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Abstract

Mapping and navigation applications on mobile devices such as smart phones or tablets are
increasingly popular. Modern maps are often rendered directly from vector data. Since the
performance of a previous CPU-based map renderer was unsatisfactory, a hardware accelerated
map rendering prototype for mobile devices based on OpenGL ES 2.0 was created. A novel
hybrid rendering architecture is introduced to combine the advantages of tile-based and true
real time rendering solutions. The architecture consists of a tile server that renders base map
tile images and a client to display them. The new third component, the post-processor, draws
dynamic map features such as icons and text above the tiles in real time, enabling a 3D fly-over
mode. All components run inside the same process directly on the device. For the rendering
of lines, an important map feature, a new rending algorithm was developed, enabling to draw
lines of arbitrary width with one of three different line cap styles. Additionally the line can be
stippled with a user-defined pattern where each line dash is rendered with the selected cap style.
Antialiasing of the line is supported with an arbitrary circularly symmetric filter kernel of user-
definable radius. To accelerate icon rendering, a texture atlas is used to store the icons, and a
simple but effective packing algorithm has been developed to generate the atlas online.
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Kurzfassung

Karten- und Navigationsprogramme auf Mobilgeräten wie Smartphones oder Tablets sind be-
reits weit verbreitet. Moderne Applikationen rendern die Karten oft direkt von vektorisierten
Daten. Aufgrund unzufriedenstellender Performance eines früheren, CPU-basierten Renderers,
wurde ein hardwarebeschleunigter Map-Rendering Prototyp für Mobilegeräte auf der Basis von
OpenGL ES 2.0 erstellt. Eine neuartige, hybride Architektur, die die Vorteile von Tile-basierten-
und Echtzeit-Renderern vereint, wird vorgestellt. Diese Architektur besteht aus einem Tile Ser-
ver, der Tiles für die Basiskarte rendert, und einem Client, der diese darstellt. Die dritte, neue,
Komponente der Architektur, der Post-Processor, ist in der Lage dynamische Daten wie Icons
oder Text in Echtzeit über die Basiskarte zu legen, was einen 3D Modus ermöglicht. Alle drei
Komponenten werden in einem Prozess direkt auf dem Endgerät ausgeführt. Um Linien, wel-
che bei der Kartendarstellung unumgänglich sind, darzustellen, wurde ein neuer Rendering-
Algorithmus entwickelt, der es möglich macht, Linien von beliebiger Breite zu rendern und mit
einem von drei Linienabschlusstypen zu versehen. Zusätzlich kann die Linie strichliert werden,
wobei jeder Teilstrich mit dem aktuell gewählten Linienabschlusstyp gezeichnet wird. Antialia-
sing von Linien wird mit Hilfe eines beliebigen rotationssymmetrischen Filters von wählbarem
Radius ermöglicht. Um das Rendern von Icons zu beschleunigen wird ein Texture Atlas verwen-
det und es wurde ein einfacher aber effektiver Algorithmus zur Erstellung und Organisation des
Atlas entwickelt.
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CHAPTER 1
Introduction

1.1 Background and Motivation

In recent times, the broad availability of Global Navigation Satellite System (GNSS)1-equipped
handheld devices has paved the way for mobile mapping applications. Previously, GNSS-
supported navigation has only been possible with dedicated devices, mostly used in automotive
transportation. In contrast to those dedicated devices, many smart phone owners have their de-
vice with them most of the time, so navigation can also be used while walking or using public
transportation, as a replacement for a printed map or a city guide. To display a map on a mobile
device, a raster image of the visible portion of the map is needed; mapping applications differ in
the way this image data is aquired. There are two approaches to solve this task:

• Pre-rendered raster images, organized in a tile pyramid (see Section 2.2.1 for details)

• Vector maps

Pre-rendered images are usually stored online on a tile server and downloaded by the map-
ping application, requiring an active internet connection. Because of the limited storage ca-
pacities of mobile devices, storing the images locally on the device is usually not feasible. An
advantage of this approach is that displaying the downloaded tile images is a quick and easy
task, but the fact that an internet connection is necessary has a disadvantage: a mobile data con-
nection might not always be available or it might be very expensive, for instance when traveling
to a foreign country. To avoid this, applications that use vector maps can store the map data
locally, because a vector map needs only a fraction of the storage needed to store pre-rendered
images. The raster images needed to display the map on the screen are then created directly on
the mobile device. A disadvantage of this method is that generating images from the vector map
is a difficult task – especially when the computational capabilities of mobile devices are consid-
ered. At the same time, new possibilities arise: the map style can be changed (for instance to a

1e.g. GPS, GLONASS
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night-mode), features can be displayed or hidden dynamically, and the map can be rotated and
tilted while the text labels stay upright.

Another strength of many modern handheld devices like smart phones or tablets is graphics
processing. Mobile gaming is an ever-increasing industry and the graphics hardware present
in current generation smart phones can be compared to what was state-of-the-art on desktop
computers less than ten years ago2. However, graphics processors are not designed to render 2D
vector graphics; they are good at rendering 3D scenes with complex objects and sophisticated
lighting.

Given the processing power of those graphics processors and the task of map rendering, the
obvious next step is to trick them into doing what they were not made for: vector graphics. To
do so, the problem of drawing vector graphics has to be transformed into a rendering problem
that can take advantage of the structure and strengths of a mobile graphics processor.

This thesis was written in cooperation with a Viennese company, Ulmon GmbH, who devel-
oped a CPU vector rendering library for their iOS applications; the implementation, this work
is based upon, will eventually be used in many of their products. Ulmon GmbH products use
OpenStreetMap data in their mapping products, and since the proposed implementation was
designed to be compatible with their architecture, this data source was also used for this thesis.

1.2 Problem Statement and Aim of this Work

The main task of the presented work is to create a prototype of a hardware accelerated rendering
library to showcase that drawing vector graphics is possible using mobile graphics processors.
Outside of the scope of this work, the prototype will be tuned and extended and eventually
released. To use the graphics processor, standardized APIs are implemented in the graphics
driver; the most widely used one being OpenGL ES, a subset of OpenGL on desktop computers,
optimized for mobile graphics. Due to its wide availability, OpenGL ES 2.0 was chosen; the
newest version, OpenGL ES 3.0, is not yet supported by any devices.

Graphics processors are optimized to handle geometry that consists of a large number of
triangles. Unfortunately, geometry may be specified in a much less restricted way in vector
graphics. Common geometry types are paths, consisting of line segments and/or curves; and
shapes, which are often implemented as a closed path. A path can be decorated with various
paints, which may have gradients, icons, dash patterns and so on. The overall challenge of
this work is to translate the vector geometry into triangle-based geometry, so that the graphics
processor can render it efficiently.

The main questions researched in this thesis are in what ways the traditional tile-based
structure of interactive map services can be modified to enable features like map rotation and a
3D mode and whether and how it is possible to simulate a vector rendering engine like Apple’s
Quartz 2D using the tool set provided by a 3D graphics API like OpenGL ES. The new hybrid
architecture is presented as a way to answer the first part of this question; for the second part, a
number of different methods has been developed, which are described in the next section.

2Comparing the texture fill rate – the PowerVR SGX543MP4 used in the Apple iPad 3 and iPhone 5 achives
1900MT/s; a 2005 NVidia GeForce FX Go 5700 is able to do 1800MT/s
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1.3 Contributions

In this work, methods that cover various topics of computer science and real time rendering
are presented, some of which extend previous work to enable new features. Those methods are
quickly outlined in this section.

• HYBRID RENDERING ARCHITECTURE: To combine the advantages of tile-based and
true realtime renderers, an architecture that splits a map into a static base map and a set
of dynamic features is presented. The base map is rendered tile-based and the dynamic
features are then overlayed to provide good visibility and readability in all map rotations
and scales. No such architecture was previously presented in literature.

• MULTI-TILES: To avoid redundant loading operations, the novel concept of multi-tiles is
introduced: A multi-tile is a virtual tile covering a square area of actual tiles. Multi-tiles
always have power-of-two dimensions and addresses divisible by the side length of the
square they cover so that each tile has a unique multi-tile it is assigned to.

• LINE RENDERING: An algorithm to render line strips of arbitrary width is developed.
Independently from the line geometry, the line can be decorated with three different line
cap styles and a user-defined stipple pattern can be applied to the line. Each dash is then
rendered with the selected line cap style; additionally the line is fully antialiased with
an arbitrary circularly symmetric filter. While rendering antialiased lines was previously
possible, rendering of line strips and correct handling of line caps for every single dash is
a new contribution.

• TILE SELECTION: To determine the tiles that are visible in a camera with perspective pro-
jection, the view frustum of the camera is projected to the map and a polygon rasterization
algorithm is used to determine all tiles touched by the resulting trapezium. This method
specifically exploits the fact that the map is organized in tiles to get an exact set of the
covered tiles in contrast to the approximate solution of previous clipmap approaches.

• TEXTURE ATLAS PACKING: To speed up rendering of icons, the icon images are cached
in a texture atlas. A novel HARMONIC-inspired [15] algorithm is presented that packs the
icons into the texture atlas using a quadtree structure. While not providing better storage
efficiency than existing online packing algorithms, the method is extremely simple and
performs similar to HARMONIC because the icons are small and all similar in size.

1.4 Structure

The presented work is structured into 5 chapters: In Chapter 1, “Introduction”, a short overview
on the background of this thesis and on the motives for creating a hardware-accelerated map
renderer is given, novel contributions are outlined and the structure of the thesis is currently
being presented.

Chapter 2, “Related Work”, gives details about the technological foundations this work is
based upon, introduces Graphics APIs, gives a primer on geographical projections and map
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rendering and then presents previous scientific work related to the contributions of this thesis:
2D packing algorithms, line antialiasing methods and several line dashing implementations are
described and an overview on packing algorithms is given. Polygon tessellation and rasterization
algorithms are introduced in the end of this chapter.

In the next Chapter, “Implementation & Own Contribution” (3), the rendering library that has
been implemented as a basis for this thesis is presented in detail, starting with the development
environment, the data format and an overview on the general architecture. Then, the four parts
of the implementation are described, and relevant methods and algorithms are put in relation
with the scientific work presented in Chapter 2.

In Chapter 4, “Results”, the performance of the renderer is compared to the previous im-
plementation in terms of speed, features and quality. It is shown that the proposed rendering
library is able to render tiles much faster while providing more features and some minor quality
improvements. Afterwards, the architecture of the system is compared to out-of-core rendering,
and the line drawing algorithm is analyzed with regard to previous line rendering methods.

Finally, Chapter 5, “Conclusions”, sums up the presented work and the most challenging
parts of the implementation. Some lessons that have been learned during the implementation are
briefly presented and, as a last part, remaining tasks to make the renderer a release candidate are
named and ideas on how they could be implemented are discussed.

4



CHAPTER 2
Related Work

The aim of this chapter is to provide an overview over the technologies and techniques used, as
well as to present other scientific work related to the topic of this thesis. First, the technological
foundations will be introduced.

2.1 Graphics APIs

In this section, the graphics API used in the proposed implementation, OpenGL ES 2.0, will be
described along with a brief description of its “parental” API, OpenGL, and a short part about
OpenVG, an alternative API. How to use OpenGL ES 2.0 with EGL (or EAGL on the iOS
platform) is outlined at the end of this section.

2.1.1 OpenGL

OpenGL is a platform-independent application programming interface (API) for 3D graphics.
On desktop computers, two major 3D APIs exist, DirectX and OpenGL. DirectX is only avail-
able on Microsoft Windows and Microsoft’s game consoles, while OpenGL can be used on many
different platforms, including Windows, Linux, MacOS X and various other UNIX-flavored op-
erating systems. OpenGL was introduced by Silicon Graphics Inc. (SGI) in 1992 and is currently
managed by the Khronos Group [42]. Since then, OpenGL has evolved to its current 4.3 version.
The OpenGL API is implemented by hardware vendors according to the OpenGL specification;
applications that use OpenGL link against a vendor-supplied library.

OpenGL is designed as a state machine and most of the API-calls modify the state in some
way. The state is stored in the OpenGL context, that means if, for instance, a feature is enabled
with a glEnable call, it stays enabled until it is disabled with a glDisable call or the
OpenGL context is destroyed. When a context is created, it is initialized to a default state.

Applications that use OpenGL include some computer games like the Quake and Doom
series, graphical user interfaces (e.g. on MacOS X) as well as digital content creation tools
(Maya, Softimage|XSI) [23].

5
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Figure 2.1: OpenGL ES 2.0 Graphics Pipeline (drawing from [23])

2.1.2 OpenGL ES

The wide acceptance of the OpenGL API and the availability of graphics processors in hand-
held devices made the introduction of a special OpenGL version for those devices reasonable.
OpenGL ES was created by streamlining the OpenGL API, duplicate functionality was removed
and the constraints of mobile devices, i.e. CPU power, memory and memory bandwidth, were
taken into account. While OpenGL ES is a subset of OpenGL, compatibility to OpenGL was
preserved with the goal that any application that uses only the reduced subset of OpenGL can
also run on OpenGL ES [23].

Four API versions have so far been released by the Khronos Group: OpenGL ES 1.0 and 1.1
are derived from OpenGL 1.3 and 1.5, respectively, and implement a fixed-function pipeline;
OpenGL ES 2.0 was written against OpenGL 2.0 and introduced a programmable pipeline. In
contrast to OpenGL 2.0, where both the fixed-function- and the programmable pipeline are avail-
able, OpenGL ES 2.0 does not have a fixed-function pipeline anymore and is therefore incom-
patible to OpenGL ES 1.x, though the fixed-function pipeline can be simulated using shader
programs. OpenGL ES 3.0 was recently introduced at SIGGRAPH 2012 and is derived from the
OpenGL 3.3 and 4.2 specifications [13].

This thesis uses OpenGL ES 2.0 due to its wide hardware support at the time of writing.

2.1.3 OpenGL ES 2.0

The OpenGL ES 2.0 rendering pipeline can be seen in Figure 2.1. The programmable stages of
the pipeline are shaded in gray; the dashed arrow denotes an optional feature, which does not
have to be supported by a hardware vendor. The different stages of the pipeline will now be
discussed briefly in the order they occur. However, this section is only intended to give a quick
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Figure 2.2: OpenGL ES 2.0 Vertex Shader (drawing from [23])

overview, many details have therefore been omitted. For more details, please refer to Munshi
et al. [23].

Vertex Shader

In computer graphics, a point, either on its own or as a part of a larger primitive like a line
or a triangle, is called vertex. A vertex has a position in 3D space and can be accompanied
by attributes, e.g. a normal vector, texture coordinates or a vertex color. A single vertex with
all its attributes is the input to the vertex shader, the first programmable stage of the rendering
pipeline. Since there is no fixed-function pipeline in OpenGL ES 2.0, it is mandatory that the
application uploads, compiles, links and activates a vertex shader program, written in the C-like
OpenGL Shading Language (GLSL). When a draw call is sent by the application, the vertex
shader program is run for every vertex of the active vertex array and the attribute variables of the
program are initialized with the vertex attributes of the current vertex. A vertex shader usually
needs to have at least one attribute variable: the position of the vertex.

Additionally, uniform variables can be passed to a vertex shader to represent constant data,
like the position of the light source in a scene. As shown in Figure 2.2, a vertex shader might
also be able to access texture memory using samplers (special uniform variables representing
textures), but this feature is not enforced by the specification.

The output of a vertex shader is again a vertex, but it does not have to consist of the same
properties as before the execution of the vertex shader. There is no fixed mapping from input-
vertex-properties stored in attribute variables to output-vertex-properties stored in varying vari-
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Figure 2.3: OpenGL ES 2.0 Fragment Shader (drawing from [23])

ables. These variables are later interpolated for each generated fragment in the rasterization
stage.

Primitive Assembly

An OpenGL ES primitive is either a line, a point sprite or a triangle. Depending on which prim-
itive mode is currently in use, the primitive assembly stage takes one, two or three vertices (i.e.
the varying variables written by one/two/three execution(s) of the vertex shader) and constructs
a primitive. The primitive is now tested against the view frustum; if it is completely outside of
the frustum, it is discarded, if it is partially outside, it is clipped. The next step is to transform
the primitive into screen coordinates and optionally cull it based on its orientation (backface-
culling). If the primitive is not culled, it is passed to the rasterization stage.

Rasterization

In this stage primitives are transformed into fragments. A fragment can be seen as a data struc-
ture consisting of a pixel position on the screen, a depth value and auxiliary attributes defined by
the varying variables of the vertex shader. Each primitive is rastered into a number of fragments
and each attribute (written into the varying variables by the vertex shader) is interpolated accord-
ingly. The rasterization itself depends on the primitive type, but the result of the rasterization
stage is always a set of fragments for each primitive.
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Figure 2.4: OpenGL ES 2.0 Per-Fragment Operations (drawing from [23])

Fragment Shader

The second programmable part of the rendering pipeline is the fragment shader (Figure 2.3) – as
for the vertex shader, an OpenGL ES 2.0 application cannot run without a fragment shader pro-
gram in place. The program is executed once for each fragment the rasterization stage creates.
The high-level input of a fragment shader is a fragment, encoded in a number of varying vari-
ables. Like the vertex shader, the fragment shader may have uniform variables and samplers, but
in contrast to the vertex shader stage, the availability of samplers in the fragment shader stage is
guaranteed by the specification. The output of the fragment shader is a single four-dimensional
vector – the final color of the fragment. Note that there can be an arbitrary number of fragments
per pixel, because each primitive that is rasterized may touch any pixel on the screen. The final
color depends on the ownership-, scissor-, stencil- and depth tests, as well as on blending and
dithering; stages that are described in the next section. Generation of too many fragments, for
instance due to excessive overdraw, can impact performance and must be avoided.

Per-Fragment Operations

After the fragment shader, a number of per-fragment operations take place, as can be seen in
Figure 2.4: the pixel ownership test determines, whether the pixel in question currently belongs
to the OpenGL context or if it is hidden by, for instance, another window. This is the only test
that cannot be manipulated by the application, all following stages can (at least) be turned on and
off. In OpenGL it is possible to set “scissors”, a rectangular mask to prohibit framebuffer writes
outside of the mask. The scissor test queries the mask and discards the fragment if the scissor
test fails. The stencil and depth tests read the stencil and depth buffer, respectively, the function
used to decide whether to discard the fragment can be defined by the application. Blending
uses a function to mix the color of the current fragment with the color of the framebuffer at the
fragment’s position; again the function can be set by the user. Finally, dithering can be used to
improve image quality on displays with a reduced color space by simulating unavailable colors
with patterns of available colors.

