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Abstract

A variety of 3D-model databases are available on the internet, but the process of finding the right
models is often tiring. This is because the majority of the available models is barely annotated
or the quality is low. Annotations often are ambiguous, vague or too specialized. Besides 3D-
model annotations, remote sensing data can be ambiguous too. Global land cover maps like
GlobCover, MODIS and GLC2000 show large differences in certain areas of the world. This
lack of correct data is a problem, because it is a basic requirement for a variety of research areas
and applications.

Consequently, this thesis aims at tackling both aforementioned problems. The task of recog-
nizing and classifying images as well as 3D-models is easy to solve for human beings, but even
today rather hard for computer systems. For that reason, this thesis makes use of the concepts
of crowdsourcing. The quality of user annotations can be improved by collecting annotations
from a variety of users and extract those with the highest frequency. To achieve this, a game has
been implemented that unifies crowdsourcing and social games mechanics. This game consists
of game-rounds which lead the user through the process of annotating 3D-models as well as
land cover data. Also, a drawing round has been implemented to enable the user to classify a
given land cover area using a pre-defined set of categories. As crowdsourcing is related to a
large number of users, the focus is on implementing a game that provides incentives for users to
spend their free time on playing, while solving useful tasks. To reach as many users as possible,
the game has been implemented using only HTML5 and JavaScript to circumvent limitations
due to missing plugins or external players and to support all systems, including mobile devices.
It is also integrated into Facebook to further enlarge the number of reachable users.

The potential of the approach is demonstrated on the basis of a user study. The results
show that the annotations with the highest frequency are good descriptors for the underlying
3D-models as well as for the land cover maps. None of the top annotations are incorrect for
any model or map. Analyzing the user paintings also shows very good results. The majority of
maps were classified correctly and even the distribution of categories over the maps are correct
to a high degree. We thus show, that the combination of crowdsourcing and social games can
improve land cover data and 3D-model annotations. These insights contribute to the ongoing
“Landspotting” project, which is further explained in this thesis.
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Kurzfassung

Eine Vielzahl von 3D-Modell-Datenbanken ist im Internet verfügbar, doch die Suche nach pas-
senden Modellen ist oft ermüdend. Das liegt daran, dass die Mehrheit der verfügbaren Modelle
entweder kaum annotiert sind oder die Qualität vorhandener Annotationen schlecht ist. Diese
sind oft mehrdeutig oder vage oder im Gegensatz dazu zu speziell. Doch neben 3D-Modellen
können auch Fernerkundungsdaten mehrdeutig sein. Globale Bodenkarten wie zum Beispiel
GlobCover, MODIS oder GLC2000 zeigen starke Unterschiede an bestimmten Punkten der Er-
de. Das Fehlen von korrekten Daten ist ein Problem, da diese unabdingbar für eine Vielzahl von
Forschungsrichtungen und Anwendungen sind.

Daher konzentriert sich diese Arbeit auf die Lösung der genannten Probleme. Menschen
sind begabt im Erkennen und Klassifizieren von Bildern, aber auch von 3D-Modellen, während
dies auch heutzutage noch schwierig für Computersysteme ist. Aus diesem Grund bedient sich
diese Arbeit dem Konzept des Crowdsourcings. Die Qualität von User-Annotationen kann ver-
bessert werden, indem diese von einer Vielzahl von Usern gesammelt und diejenigen mit der
höchsten Anzahl an Übereinstimmungen extrahiert werden. Um dies zu erreichen wurde ein
Spiel entwickelt, das Crowdsourcing und Elemente von Social Games miteinander verbindet.
Das Spiel besteht aus mehreren Runden, die den User durch die Annotierung von 3D Modellen
und Bodenkarten führen. Ebenso wurde ein Level entwickelt, in dem User gegebene Bodenkar-
ten mittels vordefinierten Kategorien klassifizieren, indem Karten mit den passenden Kategorien
bemalt werden. Da Crowdsourcing eine große Anzahl an Usern bedingt, liegt der Fokus auf der
Enwicklung eines Spiels das den Usern Anreize bietet um ihre Freizeit mit spielen zu verbringen,
während nützliche Aufgaben gelöst werden. Um möglichst viele User zu erreichen, wurde das
Spiel ausschließlich mittels HTML5 und JavaScript entwickelt, um Limitierungen durch fehlen-
de Plugins oder externe Player zu vermeiden und alle Systeme einschließlich mobiler Geräte zu
unterstützen. Es wurde darüber hinaus in Facebook integriert, um noch mehr User zu erreichen.

