
Institut für Computergraphik und
Algorithmen

Technische Universität Wien
Karlsplatz 13/186/2

A-1040 Wien
AUSTRIA

Tel: +43 (1) 58801-18601
Fax: +43 (1) 58801-18698

Institute of Computer Graphics and
Algorithms

Vienna University of Technology
email:

technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/
ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

Interactive Screen-Space Triangulation for High-Quality
Rendering of Point Clouds

Reinhold Preiner Michael Wimmer

TR-186-2-12-01
April 2012





Interactive Screen-Space Triangulation for High-Quality
Rendering of Point Clouds

Reinhold Preiner Michael Wimmer

April 4, 2012

Abstract

This technical report documents work that is a precursor
to the Auto Splatting technique [PJW12]. We present
a rendering method that reconstructs high quality im-
ages from unorganized colored point data. While previ-
ous real-time image reconstruction approaches for point
clouds make use of preprocessed data like point radii
or normal estimations, our algorithm only requires posi-
tion and color data as input and produces a reconstructed
color image, normal map and depth map which can in-
stantly be used to apply further deferred lighting passes.
Our method performs a world-space neighbor search
and a subsequent normal estimation in screen-space, and
uses the geometry shader to triangulate the color, nor-
mal and depth information of the points. To achieve
correct visibility and closed surfaces in the projected
image a temporal coherence approach reuses triangu-
lated depth information and provides adaptive neighbor
search radii. Our algorithm is especially suitable for in-
situ high-quality visualization of big datasets like 3D-
scans, making otherwise time-consuming preprocessing
steps to reconstruct surface normals or point radii dis-
pensable.

1 Introduction

With the advent of cheap range scanners, large point
clouds have become a ubiquitous source of 3D data in
many application areas, including archaeology, building
history, urban planning, architecture etc. One of the pre-
dominant problems when working with such data is that
it requires extensive preprocessing before being useful
in an application scenario. However, often neither the
time nor the resources for preprocessing are available.
For example, in an archaeological scanning campaign,
archaeologists want to view the acquired data already
during acquisition in order to judge whether all impor-
tant aspects of a monument have been captured.

Figure 1: Left: reconstruction using splats. Right: re-
construction using our new screen-space triangulation.

Several previous approaches have proposed out-of-core
rendering systems that are capable of giving a quick
preview of even very large models (more than a Bil-
lion points). While such previous are already very use-
ful, they suffer from poor display quality. One option
is to display points as simple splats with constant size,
which leads to holes for sparse regions especially near
the viewer, as well as overlaps and general low image
quality for more dense regions. Another option is to es-
timate local point densities from the hierarchies inher-
ent in the underlying out-of-core rendering system and
adapt the splat sizes to those densities. However, the
quality that can be obtained without knowledge of splat
orientation (i.e., normal vector) or more accurate splat
sizes is very limited, leading to strong overlap artifacts
especially for surfaces viewed edge-on.

Another very large class of algorithms provide very
high-quality point cloud rendering with closed surfaces,
but rely on accurate normal vector and splat size (and
shape) estimation. Unfortunately, such estimations are
usually not available for real-world data. In fact, the
best way for obtaining such estimations is to create a
triangulation of the point cloud and sample all required
attributes from the created mesh. However, this is both

1



2 3 ALGORITHM

very expensive and requires great care and manual in-
tervention to obtain good results.
In this paper, we propose to use the power of current
graphics hardware to attempt a high-quality reconstruc-
tion of colors and normals directly in screen space,
without requiring a lengthy preprocessing phase. In-
stead of rendering splats as in previous point-cloud pre-
viewing systems, we propose to perform a triangulation
based directly on screen-space samples, thus obtaining
closed surfaces (see Figure 1). This has the advantage
that small-scale detail and silhouettes can be preserved,
while colors between available samples can be interpo-
lated for a smoother reconstruction. As input for our
method, we assume that only point positions and col-
ors are given. Colors are usually available from a cam-
era mounted directly on a range scanner, or from pho-
togrammetric reconstruction. We explicitly do not re-
quire information about normal vectors or splat sizes, as
this would already require lengthy preprocessing espe-
cially for larger datasets.

Contribution

• Our algorithm can render high-quality images from
colored point clouds without the need for common
preprocessing tasks like normal oder splat radius
estimation.

• It produces a normal map of the scene in screen
space on the fly, which can be used for instant de-
ferred shading.

• We introduce a new screen-space triangulation
method to render triangles that interpolate the color
and normal information between the point data in
screen space.