When the per-fragment operations stage is completed and the fragment has not been dis-
carded by any of the tests, the fragment color, depth and stencil values are written to the color,
depth and stencil buffer, respectively. However, none of those buffers is required to exist and

9



Figure 2.5: The OpenVG Tiger reference image

writing to them can be controlled by write masks (e.g. for disabling depth writes for a certain
object).

Finally, the contents of the framebuffer may be read back into the application by another set
of API calls, however the depth and stencil buffers cannot be read back.

2.1.4 OpenVG

Another API managed by the Khronos Group is OpenVG, the Open Vector Graphics library.
The first stable version, 1.0, was released in 2005 [37] and has evolved into version 1.1, released
in 2008 [14] since then. The OpenVG API is very similar to OpenGL ES 1.x, but instead of 3D
graphics, OpenVG focuses on 2D vector graphics. Rost and Rice [37] mention SVG viewers,
portable mapping and e-book readers as target applications, which make OpenVG seem optimal
for the task of displaying hardware accelerated vector maps on mobile devices. The fact that
OpenGL ES 2.0 was preferred over OpenVG in this thesis has several reasons.

• Hardware support for OpenVG is currently very rare. None of the Apple iOS devices
that have to be supported, due to the cooperation with Ulmon GmbH, have hardware
accelerated OpenVG. There are, however, mobile Graphic Processing Units (GPUs) with
OpenVG support, like the Qualcomm Adreno GPU that is used in many Android devices
[34]. The Android OS does not provide any support for OpenVG though.

• Software Renderers are not fast enough yet. Lee et al. [16] provided a reference imple-
mentation of OpenVG in 2007 which rendered the Tiger reference image (Figure 2.5) in
3.6 seconds on a fairly modern desktop computer. Although being about twice as fast as
the previous reference implementation, this is not suitable for realtime performance on
mobile devices.

10



• Implementing the OpenVG API on top of OpenGL ES 2.0 was considered not feasible
as only a small subset of OpenVG would be actually used and the complexity of another
layer of middleware was to be avoided. However, some of the algorithms presented in this
work could very well be used to provide such an implementation.

2.1.5 EGL

To issue OpenGL commands, a valid OpenGL context is needed. With regular OpenGL, the
context is created using platform-dependent APIs like WGL on Microsoft Windows or GLX for
the X Windowing System. With OpenGL ES, there is a Khronos API, EGL, to handle this. EGL
is capable of querying the available display devices and initializing them. Rendering surfaces
can be created according to the display’s capabilities and can be shared among multiple Khronos
APIs (e.g. OpenVG and OpenGL ES). Last but not least, OpenGL contexts can be created and
attached to a rendering surface.

Rendering with multiple OpenGL contexts

Since OpenGL is a state machine, it is not thread safe, so rendering must always occur single
threaded. To overcome this limitation, it is possible to create multiple OpenGL contexts (each
with its own state) and set the desired context to be current on the current thread. By itself, this
is not very useful, because the two OpenGL contexts are not related in any way and rendering
to the same rendering surface will lead to undefined behavior. It is, however, possible to make
multiple OpenGL contexts shared, meaning that they share the same “address space” so that
all data that one context creates is available in all other contexts. A common use case for this
is to have a single rendering thread that draws to the back buffer and one or multiple threads
that create content. Most of the time, this is done by uploading textures that the main rendering
thread can then use. That way, costly operations that would otherwise lead to low frame rates in
the main loop can be done in the background, which is exactly the approach that the proposed
system uses.

EAGL

Since most of the implementation for this thesis was done on the Apple iOS platform, the
EAGL API had to be used instead of EGL. EAGL is Apple’s adaption of EGL, implemented
in Objective-C. Unfortunately, it is not possible to create OpenGL contexts in C/C++ code on
iOS, so this has to be done outside of the rendering library.

2.2 Map Rendering

This section will introduce the basics of coordinate systems and map projections before describ-
ing the OpenStreetMap project that is used as a data source for this work. Next, two OpenStreet-
Map renderers will be presented as an example of how OpenStreetMap data can be converted to
a map. As a last topic, the CPU-based rendering library to be replaced by this implementation is
briefly outlined.
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Figure 2.6: A loxodrome visualized on the globe (drawing from [20])

2.2.1 Geographic Coordinate Systems

A geographic coordinate system is used to uniquely address any point on the surface of the earth.
Because the earth is not a perfect sphere, its shape has to be approximated mathematically. The
most common approximation is given in the World Geodetic System 1984 (WGS84) [22]; the
WGS84 contains a reference ellipsoid with the main axes pointing at the poles and at the prime
meridian. The size and shape of the ellipsoid are defined by the semi major axis length of
a = 6378137.0m and a reciprocal of flattening 1/f = 298.257223563.

The most widely used addressing scheme is the latitude/longitude (lat/lon) scheme. As there
are multiple reference ellipsoids, a position given by latitude and longitude is only unique if the
used reference ellipsoid is known. This thesis exclusively uses the WGS84 reference ellipsoid
because it is widely accepted; it is, for instance, used by the GPS system. The latitude (φ)
of a point is the angle between the equatorial plane and the normal of the reference ellipsoid
passing through the point and therefore ranges from −90◦ at the south pole to +90◦ at the
north pole. Any point with a latitude of 0◦ lies on the equator. The longitude (λ) of a point
is the angle between the plane containing the prime meridian and the normal of the reference
ellipsoid passing through the point; it therefore ranges from −180◦ to +180◦. Points with a
longitude of −180◦ lie on the same meridian as points with a longitude of +180◦. The point
with (φ, λ) = (0◦, 0◦) lies in the Atlantic ocean, about 625km south of Ghana.

The Mercator Projection

Since the earth is (approximately) ellipsoidal, it is not possible to unroll its surface to a flat plane
without distortion. Methods that describe this unrolling process are called map projections. An
old and popular map projection is the Mercator projection.

To understand why this particular projection was much needed at its time, we have to look
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Figure 2.7: A loxodrome and a great circle visualized on a Mercator projected map. Note that
the great circle is the shorter route (image from [36]).

at how navigation in the sixteenth century worked. Sailors were equipped with not much else
but a compass and had no means of determining their current location on the sea. The easiest
way of navigating under such circumstances is to have a fixed course (e.g. 270◦ for west) and
constantly sail this direction. Such a direction, on a vessel, is called a “bearing”. A ship that
cruises with a fixed bearing crosses each meridian at exactly the same angle; the course is then
called a loxodrome, or a rhumb line1[20]. It must however be noted that this course is not a
straight line, and not the shortest possible course either, which is denoted by the great circle, so
called because great circles are the largest circles one can draw on a sphere; the shortest possible
path between to points on a sphere is always denoted by the great circle passing through both
points. If a loxodrome is plotted onto a globe, it becomes a spiral towards one of the earth’s
poles (visualized in Figure 2.6), let alone two exceptions: a loxodrome with a bearing of exactly
east or west will never reach a pole and a loxodrome with a bearing of exactly north or south
will reach the pole on the shortest possible path. Only in those two special cases the path along
the loxodrome will be equally long as the path along the great circle; for all other cases the
loxodrome is a detour. This fact can easily be understood when a loxodrome and a great circle,
both passing through the same two points, are plotted onto a globe – as already mentioned, the
loxodrome will end up as a spiral to one of the poles, connecting the two points with an arc,
while the great circle will connect the points on the shortest possible way.

A special feature of the Mercator projection is that loxodromes can be drawn as straight
lines. While the great circle is in fact the shorter course, the loxodrome is much easier to sail
because of its constant bearing. To combine both the short way and the ease of navigation,
modern sailors often approximate the great circle with a series of loxodromes. Figure 2.7 shows
both a loxodrome and a great circle plotted on a Mercator projected map – the loxodrome looks

1Loxodrome (rhumb line): “A line that intersects all meridians at the same angle” [20].
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Figure 2.8: A world map in Mercator projection with a ten-degree gratitude (image from [36]).

“deceptively shorter than either the great-circle route or its multi-rhumb approximation” [20].
Following the definition of a loxodrome (it passes all meridians at the same angle), it can be seen
that meridians must be parallel straight lines on a Mercator projection; it can also be understood
that the poles are extended into infinity. Figure 2.8 shows a world map in Mercator projection,
overlayed with a grid of a constant distance of ten degrees between adjacent lines (a ten-degree
graticule). The top-most parallel that is shown is λ = 70◦. The severe area-enlargement towards
the poles can easily be explained: the circumference of the earth at the 60◦ parallel is about half
of the circumference along the equator, but since all meridians must be parallel in a Mercator
projection, distances along the 60◦ parallel must be drawn twice as large as distances along
the equator. This leads to misconceptions, for instance Greenland looks larger than China even
though it is in fact about 4.4 times smaller. The Mercator projection has been heavily criticized
because many developing countries in the tropics look small compared to industrial nations in
the temperate zone [20].

The “Google Projection”

The Google projection, or “spherical Mercator projection” is a special case of the Mercator pro-
jection and has become popular because both Google Maps and Bing Maps use it in their online
services. It uses lat/lon coordinates according to the WGS84 reference ellipsoid, but projects
the coordinates as if the reference ellipsoid was a sphere with the semi-major axis length of the
WGS84 reference ellipsoid as radius. This simplification is done to decrease computational com-
plexity. A typical world map that uses the Google projection has its origin at (φ, λ) = (0◦, 0◦)
with the x-axis pointing east and the y-axis pointing north. Due to the aforementioned simpli-
fication, the conversion between latitude/longitude and map units (meters) is very simple with
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spherical trigonometry [1]:

x = lon ∗ 20037508.34/180.0
y = log (tan ((90 + lat) ∗ π/360)) / (π/180)
y = y ∗ 20037508.34/180.0

(2.1)

lon = (x/20037508.34) ∗ 180
lat = (y/20037508.34) ∗ 180
lat = 180/π ∗ (2 ∗ arctan (exp (lat ∗ π/180))− π/2)

(2.2)

Since the poles cannot be displayed in a Mercator-projected map, the maximum plotted
latitude has to be defined – for simplicity, both Google Maps and Bing Maps use φ = 85.05113◦,
because at this value the map becomes exactly square.

The Tile Pyramid

Traditionally, online mapping services use pre-rendered images to display maps. To reduce the
amount of transferred data, the map is split into tiles (square images of equal size) that are seam-
lessly displayed next to each other. Additionally, zoomlevels are introduced because the number
of tiles would otherwise quickly increase when zooming out. The tiling system that is used by
all major online map providers (Google Maps, Bing Maps, Yahoo Maps, OpenStreetMap, Open-
AerialMap) [29] covers the whole world in a single tile at level 0 and quadruples the number
of tiles in each level while the resolution of a tile image stays the same at all times. A specific
tile can then be addressed with an integer triple (x, y, zoomlevel), with (0, 0, zoomlevel) being
the north-west tile of zoomlevel. That way a tile pyramid (Figure 2.9) results, where each level
consists of 2level × 2level tiles, which can be exploited to easily find the parent or the children of
a given tile (even across multiple levels) by simply bit-shifting the tile coordinates. The number
of zoomlevels differs, in this thesis the most zoomed-in level is level 18.

2.2.2 OpenStreetMap

Founded in 2004, the OpenStreetMap project aims to provide “a set of map data that’s free to
use, editable, and licensed under new copyright schemes” [11]. Like Wikipedia, OpenStreetMap
is community driven; every registered user is allowed to edit and extend the map. Much of the
map is generated by uploading GPX (GPS eXchange) tracks, but out-of-copyright or public-
domain maps have also been imported. Another data source are aerial images: map features are
then manually tracked by users; the map of Baghdad, Iraq, was created that way, resulting in
the most detailed online map of the city in 2008 [11]. Yahoo Maps and Bing Maps have both
allowed the OpenStreetMap project to access their aerial images. Rendered tile images and the
underlying data are available through public APIs, with a creative commons license making even
commercial usage possible.
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Figure 2.9: The first five zoomlevels of the tile pyramid. Tile addresses of the form
(x, y, zoomlevel) are given for three sample tiles (image from [36]).

Data Format

The underlying data format of the OpenStreetMap consists of points (nodes) that contain a time
stamp, latitude/longitude and user information [11]. Apart from points, two additional feature
types exist:

• Lines (ways), consisting of a list of references to nodes. Open ways denote linear features.

• Polygons (areal features), stored as a single, closed way.

Each node and way can additionally store an arbitrary number of key=value pairs. While
both the key and the value are allowed to be anything, there is a set of keys and values that have
become common; most users stick to these attributes.

The data can be downloaded in various ways and formats, most notably the planet.osm
format containing all the data of the OpenStreetMap project, encoded in an XML variant. A
planet.osm is released weekly and, at the time of writing, it is about 22GB of compressed data
(250GB uncompressed) [26].

2.2.3 Slippy Maps

“Slippy Map” is a term used to describe interactive map interfaces like Google Maps [11]. It is
“slippy” because a seemingly endless map can be slipped into view from being hidden outside
of the screen (like a huge printed map that slides into the view of a camera mounted above a
table). Slippy maps are usually implemented using a thin client, for instance, a web application
that downloads tile images from a map server; with the tiles being organized as a tile pyramid as
described in Section 2.2.1. OpenStreetMap uses such a slippy map for its primary web interface,
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driven by the open source AJAX library OpenLayers [11]. As usual, tiles are stored online on a
tile server; the programs used to render these tiles are described in the following section.

2.2.4 OpenStreetMap Renderers

There are various map renderers for OpenStreetMap data, designed and used as tile renderers.
While the proposed implementation has a different scope (it is not an actual tile renderer, but a
real-time renderer), its design is similar to some existing renderers, especially to Mapnik. The
two most important of those renderers will now be described in a few words.

Osmarender

Osmarender is a set of XSL2 transformations to transform OpenStreetMap data, given in the
XML-like format of the planet.osm files, to the SVG3 file format. Osmarender can therefore not
be used as a standalone application; an XSL processor is needed to execute the transformations.
There is an Osmarender compatible implementation, or/p4, written in Perl. It does not need an
XSL processor, because the transformations are done directly in Perl and can for this reason be
used as a standalone application. The Tiles@home project, a distributed tile rendering service,
used or/p to render tiles for the OpenStreetMap project. It must however be noted that the output
of both Osmarender and or/p is not a raster image but a vector image – to produce raster tile
images, an additional SVG renderer is needed.

Mapnik

Mapnik is the main tile renderer used for the OpenStreetMap website. The architecture of the
proposed implementation mostly follows the Mapnik architecture, so the most important struc-
tures are now briefly described. Mapnik uses a special stylesheet to store the map style, con-
sisting of a set of rules, each with one or several symbolizers. Rule groups are ordered lists of
rules. Each item on the map is represented by a feature, with each feature having exactly one
rule group attached. When a symbolizer is executed on a feature, it reads information from the
feature and renders it according to its own specification. To render a feature, all rules from the
feature’s rule group are read and each rule is checked whether it must be applied on the cur-
rent zoomlevel. If the rule applies, each symbolizer of the rule is executed on the feature. This
process is illustrated in Algorithm 2.1.

For instance, if a street must have a casing in a different color than the fill color, the street is
first drawn in the casing color, then, a bit narrower, in the filling color. This duplicated drawing
can be encoded entirely in the stylesheet with the architecture described.

There are several types of symbolizers, each using a different set of attributes from a feature:

• LINE SYMBOLIZER: draws a line, probably dashed.

• LINE PATTERN SYMBOLIZER: draws a line with a repeated picture on it.
2Extensible Stylesheet Language
3Scalable Vector Graphics
4osmarender/perl
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input : A list of features to render and a stylesheet
output: A map image.

1 foreach Feature f do
2 foreach Rule r of the RuleGroup rg of f do
3 if appliesOnCurrentLevel(r) then
4 foreach Symbolizer s of r do
5 execute(s,f); //Implementation depends on type of s
6 end
7 end
8 end
9 end

Algorithm 2.1: Simplified Mapnik rendering algorithm

• POLYGON SYMBOLIZER: draws a color-filled polygon.

• POLYGON PATTERN SYMBOLIZER: draws a polygon with a repeated picture on it (e.g. a
tree to encode woods).

• POINT SYMBOLIZER: draws a point, either single colored or as a picture.

• TEXT SYMBOLIZER: renders text, either along a line, next to a point or in the middle of a
polygon.

• SHIELD SYMBOLIZER: renders shields, i.e. small text items inside an image border. Used
mostly for highways.

Mapnik is able to use two different rendering libraries to do the actual drawing: AGG5 and
cairo6, both of which are CPU-based vector drawing libraries.

2.2.5 The Ulmon GmbH libMapRenderer

As already mentioned, the implementation this work is based upon was written as a replacement
for another rendering library: libMapRenderer. The legacy engine is a pure tile-based renderer
that creates tile images directly on the mobile device; it was originally written for the iOS plat-
form, however, a not-feature-complete port to Android exists. A thin client uses a slippy map
view to display the tiles and manages a rendering queue that is used by the server thread. The
determination of the visible tiles is trivial, since only a non-rotating 2D view of the map is sup-
ported: the upper left and lower right tiles are calculated and the rectangle spanned by those two
tiles contains all visible tiles. On iOS, classes to do this are provided by the operating system,
on Android the mapsforge7 library is used. The general architecture is very similar to Mapnik;
the same notions of features, rules and symbolizers are used to render the map tiles. Like in

5Anti-Grain Geometry, http://www.antigrain.com
6http://cairographics.org/
7http://code.google.com/p/mapsforge/
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Mapnik, the actual drawing is outsourced to the Quartz 2D vector drawing toolkit or the AGG
library on iOS and Android, respectively, that means that all rendering is done on the CPU, the
GPU remains unused.