Das Potential des Ansatzes wird anhand einer Userstudie demonstriert. Die Ergebnisse zei-
gen, dass jene Annotationen mit den höchsten Übereinstimmugen gute Deskriptoren für die
zugrundeliegenden 3D-Modelle und Bodenkarten darstellen. Keine der bestgereihten Annota-
tionen aller Modelle und Karten sind inkorrekt. Die Analyse der Daten die durch Userzeich-
nungen gewonnen wurden zeigen ebenfalls sehr gute Resultate. Der Großteil der Karten wurde
korrekt klassifiziert und sogar die Verteilung der verschiedenen Arten von Bodenbedeckungen
spiegelt sich in den Ergebnissen wider. Es wird weiterhin gezeigt, dass durch die Kombina-
tion von Crowdsourcing und Social Games Annotationen von Bodenkarten und 3D-Modellen
verbessert werden kann. Die Erkenntnisse die durch diese Arbeit gewonnen haben tragen zum
laufenden Projekt „Landspotting“ bei, das im Folgenden näher erläutert wird.
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CHAPTER 1
Introduction

In the following, the motivation as well as the aim of this thesis is presented and the problems
of existing approaches are explained briefly.

1.1 Motivation

Databases like Turbosquid, Google Warehouse or 3D Model Free are well-known resources for
publically available 3D-models. These models are important for 3D-artists as well as computer
graphics developers, because the creation of such models is a very time-consuming task and
requires artistic skills. But finding models which fit the desired application is often also time
consuming, because the majority of free and publically available 3D-models is usually either
bad or not annotated at all. Annotations in general are strongly dependent on the user’s perspec-
tive to a given context and time [32]. Because of this, given annotations are often ambiguous,
volatile, vague or too specialized. Figure 1.1 shows four different models from Google Ware-
house found for the keyword “tiger”. Having meaningful annotations would therefore decrease
the time dedicated to gathering models which match the demand. Additionally, the retrieval of
3D-models is an important part of multimedia information retrieval [39].

But next to 3D models, even remote sensing data can be ambiguous. Because research in the
field of sensor technology has advanced significantly over the past decade, satellites are nowa-
days capable of recording land cover maps with a resolution of up to 300 by 300 meters. Global
land cover maps like GlobCover [1], MODIS [28] and GLC-2000 [15] have been rendered in
the last years. These maps evolved from remote sensing via satellites and contribute important
information to land use, ecosystems and climate change. But the problem with these global land
cover maps is that they show large differences in certain areas of the world. Figure 1.2 show
how the same area is classified differently in three global land cover maps.

The size of the rectangles belongs to the resolution the satellites are capable of. MODIS
classifies the area shown (blue rectangle) as “Non-Woody Savannahs”, GLC-2000 (cyan rect-
angle) as “Cultivated and managed areas”, while the red rectangle belonging to GlobCover is
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Figure 1.1: Four models for keyword “tiger”, taken from Google Warehouse. Model four, which
is the 41st search result, is the first model of an animal tiger.

Figure 1.2: Classification of land cover by GLC-2000 (cyan), MODIS (blue) and GlobCover
(red). This is a screenshot from the Geo-Wiki project’s website located at http://www.geo-
wiki.org

classified as “Mosaic Cropland/grass or shrub or forest”. This demonstrates the aforementioned
ambiguity of global land cover data. This lack of correct data is a problem for science, as it is
vitally needed for a variety of applications and research areas. The determination of potential
additional agricultural landuse [2] for ensuring food security or to grow bio fuel [12] is one imag-
inable application, but also analyzing climate and weather change by monitoring deforestation
[5] or the collection of data for disaster response [16] are important applications where correct
data is essential.

Therefore, the question is how to gather meaningful annotations. This thesis aims at col-
lecting those annotations for 3D-models and especially land cover maps by creating a social
crowdsourcing game where users provide annotations which are further compared and verified

2
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to see if and how well land cover data can be improved by non-expert users.