2 Related Work

Our work can be seen in the context of mesh reconstruc-
tion from unorganized point clouds, large point cloud
rendering, and high-quality surfel rendering. Starting
with Hoppe’s seminal reconstruction work [HDD∗92],
there has been a plethora of papers treating various as-
pects of surface reconstruction from point clouds. They
all share the property that while providing good results,
they require lengthy preprocessing and manual interven-
tion, something we want to avoid in our method. While
our screen-space triangulation also attempts a local re-
construction, we do not provide a strict triangulation
(i.e., triangles can overlap), but try to achieve the best
possible image quality with the available samples.

Point-based rendering has been a very popular re-
search topic in the past decade. However, surprisingly
enough, practically all published algorithms (especially
[PZvBG00] and many follow-up works) dealt with the
problem of rendering models that contain complete in-
formation about point orientation and extent, in other
words how to render complete surfels and not point sam-
ples. Even the approach that is closest to ours, a screen-
space pull-push algorithm in order to reconstruct closed
surface images from point clouds, relies on precalcu-
lated normals and splat radii [MKC07].
Gobetti and Martin [GM04] and Wimmer and
Scheiblauer [WS06, SZW09] were the first to abandon
the requirement of precalculated normals and allow
visualizing huge point clouds in their layered point
clouds respectively instant points systems. Both
systems focus mainly on the aspect of rendering huge
point clouds that do not fit into main memory or even
graphics card memory using clever hierarchies. While
the former basically relies on a dense enough sampling
to avoid holes in the reconstruction, the latter provide a
heuristic to render quad-shaped splats to obtain a closed
surface. However, quad-shaped splats do not allow for
interpolation and are prone to artifacts if not viewed
head-on, and are therefore limited in the obtainable
image quality.
In this paper, we want to avoid preprocessing while still
providing good image quality. In fact, our method only
requires an input stream of point positions and colors
and is therefore ideally suited to be combined with an
out-of-core point rendering system as shown above.

3 Algorithm

3.1 Motivation

First, we try to explain our new algorithm at a higher
level. Any surface reconstruction algorithm has to an-
swer the following questions:

• Given a surface sample, what are neighboring sur-
face samples that can be used for a local recon-
struction?

• Given the local neighborhood of samples, how
should the surface be reconstructed?

In classic reconstruction algorithms, the first step usu-
ally entails a k-nearest-neighbor search in a three-
dimensional data structure, a luxury we cannot afford
when only screen-space samples are available. Instead,
we need to rely on two resources: visibility and local



3.2 Overview 3

screen-space neighborhoods. In a way, the screen-space
grid is a search structure provided by the graphics hard-
ware, however with perspective distortion and only in
two dimensions. However, since we are only interested
in a reconstruction of the closest surface, this is suffi-
cient. Furthermore, we have to face the problem that we
have reconstruct and render at the same time. In par-
ticular, rendering requires correct visibility in order to
avoid holes. We use is temporal coherence to tackle this
problem.

Nearest neighbor search At the heart of our algo-
rithm lies a novel method to quickly find nearest neigh-
bors on the GPU. The idea is to establish communica-
tion between potential neighbors. Basically, each point
attempts to register itself as a neighbor with all points in
a given world-space radius. This can be done by render-
ing a splat that covers the respective screen-space extent.
However, a straightforward implementation of this idea
would require each point to maintain a list of all points
that register with it, which cannot be achieved with cur-
rent graphics pipelines. Our solution to this problem is
to discretize the neighborhood of each point into a num-
ber of sectors (in screen space) and always maintain the
currently nearest point for each sector. In fact, graphics
hardware requires us to split this task into two passes:
in a first pass, each point determines the distance to the
nearest neighbor in each sector only, while in a second
pass, the actual nearest neighbor in each sector is al-
lowed to register itself.

Normal estimation and triangulation After the
neighborhood search, each point knows about its nearest
neighbor (if any) in each of its sectors. This information
is very powerful and can be used in various ways. For
example, it is easy to estimate normal vectors from the
neighboring points. Most importantly, since this infor-
mation is already spatially ordered, it is rather straight-
forward to create a triangle fan from the point spanning
its neighbors. However, this will lead to a triangle be-
ing created more than once (up to there times, for each
of its vertices). We found that this is still more efficient
than trying to avoid multiple rasterizations, and resort to
blending instead.

