 f_Y(y_1, y_2, \theta, \mathbf{y})$$

Level Crossing Probabilities on Faces

4 Cases (after Symmetry Reduction)

\begin{align*}
\text{Corresponding Integrals} & \quad \triangleleft \\
\end{align*}

| \text{Case} | P_{\theta,1} & P_{\theta,2} & P_{\theta,3} & P_{\theta,4} \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
</tr>
<tr>
<td>2</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
</tr>
<tr>
<td>3</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
</tr>
<tr>
<td>4</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
<td>$\int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)$</td>
</tr>
</tbody>
</table>
Level Crossing Probabilities on Rectangular Cells, …

Types of integrals \(\Delta \) symmetry-reduced Marching cubes cases.

In **2D**: 4 distinct cases (1 non-crossing, 3 crossing)

In **3D**: 15 distinct cases (1 non-crossing, 14 crossing)
In **4D**: 223 distinct cases (1 non-crossing, 222 crossing)

In **nD**: use Polya’s counting theory

Level Crossing Probabilities – Simplified

of cases (i.e. integrals) **with** level crossings grows with dimension …

Better exploit \(\text{Prob}_c(\theta\text{-crossing}) = 1 - \text{Prob}_c(\theta\text{-non-crossing}) \)

only 2 cases **without** level crossings

\(\rightarrow \text{ for all dimensions only 2 integrals!} \)

e.g. for square cells in 2D:

\[
\text{Prob}_c(\theta\text{-crossing}) = 1 - \int dy_1 \int dy_2 \int dy_3 \int dy_4 f_Y(y_1, y_2, y_3, y_4)
\]

\[
(y_1 \leq \theta \land y_2 \leq \theta \land y_3 \leq \theta \land y_4 \leq \theta) \lor (y_1 > \theta \land y_2 > \theta \land y_3 > \theta \land y_4 > \theta)
\]

But dimension of integrals still = # vertices of geometric object!
Algorithm & Implementation

- Preprocessing
 - Estimate $\hat{\mu}_i$ for all sample points
 - Estimate $\widehat{\text{Cov}}_{i,j}$ for all 2- or 3-cells

- For a given iso-value Θ
 - Estimate crossing probabilities using Monte Carlo integration

Level Crossing Probabilities on Faces
Algorithm & Implementation

for each cell c {
 $L_c \leftarrow$ CholeskyDecomposition(Σ_c)
 #crossings \leftarrow 0
 for 1...#samples {
 $y \leftarrow$ random numbers $y_1 \ldots y_m \sim \mathcal{U}(0, 1)$
 $y \leftarrow$ BoxMullerTransform(y)
 $y \leftarrow L_c y + \mu_c$
 if(crossing$_c(y))$ #crossings \leftarrow #crossings + 1
 }
 Prob$_c \leftarrow$ #crossings/#samples
}

Impact of Spatial Correlations

$q=0.00$

$q=0.65$

$q=0.95$

synthetic data
Climate Simulation

Data courtesy of ECMWF

\(\hat{\mu}_i \) \(\hat{\text{Cov}}_{i,j} \)

Isotherm of Climate Simulation

spatial correlations considered

not considered
Fuel Injection Data Set + Artificial Noise: Uncertain Level Set

Application Example: Isotherm of Climate Simulation

spatial correlations not considered
Application Example: Isotherm of Climate Simulation

Local Features in Uncertain Vector Fields

Probabilistic local features in uncertain vector fields with spatial correlation
Christoph Petz, Kai Pöthkow, HCH
Previous Work

Wittenbrink, Pang & Lodha
Glyphs for visualizing uncertainty in vector fields
TVCG, 1996

Friman, Hennemuth, Harloff, Bock, Markl & Peitgen,
Probabilistic 4D blood flow tracking and uncertainty estimation,
Medical Image Analysis, 2011

Otto, Germer, Hege & Theisel
Uncertain 2D Vector Field Topology,
Eurographics 2010

Discretized Vector Fields

crisp vector field

uncertain vector field
Tasks

- Define a model to represent uncertain vector fields considering spatial correlation
- Establish a framework for local probabilistic feature extraction from vector fields
- Estimate probabilities for the existence of critical points and vortex cores

Uncertain Vector Fields

- Again modeled as discrete random field
- For simplicity: Normal distributions \(\mathbf{Y} \sim \mathcal{N}_n(\mu, \Sigma) \)

\[
\mathbf{Y}(\mathbf{y}) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{y} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu) \right)
\]

\[
\mu = [\mathbb{E}(Y_1), \mathbb{E}(Y_2), \ldots, \mathbb{E}(Y_n)]
\]

\[
\Sigma = [\text{Cov}(Y_i, Y_j)]_{i=1,2,\ldots,n; j=1,2,\ldots,n}.
\]
Marginalization