1.2 Problem Statement

It has been stated in Section 1.1 that good annotations are vitally needed for a variety of research
topics. Here, the current approaches for the extraction of annotations is described.

Automatic Approaches Algorithms for feature detection and -extration of images have been
a research topic for several decades. But nevertheless, it is still a computationally hard and
expensive task. Feature detection and extraction as a subfield of computer vision in general
aims at local features of images like edges, corners, color distribution, blobs etc. Well-known
examples for such algorithms are edge detectors like Canny, Sobel and Prewitt or scale-invariant
approaches like SIFT. Content-based approaches are now making use of the aforementioned
algorithms to search for images or 3D-models in large databases. By this, similar looking images
or models can be found. For example, Google’s image search is capable of searching for images
which are similar to a given image. But the problem is that images with similar features do not
necessarily match contentually. Figure 1.3 shows two images which have similar features from
a computer vision point of view, but do not match on a semantic level. Different scale, rotation

Figure 1.3: Image of a wasp on the left and the corresponding optical similar image found by
Google image search. Wasp image “Erdwespe” from “Andi_und_Andi”, source: www.piqs.de,
Some rights reserved.

and viewpoint as well as the high variablity of a broad domain like the internet make this task
even harder, especially for 3D-models [8].

Another, contrary approach for image retrieval is to use meta-data like captions, headings,
filename or surrounding text on websites to extract images that match given search criterias.
This, however, is not sufficient, as these meta-data are often rare, misleading or do not correlate
to the given image [36]. Concept-based image indexing nevertheless is a more natural way
for users to search for images or models wanted, for example by searching for “tiger” instead
of specifying which features a tiger has. Another advantage is the possibility to provide more
general search criteria. For example, searching for “mammal” could yield results like “dolphin”
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or “cat”, although features like shape or color distribution are very different. For that reason,
this thesis will direct it’s attention towards text-based search. Automatic algorithms have been
developed to annotate 3d-models by analyzing shape as in [30] or by semantic correlation as in
[39] as well as images, as in [38] and [26] to name a few. But automatic algorithms in general
have two important drawbacks. First, the results achieved are often not satisfactory or need
manual correction, often in the form of user relevance feedback. Second, they need a large set
of well-annotated images or models to be trained. So manual annotation of images and models
is needed for automatic algorithms, which forms a vicious cycle. For example, Ohbuchi and
Kawamura [30] used an already annotated test set of about 900 models to train their algorithm.
Annotating 900 models by hand is a very time consuming task that needs to be performed by
experts having experience in the field of the application.

Manual Approaches It therefore seems natural to search for a way to get manual annotations
in short time and for low costs. Practically, the recognition and annotation of images and models
is a very fundamental task for the human brain and visual system. Therefore, a reasonable
approach is to distribute the workload to a large base of users, so that each user only has to
do a small part of processing. This approach of outsourcing work to a large user base is called
crowdsourcing. The term crowdsourcing has been characterized by Jeff Howe in the 2006 article
“The Rise of Crowdsourcing” from WIRED magazine. In his blog, he defines the term as:
“Crowdsourcing is the act of taking a job traditionally performed by a designated agent (usually
an employee) and outsourcing it to an undefined, generally large group of people in the form of
an open call.”

It is nowadays used by many projects like Wikipedia, Amazon Mechanical Turk, Foldit
and others. Crowdsourcing overcomes the problems of automatic algorithms described above
and also follows the trend in the field of mapping which came up in the last couple of years.
While mapping has been performed by national institutions for centuries, there is a trend towards
mapping by web users. That is because the highly risen number of internet users as well as the
emergence of Web 2.0 lays the foundation for the involvement of a large number of users into
such a process. Luis von Ahn did some spadework by channeling the human brain power into
image annotation tasks by creating the currently very popular and well known ESP game [36].
This type of game is nowadays known as “Games with a Purpose (GWAP)” [35]. The idea of
combining crowdsourcing with a game is very interesting, because people all over the world
spend billions of hours each year playing computer games. Even if only a fraction of this time
can be used to solve large-scale problems, one can imagine the huge potential of crowdsourcing
in combination with computer games. As von Ahn stated in [36], all images indexed by Google
could be annotated within 31 days if about 5000 people play a well-designed game for 24 hours a
day. Even if this statement is from 2004 and the number of images indexed by Google increased
significantly, the amount of potential players increased significantly too. The game is online
since August 2003 and was played by 13,630 users in the first four months. While latest usage
statistics are not available, the fact that the ESP game was acquired by Google and that the daily
highscores show huge scores, shows that it is safe to assume that it is still very successful and
popular.