Visibility and temporal coherence One major dif-
ference to offline reconstruction algorithms is that we
need to reconstruct and render the point cloud at the
same time. In particular, we only want to reconstruct
the surfaces visible to the viewer, thus requiring visi-
bility. However, determining visibility already requires

Figure 2: Overview of the steps and data-flow of our
algorithm.

a reconstructed surface to avoid background surfaces
to shine through the spaces between samples. In our
system we solve this by resorting to temporal coher-
ence: in each frame, the currently reconstructed sur-
face is written to the depth buffer, while the reconstruc-
tion algorithm itself accesses depth information from
the previous frame (through reprojection as also used
in [SJW07]). This will of course lead to short-term holes
for parts of the scene that appear in a new frame (due
to rotation or disocclusions), however these holes are
quickly filled in subsequent frames.

3.2 Overview

Our algorithm is fed with unorganized, colored point
data, and outputs a reconstructed image, a screen-space
normal map and a depth map of the current frame. Fig-
ure 2 shows an overview over the steps of our algorithm.
In the first step, the point cloud data (position and col-
ors) are rendered into the frame buffer with pixel size 1.
In this render pass, the points are depth-culled against
the reprojected depth map that results from the previous
frame – in this way we can reuse already obtained recon-
structed surface depth information to get progressively
better visibility over time. Further, in the first pass also
the neighbor search radii of the visible points are up-
dated. (Neighbor search radii and their adjustment are
described in detail in Section 3.6).
The second step performs a screen-space neighbor
search for each visible point in the frame buffer. This



4 3 ALGORITHM

Figure 3: Storage layout for the nearest neighbors in the
8 surrounding screen-space sections of a point.

step consists of two passes, after which we retrieve the
screen coordinates of at most 8 nearest neighbors per
point. With the resulting neighborhood-information, we
subsequently perform a normal estimation pass on the
points in screen-space.

Finally, having the view-space depth, the estimated
world-space normals and the color per point in the frame
buffer, we perform a triangulation pass on the points,
using the geometry shader. This results in three output
buffers (color map, depth map and normal map).

In the following, the individual steps of our algorithm
are described in detail. Besides the first pass, which ren-
ders the point data into the frame buffer (object-pass),
all remaining passes are screen-space passes that oper-
ate on those framebuffer pixels that contain point infor-
mation. For convenience, we will refer to such pixels as
“points”.

3.3 Nearest neighbor search

In order to be able to perform a convenient triangulation
of the points in the framebuffer, each point must store
its world-space nearest neighbor points. Our algorithm
stores up to eight nearest neighbors per point. We sub-
divide the screen-space region around each point in 8
sections and use two RGBA textures in which we render
the pixel ID of the nearest neighbor point for each of this
sections. Figure 3 illustrates this concept. The unique
pixel IDs we store in the texture channels are simply
calculated from the screen positions of the points.

Neighbor retrieval is performed by a two-pass method
that each time renders a point-sprite splat for each point,
with size equal to the projection of the world-space
search radius of the point. We use a vertex buffer ob-
ject (VBO) containing the uv-coordinates for each pixel
in the viewport, and pass it through a vertex shader that
renders the splats. The fragment shader then is able to
write information to each of the neighbor points within
the splat radius.

Let P be any point in the framebuffer, and Q be a point
covered by the screen-space splat of P. In both passes,
the fragment shader first calculates the world-space po-
sition of Q. If it lies outside the world-space search ra-
dius of P, Q is discarded. Otherwise, we write to the
output texture channel that corresponds to the sector of
Q in which P is positioned. To be able to write selec-
tively to one specific channel, while leaving the others
untouched, we use different blending operations in each
pass.
In the first pass, the fragment shader writes the world-
space distance from P to Q, with per-channel minimum
blending enabled. (OpenGL provides the glBlend-
Equation(GL_MIN) command to leave the lowest
value per channel). After this step, each point knows
the distance to its nearest neighbor per section. In the
second pass, all splats are rendered the same way, but
this time with additive blending enabled. In the frag-
ment shader, P tests the world-space distance between
P and Q against the minimum value of the according
section calculated in the previous pass, and writes its ID
if he finds to be the nearest neighbor in this section. This
mechanism could be refered to as a radial two-pass vis-
iblity test. Figure 4 gives an example for this approach.
Note that this technique doesn’t produce a real trian-
gulation of the point clouds in terms of a mesh. Due
to the subdivision of the screen-space region around a
point, triangle overlappings may occur. We address this
issue by blending the rendered triangles later in the tri-
angulation step. Notice further that searching for neigh-
bors within a screen-space splat is sufficient to cover all
points that lie within the world-space search radius of
a point P, i.e. if in 3D a point Q lies within the search
sphere of P, then its projection Q′ lies within the projec-
tion of the world-space sphere in 2D.
In the subsequent passes, each point in the framebuffer
is able to lookup its neighbor’s IDs which can be un-
wrapped to their screen coordinate. With this coordinate
it can

• lookup its neighbors’ view-space depths,

• calculate their world-space positions by unprojec-
tion, and

• lookup any neighbor information like their esti-
mated surface normals.