2.2.6 Other Popular Mapping Applications

Both smart phone operating systems Android and iOS have their own, vector based mapping
application, Google Maps and Apple Maps, respectively. The older of the two, Google Maps,
was originally released in 2007 as “Google Maps for Mobile”, a Java application compatible
to any Java ME enabled mobile device. At that time, the application could not display vector
maps but downloaded static tile images from a tile server. Since the release of Android in
2008, Google Maps was continuously extended, voice commands, traffic reports and support
for Google StreetViewTM were added in 2009. Vector based rendering was introduced in 2010.
Along with vector rendering, support for rendering transparent three-dimensional buildings was
introduced. By 2012, Google Maps applications are available on almost every smart phone
platform, including Blackberry, iOS, Nokia S60 and Windows Phone.

Apple Maps, released in September 2012, replaced Google Maps on iOS devices. The most
prominent feature, the satellite-image-enhanced 3D mode, was not well received by many cus-
tomers, as it contained lots of errors; for instance, the Brooklyn Bridge in New York looks as if
it was collapsed. Apple Maps is also criticized for lack of details and errors in the map data.

2.3 Out-of-Core Rendering

Out-of-core rendering describes the process of rendering large amounts of data, more specifically
data that is too large to fit into graphics memory, or not even into the main memory of a computer.
In this context, virtual texturing will be described, as it handles rendering very large textures,
a problem very similar to map rendering. A map can be seen as a single, very large texture
covering the planet. The following introduction to mipmaps, a fundamental concept in computer
graphics, will leads directly to the clipmap, the main data structure used in virtual texturing.

2.3.1 Mipmaps

Mipmaps where introduced in 1983 by Williams [52]. To achieve good visual quality of textured
3D objects, it is not always sufficient to evaluate a single texel8; often the texture must be
evaluated over a window of view-dependent shape. Evaluating such windows in realtime is
expensive, so they can be approximated using a prefiltered set of images, the mipmap. A mipmap
is calculated by repeated down sampling of the source image to half its size, resulting in a
pyramid with the source image as a base and a 1× 1 pixel image at its top.

At runtime, a floating point level in the mipmap pyramid is calculated for each texture lookup
– such that the screen-pixel-to-texel-ratio is 1:1. Since the mipmap pyramid has only discrete
levels, the level closest to the calculated level is then selected for the texture lookup. Alter-
natively, when doing trilinear filtering, the two adjacent levels are selected, evaluated and then

8Texture Element, a pixel in a texture image.
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Figure 2.10: Texel Access within a Mipmap (drawing from [48])

interpolated using the fractional part of the calculated level. This reduces a banding artifact at
the mipmap level change, especially visible when looking at planes at an acute angle. A view
down a long corridor with textured walls, floor and ceiling is often used to illustrate this artifact.

2.3.2 Clipmaps

A clipmap, as introduced by Tanner et al. in 1998 [48], is similar to a mipmap, except that only
a small portion of the whole mipmap actually resides in graphics memory. Tanner et al. aimed
at using a texture showing the whole world in satellite photos at 1m/pixel resolution, an image
being approximately 226× 226 pixels large. To do so, they built special hardware for the Silicon
Graphics Inc. InfiniteRealityTM machine proposed by Montrym et al. [21]. The usage of such a
huge texture is possible because of the observation that only a small part of a very large mipmap
will actually be used. Considering a mipmap with a 327682 texel base image on a 10242 pixel
screen, at most 10242 texels will be accessed from a mipmap level before the adjacent level is
used (except for trilinear filtering, where up to 20482 texels will be read). Figure 2.10 illustrates
the lookup inside a mipmap: consider the center diagram where all texture lookups hit exactly
level 1. Continuing our example, 10242 texels will be read from level 1. If the viewpoint moves
a little closer to the plane and trilinear filtering is activated, samples will be blended from the
levels 0 and 1, and the 10242 texels from level 1 map to 20482 texels in level 0.

A clipmap is defined as a mipmap where each level is clipped to a specified extent around
a specified center. Mipmap levels which are smaller than the specified extent are fully included
in the clipmap, resulting in an obelisk shape (Figure 2.11). The clipped levels form the clipmap
stack, the levels that are included fully, form the clipmap pyramid.

The clip size is defined statically based on the window size, the clip center has to be recalcu-
lated in each frame. A proper selection of the clip center is crucial for an efficient usage of the
clipmap; Tanner et al. [48] state that the selection is application-dependent, fly-over scenarios
with a narrow field of view need to set the clip center far away at the distance whereas appli-
cations where quick turns may happen (such as head-tracked virtual reality) should set the clip
center at the viewers foot position. After a new clip center has been calculated, the clipmap stack
needs to be updated (imagine the stack to become slanted) – the clipmap pyramid, however, is
kept at all times as a fallback if new data cannot be streamed into video memory fast enough.
Tanner et al. used a toroidal addressing scheme to be able to update only a small part of each
clipmap stack level. This addressing scheme calculates the actual texture coordinates from the
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Figure 2.11: A clipmap with its clipmap stack and clipmap pyramid (drawing from [48])

virtual texture coordinates by adding the current clip center and taking the modulo clip size from
the resulting value. As an offline preprocessing step, the whole mipmap is split into a tile pyra-
mid as described earlier in this chapter (Section 2.2.1). The tiles are then read into main memory
(as a second-level cache) and streamed into video memory when the clipmap stack needs to be
updated.

Almost ten years later, Crawfis et al. [8] stated that the necessary hardware support for
clipmaps was not present in a majority of the graphics cards and presented a clipmap imple-
mentation on consumer GPUs. Two methods for selecting the proper clip level at each pixel
as well as a variety of clipping algorithms to clip the texture coordinates to the clip map levels
were discussed, and an overview on the update cycle was given, which differs in details for the
different shader programs. Performance evaluation resulted in frame rates between 100 and 200
frames per second on state-of-the-art (2007) consumer level graphics hardware. The scene used
in the performance tests is a fly through scene over the San Francisco Bay, textured at 0.3m/texel
resolution.

In parallel to Crawfis et al., Seoane et al. [41] implemented a similar system by using only the
fixed-function pipeline; however a vertex shader can be used to calculate the texture coordinates
more efficiently. For each clipmap stack level, a single texture is used, each of which contains
mipmaps. While this causes redundant data to be held in graphics memory, it enables trilinear
filtering without doing it manually in a fragment shader. Beside the wasted memory due to
mipmaps for each clipmap stack level, the algorithm requires the actual geometry data to be
subdivided to match the texture tiles, an approach both Tanner et al. [48] and Crawfis et al.
[8] seek to avoid to decouple geometry from the texture. For certain applications, subdivided
geometry may be acceptable though, and Seoane et al. achieve good performance using their
algorithm.

A virtual texturing system similar to one used in a commercial game9 is described by Barret
[4], called Sparse Virtual Textures. This approach decouples the geometry from the texture;
the geometry can be completely arbitrary, and the texture coordinates stored with the geometry
reference the virtual texture as if it was not virtual. Barret introduces a novel way to determine
the texture tiles needed using a two pass approach: in the first pass, the whole scene is rendered,
but the fragment shader’s only output is the tile address needed at each pixel. To calculate the

9MegaTexturing in id Software’s Rage
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mipmap level of the virtual texture, the mipmap calculation of the hardware has to be simulated.
This can either be done by calculating the derivatives of the texture coordinates in screen space
or by querying the hardware for the mipmap level it would have selected in a texture lookup.
This is possible by using the OpenGL extension ARB_texture_query_lod [17]. An ad-
ditional advantage of directly querying the hardware for the mipmap level is that the mipmap
selection algorithm is not standardized by OpenGL, so different hardware vendors might use
different algorithms. The result of the first pass is read back to the CPU to update the tile cache,
which is implemented as a texture atlas, storing all tiles side by side. A texture atlas is a large
texture, usually used to minimize state changes (such as texture switches) by combining many
small textures into a single larger one. This tackles an important problem in modern rendering
applications, as state changes often severely slow down an application. Another popular method
of reducing state changes is to combine many small draw calls, such as very small objects, into
a single, larger, draw call. The notion of a clipmap is not present anymore in Barret’s approach;
instead the – in some aspects much simpler – analogy to virtual memory is used. A page table
texture, consisting of a single texel for each virtual texture tile, is used to store a pointer into the
texture atlas, to a tile that currently has data for the virtual tile. This tile in the texture atlas may
be the virtual tile itself, but it may also be any of its parents, if the virtual tile is not yet loaded
– that way it can be assured that a texture lookup will always yield correct data, even if it might
be from a coarser level; the coarsest level of the virtual mipmap (a single tile) is always held in
memory, similar to the clipmap pyramid in [48]. The page table itself also has mipmaps, each
storing pointers into the texture atlas for the virtual tiles of the corresponding mipmap level of
the virtual texture. In the second pass, the result from the first pass along with the page table
is used to transform the virtual texture coordinates into physical texture coordinates inside the
texture atlas and a normal texture lookup can be performed to yield the color of the fragment.
Tri-linear filtering can be accomplished manually in the fragment shader by querying both mip
levels of the virtual texture and combining them according to the fractional part of the mip level
(retrieved from the first pass).

Another modern virtual texturing system is described by Andersson and Göransson [2] for
the WebGL platform. Their implementation is very similar to the one described by Barret [4],
but since the texture tiles are streamed over the internet, loading a specific tile takes even longer
and an efficient management of the tiles is needed.

There are multiple approaches to optimize usage of the slow tile storage media; using the
main memory as a second-level cache as well as pre-fetching tiles is crucial for the performance
of a virtual texturing system. Although a tile that has not yet been fetched can easily be replaced
by a lower resolution tile, this is not desirable as it leads to a visible loss of image quality [48].
There are multiple strategies for determining tiles that are likely to be needed in the upcoming
frames, Neu [24] investigates heuristics based on current camera motion; but also trivial ap-
proaches, like increasing the size of the viewport in the first pass (such that there is a “prefetch
border” around the screen) work well under certain circumstances [2].
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2.4 Texture Atlas Packing

In the previous section, it was mentioned that it is more efficient to pack many small textures
into a single larger texture than using separate textures. This combined texture, the texture atlas,
can be generated in various ways which can be divided into offline and online algorithms. The
process of inserting items (images) into a texture atlas is a rectangular bin packing problem.
Offline algorithms, as the term suggests, are run as a preprocessing step; an important criterion
is that all items which must be included in the texture atlas are known beforehand. Online
algorithms are designed to insert one item at a time, without knowledge on any future items
and without ever moving an item which has already been placed [19]. In the proposed work,
a simple online packing algorithm is used to create a texture atlas holding all the icons used in
map rendering; this is why offline packing algorithms will not be discussed in this section. The
problem can be narrowed down further, because in our case, the available space is bounded (to
the size of the texture atlas) and we only have to work on square items in 2D.

The first bounded space online bin packing algorithms (for the 1D bin packing problem),
HARMONICM, was presented by Lee and Lee [15] in 1985. The basic idea is to classify incoming
items with sizes in the interval (0, 1] by their size and pack them into one of M bins. The
interval of a bin k is defined as Ik = (1/(k+1), 1/k], 1 ≤ k < M ; the last bin takes the interval
IM = (0, 1/M ], hence the name of the algorithm. HARMONICM was extended in the same paper
[15] to REFINED HARMONIC with a better performance ratio compared to the optimal solution.
The algorithm was later refined to MODIFIED HARMONIC and MODIFIED HARMONIC 2 in
1989 by Ramanan et al. [35] and to HARMONIC++ in 2002 by Seiden [40].

While the algorithms described aim at solving the NP-hard [19] problem of bin usage opti-
mization, an optimal solution is not important for our task since we deal with very small square
icons (resolutions in the current stylesheet range from 3 × 3 to 24 × 24) and are able to create
a texture atlas with more than enough space to hold them, even if the icons are not perfectly
tightly packed. Nevertheless, the principle of classifying items into harmonic bins according to
their size is used in the proposed algorithm.

2.5 Line Rendering

Line rendering is an important part when rendering maps; without line rendering, streets and
roads cannot be displayed, and without streets and roads, not much information remains on the
map. Lines are often subject to aliasing, so methods of rendering antialiased lines are discussed
at the beginning of this section; how different stylistic attributes of lines can be drawn is reviewed
thereafter. OpenGL ES 2.0 offers the following rendering modes for lines:

• GL_LINE_STRIP: renders a continuous line along all the points that are passed to the
draw call.

• GL_LINE_LOOP: like GL_LINE_STRIP, but an additional line is drawn from the last
to the first point.

• GL_LINES: every odd point is considered a start point and every even point is considered
an end point, so separate line segments are drawn.
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Figure 2.12: A line, antialiased (at the top) and aliased (at the bottom)

Additionally, OpenGL ES 2.0 is able to rasterize lines with adjustable width, through the
glLineWidth call.

2.5.1 Antialiasing

In signal processing, aliasing is an effect that occurs when analog signals are sampled at a
rate lower than twice the highest frequency of the signal (Nyquist-Shannon sampling theorem,
[25, 44]). When a band limited signal is sampled at twice (or more) its maximum frequency, it
can be restored from its samples in a lossless way (i.e. no aliasing happens). When rendering
lines, the transition from background color to line color and back is a square wave, which is a
not-band-limited function and would therefore need an infinite sampling frequency. Since the
sampling frequency of a display is limited by its pixel size, line rendering is often accomplished
by sampling at the pixel centers and drawing either the background color or the line color, de-
pending on whether the pixel center lies on the line or not. This type of sampling generates
staircase effects as illustrated in Figure 2.12 which are especially visible when the line is ani-
mated, because the steps seem to move along the line then [18]. To avoid this artifact, the square
wave has to be filtered with a low-pass filter to remove all frequencies higher or equal to half
the sampling frequency (i.e. the pixel density); the resulting function can then be reconstructed
perfectly according to the Nyquist-Shannon sampling theorem. Of course, the sharp edge of the
mathematically defined line is then replaced by a smooth curve where the line color has to be
blended with the background color, which is done using transparent pixels.

In regular (desktop) OpenGL, the glHint API exposes a way to let the OpenGL imple-
mentation take care of line antialiasing: GL_LINE_SMOOTH_HINT. The implementation is,
however, not required to follow the hint. In OpenGL ES 2.0 this hint is not included, line an-
tialiasing is therefore not supported at all. Nevertheless, antialiased line rendering is crucial for
producing a visually appealing image.

One of the first line antialiasing methods was presented by Gupta and Sproull in 1981 [10].
In this paper, a conic filter is used to determine the intensity value for each pixel, which cor-
responds to the volume of the intersection of the filter cone with the line. Gupta and Sproull
discovered that for circularly symmetric filters of radius 1, the pixel intensity can be written as a
function only dependent on the distance of the pixel from the line center p and the width of the
line t:

I = F (p, t) (2.3)

This function F may encode any circularly symmetric filter. For any desired line width, a table
can be precalculated, containing the intensity values for a number of distances. The drawing
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algorithm itself is based on the line drawing algorithm by Bresenham [5]; the inner loop is
extended to calculate the distance from the line center and perform the lookup to retrieve the
correct intensity value for up to three pixels in each pixel row (a restriction for simplicity reasons,
Gupta and Sproull state that the algorithm my be trivially extended to take more pixels into
account).

To handle end points, intensities for six end pixels are precalculated for 16 different slopes
and another lookup is performed at runtime. That way, different end point styles can be accom-
plished by using different end point tables.

Similar to [10], Turkowski [50] proposed a function to map from point-line-distance and
line width to intensity. For handling end points, a point-segment-distance is suggested instead of
the point-line-distance. While a mathematical line is infinite and the point-line-distance yields
wrong results near the end points, segments only exist between the start and the end point of
a line. Usage of the segment-line-distance results in round ends of thick lines and smoothed
corners of line strips.

To calculate the point-segment-distance analytically, two cases must be distinguished: if
the point is inside the infinitely wide line segment, (i.e. inside both half-planes defined by
orthogonal lines through the end points), the point-segment-distance is equal to the point-line-
distance. If the point is outside, the point-segment-distance is the Euclidean distance to the
nearest end point. Alternatively, the point-segment-distance can be calculated by coordinate
system transformations, in particular by rotating and translating the line segment such that one
of the end points corresponds to the origin and the other end point lies on the positive x-axis.
By transforming the point in question using this transformation, only its x coordinate has to be
evaluated to determine whether the line-distance or the segment-distance has to be evaluated.
Also the evaluation of the line-distance becomes much more efficient as the absolute value of
the y-coordinate then corresponds to the line-distance.

Similar to Gupta and Sproull [10] and Turkowski [50], McNamara et al. [18] describe a
prefiltering technique using a lookup table to map the pixel-line-distance to an intensity value
for the pixel. The table can either be built into hardware or calculated once at runtime by filtering
a prototypical line at several distances from the line center. McNamara et al. use 32 distances and
store a 5-bit intensity value for each of them. To calculate the point-line-distance, a combination
of four edge functions Ei, winding clockwise around the mathematical line, is used:

E(x, y) = (x− x0) ∗∆y − (y − y0) ∗∆x (2.4)

Where (x0, y0) denotes the start-, (x1, y1) denotes the end point of the directed edge and ∆x =
x1−x0 and ∆y = y1−y0 denote the direction of the edge. E(x, y) is positive for points right of
the edge, negative for points left of the edge and zero for points on the edge. Its absolute value
is the distance of the point to the edge, scaled by the distance between (x0, y0) and (x1, y1). The
correctly scaled distance function is therefore given as

D(x, y) =
E(x, y)√
∆x2 +∆y2

(2.5)

which is then scaled according to the line width w and the filter radius r. A sample line, sur-
rounded by its four distance functions, can be seen in Figure 2.13. It can be seen that the scaled
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(x0, y0)
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LmLdLaa

Figure 2.13: Four signed distance functions. The area where all of them are positive is called
the antialiased line (Laa). The mathematical line Lm and the desired line Ld are also shown.
(plot from [18])

distance function does not depend on the actual values of w and r, but only on their ratio. In
practice, it is sufficient to group the different ratios into ranges and use the same distance func-
tion for an entire range by limiting the ratio r/w to the interval [0.5, 2]. For each pixel, four
distance functions can now be evaluated (a signed distance to each of the line edges); pixels
with only positive distances will receive an intensity greater than 0, pixels with one or several
negative distances (i.e. pixels outside of the rectangle defined by the line edges) are assigned an
intensity of 0. Which of the four distances is used to lookup the intensity in the table directly
influences the appearance of the line’s end points (see Figure 2.14 for a comparison of the dif-
ferent line endings). The simplest solution of using the smallest distance results in a line ending
that looks like a chisel with noticeable corners, which is not desirable. The slightly more com-
plicated approach of using the product of the minimum of the distances orthogonal to the line
and the minimum of the distances along the line gives a smoother line ending, but introduces a
sharp cut in the middle of the line, which starts to be visible at a line width of 3 pixels, accord-
ing to McNamara et al. [18]. The computationally most expensive approach of evaluating the
intensities for all four distances and using the product of the minimum intensity perpendicular
to the line and the minimum intensity along the line gives the best result, indistinguishable from
the ground truth (where the line is actually convolved with the correct filter) [18].