Social networks like Facebook and Twitter became extremely popular in the last years and
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millions of players participated in games like Farmville and Mafia Wars in those networks. Far-
mville, for example, reports 19,300,000 active users in July 2012 which tops the game “League
of Legends”, which Forbes Magazine elected to the most played PC game in the world. Even if
it is unrealistic to compete with the top 3 global players in social games, these usage statistics
show the potential of social games.

As a consequence to the aforementioned success of social games and crowdsourcing in gen-
eral, the motivation of this thesis is to channel the abilities of the human brain to solve useful
tasks by combining crowdsourcing and social games. But what are the requirements for a suc-
cessful social game? First of all, humans require incentives to play a game and thereby become a
task-solver. The most important incentive is entertainment. Paavilainen presented ten high-level
heuristics for social games in [31] that defines what makes a social game entertaining. Follow-
ing these heuristics listed in Table 1.1, the game has to be easily accessible, encourage playing
in short, sporadic bursts, while the player is able to feel progress and to socialize within the
game. As it is neither reasonable nor possible to fulfil every heuristic shown for every type of
game, we chose those matching our game idea and implemented a social game to solve scientific
tasks. The annotation of 3d-models as well as the annotation of land cover maps matches nicely
with the concepts of crowdsourcing and social games, because the quality of annotations can be
highly improved by involving more users in the annotation process [32]. Thus, the fuzziness of
annotations can be reduced or even eliminated.
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Spontaneity Games should be easily accessible and understandable.
Interruptability Infrequent and short game rounds shall be supported.
Continuity Incentives for coming back to the game as well as re-

wards for every game round should be given and the play-
ers should feel progress due to a persistent, asynchronous
game.

Discovery The player should be able to collect achievements and dis-
cover new content regularly

Virality By making use of virality like invite messages, new players
can be attracted. Users should be honored for inviting other
users.

Narrativity In-game events should be described vividly and broad-
casted to arouse curiosity.

Sharing Reasons should be given to the user to share resources and
informations.

Expression Players should have an opportunity to express themselves
through the game.

Sociability Social contacts should be integrated into the game in form
of goods and the communication with contacts should be
honored.

Ranking High score lists motivate for competition to play the game
and to compete with friends.

Table 1.1: High-level heuristics for social games presented by Paavilainen[31]

1.3 Aim and Research Question

The aim of this work is the implementation of a collaborative but also competitive multiplayer
computer game which exploits the potential of crowdsourcing to collect and verify user-based
annotations for given 3D-models and land cover data as well as the categorization of areas of
global land cover maps based on user paintings. It is going to consist of three game-rounds,
each round tackling another problem. One round aims at collecting annotations for given 3D-
models and global land cover maps. Another round enables users to choose between different
brushes, each brush corresponding to a given category of land use. By brushing on a Google
Map, users are able to flag the types of land cover shown on the map. Figure 1.4 shows an
example of the classification round. All acquired keywords and land cover data are then stored.
The game is based on an event-driven and thus non-blocking I/O JavaScript environment based
on Google’s V8 engine on the server side and on JavaScript and HTML5 on the client side,
as this allows a browser-independent implementation. Furthermore, the game is integrated into
Facebook. These decisions were made, in order to reach the biggest possible user base.

By collecting and analyzing this land cover data, the ongoing project “Landspotting” of the
Institute of Computer Graphics and Algorithms [29] of the Vienna University of Technology in
cooperation with other partners shall be supported. In the scope of this project, a web-based
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Figure 1.4: Categorization of global land cover maps by brushing maps with the given cate-
gories.

role play game is developed to refine global land cover maps. It is explained in more detail in
Subsection 2.3.2.

This thesis’ research question is whether user inputs are qualitatively valuable and if existent
annotations can be improved. This includes the question if and how well land cover maps
can be categorized or annotated, especially if the maps available have a low quality regarding
to resolution, recognizability, distinguishability and confounding factors like clouds and fog.
Likewise, the human ability to correctly annotate 3D-models and the quality of the resultion
annotations is examined for models with different quality.