3.4 Normal estimation

After we have determined the pixel IDs of the nearest
neighbor points, we perform a fast screen-space normal
estimation pass. Contrary to the two previous neighbor



3.6 Search radii adjustment 5

(a) (b) (c)

(d) (e)

Figure 4: Example for the two pass neighbor search
procedure. Upper row: in the first pass, both P1 and
P2 lie in the same section of Q, thus writing their dis-
tances to the same texture channel (4a and 4b). Since P2
has a lower distance than P1, d2 remains in the section
(4c). Lower row: In the second pass, each point looks
up the minimum distance again. P2 finds that the stored
distance equals its own distance and stores its ID in Q
(4d). Finally, Q contains the nearest neighbor IDs for
each section (4e).

search passes, this is done by a simple per-pixel opera-
tion on the framebuffer. Since the neighbor IDs of any
point P are stored in circular order in the neighbor tex-
tures, we are able to reproduce the circular sequence of
the neighbors in terms of a triangle fan, in which P is
the origin. For each triangle in this fan we determine
the world-space position of the two adjacent neighbors
and retrieve its face normal. The world-space normal
of P can then be simply estimated by the average of the
surrounding triangle’s face normals. Note that with this
method we do not reproduce any inside/outside infor-
mation, thus the normal are always oriented towards the
viewer.

3.5 Triangulation

In the last step, we invoke the geometry shader to tri-
angulate the triangle fan that is span up be each point
with its surrounding neighbors. Again we make use of
the circular order of the neighbors in its screen-space
sections. A triangle is only rendered if the opening an-
gle between its neighbor points is lower than π to avoid

(a) (b)

Figure 5: 5a) Example triangulation of a point Q and
its neighbors. The geometry shader generates a triangle
fan is in circular order of the sections. 5b) If in circular
order, two neighbors span a angle ≥ π, no triangle is
rendered in order to avoid overlappings.

triangles overlapping within a fan. Figure 5 shows this
triangulation concept.

Each triangle contains its color, its normal, and the
viewspace depth as vertex attribute. Using triangula-
tion by the geometry shader, each of these attributes is
automatically interpolated over the render target pixels.

At the rasterization stage, we average the color and
the normal information of the rendered triangles by ad-
ditive blending and a subsequent normalization pass
of the values. For the depth value, we need to use
minimum blending to get a correct depth map of the
scene. However, the triangulation of each of the
three values can be performend in one pass, using a
OpenGL feature that allows to set different blending
operations for both the RGB and the alpha channels
(glBlendEquationSeparate).

After this final pass, we obtain three distinct output
buffers: a color image of the scene, a normal map, and a
linear depth map. For extended rendering requirements,
these buffers can instantly be used to performed deferred
shading on the scene. Figure 6 shows an example phong
shaded point cloud model.

3.6 Search radii adjustment

Inherently to our method, the choice of a convenient
world-space neighbor search radius for a point is crit-
ically for retrieving its neighbor IDs. The size of this ra-
dius is constrained to two sides: Too small search radii
lead to points not finding each other, while too large
search radii result in rendering too large point splats an
thus in a lot of unnecessary neighbor checks, wasting
computation time. To achieve good results in our point
cloud scenes we use an adaptive search radii approach



6 4 RESULTS

that adjusts the radii by a feedback mechanism between
the points that makes use of temporal coherence.
This mechanism works in two steps: In each frame, after
the neighbor search we execute a feedback pass where
each point looks up its surrounding neighbors and writes
its distance to them as feedback information back to
their position. (This is done by the geometry shader that
emits a single vertex at each neighbor’s position). This
is performed using maximum blending, i.e. we retrieve
for each point P the distance of the farest point Q that
sees P as its nearest neighbor. When projecting the point
data into the framebuffer in the next frame, each point
looks up both its previous search radius and the feed-
back values given by the neighbors in the last frame.
With this information we can adjust the search radii for
the current frame by the following simple ruleset, which
is parameterized by some user-defined maximum con-
nection distance for the points:

• If the previous search radius of P is zero, then this
point was not visible in the previous frame (oc-
cluded or outside the viewport). In this case, we
initialize the new point with some average search
radius between zero and the maximum connection
distance.