A sample fragment-shader implementation of the method of McNamara et al. along with
line and polygon antialiasing examples can be found in the article of Chan and Durand [6].

Qin et al. [33] propose a system to render antialiased glyphs directly from a vector repre-
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(a) Minimum distance (b) Minimum side distance mul-
tiplied with minimum end dis-
tance

(c) Minimum side intensity mul-
tiplied with minimum end inten-
sity

Figure 2.14: Different line ending intensities (plots from [18])

sentation. A signed distance function is used to calculate the minimal distance of a point to the
nearest point of the shape that is being rendered. To accelerate the calculation of this function,
a Voronoi diagram overlayed with a sampling grid is used. The Voronoi diagram can be precal-
culated and the sampling grid is non uniform to take the complexity of a shape into account. To
use anisotropic antialiasing, the signed distance function is then transformed from texture space
to screen space using partial derivatives of the texture coordinates. The transformed signed
distance function can then be used for antialiasing, using a cubic smooth transition function:

smoothstep(g) = 1/2 + gc ∗ (3/2− 2g2c ) (2.6)

with gc being g clamped to the interval [−1, 1] [33].
Similar to the proposed approach (described in Section 3.2.4), Bærentzen et al. [3] render

long, narrow rectangles instead of lines as in [6, 18], because of the line width restriction of
both OpenGL and DirectX when using the line primitive. The vertex positions are calculated
entirely in the vertex shader by using only the end points of the line and the line width. The
fragment shader then calculates the distance from the fragment center to the line segment; how
exactly this is done remains to speculate, but it can be assumed that a method similar to the one
described in [50] is used.

Not unlike [33], the intensity is directly calculated from the distance instead of using a
lookup table with prefiltered values – the function used by Bærentzen et al. is the GLSL function
exp2(x) = 2x:

I = exp2(−2d2) (2.7)

with d being the pixel-line-segment-distance.

2.5.2 Join and Cap Styles

In vector graphics, three line cap styles and three line join styles have been established, which
are illustrated in Figure 2.15. For acute angles, miter joins get very long, so the ratio of the line
width to miter length, i.e. the distance from the tip to the inner corner, is usually limited; if the
limit is exceeded, the miter join is clamped to a bevel join.
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(a) “Butt” caps, “Miter” join (b) “Round” caps, “Round” join (c) “Square” caps, “Bevel” join

Figure 2.15: Different line caps and joins, the original path is shown in white.

Rendering antialiased line joins and line caps with OpenGL has not been covered explicitly
in literature. However, all of the previously discussed papers about line rendering handle them
partially. Gupta and Sproull [10] can render all three different line caps by modifying their
lookup tables, and their approach could be extended to include lookup tables for each possible
angle at a join. This would of course not be feasible, as the amount of data in the lookup tables
would be huge and yet inaccurate. Turkowski [50] mentions that different line caps and joins can
be drawn by modifying the point-segment-distance-calculation at line end points and illustrates
how to render round caps and round joins. Although they do not mention it, the system proposed
by McNamara et al. [18] is able to render both butt and round caps by modifying the intensity
calculation from the four edge distances. What is called a “chisel” tip in the paper is in fact an
approximation of a butt cap. McNamara et al. only render straight lines without any joins, so
no join styles are discusssed. Chan and Durand [6] accomplish round joins by simply drawing
each line separately with round caps. If the end point of the first line is equal to the start point of
the second line this results in a correct round join. Qin et al. [33] render only closed shapes, so
no end points occur, however miter and round joins can be rendered with their system by using
different distance measures. A special “pseudo-distance” is defined for rendering miter joins;
the pseudo distance is the “distance to the closest point on the infinite line containing the closest
segment” [33]. If the “true distance” is used, i.e. end points are taken into account, round joins
are rendered. Bærentzen et al. [3] render round caps by using the point-segment-distance for the
intensity calculation, no other cap or join styles are mentioned. This approach was extended in
this work to handle all three cap styles and miter style joins (Section 3.2.4). Finally, a previously
unmentioned patent by Persson [28] shows how to tessellate lines into triangle strips while taking
all join styles into account, which is used as a basis for the line tessellation in the presented work.

2.5.3 Dashing

Drawing dashed/stippled lines is an important feature when rendering OpenStreetMap data, be-
cause many commonly known map features (e.g. railroads) need to be displayed as such. Up to
OpenGL 3.0, there was a glLineStipple API-call to specify a dash pattern, consisting of a
16-bit pattern and a scale parameter. This call has never been part of the OpenGL ES API, so its
behavior has to be mimicked using the available features.
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Seetharamaiah et al. [39] propose an algorithm to be implemented in graphics hardware to
backup the glLineStipple API for unordered line rasterization by calculating the position
of the current location relative to the line’s end points. The stipple pattern, initial step count (the
line does not have to start with the start of the stipple pattern) and the current location are then
used by the fragment generator to decide whether a fragment should be created at the current
position, or not. Of course, this binary decision is likely to introduce aliasing at the dash borders;
to avoid this, the edges at the dash borders have to be low-pass filtered like the edges of the line
itself, as covered in Section 2.5.1.

Poddar [31] introduced a method to render stippled lines by encoding the stipple pattern into
a texture map. Intended to be implemented in a display driver, this is a software-only solution
for backing up the glLineStipple call and enabling dashed line rendering without special
purpose graphics hardware. A simplified version of this idea is used in the proposed line renderer
(Section 3.2.4).

2.6 Polygon Rendering

Beside lines and points, polygons are the third important data type in map rendering. Polygons
are used to visualize features like houses, but also larger areas like woods, national parks or even
coast lines. To render polygons, they must be triangulated because modern graphics hardware
is optimized to work on triangles and OpenGL ES 2.0 does not support a polygon geometric
primitive. The second aspect discussed in this section is direct polygon rasterization, but not
because it is needed to render polygons – as already mentioned, they are triangulated anyway –
but because a polygon rasterization algorithm is used to determine the currently visible tiles in
Section 3.4.2; i.e. the projected view frustum is rasterized into tiles, not into pixels.

2.6.1 Triangulation

Since polygons cannot be rendered directly, they have to be transformed into triangles prior to
rendering. The tesselator used in the proposed implementation (the GLU Tesselator [7, 43]) is
very robust; there are, however, algorithms that produce better triangulations (fewer triangles, no
degenerated triangles with one angle close to 180◦, Delaunay-Triangulations), like Shewchuk’s
Triangle algorithm [45].

For the use case of map rendering, however, the robustness and speed of the GLU Tesse-
lator is preferred over other higher-quality, but more complicated algorithms; furthermore the
algorithm can process degenerated polygons as well as polygons with holes, both of which may
occur in map data. For hole-handling, five different winding rules are supported. Although the
input to the algorithm consists of 3D points, the algorithm essentially works in 2D; all input
points are projected to a plane, and the projected points are then processed. As a first step, a
line-sweep algorithm is used to partition the polygon into x-monotone regions, defined as fol-
lows: “Any vertical line intersects an x-monotone region in at most one interval” [43, in the file
alg-outline]. The x-monotone regions can then be triangulated using a simplified version
of the algorithm proposed by Preparata and Shamos [32]. As a last step, the resulting triangles
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from all x-monotone regions are grouped together into a set of triangle strips and triangle fans if
possible, otherwise separate triangles are returned.

2.6.2 Rasterization

As already mentioned, polygon rasterization converts a polygon into a set of pixels that are cov-
ered by the polygon and is therefore a very elementary process in rendering. Pavlidis [27] com-
pared approaches to tackle this problem in 1981, characterizing them into two groups: polygon-
based and pixel-based. Polygon-based algorithms work on a list of edges that must be sorted
according to their maximum y-coordinate. A set of active edges intersecting the current scanline
is maintained, sorted by their intersection point with the scanline. Rasterization can then be
done by filling all pixels between the first and the second, the third and the fourth intersection
and so on. Such an algorithm is described by Hearn and Baker [12, Chapter 4-10]; being built
for arbitrary (even concave) polygons, some preprocessing is necessary apart from sorting the
edges: for instance, certain edges must be shortened to avoid duplicate vertices. Pixel-based
algorithms, on the other hand, do not require any kind of preprocessing, it is even possible to
rasterize any kind of contour given a known seed point inside the contour. Starting from the
seed point, the colored region “grows” until it is limited by the contour boundaries. Parity-based
algorithms are an extension to pixel-based algorithms, where no seed point is required anymore.

A set of parity-based algorithms is described by Dunlavey [9], reaching maximum memory
efficiency by trading storage for speed; no other storage but the framebuffer itself is needed.
Each of the presented algorithms is optimized for a different kind of polygon, though there is no
solution that handles every kind equally well.

Pixel-based algorithms work well for single-colored polygons, where each pixel does only
have a binary property: being inside or outside of the shape. Shaded polygons, where each pixel
(or fragment) is assigned a set of attributes like color or depth with different values based on
the location of the pixel in the polygon, require a scanline algorithm (called polygon-based by
Pavlidis [27]) to work. Such an algorithm is described by Pineda [30], a parallel scanline filling
algorithm which uses linear edge functions as a mathematical parity test. Edge functions are
defined to have the value zero on the edge and being positive on one, and negative on the other
side of the edge, the same edge functions which were used by McNamara et al. [18]. Once the
edge functions are defined for each edge of the polygon, it can be traversed in various ways.
During traversal, the attributes of each fragment are interpolated; even though the traversal does
not have to be done continuously, but by a set of independent interpolators, each processing a
block of pixels. This is possible due to the linear nature of the edge function. A third useful
property of the algorithm is that the sub-pixel accuracy of vertices can be fully preserved.

Finally, Rueda et al. [38] describe a very simple algorithm to directly render polygons on
modern graphics hardware. This is done by creating a trivial tessellation of the polygon by
connecting the end points of each edge with the centroid of the polygon. The resulting triangles
are then rendered into a special “presence” buffer, which is only able to store a single bit for
each pixel. Each write access to a pixel inverts its value. Since all edges (including edges of
holes) are used to create the tessellation, fragments outside of the polygon are touched an even
number of times (for instance twice for simple holes) while fragments inside the polygon are
touched an odd number of times. The presence buffer (implementable in hardware using an
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OpenGL stencil buffer) records exactly that property by design. A downside of the algorithm
is that shading (i.e. interpolating certain values inside the polygon) cannot be combined easily
with the algorithm, since the presence buffer only records if a pixel is touched by the polygon
or not. Also, the algorithm is not efficient regarding the fragment fill rate, because for non-
convex polygons or polygons with holes, many more fragments are rasterized than are actually
contained in the polygon.
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CHAPTER 3
Implementation & Own Contribution

In this chapter, the rendering library implemented as a base for this thesis is described. Along
with the overall description of the architecture, certain algorithms and methods will be described
in detail and compared to previous solutions to the same problems.

3.1 The Hybrid Rendering Architecture

Since the problem of displaying a detailed map for the whole world is similar to the virtual tex-
turing problem (described in Section 2.3.2), the solutions are also somewhat similar. In contrast
to virtual texturing, the texture does not exist yet when the program is run, instead it is created
on-the-fly, which is comparable to streaming texture tiles from very slow media and therefore
makes the tile-loading-bottleneck even more severe. The original intention to render the visi-
ble portion of the map completely from scratch in each animation frame was quickly discarded
because of the amount of data and the limited capabilities of the target devices. Instead, the
architecture of Ulmon GmbHs libMapRenderer was extended to a hybrid between a tile-based
renderer and a full realtime renderer, libMapRendererGL. The Mapnik styling architecture, used
in the previous renderer, is also used in the proposed implementation; all data structures and
symbolizers described in Section 2.2.4 about Mapnik are also present in the new rendering li-
brary. Map features can be divided coarsely into two groups: static and dynamic features. All
static features together form the “base map”, a map containing all street data, railroads, houses,
woods, etc – basically everything but labels and points of interest (POIs). Like the old renderer,
the proposed system implements a server-client architecture where both the server and the client
run on the mobile device, but while the server in libMapRenderer produced final tile images, the
server does now only work on static features, producing a base map. A side-by-side comparison
of the old and the new architecture can be seen in Figure 3.1.

A 3D slippy map (Section 2.2.3) client is used to display the base map, and after the client
is finished, the post-processer renders dynamic features directly to the screen, drawing over
the result of the client (the base map). Dynamic features, so called because their position and
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(b) The proposed Architecture

Figure 3.1: A comparison of a standard tile-based Architecture with the new Hybrid Architec-
ture.

orientation on the map is not fixed, include road names, POI icons and -labels and general map
labels like country names. In the previous implementation, rotating the map was not possible,
because the dynamic features were baked into the tile images, and rotating would have caused
them to be upside-down eventually. In the new renderer, since dynamic features are excluded
from the map tiles, the map can be rotated arbitrarily while dynamic features stay upright and
readable at all times. Additionally, tilting the map into a 3D mode is possible without creating
the impression of only skewing a map image, because POI icons and text stay parallel to the
screen as if they were standing out of the map.

Technically, static and dynamic features can be distinguished by the symbolizer they are
drawn with. Line, line pattern, polygon and polygon pattern symbolizers produce static data,
point symbolizers have to be split according to the icon they render. Point symbolizers that draw
trees (e.g. in an alley), mountain peaks, springs, railroad crossings or other low-level icons are
treated as static data, while point symbolizers that draw POIs like post offices, restaurants, hotels
or airports are considered dynamic.

As in the previous renderer, client and server are implemented as threads inside the same
process, so they share the same address space. To handle communication, special data structures
(described in Section 3.3) have been implemented; these include a rendering queue that is filled
by the client and worked on by the server and a tile cache that manages all tiles that are currently
available in the system. The rendering queue is sorted by priority, so the server can always work
off the top of the queue. The tile cache keeps track about the last usage of each tile and uses
this to implement a Least Recently Used (LRU) cache cleaning strategy. Since all rendering is
implemented using OpenGL ES 2.0, a tile image is stored as a texture; as a tile image store, a
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texture atlas could not be used because of the texture size restrictions on the target devices; the
maximum texture size on current-generation iOS hardware is 2048× 2048, which is not enough
to store a sufficient number of tiles (see Section 3.2.3 for details on the tile size). To enable multi-
threaded rendering, both the server and the client need to have their own OpenGL context, which
are created to share the same address space as described in Section 2.1.5 (The post-processor is
run in the same thread as the client, so it does not need its own OpenGL context). That way, the
server can create a new texture when it renders a tile, and as soon as it is finished, the client can
access the texture by simply using the same OpenGL texture handle the server used for accessing
the texture. On a side note, the server must call the glFinish function before the client can
use the texture, to make sure all rendering to the texture is finished.

In the following sections, the individual parts of the rendering library are described, begin-
ning with the tile server.

3.2 Server

The servers task is to query the rendering queue for a tile to render, load its data from the file
system, render all static data into the tile image and make the tile available to the client. From
the rendering queue, the server gets a tile address (triplets containing x- and y-coordinates and a
zoomlevel) of the next tile to render. The system is designed to work with multiple servers that
process tiles from the same queue concurrently – of course each server needs to have its own
OpenGL context and all contexts in the system must be shared. It must however be noted that
the GPU is usually only capable of processing one command at a time, so even when rendering
with multiple contexts, the actual processing of the commands happens in serial fashion.

The server never renders directly to the screen, instead, it creates its own frame buffer object
(FBO) at startup. Optionally, the server can perform multi-sample antialiasing (MSAA) on
the tile images, if it is supported by the hardware - the OpenGL Extension APPLE_frame-
buffer_multisample must be supported for this. As already mentioned in Section 3.1,
each tile image is stored in a separate texture, so the server creates a new texture for each tile
it renders and binds it to its FBO. Because the renderer (both libMapRenderer and the new
implementation) support multiple installed maps (multiple ulmbin files, see Section 3.2.1), each
installed map has to be checked whether it covers the tile that is currently rendered. Usually,
none or only a single map covers a given tile; however, there are special cases where multiple
maps contribute to a single tile image, for instance if a tile of a very high zoomlevel is rendered
such that the maps of two cities that are near each other are inside the tile pyramid spanned by
the children of the current tile.

When the list of maps that must be processed for the current tile has been determined, the
server must load the data from each map (Section 3.2.2). The data is then split into static and dy-
namic data as previously described, and the static data is rendered (Section 3.2.4). All dynamic
data is stored together with the tile image to be processed by the post-processor later. As a last
step, mipmaps are created of the tile image to provide trilinear filtering (described in Section
3.4.3); they are generated by using the glGenerateMipmap API call.

35



Header

Rule Groups ID

Covered Area, min. Zoom, 
max. Zoom, Base Level

ulmonID, featureMask, 
ruleGroupID, minLayer, ...

Point, Line or Polygon

Rule Groups

Base Level Tiles

Features

Geometry

ID

Figure 3.2: A simple map of the ulmbin file format

3.2.1 Data Format

The map renderer does not work directly on OpenStreetMap data – the data is first converted
to a proprietary format defined by Ulmon GmbH. The format is closely related to the Mapnik
rendering architecture (see Section 2.2.4) and it is split into two parts: the style information and
the actual map data. Rules and symbolizers are stored in an SQLite-database; the symbolizers
table contains all attributes of all symbolizer types and a discrimination column to identify the
symbolizer type. Furthermore, each symbolizer has an ID as a primary key and a foreign key
identifying the rule it belongs to. The rules table holds all rules of the stylesheet, consisting of
an interval of zoomlevels the rule applies to, a layer ID and, to identify the rule, a unique ID.
Layers in this context are similar to the layers found in many image processing applications, they
are used to specify the order in which the rules must be used to ensure correct overdraw. Both
the rules and the symbolizers are read into an in-memory data structure at application startup
and are kept in memory until the program is terminated.