Local features can be identified

- at each cell (and its neighborhood)
- using local marginal distributions

\[v_c = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma) \]

\[\widehat{\mu} : C_\eta \to \mathbb{R}^{K_cN} \]
\[\widehat{\Sigma} : C_\eta \to \mathbb{R}^{K_cN \times K_cN} \]

- Feasible for Gaussian fields only

Probabilistic Feature Extraction

Feature indicator

\[I : C_\eta \times \mathbb{R}^{K_cN} \to \{0, 1\} \]

Feature probability

\[P(c) = \int_D f_c(v) \, dv = \int_{\mathbb{R}^{K_cN}} f_c(v) I(c, v) \, dv = \mathbb{E}(I(c, \cdot)) \]

where \[D = \{ v \in \mathbb{R}^{K_cN} | I(c, v) = 1 \} \]
Critical Points in 2D

Compute Poincaré-index (winding number)

\[\text{idx}(c, v) = \frac{\sum_{i=0}^{K-1} \angle(v_i, v_{(i+1) \% K})}{\sum_{i=0}^{K-1} \theta_i} \]

Critical Point Classification

\[I_{\text{source}}(c, v) = \begin{cases} 1 & \text{idx}(c, v) > 0 \land \text{div}(c, v) > 0 \\ 0 & \text{otherwise} \end{cases} \]

\[I_{\text{sink}}(c, v) = \begin{cases} 1 & \text{idx}(c, v) > 0 \land \text{div}(c, v) < 0 \\ 0 & \text{otherwise} \end{cases} \]

\[I_{\text{saddle}}(c, v) = \begin{cases} 1 & \text{idx}(c, v) < 0 \\ 0 & \text{otherwise} \end{cases} \]
Critical Points in 3D

- For linear tetrahedral elements: 12-dimensional random vectors have to be considered.
- Compute the Poincaré-index using solid angles.

\[I_+ (c, v) = \begin{cases} 1 & \text{if } \text{idx}(c, v) > 0 \\ 0 & \text{otherwise} \end{cases} \]
\[I_- (c, v) = \begin{cases} 1 & \text{if } \text{idx}(c, v) < 0 \\ 0 & \text{otherwise} \end{cases} \]

Vortex Cores

- Indicator for vortices (Sujudi-Haines criterion)
 - Jacobian J has 2 complex eigenvalues
 - Real eigenvector is parallel to the vector field
- J is piecewise constant → vortex cores are locally straight lines
- Compute probability for the existence of a vortex core
1st Computational Step: Empirical Parameter Estimation

- Arithmetic mean

\[\hat{\mu} = \frac{1}{L} \sum_{i=1}^{L} \tilde{v}_i \]

- Empirical covariance matrix

\[\hat{\Sigma} = \frac{1}{L-1} \sum_{i=1}^{L} (\tilde{v}_i - \hat{\mu}) (\tilde{v}_i - \hat{\mu})^T \]

2nd Computational Step: Monte-Carlo Integration

- Compute locally correlated realizations

- Estimate feature probability using the ratio of occurrences
Critical-Point Probabilities in Wall-Shear-Stress Fields

WSS = vector field on surface

- Intensity encodes probabilities
- Color encodes type of CP: sinks in violet, sources in green
- and saddles in blue. Intensities are scaled by the probabilities.

Probabilities of CP and Swirling Motion Cores

Flow features over a full heart cycle in a cerebral aneurysm:

- Visualized by nested semi-transparent isosurfaces.
- Streamlines of the mean vector field provide context.

Critical point probabilities with Poincaré index > 0 (blue)
Probabilities for swirling motion cores.
Research Questions in Uncertainty Vis

Uncertainty representations

- Intervals ➔ interval computing
- Probabilities, PDFs ➔ probability theory, statistics
- Fuzzy sets ➔ soft computing
- Dempster-Shafer model ➔ evidence theory
- Possibility model ➔ possibility theory

We Need to Understand …
We Need to Understand …

Reasoning under uncertainty + decision support

- Formal reasoning ➔ statistical inference
- Formal reasoning ➔ uncertainty in AI
- Defuzzification, decision taking ➔ risk & decision theory

To be Developed in Visualization

- UQ in the visualization pipeline
- Fuzzy analogues of crisp features, UQ for features
- Visual mapping of uncertain / fuzzy data
- Evaluation of uncertainty representations, perceptual / cognitive efficiency
- Visual support for data processing techniques:
 - data aggregation, ensemble analysis, …
- Visual support for de-fuzzification
- Visual support in decision making
Conclusion

- Uncertain iso-surfaces, critical points and vortex cores
 - reveals information not visible before
- We (still) rely on assumption of normal distribution
 - arbitrary number of realizations possible
 - more details than with limited number of realizations
- Most important research questions
 - visual mapping
 - non-Gaussian random fields
- Future of Uncertainty Vis

Thank you very much for your attention!

www.zib.de/visual

Slides: http://bit.ly/QmQlqy
http://www.cg.tuwien.ac.at/research/publications/2012/VisWeek-Tutorial-2012-Uncertainty