• Otherwise, look at the maximum distance of a
point claiming P to be his neighbor. If this distance
has increased in comparison to the previous frame,
increase further.

• If the radius has not increased, increase further un-
til reaching some threshold size (which is chosen
relative to the last maximum distance), where we
stop increasing and set the search radius back to
the last maximum neighbor distance.

While these simple rules perform well in our test scenes,
other heuristic rule sets are imaginable and could be eas-
ily implementable within this feedback framework.

4 Results

4.1 Image Quality

In order to measure the quality of the rendered images,
we observe the quality of both the reconstruction of tex-
ture and the reconstruction of shape. Figure 9 compares
different image renderings of a advertising pillar point
cloud model. We compare point splats with both size
and empirically precalculated size [SZW09] and man-
ually adjusted fixed size with our screen-space triangu-
lation method. While the empirical point size ensures

splat sizes that produce dense surfaces, it is less suited
for high frequency textures due to geometric noise. Ad-
justing the splat size manually to a minimal surface cov-
ering size produces far better results, but still shows
some box artifacts. The result of our method is compa-
rable to the manually adjusted image, but even improves
the image quality by omitting box artifacts, resulting in
a smoother image.
Another example is given by Figure 8, which compares
a view from domitilla catacomb rendered once with pre-
processed splat sizes and once with screen-space trian-
gulation. Notice that our approach reconstructs the wall
surfaces preserving their fine detailed writings, while
in the splatted image they are partially not visible any
more.
Comparing the quality of the reconstructed scene ge-
ometries, we observe major differences to other ap-
proaches. Rendering box splats inherently produces
staircase artifacts, and too large splat sizes destroy sil-
houettes of detailed geometry. In contrary, our screen-
space triangulation technique is able to reconstruct de-
tailed silhouettes, but is more sensible to noise in the
data, as often present in scanned point clouds. Figure 7
shows a scanned chandelier from the inside of a cathe-
dral.
The quality of the normal buffer obtained by our algo-
rithm strongly depends on the quality of the data. Fig-
ure 10 shows our resulting normal map on the armadillo
model, showing good results when comparing to the
preprocessed normal map. However, since we perform a
simple neighbor face-normal averaging in screen-space,
noisy geometry data results in bad normals.

4.2 Performance

All our performance tests were executed on a platform
with a Intel Xeon X5550 2.67GHz CPU with 72 GB
RAM, and a GeForce GTX480 GPU with 1,5 GB dedi-
cated video RAM.
Table 1 lists the time consumption in milliseconds of
the shader passes of our algorithm in the three differ-
ent fly-through scenes that are seen in our submission
video, for two different viewport sizes. The largest point
workload is given in the Domitilla catacomb scene, thus
noticeably affecting performance. As one would have
guessed, the triangulation pass that invokes the geom-
etry shader to triangulate all our neighbor triangles is
identified to be the biggest bottleneck in our whole
shader-pipeline. The second most time consuming op-
eration is given by the two neighbor search passes. Cer-
tainly, the number of points that are projected to the
framebuffer is also a performance criteria, but in our



REFERENCES 7

tests do not top the triangulation and neighbor search
passes. In each of our test scenes, we observe that the
viewport size is another critical factor for our perfor-
mance, which is a common issue for all screen-space
algorithms.

5 Limitations

The first major drawback of the screen-space nearest
neighbor search is that we subdivide the region around
a point only in screen-space. Thus we have no depth
resolution for storing the nearest world-space neigh-
bor. For viewing angles orthogonal to planar or moder-
ately curved surfaces, this method is of advantage, while
points on surfaces orthogonal to the viewing plane suf-
fer a higher probability of producing false triangles. In
most cases, this error is smoothed by the blending of the
rasterized triangles.

A second major problem of the algorithm is finding a
good estimation for the neighbor search radii. Despite
using an iterative adaptation mechanism for the search
radii, the initial search position of a new point is always
a compromise between image quality (use larger initial
search radii to reduce visible temporal coherence arti-
facts) and performance (use smaller initial search radii
to save unnecessary search computation time).

6 Conclusion and future work

We have introduced a new method that is able to render
interactive high-quality images from unprocessed point
clouds given only their position and color information.
In addition to the color image output, our method pro-
vides a normal map and a depth map which together
can be used for subsequent deferred shading passes.
In order to display closed surfaces, we use a screen-
space triangulation technique that interpolates the color
and the estimated normal information between neigh-
boring points. Our method is able to reconstruct high-
frequency surface textures, where simple splats would
produce much more blurry images or even unidentifi-
able textures.