In contrast to the style information, the map data is stored in a special binary format, called
ulmbin, whose format is quickly outlined in Figure 3.2. A map, in this context, denotes a single
ulmbin file, containing map data for a certain rectangular region. To make positioning of a
map in the global tile pyramid (see Section 2.2.1) easier, the map extents are cut to tile borders,
usually at zoomlevel 14. Metadata, stored in the ulmbin header, contains the location and size
of the rectangle covered by the map, given in lat/lon coordinates, the minimum and maximum
zoomlevel and base zoomlevel of the map, which is used to split the map features into tiles.
The base level is usually relatively high, a common selection is level 13 (level 18 is the most
zoomed-in level). Such a base level tile contains the map features for all tiles inside the pyramid
with the base level tile as tip, so if the features of a level 18 tile are needed, its parent on the
base level must be calculated and the correct features have to be extracted from the base level
tile. Next, a number of rule groups is read from the ulmbin file. As previously mentioned, a rule

36



group is defined as an ordered list of rules, in this case defined by their IDs. The rule groups are
specific for a single map, they are read once when the map is loaded and kept in memory until
the map is unloaded (usually when the application exits). The rule IDs are replaced by pointers
to the actual rule objects from the global rule data structure to accelerate accessing them.

A feature is defined by a globally unique ulmonID and references a rule group from the
current ulmbin file. Another important field is the so called featureMask, a 16-bit unsigned
integer that is used to refine the granularity of the base level. Each base level tile has four children
in the level right below the base level, and 16 children in the next level. The featureMask
stores 16 independent bits, each used as a boolean value to define in which of those 16 children
the current feature is used. The usage of the mask is detailed in Section 3.2.2.

Apart from the ulmonID and the featureMask, each feature stores a rule group ID,
which is used to process the feature later, different strings like a name and a house number in
multiple languages, and a minLayer. The minLayer denotes the lowest layer this feature is
drawn in and is later used to correctly sort the features. Last, the most important property of a
feature is stored, the actual geometry. A geometry can be one of the three types point, line and
polygon. In any case it consists of one or several two dimensional positions, given in spherical
Mercator projected centimeters as described in Section 2.2.1, relative to the south-west corner
of the base level parent tile. This relative addressing scheme makes it possible to save storage
space by using variable-length encoded integers, integers that reserve a single bit of each byte
as a “continue flag” specifying whether another byte has to be read or not. Features are stored in
sorted order, from the highest zoomlevel to the lowest, i.e. features that only occur on the most
detailed level 18 are stored last.

3.2.2 Data Loading

Loading, in this context, means conversion of map features from their packed form in an ulmbin
file to in-memory data structures that are ready to be rendered. Also, some features that cannot
be part of the current tile because of their geographical position are filtered to speed up rendering
later. In an ulmbin file, map features are stored in blocks for each tile on the base level. If data for
a tile on another level is needed, the base level parent or the base level children of the tile need
to be determined, since a block of feature data can only be loaded wholly. The tile coordinates
of the current tile (x, y, zoom) must therefore be “projected” to the base level. To do so, the
zoomlevel difference to the base level is calculated:

d = zoom− zoombase (3.1)

If d is positive, the current tile is below the base level and has a single base level parent; the
coordinates of this parent tile can then be retrieved by shifting the coordinates of the requested
tile d bits to the right.

xbase = x� d

ybase = y � d
(3.2)

Otherwise, if d < 0, the current tile is above the base level, and its children on the base level
are inside a square region. The side length of the square can be calculated by bit shifting 2 with
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Figure 3.3: A linear feature (drawn in brown) can be discarded because the logical conjunction
of the featuremask and the tilemask has no high bits. The tile that is currently rendered
is highlighted in brown; it is one level below the base level.

the positive difference to the left; the coordinates of the north-west tile of the area are calculated
likewise.

l = 2� (−d)
xbasemin = x� (−d)
ybasemin = y � (−d)
xbasemax = xbasemin + l − 1

ybasemax = ybasemin + l − 1

(3.3)

In Section 3.2.1, the featureMask has been introduced as a property of a feature. Figure
3.3 illustrates how this mask can be used to determine whether a feature has to be loaded on the
current tile or not. This only applies for tiles below the base level, i.e. if d ≤ 0, this check is
skipped. To execute the test, a 16-bit tileMask has to be calculated, which contains one bit
for each of the 16 children of the base level parent on level zoombase + 2. In Figure 3.3, the
current tile is one level below the base level (d = 1), so four of the 16 tiles are children of the
current tile and are marked by a high bit in the mask. If the current tile would be on a lower level
(d ≥ 2), the mask would only contain a single high bit.

For the case where the requested tile is above the base level (d < 0), the following steps
are repeated for each base level tile. As a next step, the data block for the base level parent is
read into memory. To minimize the effect of storage latency, the data block is kept in memory,
until a tile with a different base level parent is requested. Since the map is often viewed on low
levels, this saves a lot of storage operations; for instance, a level 13 (base) tile covers 32 × 32
tiles on the most detailed level 18, so 1024 tiles on that level have the same base level parent tile.
Next, each feature is read until all features up to the requested zoomlevel are processed – if a
level 17 tile is requested, there is no need to read features that belong only to level 18; and since
the features are stored in exactly that order, the processing can simply stop early in that case.
For each feature, the featureMask is read and the logical conjunction of the tileMask and
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Figure 3.4: A multi-tile. The multiTileFactor is given as the last parameter of the multi-
tile’s address. Note that the north-western child tile of the multi-tile has the same address as the
multi tile.

the featureMask is calculated; if it has a numerical value of 0, i.e. if it has no high bits, the
feature in question can be discarded without any further processing because it is outside of the
current tile as illustrated for a sample linear feature in Figure 3.3.

Features that are not discarded because of their featureMask are read into memory; after
that the points of the feature are tested for intersection with the requested tile – if the feature is
found to be outside, it is discarded. This test must be done differently for each of the three feature
types point, line and polygon, and is not implemented as an exact test but as a conservative
heuristic. All features that pass this last test will end up in the final tile in one or another way –
static data will be rendered in the server, dynamic data in the post-processor.

3.2.3 Multi-Tiles

Especially on the most detailed levels 17 and 18, the loading concept described in the previous
section suffers from multiple feature-loads, because on those levels, most features cover more
than a single tile. Additionally, the conservative inside test might cause features to be processed
that are not visible on the requested tile. Therefore, a novel concept is introduced in the renderer:
multi-tiles, which try to overcome this problem by loading and rendering multiple tiles at once.
The basic principle of multi-tiles is illustrated in Figure 3.4.

Multi-tiles are virtual tiles that cover a square area of actual tiles. The side length of this
area, the multiTileFactor, is configurable at compile time; however, 2×2 multi-tiles have
proven to be a good compromise between memory usage and rendering speed. As a restriction,
the multiTileFactor must be a power-of-two number. Multi-tile sizes up to 4×4 tiles have
been tested, but while rendering such large tiles is still about as fast as rendering a single tile,
the memory usage of such large tiles is not suitable for mobile devices. Like actual tiles, multi-
tiles are defined by a triplet (x, y, zoom), but in contrast to actual tiles, the x- and y-coordinates
are always divisible by the multiTileFactor. That way, the whole world can be covered
without overlapping. The multi-tile covering a given actual tile can therefore easily be calculated
by subtracting the remainder of the division of the coordinate by the multiTileFactor from
the coordinate:

xmulti = x− (x % multiTileFactor)

ymulti = y − (y % multiTileFactor)
(3.4)
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The calculation of the base level parent must be changed to correctly handle multi-tiles, which is
done by calculating the virtual zoomlevel of the multi-tile (the zoomlevel at which the multi-tile
consists of a single tile). The virtual zoomlevel is one level above the actual zoomlevel for 2× 2
multi-tiles; for the general case it is calculated using the logarithmus dualis, which has to yield
an integer since the multiTileFactor can only be a power-of-two number.

zoomvirtual = zoom− log (multiTileFactor) / log (2) (3.5)

The coordinates of the multi-tile are then projected to zoomvirtual and the rest of the base level
parent calculation can be completed as described using the projected coordinates.

Like the base level parent, the tileMask is calculated differently for multi-tiles – a feature
can only be discarded if it is not part of any of the actual tiles covered by the multi-tile. This can
be accomplished by combining the tileMasks of all actual tiles using a logical or operator.
For instance, a tile one level below the base level (d = 1, see Section 3.2.2) would result in a
tileMask with 4 high and 12 low bits. In contrast to that, a 2 × 2 multi-tile will combine 4
such tileMasks and will always yield only high bits.

The usual resolution of a tile image is 256 × 256 pixels; these dimensions are used, for
instance, by Google Maps and Bing Maps. Naturally, for multi-tile rendering, this resolution
has to be multiplied by the multiTileFactor. Another factor to consider for the tile image
resolution is the pixel density of the screen. 256× 256 pixel tiles work well for standard density
screens with a dots per inch (DPI) value of about 130 to 170. Some new devices, however,
feature high density screens (for instance Apple’s Retina display technology) with doubled DPI
ratings that require the tile resolution to be doubled as well. Considering such a high density
screen and a multiTileFactor of 2, the tile image resolution grows to 1024× 1024 pixels,
which is why no texture atlas can be used for storing the tile images, as mentioned in Section
3.1.

3.2.4 Tile Rendering

As already mentioned, the features from all base level tiles are filtered using geometry data and
their featureMask and read into memory in the data loading step. After that, all features are
first sorted using their minLayer to ensure proper overdraw and then iterated over. For each
feature, the rule group is looked up from the active map and for each rule of the rule group, a
loop over all symbolizers of the rule is run. Now, the symbolizers are filtered according to their
type: line, line pattern, polygon, polygon pattern and some point symbolizers produce static data
while (most) point, text and shield symbolizers produce data that has to stay upright (dynamic
data). Each symbolizer can be executed on a feature, meaning that it uses the data available in
the feature to render according to its own specification.

Symbolizers that produce static data are instantly executed and render directly into the tile
texture (via the server’s FBO); dynamic symbolizers, however, cannot be executed in the server
because their data has to be drawn over the final slippy map in the client. To accomplish this,
pairs of a symbolizer and a feature are created and stored together with the reference to the tile
texture in a Tile datastructure.

Since a feature may be processed by any number of symbolizers producing both static and
dynamic data, the memory used by a feature may be still needed after the processing of the fea-

40



ture in the server has been finished. Therefore the memory management for features is handled
using a reference counting mechanism that deletes the feature as soon as the last symbolizer-
feature pair is deleted. This way, if a feature produces only static data, it is deleted once the
server finishes rendering the tile; if a feature has to be used later (in the post-processing stage),
it is kept in memory until the tile it belongs to is no longer needed and removed.

In the following sections, the static symbolizers are presented. More specifically, it is de-
scribed what happens when a line, point or polygon symbolizer is executed on a feature.

Line Rendering

Like Persson [28], lines in the proposed system are drawn using the OpenGL triangle strip
primitive. This is done to overcome limitations of the line primitive as used by McNamara et al.
[18] and Chan and Durand [6], mainly the limitation that OpenGL implementations may limit
the maximum line width, and also to compensate for shortcomings of the quad primitive as used
by Bærentzen et al. [3]. Apart from the fact that the quad primitive is not available in OpenGL
ES 2.0, it is also not suitable to render line strips, which is much needed in the case of street
data, because rendering each straight element on its own would decrease rendering performance.
Unlike all of the previous publications, a special focus is set on line caps – all three cap styles (see
Figure 2.15) can be rendered by only setting a uniform flag in the shader. As for line joins, with
the presented tessellation, only miter style joins can be rendered, however, this is acceptable
for the map rendering use case, because the current stylesheet only uses this join style. An
extension to support bevel style joins is possible and is described in Section 5.3. Unfortunately,
since OpenGL ES 2.0 does not have a geometry shader, it is not possible to create new vertices
directly on the GPU, instead, for each vertex needed by the tessellation, exactly one vertex has
to be sent to the vertex shader, where it can be moved to the correct position. Therefore the start
and the end vertex have to be sent four times, other vertices twice, each with an additional vertex
attribute specifying the extrusion direction. Figure 3.5 gives an example of how a two-element
line strip is tessellated.

To render different line cap styles, the line ends are tessellated in fine granularity, whereas
the line segments consist of only two triangles. In total, 2n + 4 vertices are needed to render a
line strip consisting of n points. The order in which the vertices are generated is denoted by the
vertex index (0 to 9 in Figure 3.5).

Antialiasing, as illustrated in Figure 3.6, is done by filtering the mathematical line with
a filter kernel encoded by a function to map from the pixel-line-segment-distance dl, the line
width w and the filter radius r to an intensity value Il, according to the finding of Gupta and
Sproull [10] that such a function can be used to encode a circularly symmetric filter. Since
lines are not only drawn white on black, this intensity can be used as transparency to blend the
pixel with the background. Instead of pre-calculating lookup tables for different line widths, an
analytic function is used to model the filter kernel, as done, for instance, by Qin et al. [33]. Since
only fragments inside the tessellated line are rasterized and some fragments outside of but near
the mathematical line (up to a distance of r) receive intensity values higher than zero, the line
width is increased by the filter diameter, resulting in the actual line width wa = w + 2r. This
is done once at application startup, when the symbolizers are loaded. The Euclidean pixel-line-
segment-distance dl (given in pixels) is calculated from the texture coordinates (s, t) that are set
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Figure 3.5: Tessellation of a line strip consisting of the three points a, b and c into ten vertices
and eight triangles, using a miter join and round line caps. The extended width wa, the extrusion
length e and the angle α are plotted.
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Figure 3.6: The texture coordinates used for the distance calculation. A very large filter was
used for illustrational purposes here.

in the vertex shader, which is discussed later in this section.

dl =
√
s2 + t2 (3.6)

Like in the algorithm of Qin et al. [33], the function used as a smooth falloff is the GLSL
smoothstep function; the intensity is calculated from wa, dl and r as follows:

Il = 1.0− smoothstep (wa/2− 2r, wa/2, dl) (3.7)
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Figure 3.7: smoothstep (edge0, edge1, x)

By using Equations 3.6 and 3.7 in the fragment shader, the appearance of the line can be
controlled entirely by the vertex shader by setting different texture coordinates. Vertices that are
extruded directly to the left or right of the line points (vertices 2 to 7 in Figure 3.5) are given
texture coordinates of (0.0, wa/2) for left points or (0.0,−wa/2) for right points.

For the line cap vertices, the cap style must be taken into account – for square or butt caps,
those vertices are assigned the same texture coordinates as the inner vertices; for round caps,
however, the texture coordinate vector to each of the two corners at a line end must have a length
equal to the euclidean distance from the line end point to the corner, the s-coordinate is therefore
set to −wa/2 at the line start point and wa/2 at the line end point while the t-coordinate stays
the same, wa/2 for points right of the line, −wa/2 for points left of the line.

The final discrimination between butt and square caps is accomplished by extruding the cap
vertices differently. For square caps, the vertices are positioned as in Figure 3.5, but for butt
caps, they are only extruded in normal direction of the line segment, not in collinear direction –
that way vertex 0 is at the same position as vertex 2 and vertex 1 is at the same position as vertex
3. This results in degenerate triangles for butt caps, but they can safely be ignored. Of course,
the same effect could have been achieved by omitting the first two and the last two vertices, but
this would have had to be done in the application code, which was not desirable, because the
line geometry was to be separated from the line style.

As can be seen in Figure 3.5, the amount of extrusion (the distance from the extruded vertices
to the line, e) depends on the line width w and the angle α of the two line segments at a join.
To simplify calculation and remove a conditional path in the shader, the angle α at the start and
end point is assumed to be 180◦. The actual extrusion e is then calculated using the following
formula:

e = wa/ (2 ∗ sin (α/2)) (3.8)

For the start and end points, e is equal to wa/2 because α = 180◦ for those points.
The last important stylistic feature of a line is the dash pattern. The method presented is

inspired by Poddar [31], who used a texture to store the dash pattern, but extends Poddar’s
approach by storing a distance value instead of only binary information to be able to use the
antialiasing approach presented previously. In the stylesheet, the dash pattern is given as a series
of numbers, denoting pixel lengths of “on” and “off” intervals, the first number being an “on”
interval. During the initialization of a symbolizer, this dash pattern is converted into a single-
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channel 1D texture, with each pixel containing the distance from the current pixel center to the
nearest on/off switch (which is located at a pixel border, so all distances have a fractional part
of 0.5). To distinguish “on” and “off” intervals, the distance is stored with a positive sign in
“on” intervals and a negative sign in “off” intervals. Because of the limited texture data types
in OpenGL ES 2.0 (no floating point textures, a maximum of 8 bit per channel and no signed
data types), a value of 127.5 is added to the distance before storing it in the texture, making it
a positive 8-bit integer, if the maximum dash length is set to 256 pixels. The repetition mode
of the dash texture is set to repeat on the s-axis (along the line) and to clamp on the t-axis, so
that the pattern repeats automatically if the line length exceeds the pattern length. The filtering
mode of the texture is set to linear filtering. When rendering, each line point is given the total
length of the line up to the current point (in world coordinates) as an attribute. The vertex shader
converts this length to pixels and passes it to the fragment shader as a varying variable, to be
interpolated for each fragment of the line. The fragment shader uses this interpolated length as
a texture coordinate for a lookup in the dash pattern texture, converts the resulting value from
the [0, 1] interval to the [0, 255] interval and subtracts 127.5. The resulting value dd is, due
to linear filtering, a sub-pixel-exact distance along the line to the nearest on/off switch, whose
sign determines if the current fragment is inside an “on” or an “off” interval. This distance can
be used to create the correct line cap for each dash: Equations 3.9, 3.10 and 3.11 are used to
calculate the intensities for round, square and butt caps for line dashes, respectively.