Currently, our method works best on scenes with a point
density that does not already produce nearly dense im-
ages on its own, since such cases would result in mostly
pixel-sized triangles. For such situations, a hybrid ap-
proach that closes pixel holes on highly dense screen
regions by quick filtering while triangulating sparser re-
gions could be an interesting field for future research.

Other points for future improvements are a more sophis-
ticated determination of convenient search radii and the
investigation of different search radius adaptation mech-
anisms.

References
[GM04] GOBBETTI E., MARTON F.: Layered

point clouds: a simple and efficient mul-
tiresolution structure for distributing and
rendering gigantic point-sampled models.
Comput. Graph. 28, 6 (2004), 815–826.

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T.,
MCDONALD J., STUETZLE W.: Surface
reconstruction from unorganized points.
In SIGGRAPH ’92: Proceedings of the
19th annual conference on Computer
graphics and interactive techniques (New
York, NY, USA, 1992), ACM, pp. 71–78.

[MKC07] MARROQUIM R., KRAUS M., CAVAL-
CANTI P. R.: Efficient point-based ren-
dering using image reconstruction. In
Proceedings Symposium on Point-Based
Graphics (2007), pp. 101–108.

[PJW12] PREINER R., JESCHKE S., WIMMER M.:
Auto splats: Dynamic point cloud visual-
ization on the gpu, May 2012.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR
J., GROSS M.: Surfels: surface elements
as rendering primitives. In SIGGRAPH
’00: Proceedings of the 27th annual con-
ference on Computer graphics and inter-
active techniques (New York, NY, USA,
2000), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 335–342.

[SJW07] SCHERZER D., JESCHKE S., WIMMER
M.: Pixel-correct shadow maps with
temporal reprojection and shadow test
confidence. In Rendering Techniques
2007 (Proceedings Eurographics Sympo-
sium on Rendering) (June 2007), Kautz J.,
Pattanaik S., (Eds.), Eurographics, Euro-
graphics Association, pp. 45–50.

[SZW09] SCHEIBLAUER C., ZIMMERMANN N.,
WIMMER M.: Interactive domitilla cat-
acomb exploration, Sept. 2009.

[WS06] WIMMER M., SCHEIBLAUER C.: Instant
points, July 2006.



8 REFERENCES

Scene fly-through Mayan Pyramid Mayan Pyramid Domitilla Catacomb Domitilla Catacomb Armadillo Armadillo
Viewport size 1280x600 800x600 1280x600 800x600 1280x600 800x600
Reproject Depth Map 0.9 0.7 1.2 0.8 0.7 0.4
Project Points 1.0 1.0 11.8 11.3 0.4 0.5
Neighbor Search Pass 1 9.4 5.6 34.1 27.0 3.1 2.8
Neighbor Search Pass 2 8.3 5.0 23.0 19.8 2.9 2.4
Normal Estimation 1.2 0.8 2.0 1.3 0.6 0.6
Search Radii Feedback 4.3 3.4 6.1 3.6 4.8 3.0
Triangulation 15.9 11.1 27.9 18.9 12.3 7.9

Table 1: Listing of the time consumption of the individual shader passes of our algorithm in ms for the three
scenes at different viewport sizes.

Figure 6: Deferred shaded phong illumination of the
pyramid point cloud model under different light posi-
tions.

(a) precalculated splat size

(b) screen-space triangulation

Figure 7: A complex-geometry scan from a chandelier,
rendered with with precalculated splat sizes and with
screen-space triangulation. Note that the triangulation
approach is much better suited to reconstruct even diffi-
cult silhouettes in point clouds.



REFERENCES 9

(a) precalculated splat size

(b) screen-space triangulation

Figure 8: Comparison between our approach and a
precalculated splat size rendering in the domitilla cat-
acomb. Notice the writing on the wall in the lower right
section on the image.

Figure 9: A scanned pillar point cloud rendered with
an empirical splat size by [SZW09] (left), a manually
chosen optimal fixed plat size (center), and our image
reconstruction approach (right).

(a) preprocessed normals ren-
dered as splats

(b) screen-space triangulated nor-
mal estimations

Figure 10: Comparison between preprocessed normals
in a point splat rendering (left), and the normal map
retrieved with by our screen-space triangulation tech-
nique(right).