Id = 1.0− smoothstep

(
wa/2− 2r, wa/2, sgn (−dd) ∗

√
d2d + t2

)
(3.9)

Id = 1.0− smoothstep (wa/2− 2r, wa/2,−dd) (3.10)

Id = smoothstep (−r, r, dd) (3.11)

As before, r denotes the radius of the filter kernel used for antialiasings. Note that for round
caps (Equation 3.9) the Euclidean distance is multiplied by the sign of −dd. This is done to fill
the “on” areas; otherwise only a circle around each on/off switch would be drawn. The same
correction must be applied for square caps (Equation 3.10), it is sufficient to simply negate dd
here. Inspired by the “best” method of McNamara et al. [18], the final intensity of the fragment
(that is written to the alpha channel of gl_FragColor) is calculated as follows:

I = Il ∗ Id (3.12)

A sample line, rendered with the proposed method can be seen in Figure 3.8

Point Rendering

In the context of map rendering, a point feature is used to display an icon and/or text at a specific
point on the map. Point features include POIs as well as landmarks such as peaks, springs or
lighthouses. Usually a point feature is drawn by a point and a text symbolizer, producing an icon
and an accompanying text. In this section, point symbolizers are explained, which are used to
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Figure 3.8: A dashed line with a width of 10 pixels, rendered with the three different cap styles
butt, round and square, from left to right. The dash pattern in use here is 16 − 16 − 32 − 32 −
16− 16, i.e. short on - short off - long on - long off - short on - short off. A round cap has been
enlarged 6 times to illustrate how transparent pixels are used for antialiasing.

Figure 3.9: A point icon with a text label (a police station near the Viennese “Westbahnhof”).

produce icons. Text rendering is not discussed here (refer to Section 3.5.1 for details about this).
Point symbolizers can be split into two groups: some basic icons are rendered directly into the
map image, others are overlayed in the post-processing stage, either way, the rendering process
itself stays the same.

To render points, the OpenGL point sprite primitive is used, which is a very simple way to
render textured quads at a given position with a configurable size. Only a single position, the
position where the icon should be placed, is passed to the OpenGL draw call. In the vertex
shader, the gl_PointSize predefined output variable has to be set to the side length of the
icon in pixels. A limitation of this approach is that only square icons can be used. The GPU
then automatically creates four vertices, each shifted by half the gl_PointSize into one of
the four corners and sets the predefined gl_PointCoord input variable for each fragment.
gl_PointCoord contains the position of the fragment inside the generated quad, with (0, 0)
being the lower left corner and (1, 1) being the upper right corner. These coordinates can then
be used as texture coordinates for a lookup in the icon texture. Figure 3.9 illustrates how such
icons are used in a map.

As described earlier, in Section 2.3.2, state changes like texture switches can severely slow
down rendering in OpenGL. Since there are many different point symbolizers with different
icons, creating a texture for each of those icons and constantly switching them would introduce
such a bottleneck, so all icons are loaded into a large texture atlas instead when the symbolizers
are loaded. The insertion into the texture atlas is done by a simple bin packing algorithm:
Following the idea of Lee and Lee [15], the texture atlas of size 2M−1 × 2M−1, M > 1 is
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backed by a quadtree structure, resulting in M different bin sizes. That way, the texture atlas
holds 22k bins in level k < M , but of course each bin on level k covers four bins on level k+1.
When inserting an icon, the necessary bin size (the smallest possible s = 2l that is larger than
the icon size) is calculated, and the quadtree is traversed until an empty bin of size s is found. If
a bin is found, the icon is inserted, if not, it is rejected and cannot be stored in the texture atlas.
Algorithm 3.1 illustrates this routine.

input : A quadtree, accessible by its root node root, and an icon to be inserted.
output: Either true or false, indicating whether icon could be inserted or not.

1 if root.filled ∨ (root.binsize == icon.s ∧ root.empty) then return false;
2 if root.binsize == icon.s then
3 copyToTex(root.pixeloffset, icon.bitmap);
4 root.filled← true;
5 return true;
6 else
7 done← false;
8 for i← 0; i < 4 ∧ ¬done; i← i+ 1 do //Try children recursively
9 done← insert(root.child[i], icon);

10 end
11 if done then root.empty← false;
12 return done;
13 end

Algorithm 3.1: The insert function of the texture atlas

The extents of the icon inside the texture atlas (in relative coordinates within the interval
[0, 1] × [0, 1]) are stored with the symbolizer. When rendering, they are passed to the vertex
shader as additional attributes, which hands it through to the fragment shader. This is only
possible because no interpolation is done for the OpenGL points primitive, since every fragment
is only influenced by a single vertex. Calculating the correct texture coordinates inside the
texture atlas can then be done using linear interpolation between the given extents with the
gl_PointCoord coordinates. To avoid even more texture switches, the icon atlas texture
stays bound to a reserved texture unit during the whole lifetime of the application.

Polygon Rendering

Polygons are drawn by polygon and polygon pattern symbolizers. Before polygons can be ren-
dered, they have to be tessellated into triangular structures, because OpenGL ES 2.0 has no
polygon primitive type (neither does any recent version of OpenGL on desktop computers). The
proposed implementation uses the GLU tessellator [7] to do this task at runtime, as it perfectly
matches the needs of this application. It is extremely robust and performs easy tessellations very
fast; most polygons encountered in map data are rather simple, many of them consisting only of
a few vertices (e.g. houses). Additionally, the output of the GLU tessellator is perfectly compat-
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Figure 3.10: A polygon, rendered with the proposed antialiasing method, including a six times
enlarged section of an edge.

ible to OpenGL rendering, because it only emits one or several of the OpenGL primitive types
triangle, triangle strip and triangle fan.

Once the polygons are given as triangles, rendering them is trivial. Depending on the sym-
bolizer, polygons are either filled with a solid color (passed as a vertex attribute) or textured
with a repeated icon (polygon pattern symbolizer, used for woods, graveyards etc.). The icons
for the polygon pattern symbolizers are stored in the same texture atlas as the icons for point
symbolizers; the texture coordinates needed for the repeated application are calculated in the
vertex shader depending on the vertex position. The fragment shader then uses the fractional
part of the texture coordinates to do the same linear interpolation and texture atlas lookup as for
point rendering.

Antialiasing for polygons is implemented roughly as described by Chan and Durand [6] and
originally proposed by Snyder et al. [47], i.e. the polygon edges are overdrawn with anti-aliased
lines; of course the proposed line antialiasing method (described in Section 2.5.1) is used for
this. Figure 3.10 shows a polygon, antialiased with the method described. As an alternative to
this, MSAA can be enabled in the server, as described in the beginning of Section 3.2.

3.3 Client-Server Communication

Both the client and the server are implemented to run within the same address space, i.e. they
can access the same data structures. Therefore communication was implemented using shared
structures together with access synchronization. To make data structures globally available while
maintaining an object-oriented architecture, the singleton pattern is used extensively throughout
the library. Every resource is controlled by a singleton manager which provides an interface for
accessing the resource and handles inter-thread synchronization using the POSIX [49] thread
library to achieve platform independence. In this section, the most important data structures will
be covered and their usage by the server and client will be explained.

3.3.1 The Tile

A tile is a structure holding all information of a single multi-tile (see Section 3.2.3 for details on
multi-tiles). This includes the tile address (x, y, zoomlevel), the multiTileFactor of this
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tile (which is currently the same for all tiles in the system, but individual values may be used
in the future), the tile image texture handle and the dynamic features for this tile. Although the
division into static and dynamic features is done in the loading phase, dynamic features become
available for the client slightly earlier than the tile image containing the base map, which is
useful because the client can use a low resolution tile image from a parent tile while the correct
tile image is not yet available. If the dynamic features of the tile are already available though, the
client can display them above the low resolution map, reducing the impression of slow rendering
and/or unavailable data, and creating a smoother loading process.

To realize this, a tile can be in one of the following states:

• INITIAL: The tile has been created, but no data has been loaded yet. There is no tile
image and no post-processing data.

• INPROGRESS: The server is currently working on the tile, data loading is in progress.
There is no tile image and no post-processing data yet.

• LOADED: Data for the tile has been loaded but not yet rendered. There is no tile image,
but post-processing data is already available.

• FINISHED: The tile image has been rendered and the server’s OpenGL context has been
flushed. All data is available.

• NOTRENDERABLE: There is no data for this tile, i.e. none of the installed maps covers it.
It will be ignored during rendering.

In the main loop of the client, all visible tiles are requested from the tile cache in each frame.
There is no such thing as a cache miss; if the requested tile is not already present in the cache, it
is created during the request. The client then processes the tile according to its state and renders
either nothing, or only the post-processing data, or both.

3.3.2 The Rendering Queue

The rendering queue is the task list for the server. It holds all tiles that have been requested
by the client, but have not yet been processed by the server. To avoid filling up the queue with
unimportant tiles (for instance during a fast pan on the map), the queue must be sorted in a
way that favors tiles close to the current view point. Additionally, the client may request a
tile multiple times before it is processed (because the client tries to access needed tiles in each
frame), so the data structure must handle multiple inserts of the same item gracefully. Summing
up, the rendering queue must fulfill the following requirements:

1.Uniqueness: No tile can be in the rendering queue twice at the same time.

2.Priority Sorted: Items in the rendering queue must be sorted by a configurable priority.

3.Updatable Priorities: The priority of an item must not be fixed; priorities may be updated
in batches. Correct order must be reestablished once the batch update is complete.
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The data structure backing up the rendering queue is made of two simple parallel data structures
to meet the given requirements: a set and a priority-sorted queue. When pushing an element into
the rendering queue, the set is searched for the element; if it is not found, the element is inserted
into both structures. The opposite action, popping an element from the rendering queue, finds the
element with the highest priority in the priority-sorted queue, removes it from both containers
and returns it.

To calculate the priority used in the rendering queue, the distance of the tile from the cen-
ter tile, the tile at the screen center, is calculated. As a distance measurement, the Manhattan
distance is used; if the tile is on a different zoomlevel, a penalty of 5 is added for each level, so
that tiles on the same level as the middle tile are prioritized. The priority used for the rendering
queue is updated once in each animation frame for all items in the queue, so it is not necessary
to support on-the-fly updates of the priority. Instead, when the priority is updated, all items are
popped from the rendering queue, their priority is recalculated and they are inserted into the
rendering queue again. While this seems to be a naive approach, there is another advantage
apart from simplicity: tiles with a distance larger than a configurable threshold can be removed
instantly by not inserting them into the queue again, thus keeping the queue from growing too
large. Tiles that are removed from the rendering queue this way are also removed from the tile
cache.

3.3.3 The Tile Cache

The tile cache is the central data structure of the app, it manages all known tiles, keeps them
in memory as long as they are necessary and manages memory usage. It has to provide fast
lookup of a tile given its address, keep a time stamp of the last access with each tile and be
able to remove tiles that have not been accessed for some time to reduce the memory footprint.
As already mentioned, a tile is created as soon as the client requests it for the first time. This
is done by the tile cache, and the newly created tile is instantly added to both the cache and
the rendering queue. Since the client requests all tiles it needs in each animation frame, fast
lookup of tiles is the most crucial feature. This is accomplished with a map data structure, with
the tile address as key, and a structure containing the tile itself and a time stamp as value. The
time stamp stores the time when the tile was last accessed and is updated each time the client
requests a tile. This time stamp is used by the LRU replacement strategy that is run once in each
animation frame and removes tiles until the total memory consumption of the cache falls below
a threshold. Memory consumption is estimated in a crude way, depending on the tile state and
the number of post-processing features stored in the tile. For instance, tiles in INITIAL state
do not contribute to the memory consumption calculation at all.

3.4 Client

The second largest part of libMapRendererGL, the client, is to be described in this section. The
central responsibility of the client is to display the map in a slippy map fashion (Section 2.2.3)
and react to user interaction such as zooming or panning of the map. In addition to this, being not
as obvious but equally important, the client schedules tiles for rendering (as described in Section
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3.3.3) and renders the post-processing features, which contain all the text and are therefore vital
for the look and feel of the final map.

3.4.1 Coordinate System & Camera Setup

Everything described up to now was exclusively done in 2D, because the map data is given in
two dimensions (on the spherical Mercator projected map). Now, since the rendering library
supports a 3D mapping mode, a three-dimensional camera system with a perspective projection
is used. The world coordinate system the client uses is a right-handed coordinate system with
the map itself located in the x-z-plane. The y-axis points up (“into the sky” in contrast to “to
earth’s center”). The unit used in the world coordinate system is centimeters, because the map
data is given in this unit, so no coordinate transformation needs to be done. When a tile image is
rendered, a textured square (consisting of two triangles) is drawn in the x-z-plane, with its size
being the actual size of the tile in centimeters, calculated using the width of the world map in
Google projection (637813700 is the radius of the underlying sphere in cm, see Section 2.2.1),
divided by the number of tiles on the current level:

w =
2 ∗ 637813700 ∗ π

2zoomlevevl
(3.13)

The view point is (for a 2D map view) located above the x-z-plane and its view vector is parallel
to the y-axis, looking into negative y. The camera position and direction is defined by a look-
at-point (on the x-z-plane), a distance from the look-at-point and two angles (yaw and pitch).
The yaw angle controls the rotation of the camera around the y-axis (or any axis parallel to the
y-axis); the pitch angle controls the “amount of 3D” of the map view, as known from various
navigation devices. For yaw rotations, it is necessary to support rotation around an axis parallel
to the y-axis, passing through the x-z-plane at a configurable point. Often, this point is the look-
at-point, but user interaction on a touch screen device (which this library is targeted at) usually
also enables the user to rotate around any point visible on the screen. As an additional constraint,
the camera must always stay upright in 3D mode.

Zooming in or out is done by simply moving the view point closer or further away, the tile
size on the screen then changes automatically due to the perspective projection. The zoomlevel
of the tiles that are displayed is calculated using the view point distance from the x-z-plane, the
field-of-view of the camera, the display resolution and the tile resolution – it is selected such
that tile images are never enlarged above a configurable image-pixel to screen-pixel ratio.

3.4.2 Tile Selection

Virtual texturing, as done by Tanner et al. [48], applies the “virtual map texture” all at once to a
large object representing the earth’s surface. In our case, each tile texture is stored separately and
applied to a quad of the size of a tile; this avoids some complexity with calculating the correct
texture coordinates, as neither a toroidal addressing scheme, nor a texture atlas and indirection
texture [2, 17] is needed. To determine the visible tiles, it is sufficient to intersect the view
frustum with the x-z-plane (resulting in a trapezium or even a rectangle for the 2D case) and
finding the tiles that are touched by the trapezium, because all the geometry lies in this plane.

50



tmin

tmax

Figure 3.11: A tile rasterizer is used to determine the tiles visible on the screen. Blue tiles
are selected by Bresenham’s line drawing algorithm [5], brown tiles are found by the east-west
search.

The intersection of the view frustum with the x-z-plane is calculated by extracting the four edges
of the view frustum from the projection matrix and performing simple line-plane intersection.
Since the tiles form a regular grid on the map plane, a polygon rasterization algorithm can
be used to determine the tiles, as mentioned in Section 2.6. To avoid the complexity and the
necessary preprocessing of a scanline rasterization algorithm as described by Hearn and Baker
[12], an algorithm inspired by the “smart” one proposed by Pineda [30] is implemented. A
further downside of a scanline-based algorithm is that tiles which touch an edge of the polygon
with only a single corner might be missed if tile centers are used for scanline positions; however
if scanlines were placed on tile borders, special handling of the first and/or last scanline would
be necessary.

The following calculations happen entirely in tile space, a space constructed such that a tile in
the current zoomlevel has a side length of 1; the polygon is therefore transformed into that space.
An illustration of the polygon in tile space along with the tiles that are selected by the algorithm
can be seen in in Figure 3.11. The highest and the lowest tile, tmin and tmax, respectively, are
then calculated. The (vertical) line through both of those points is then rasterized in tile space
using line drawing algorithm introduced by Bresenham [5]; to avoid selecting multiple tiles with
the same y-coordinate, the algorithm has been modified to skip such steps and jump to the next
scanline immediately (the tiles which are skipped here are selected by the east-west search later
anyway). All tiles that are selected by Bresenham’s line drawing algorithm are touched by the
polygon, because the line from tmin to tmax is either a diagonal or one edge of the trapezium. To
find the other visible tiles, in each step of the line drawing (once on each scanline) an east-west
search is performed until a tile that is completely outside of the polygon is found. This algorithm
is outlined in pseudo code in Algorithm 3.2. The overlaps function encodes an intersection
test, where the four corners of the current tile are tested to be inside the trapezium. Only if none
of them is inside, the reverse test is executed, whether one of the four corners of the trapezium is
inside the current tile. If both of those tests fail, the function returns false, otherwise true. Note
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that the exit variable done in Algorithm 3.2 would not be necessary, if line 20 was a conditional
jump instead; both loops could then be implemented as infinite loops.

input : Intersection of the view frustum with the x-z-plane in world space, corners[4]
output: A list L of tiles visible on the screen.

1 highest← 0; lowest← 0;
2 for i← 1 to 3 do
3 if corners[highest].y < corners[i].y then highest← i;
4 if corners[lowest].y > corners[i].y then lowest← i;

5 end
6 start← getTileAddress(corners[highest]);
7 end← getTileAddress(corners[lowest]);
8 x0← start.x; x1← end.x; y0← start.y; y1← end.y;
9 dx← abs(x1-x0); dy← −abs(y1-y0);

10 sx← (x0 < x1 ? 1 : −1); sy← (y0 < y1 ? 1 : −1);
11 err← dx + dy; done← false;
12 repeat
13 for t← (x0, y0); true; t← (t.x + 1, y0) do //Search east
14 if overlaps(corners,t) then add(L, t); else break;
15 end
16 for t← (x0− 1, y0); true; t← (t.x− 1, y0) do //Search west
17 if overlaps(corners,t) then add(L, t); else break;
18 end
19 repeat //Skip tiles on same scan line
20 done← (x0 == x1 ∧ y0 == y1) ;
21 err2← 2 ∗ err ;
22 if err2 > dy then err← err + dy; x0← x0 + sx;
23 if err2 < dx then err← err + dx; y0← y0 + sy; break;
24 until done;
25 until done;

Algorithm 3.2: Tile Selection using polygon rasterization

Although the fact that the textured geometry is flat enables usage of the original clipmap
algorithm by Tanner et al. [48], the approach described here is better suited for the map rendering
problem. This is because the clipmap data structure requires to hold rendered images of the
highest levels (the clipmap pyramid, see Figure 2.11) in memory all the time. While suitable
for a precalculated mipmap, this is not possible in our case because of the data format: typically
only certain maps are installed on a device, there is no map of the whole world that could be
used to generate the clipmap pyramid tiles. Even if the fact that only certain, small regions of
the clipmap pyramid are actually filled, was acceptable (“unmapped regions” could simply be
displayed black), rendering the clipmap pyramid would take too long in case the user installed
more than a few maps. Of each installed map, all the base level tiles would have to be read and
rendered, a process not possible in a realtime application.
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As for the tile selection, the proposed method is preferred over both the clipmap [48] and the
virtual texturing approach [4]. In the clipmap approach, the selection is determined by the cache
center and the clip size, no exact determination of the visible area is performed. When render-
ing, the whole geometry (in the simplest case a single large quad covering the whole world) is
drawn and textured with the virtual texture. Since the cache center should have been set by the
application beforehand, the visible parts of the texture should then reside in graphics memory in
sufficient resolution, parts outside of the clipmap stack are only available in low resolution, but
they are most likely clipped by the rendering pipeline anyway. The virtual texturing approach,
designed to be used with arbitrary geometry, needs an additional rendering pass whose result
has to be loaded back into main memory to be analyzed. Since the map is planar, the second
rendering pass and the bottleneck of reading back its result can easily be avoided with the pro-
posed algorithm. A drawback of this method is that even for a tilted view, there is only a single
zoomlevel for all visible tiles, so tiles far away from the camera are likely to be at a too-detailed
zoomlevel and tiles near the view point may become blurred because they are enlarged too much.
This is a problem that is not easily fixed, because if tiles of different zoomlevels are rendered
next to each other, certain features like minor roads, that only exist on the more-detailed level,
will cause the tile borders to be visible, which is an undesirable artifact.

3.4.3 Main Loop

Two aspects of the client, the world coordinate setup and the tile selection algorithm, have
already been discussed; in this section, an overview on the main loop of the application, large
parts of which are handled in the client, will be given. The main loop cannot be handled entirely
in the platform-independent rendering library because user interaction must be done by platform-
dependent code. Therefore, libMapRendererGL exposes an API including different ways to
forward user input to the library and a frame function that must be called in each animation
frame after all user interaction calls. This function can be coarsely split into two parts: the
update part and the render part.

Update

In this part, all user interaction that has occurred since the last update call is processed; if no
user interaction has been sent, nothing needs to be done here. Otherwise, the camera is updated
and the tile selection algorithm is run. Additionally to what was outlined in Algorithm 3.2, each
visible tile is instantly requested from the cache, so that the server can start rendering it in case
it is not yet available, and for tiles that are already in a LOADED or FINISHED state, their
dynamic data is passed to the post-processor (Section 3.5). If a visible tile is not available, a
request for its parent tile is issued to the tile cache, causing its time stamp to be updated if it
already exists (and therefore protecting it from deletion). If the parent tile is not available yet, it
will be added to the rendering queue, but with a low priority. The tile cache update procedure
and the reorganization of the rendering queue is also invoked at this stage; it is safe to do so now
because all tiles needed in the current frame have already been requested, so their timestamps
have been updated and they have been added to the rendering queue, if necessary.

53



Render

The render part is then fairly trivial, the list is iterated over and each tile image is rendered as
a textured quad on the x-z-plane. If a tile is still not available (although it has already been
added to the rendering queue in the update stage), the client tries to replace it with its direct
children or any of its parental tiles. Compared to virtual texturing algorithms [4, 48] this feature
is new, as virtual texturing can only replace tiles with their parents. This tile replacement is
the only exception from the rule stated in Section 3.4.2 that only tiles of the same zoomlevel
can be visible on the screen. In 3D mode, this rule has several disadvantages, because tiles
near the screen are enlarged while tiles far away from the screen are downsized; both situations
may lead to unpleasant artifacts. To minimize those artifacts, the textures are rendered with the
best texture filters available on OpenGL ES 2.0, bilinear filtering for magnification and trilinear
filtering for minification. Additionally, the switch to the next, more detailed zoomlevel is done
earlier than necessary so avoid extreme magnification at the cost of even more minification; this
is acceptable because the minification happens “far away” from the user, in areas that are of
low interest anyway. With the projection matrix used in the proposed renderer, at most about 20
multi-tiles are visible at once; they can easily be rendered in realtime without any performance
loss.

As a last step of the rendering stage, the post-processor is invoked to render the accumulated
features of all visible tiles over the final map image. Regardless of the current camera angle, (for
instance in 3D-mode), those features are always rendered fronto-parallel, so that they appear
undistorted on the screen; and they stay so even if the map is tilted or rotated. After this, the
frame function returns and control is given back to the application code.

3.5 Post-Processing

The post-processor is responsible for handling the dynamic data of all tiles that are currently
visible on the screen. It is implemented in a third thread beside the server and the client (main)
thread, but has no OpenGL context because the actual rendering is done in the client thread.
When symbolizer-feature pairs are sent to the post-processor (in the update stage of the client’s
main loop), it first filters them for duplicates. This is necessary because features close to tile
borders or features that span multiple tiles like streets (the label of the street name is a dynamic
feature) might be stored in multiple neighboring tiles. Instead of recreating this duplicate-free
list of symbolizer-feature pairs in each frame, it is only updated. New pairs are inserted and
features that belong only to tiles that are no longer visible are removed, to reduce the amount of
calculation necessary in a single frame. As soon as a feature is added to the post-processor, the
post-processor adds it to its internal list of visible dynamic features and starts processing it, if
necessary; text features, for instance, need to be rendered into a bitmap in main memory before
they can be uploaded to the GPU to be rendered. When a feature is ready to render (i.e. when
the preprocessing is finished), it stays in this state until it is removed from the post-processor
because it is no longer visible, so the result of the preprocessing is cached throughout the life
time of the feature.

Internally, the post-processor needs to decide which items will be rendered and at which
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position. While the position of a feature is sometimes fixed (e.g. for point features), it may also
be variable, a prominent example being text – it may be placed above or below an accompa-
nying icon, or at any place along a road. The aim of the post-processor is to detect and avoid
collisions by either moving or skipping items. Together with the Ulmon GmbH, it was decided
that implementing the whole post-processor would exceed the scope of this thesis, so only two
parts were done: the rendering of icons (points) and text labels of point and polygon features;
text labeling of linear features (road names) was not implemented, though the architecture of
the post-processor is designed in a modular way such that new types of features can be added at
any time. How icons are rendered has already been described in Section 3.2.4; text rendering is
covered in the following section.

3.5.1 Text Rendering

Text rendering consists of multiple stages; a font must be loaded, the required glyphs must be
rendered and uploaded to graphics memory, and then the text must be rendered using OpenGL.
Since map rendering requires text in many different languages and scripts, almost the whole
unicode character set must be usable – this is accomplished by loading multiple fonts containing
different characters, and testing them one after the other when a glyph is requested. To load
fonts and render glyphs, the FreeType 21 library is used, which also provides a glyph cache
to speed up glyph retrieval. When a string of text is about to be rendered, first all required
glyphs are loaded from the font file and rendered into an in-memory bitmap. The whole string
is then represented by a single bitmap, which is uploaded to the graphics memory as a texture
and displayed using a small textured quad. The texture ID assigned to a specific string of text
is stored with the dynamic feature, so that the post-processor can simply render it in the future
frames without having to preprocess it again. Since each glyph is requested in the correct rotation
and scale, FreeType is able to render glyphs antialiased, which results in very high-quality text
display; a downside of this is, however, that a glyph must not be rotated or scaled after it has
been rendered with FreeType – it has to be rendered pixel-exact on the screen to preserve the
high quality. This is because FreeType not only renders the glyph antialiased, it also provides
hinting, a process described in the FreeType documentation [51] as “grid-fitting”, to reduce the
artifacts from scaling the glyph outlines to the desired size. Without hinting, straight lines, for
instance in the glyphs for the letters T and E, might have different widths. Hinting information
can either be stored with the font or applied automatically by FreeType, however, when the
glyph is not displayed pixel-exact on the screen, the hinting is lost, as can be seen in Figure
3.12. The misaligned line has been offset by half a pixel in each direction and displayed with
bilinear filtering. Note that the enlarged, misaligned letter e is blurry and seems to be cut off.

3.6 Development Environment

The proposed rendering library, libMapRendererGL, is designed in an object-oriented way and
implemented in C++. It exposes an API written in the C language to ensure compatiblity to both

1http://www.freetype.org/freetype2/
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Figure 3.12: Hinted text rendering, both pixel-aligned and misaligned (Image from [46]).

Objective-C (the primary programming language on the iOS platform) and the Java Native Inter-
face (JNI) needed to use the library on Android. The library has been developed on Mac OS X
in the XCode Integrated Development Environment (IDE), which is also used to compile for the
iOS platform. Compilation for Android is accomplished using the Android Native Development
Kit (NDK) along with build scripts for the standard GNU2 build system.

2GNU’s Not Unix
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CHAPTER 4
Results

In this chapter, the proposed implementation will be evaluated and compared to previous map
rendering solutions. Since the rendering library was written to replace a CPU renderer, libMap-
Renderer, most comparisons are done against this library. Specific parts, especially about line
rendering, are compared to scientific work presented in Chapter 2. The results are split into three
categories: performance, quality and features.

4.1 Performance

Comparing libMapRendererGL to libMapRenderer is difficult because of their different archi-
tecture. While the old implementation renders all the data into map images which are then
simply displayed, the new library renders only static data into the tiles, all dynamic features are
rendered as a post-processing step in each animation frame. This fact makes speed comparison
particularly hard, since neither the rendering time per tile nor the refresh rate in the main loop
can be used as a measure. This is because in both measurement areas, the two rendering libraries
fulfill different tasks; the tile time would be unfairly short in the proposed implementation be-
cause less is rendered (only the base map) while the refresh rate would be unfairly short in the
legacy implementation, since no post-processing is done there - only displaying tile images runs
as fast as the display allows it (in both libraries). Nevertheless, two tests are executed, described
in the following sections.

4.1.1 Comparison of the Server-Performance

To measure the performance of the tile server, the old renderer has to be modified to exclude all
dynamic features, such that both implementations render only base map tiles, just as the server
in the proposed implementation. As mentioned in Section 3.1, static and dynamic features can
be distinguished by the symbolizer they are drawn with, so certain types of symbolizers are
excluded from libMapRenderer. This includes text and shield symbolizers and a majority of the
point symbolizers; leaving only polygon, line and some point symbolizers with primitive icons
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Figure 4.1: Total times in milliseconds for 256 multi-tiles in the center of Vienna, lower is
better.

in place. Additionally, the old library has to be extended to render multi-tiles of the same size
(2 × 2) as libMapRendererGL. All numbers and figures in this section are created with such a
modified libMapRenderer, except those marked as single-tile, where the additional symbolizers
are excluded, but instead of 2× 2 multi-tiles, only the north-west of each multi-tile is rendered.
As a test device, an Apple iPad (1st generation) is used.

To minimize file system read latency, a 32 × 32 tile (16 × 16 multi-tile) area at the most
detailed level 18 in the center of Vienna was selected as a test map – this area corresponds to a
single base level tile (4468, 2840, 13) and loading from slow storage into memory occurs only
at the very first tile because both implementations cache the base level tile block in memory. A
plot of the time it takes to create each individual multi-tile can be seen in Figure 4.1.

Obviously, the new implementation outperforms libMapRenderer on every single rendered
tile if multi-tiles are used; on average, it renders a tile in 99.80ms, which is 2.42 times faster
than 241.43ms, the average time of libMapRenderer. If no multi-tiles are used in the old library,
rendering is noticeably quicker; however, with an average rendering time of 134.80ms, libMap-
RendererGL is still 1.35 times faster, although the old library renders only a quarter of the area.

If the rendering time is split into preprocessing and rendering, it becomes apparent that lib-
MapRendererGL (Figure 4.2) spends most of the time (80.38%) on preprocessing; less than
one fifth is used for the actual rendering. In the legacy implementation (Figure 4.3), the total
time is almost equally distributed between preprocessing and rendering; on average, 47.27%
are spent on preprocessing. The actual loading from the ulmbin file happens only in the very
first tile in this case, because the memory block for the base level tile remains cached in main
memory then. The two implementations do roughly the same computations in the preprocessing
procedure (creation of the relevant memory structures, unpacking of the variable-length integers,
calculation of polygon centers for icon placement, etc.), except that the OpenGL ES 2.0 library
additionally duplicates line vertices for the line tessellation and triangulates each polygon with
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Figure 4.2: The multi-tile time of the OpenGL rendering library split into preprocessing and
rendering.
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Figure 4.3: The multi-tile time of the CPU rendering library split into preprocessing and ren-
dering.

the GLU tessellator.
Even though the new implementation has these additional two tasks in the preprocessing

phase, it performs better than the legacy library. The preprocessing times for each tile can
be seen in Figure 4.4; preprocessing in libMapRenderer takes 114.13ms on average, in lib-
MapRendererGL only 80.22ms, which is 1.42 times faster. Since the preprocessing procedure
takes place entirely on the CPU, this performance improvement is not due to usage of different
hardware to do the same task, but because of much more efficient usage of data structures and a
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Figure 4.4: Preprocessing times in milliseconds for the test map, lower is better.
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Figure 4.5: Rendering times in milliseconds for the test map, lower is better.

complete redesign of the preprocessing phase.
As the preprocessing procedure, the rendering phase was redesigned from scratch; which,

together with the usage of the graphics processor for rendering, resulted in a massive speed
improvement: the new library renders a tile 6.50 times faster on average. A comparison of the
rendering times can be evaluated in Figure 4.5. On average, libMapRendererGL renders a multi-
tile in 19.58ms, while the Quartz 2D rendering code of the old implementation needs 114.13ms
for the same task. The rendering time per multi-tile is also much more consistent than in the
legacy implementation, where certain tiles introduce large spikes in the rendering time.

Summing up, performance improvement was accomplished by completely re-implementing
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Figure 4.6: Post-Processor speed in milliseconds, lower is better

the whole rendering library with a special focus on clean design and fast execution on the one
hand, and usage of the graphics hardware for the actual rendering on the other hand, which fur-
ther reduces the CPU load. Not a single line of code was taken from the legacy implementation
without modification; in fact, only two utility functions have been re-used at all. As a result,
the prototype that has been implemented for this thesis consists of 153 source code files, 17929
lines of code and 5734 lines of comments, ignoring whitespace such as blank lines (counted with
CLOC1).

4.1.2 Comparison of the Post-Processor Performance

Comparing the post-processor performance is even more complicated than comparing the two
servers because the legacy implementation has no post-processor. Nevertheless, it is possible to
measure the performance of the proposed post-processor: A 4× 4 multi-tile (8× 8 tile) area in
the center of Vienna is rendered and the time it takes libMapRenderer to render only the dynamic
features for this area is measured; all static features are excluded. Of course, those features are
rendered into tile images, not directly on the screen as done in libMapRendererGL. In the new
renderer, the same 16 multi-tiles are loaded without rendering tile images, once all of them are
loaded, their dynamic features are added to the post-processor and the time it takes the post-
processor to render them is measured. Under normal circumstances, the post-processor would
never have to process so much data at once because the dynamic data junks of the multi-tiles
would be added one after the other, in the order the server finishes loading them; furthermore,
the post-processor would normally run in parallel to the rendering thread, not synchronized with
it as in this test case. Anyway, in a test with the parameters described, both libraries fulfill
the same task so the measured times can be compared. As before, both single tiles and 2 × 2
multi-tiles have been used in the old renderer - results of the test can be seen in Figure 4.6.

It can clearly be seen that libMapRendererGL is able to render the dynamic features much
faster. Part of this is due to the hybrid rendering architecture – in the old implementation, features
near tile borders are drawn on several tiles (and are then clipped), while the hybrid architecture
avoids this. When the elimination of such duplicates is deactivated, the time needed in the post-
processor rises by a factor of 3.12, from 123ms to 521ms. A large part of the time the legacy
renderer spends on these features seems to be used on setting up required data structures. This
can be seen in the difference between single tile and multi-tile rendering: although only a quarter

1Count Lines Of Code, http://cloc.sourceforge.net
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(a) No scale or rotation, rendered
with libMapRendererGL

(b) Zoomed-out map rendered with
libMapRenderer – map rotation is
not possible!

(c) Map scaled and rotated using
libMapRendererGL

Figure 4.7: A labeled icon rendered with both renderers. Note that when rotating and/or zoom-
ing the map, both the icon and the text stay the same size and orientation in the proposed imple-
mentation.

of the area is processed when using single tiles, rendering time decreases only from 2060ms to
1785ms.

Almost all the time used by the post-processor in libMapRendererGL is spent on preprocess-
ing the dynamic features; for instance, glyphs are rendered with FreeType and all glyphs of a
label are blended together into a bitmap in main memory. As previously mentioned, this would
normally happen in parallel to rendering the tiles in the client. The actual rendering step where
icons and labels are drawn takes less than 1ms for the scene described.

4.2 Quality

In this section, the rendering quality of libMapRendererGL is first compared to the previous
solution, libMapRenderer, regarding different aspects of rendering. Later some comparisons
with scientific work, presented in Chapter 2, are performed.

4.2.1 Comparison to libMapRenderer

The three major feature types, points, lines and polygons, are here compared to the previous
rendering library. Additionally, text rendering, limited to horizontal text, is evaluated.

Point Rendering

In the old rendering library, point rendering is very simple. The contents of the icon bitmap are
simply blended into the final map image. However, the fact that the icon is baked into the tile
image has several disadvantages: for once, the icon is not presented pixel-exact on the screen,
so some kind of filter is applied to the icon as soon as the map is zoomed in or out. While
this filtering might not lead to severe artifacts, the icon is at least blurred when it is enlarged.
Furthermore, when zooming out, the icons may be scaled down to a point where they are no
longer properly recognizable. In the presented work, most icons are drawn in the post-processing
stage; they are always displayed fronto-parallel and in their native resolution, so no resizing or
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(a) libMapRenderer (b) libMapRendererGL

Figure 4.8: A train station rendered with both libraries. Note how the white dashes are much
better visible with the proposed implementation because the legacy renderer performs MSAA
on the final image, resulting in a slight blur.

filtering of icons ever happens. Icons that are drawn in the server (and are therefore baked into
the tile image), include only very simple images like colored squares used, for instance, for
single trees; those icons are hand-selected to ensure that all higher-level icons are drawn in the
post-processor.

A second disadvantage of baking icons into tile images is that most icons are not rotationally
invariant, so the map cannot be rotated while maintaining proper upright display of the icons.
This problem is also avoided with the post-processing approach, as can be seen in Figure 4.7.

Line Rendering

Since Quartz 2D performs “correct” line rendering, i.e. each line dash is rendered as a separate
line segment and antialiasing is performed by convolution with a filter kernel, better results
than reached with the legacy library are not possible. The goal was therefore to speed up line
rendering with hardware acceleration while maintaining high-quality lines. The speed up was
already shown in Section 4.1, the quality of the rendered lines shall be evaluated here.

As described in Section 3.2.4, line antialiasing is performed using the correct pixel-line-
segment distance, which is then converted to an intensity value for that pixel. Gupta and Sproull
[10] stated that for any circularly symmetric filter kernel, this method yields the same result as
a convolution of the line with the filter kernel. The filter currently implemented is the cubic
smoothstep function, but it can easily be replaced by any mathematical function encoding a
circularly symmetric filter kernel.

The proposed dashing algorithm is able to produce dashes with correct line caps as stated
in Section 3.2.4. The shape of the cap is calculated analytically in the shader, and antialiasing
is done using the same method as used for general line antialiasing. Therefore dashes are also
rendered equally well in the proposed system as in libMapRenderer; very fine dashes look even
better when rendered with the proposed method, because Quartz 2D performs MSAA on the
final image, which blurs fine features noticeably. A comparsion can be seen in Figure 4.8.
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(a) libMapRenderer (b) libMapRendererGL (c) libMapRendererGL (MSAA)

Figure 4.9: A polygon rendered with both libraries. In the enlarged section, it can clearly be
seen, that MSAA produces a “blockier” result than the implemented antialiasing method.

Polygon Rendering

Similar to line rendering, the polygon rendering of Quartz 2D can only be used as reference
solution rather than trying to improve it. Polygon antialiasing is done with a bit of a hack in
the proposed work, as the polygon edges are simply overdrawn with lines of the correct color.
Results of this method, compared to a polygon rendered with the previous renderer, can be seen
in Figure 4.9. The additional rendering pass involved with this method slows down rendering
by about 15%, as an alternative, MSAA, which imposes only about 3% slow down, can be
turned on in the server; however, since the whole image is then blurred, this makes fine features
like dashes less clear (see also Figure 4.8). Additionally, the implemented method produces a
smoother result than MSAA.

Text Rendering

In the legacy rendering library, text is baked directly into the tile images, just as everything else.
This leads to the same problems as with point rendering (described earlier in this section). For
text, both rotation and down-scaling are even more severe. Note that, while the old renderer
cannot reproduce text in a pixel-exact way on the screen, the artifact mentioned in Section 3.5.1,
is not severe because Quartz 2D performs MSAA on the whole tile image. A downside of the
proposed implementation is that text halos, which increase readability in the legacy implemen-
tation, cannot be rendered; a comparison of text rendering with map rotation and scaling can be
seen in the point rendering section, Figure 4.7.

4.2.2 Comparison to McNamara et al.

McNamara et al. [18] state that the optimal solution to the line antialiasing problem is the con-
volution of the line with a filter kernel. Figure 4.10 shows a comparison of the intensity values
of a convolution and the proposed solution. While the actual values are not equal, because Mc-
Namara et al. use a piece-wise-linear function (Figure 4.10a) to map distance to intensity while
the proposed implementation uses smoothstep to do the same task, there is no visible dif-
ference between the plots. McNamara et al. achieve such a good solution only with their most
complicated method that requires intensity calculation for all four boundary edges; the proposed
method needs only a single intensity calculation because the true pixel-line-segment distance is
known.
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(a) The piece-wise-linear function
used by [18].

(b) An optimal round line cap,
created using convolution with
a round filter kernel (plot from
[18]).

(c) A round line cap, created with
the proposed method.

Figure 4.10: Line cap comparison with the optimal solution

4.3 Features

In this section, the features that are new in comparison to the previous rendering library are
introduced. With regard to libMapRenderer, most new features arise from the novel hybrid
rendering architecture. Later in this section, the new possibilities of the line rendering algorithm
are related to previous scientific work.

4.3.1 Features of the Hybrid Architecture

The old library, libMapRendererGL was designed from scratch to offer certain features that the
old rendering library could not provide. The most prominent of these features is a 3D mode, to
enable a fly-over-like map view. In addition to simply changing the view point, the proposed
implementation is capable of rendering icons and text parallel to the screen, so that they always
stay undistorted no matter how tilted the current map view is.

In fact, icons and text not only stay upright when tilting the map, they also do so when
rotating in both the 2D and 3D modes. This makes it possible to have a “compass mode” where
the map automatically rotates to reflect the current orientation of the device, if it has a built-in
electronic compass. Figure 4.11 illustrates the 3D view and also shows some icons and labels
that are rendered fronto-parallel.

The post-processing architecture also fixes another problem of the legacy implementation:
due to rendering everything (including text) into the tile images, certain text items like road
names, which are placed dynamically along a road, are not always placed at the exact same
position on neighboring tiles. This results in a visible artifact when the text does not completely
fit in a single tile and crosses a tile border; the text is then clipped at the border. An example of
such an artifact can be seen in Figure 4.12. The new rendering library circumvents this problem
by rendering only static features (that have a fixed position) into tile images. If static features
cross tile borders, they are rendered at the same position by all tiles involved and can therefore
be tiled seamlessly. Dynamic features (whose position might not be fixed but determined by the
post-processor) are rendered in the post-processing step, not into the tile images. This does not
only save redundant rendering calls, but also eliminates the bug described.
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(a) 2D (b) 3D

Figure 4.11: Melk Abbey, Austria, in both 2D and 3D Modes. Note how the icons and the text
stay upright and parallel to the screen.

Figure 4.12: Text being cut at tile borders in the legacy rendering library.

A possible future enhancement is the overlay of routing data. This data (generated either
online or locally on the device) can be integrated into the post-processing architecture easily to
enable a navigation mode.

Beside the advantages, the new implementation also has some disadvantages when compared
to libMapRenderer. Line rendering, in particular, lacks some features in comparison to real
vector drawing libraries like Quartz 2D. Of the three possible line joins, only the miter join
is currently implemented, and while the bevel join is a possible extension, the round join is
very hard to include in the current implementation. Additionally, since line vertices have to be
duplicated on the CPU, the memory consumption for a line geometry is raised. Without the
duplication, a line strip consisting of n points needs 2 ∗n floats; with duplication, 2 ∗ (2 ∗n+2)
floats are needed to store the coordinates, a single byte is used to store the extrusion direction for
each vertex, a float per vertex stores the angle at each join and for dashing an additional float per
vertex (the line length up to this vertex) is needed. Summing up, a line strip of n points needs
4 ∗ (2 ∗ n+ 2) floats plus (2 ∗ n+ 2) bytes of memory.

The overall experience of the mapping application powered by the proposed rendering li-
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brary is changed to a smoother, more modern user experience. The fact that many features are
obviously “not inside” the map, but “stand on” the map (in 3D mode) draws attention to the
icons, especially during an animation phase, because they then move differently from base map
image. Previously, moving the map on the screen created the impression of moving a large paper
map around (the original slippy map idea); the new renderer, however, causes an impression of
a live-generated, interactive map.

Platform Independency

Although iOS is the primary target platform for the rendering library, platform independency is
an important new feature of the proposed implementation. The goal was to be able to compile
and run the whole code on each platform while keeping the platform-dependent code to a mini-
mum. The following requirements must be fulfilled to successfully compile libMapRendererGL:

• OpenGL ES 2.0 (headers and library)

• POSIX Threads

• The C++ Standard Template Library

• A C++ compiler with support for RTTI2

Apart from minor code additions needed for each supported platform (mainly to locate the cor-
rect OpenGL headers), the whole rendering library will compile on any platform providing these
features.

While the previous rendering library was also ported from iOS to Android, the port needed
severe modification and a lot of additional code in many places. Also, some features are missing
from the Android port, because the actual rendering was done by a 3rd-party library on both
platforms – AGG on Android and Quartz 2D on iOS. Since libMapRendererGL handles all
rendering itself, the results will be the same on each platform.

4.3.2 Novel Features of the Line Rendering Algorithm

To our knowledge, the proposed line rendering algorithm is the first method to combine an-
tialiased line rendering of line strips with arbitrary width, all three different line cap styles and
dashing (including the correct line cap style for each dash). While the methods of McNamara
et al. [18] and Chan and Durand [6] produce visually appealing lines and round line caps, other
types of caps cannot be rendered, and no line strips (and therefore also no line joins) are sup-
ported, although Chan and Durand simulate round line joins by drawing two line segments with
round line caps. Persson [28] tessellates lines and renders them as triangle strips; however, cap
styles and join styles must be encoded in the geometry of the line, while the presented method
strictly separates line geometry from the line style. Bærentzen et al. [3] calculate the pixel-line-
segment distance in a similar way as in the proposed work, producing equal round line caps, but

2Runtime Type Information
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(a) Suburbs of Linz with a lot of dustbins. (b) A courtyard in Vienna including every single
tree.

Figure 4.13: Overly crowded areas in the OpenStreetMap

line strips can only be rendered as in [6], by rendering each segment separately. Dashing is not
supported with this method.

Seetharamaiah et al. [39] are able to decorate lines with a user-defined stipple pattern, how-
ever, since their implementation discards fragments in an “off” interval, no antialiasing or correct
caps for line dashes are done. The same limitations apply to the algorithm of Poddar [31],7 who
invented the method of storing the dash pattern in a texture, which was extended to store not
only binary but distance information in the proposed algorithm.

4.3.3 Features compared to popular Map Rendering Applications

The most obvious difference of the proposed renderer and popular mapping applications like
Google Maps and Apple Maps (apart from the style) is the feature richness of the OpenStreet-
Map data. Both mentioned mapping applications retrieve their data from commercial map
data providers like NAVTEQ3 and TomTom4, while all data in the OpenStreetMap stems ei-
ther from out-of-copyright maps or is manually added by members of the community. As a
result, data from the OpenStreetMap project is usually more up-to-date than those from com-
mercial providers. Also, as already mentioned, OpenStreetMap data often contains much more
information about POIs. This has both a good and a bad side; on the one hand there are almost
no possible POIs that are not mapped in one or the other way, but on the other hand the map may
seem crowded – for instance in some areas of the Austrian city Linz where every single dustbin
is shown, or in some courtyards in Vienna, where all the trees are displayed on the map. Figure
4.13 shows screenshots from openstreetmap.org for both of those areas.

Like the presented renderer, both Google Maps and Apple Maps use vector data to render the
map locally on the device, but both of them download the data live from the internet. Of course,
no details about this are known, but it can be assumed, that the data is specifically tailored to the

3http://www.navteq.com
4http://www.tomtom.com
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(a) “Virtual Earth” in Apple Maps (b) Text rendering and buildings
in Google Maps

Figure 4.14: Google Maps and Apple Maps

needs of the device and the current settings of the app, so that no further preprocessing needs to
be done prior to rendering. Google Maps provides the possibility to store sections of the map
on the device and the download size of the map also suggests the focus on quick rendering as
opposed to small file size: a map of Vienna, when downloaded from Google Maps, needs more
than 100 megabytes of space, while the ulmbin map of roughly the same area is exactly 8.8
megabytes in size.

As for the architecture of the proposed library, Google Maps has inspired many ideas: they
seem to have some kind of hybrid architecture too, because sometimes a tile-based structure
is clearly visible, but many features are obviously rendered over this structure. Both applica-
tions provide a 3D view and are able to draw three-dimensional buildings in the most detailed
zoomlevels, which is planned as a possible future extension of the proposed library. On Apple
Maps, the buildings are even textured with satellite and aerial imagery, obviously aiming at a
“virtual earth” experience (Figure 4.14a), although this technology seems to be in its infancy,
considering the amount of bad press it received almost instantly after its launch.

As for text rendering, Google Maps seems to take a slightly different approach than the one
presented here. Text items are not always rendered fronto-parallel, but seem to “pop out” of the
map sometimes, an example of this can be seen in Figure 4.14b. However this leads to a rather
unpleasant visual discontinuity, which is why the presented approach was favored.
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CHAPTER 5
Conclusions

In this work, an OpenGL ES 2.0 map rendering engine for mobile platforms has been presented.
The renderer uses a custom vector data format based on data from the OpenStreetMap project to
store maps, and dynamically renders them using a special stylesheet. In this section, the major
challenges encountered during the implementation are briefly discussed and the most important
findings are stated. Finally, missing features and ideas on how to implement them are listed.

5.1 Challenges

The first and probably most important challenge was to design a fast, scalable and memory
efficient architecture. When considering the amount of data it soon became obvious that a full
realtime rendering engine would not be feasible with the restricted capabilities of mobile devices.
As some of the required features (e.g. map rotation) can not be implemented in a tile-based
system, because text and icons would be upside-down eventually, the hybrid rendering approach
that has been described in the previous sections was designed. To avoid user interface “hickups”,
tile rendering cannot be done in the main thread, a thread for the tile server had to be created
instead.

An optimization to the data loading of the previous rendering library has been introduced: a
concept called multi-tiles, where each multi-tile covers a square area of actual tiles. Redundant
feature loading can be avoided this way; the size of the multi-tile is only constrained by memory
limitations, multi-tile sizes up to 4×4 tiles have been tested and could be rendered in almost the
same time a single tile needed to render, while covering 16 times the area of a normal tile.

Communication between the server thread and the main thread (where the client is run) can
be done without a specific communication protocol because they share the same address space.
The design and implementation of the data structures to provide a thread-safe rendering queue
and tile cache was another challenge.

Inside the server, line rendering is the most complex part. A line tessellation algorithm was
implemented to enable rendering of line strips with arbitrary style. The line renderer is able to
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draw all three different line cap styles (round, butt and square caps) and a line can be decorated
with a dash pattern. Each dash is drawn using the correct cap style, which has not been covered
in realtime rendering literature previously.

To determine the tiles that are visible on the screen, a tile selection algorithm is used. This
algorithm exploits the flat geometry of the map and uses a polygon rasterization algorithm to
calculate the tiles touched by the projected view frustum. While this problem is similar to the
problem solved in the clipmap approach by Tanner et al. [48], an exact tile selection was needed
instead of the course estimation done in clipmapping.

To render the large amounts of icons needed for OpenStreetMap data, all icons are packed
into a texture atlas at application startup. A simple but fast online square packing algorithm is
presented to place the icons in the texture atlas. The algorithm takes advantage of the fact that
the icons are square, of similar sizes and small compared to the size of the texture atlas.

The last challenge that needs to be solved, is the post-processing part. An efficient data
structure to handle duplicate items (from neighboring tiles) and dynamic addition and removal
of features was implemented. Additionally a message passing system was designed to handle
communication between the client and the post-processor while not slowing down either of the
two.

5.2 Findings

An important lesson to learn from the implementation work for this thesis is that while using
the GPU for rendering significantly speeds up tile generation, the CPU is still the limiting factor
most of the time. Even though the features of map data do not scale well with GPU architecture
(many small features in contrast to large chunks of geometry, which would be best for graphics
hardware), only a fraction of the total time is spent on rendering.

During development, the importance of minimizing state changes for OpenGL performance
was confirmed, for instance, the usage of a texture atlas for the point icons improved the render-
ing speed drastically.

5.3 Future Work

The aim of this work was to create a prototype to showcase the most important features of an
OpenGL map rendering library. In the future, this prototype will be extended and revised to be
eventually released as a replacement for libMapRenderer. There are several research topics that
need to be investigated; inclusion of more than a single line join and fast text rendering being
only two of those.

As stated in Section 4.1, more than 80% of the time spent on one tile is spent on prepro-
cessing. This time could be reduced drastically by improving the data format to require less
computation during loading. A tradeoff between file size and loading speed will have to be
found. The data format could also be optimized such that everything that has to be drawn on
the same layer (for instance all road casings) can easily be grouped together into a single draw
call; related to this, the stylesheet can be optimized to reduce the number of layers (and thus, the
overdraw which would again speed up rendering).
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Round and bevel joins have not been implemented in the proposed system because the map-
ping stylesheet in use does not enforce them. Bevel joins could be realized using a similar trick
as is used for the butt line caps though: two additional vertices would have to be inserted at each
join; for miter joins this would result in two duplicate vertices, for bevel joins only the inner
vertex would be doubled. If and how round joins can be included in the line renderer remains to
be researched.

The dilemma about text rendering has already been described in Section 3.5.1, the fastest
method to solve that dilemma is still to be found. One possible solution is to use a texture
atlas for all horizontal glyphs, the proposed packing algorithm (Section 3.2.4) is perfectly suited
for this. For non-horizontal text, a texture atlas is not suitable because of the huge number of
combinations of glyph, glyph size and angle. Tests will have to be done to clarify if letting
the font loading library, FreeType, do the rendering of these glyphs in realtime is feasible, or if
some kind of cache is needed, and if the visual artifacts introduced by not displaying glyphs in
a pixel-exact way are tolerable. Especially MSAA could assist in avoiding those artifacts.

The post-processing stage in general is another important evaluation area: an efficient screen
space collision detection is needed, and it must be investigated, how results of the collision
detection can be transferred to the next frame, even when the camera position changed. For
road names, which are rendered approximately along roads, a way to keep the rendered strings
is needed, even when the camera moves; for camera rotations the road names must always be
recalculated, but the ability to re-use at least certain glyphs would be desirable.
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