1.4 Contributions

The contributions of this thesis are:

1. Extension of the user annotation approach to 3D-models and land cover maps
The idea of using crowdsourcing for annotation-tasks is extended to-3d-models and land
cover maps by means of a social crowdsourcing game.

2. Extraction and verification of user annotations for global land cover maps
On the basis of coordinates given by the Geo-Wiki project [12], user-annotations for land
cover maps are collected and analyzed to examine if annotation is an appropriate tool to
collect informations to refine the underlying maps.

3. Alternative method to generate land cover data
The problem of different classifications of land cover maps by remote sensing is answered
by collecting user drawings that identify and validate different land cover types for a given
region.

7



4. Improved mechanics to reach more users
By creating a game that is compatible with all platforms including mobile devices, and
integration into Facebook, a large user base can be addressed to collect data from. HTML5
is used to create a rich user experience independent from plugins or external players.
Additionally, models are pre-rendered into videos to support mobile devices which are
not capable of WebGL yet.

5. Support for ongoing projects
The ongoing project “Obfuscated Rendering” on the Institute of Computer Graphics and
Algorithms [29] is supported, which aims at using obfuscated rendering techniques to
prevent pattern recognition algorithms from detecting models automatically. The resulting
videos can be used as CAPTCHAs and the user input can be compared to the annotations
collected by our project. In addtion, this thesis does fundamental research to answer the
question if global land cover data can be annotated and categorized correctly by untrained
users to contribute to the Landspotting-project mentioned before.

1.5 Structure

This thesis is structured into the following chapters:

1. Introduction
This very chapter.

2. Related work
First, the state of the art in terms of crowdsourcing and user created content in general will
be introduced. Thereafter, the state of the art in using crowdsourcing for generating image
annotations is presented, as the concepts of these projects can be used for the annotation of
global land cover maps and furthermore be extended to the field of 3d-model annotation.
Subsequently, the latest projects in the field of collecting and improving land cover data
using crowdsourcing are covered to gain an insight of the current work in this section.

3. TAGinator - a social crowdsourcing game
The game implemented within the scope of this thesis is decribed in detail in this section.
It starts with ideas and challenges incident to creating a multiplayer online game to collect
data for both 3d-models and land cover maps while fulfilling the social game heuristics
mentioned before. Also the challenges with platform independency, client/server synchro-
nization and the problem of users playing at different times is covered. Subsequently, the
user interface with all its elements as well as the gameplay itself and its game mechan-
ics are described. At the end, the technologies used are described briefly as they enable
cross-platform compatibility while focusing on performance.

4. Results
In this chapter, the data extracted from the game is evaluated. This includes a small user
study, where data is generated using a set of 3D-models and land cover data. The impact of
certain game mechanics on the quality of the data is explored and the results are analyzed
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in general and representatively based on three different 3D-models and land cover maps
covering different qualities and resolutions.

5. Conclusion and Future Work
This thesis will be concluded by a brief summary of the work including take-home-
messages. Additionally, ideas and topics for future research are provided.
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CHAPTER 2
Related Work

This section aims at presenting the state of the art in the field of crowdsourcing in general.
After that, projects in image and 3D-model annotation are covered and finally, latest projects for
collecting and improving land cover data are presented.

2.1 Crowdsourcing in General

It has already been stated, that the human brain is capable of solving specific computationally
difficult problems like the recognition and annotation of objects and images and especially 3D
structures. This computational power of the human brain can be bundled to solve scientific
problems as well, which could potentially accelerate scientific progress. The big advantage of
crowdsourcing is that users can gain expertise and contribute to solve scientific problems, even
if the users are non-experts in solving a current problem or in the whole scientific discipline.

2.1.1 Foldit

A good example for such a scientific discovery game is Foldit. Foldit is a multiplayer online
game in the field of biochemistry. Users are faced with the difficult problem of protein folding,
wrapped in a puzzle-game. So the game aims at predicting protein structures, i.e. the deter-
mination of protein shapes for a sequence of amino acids. This prediction is essential because
knowledge of the structure is the premise to gain insight into a protein’s function [6]. In this
work, biochemists post protein structures to the server for which the native structure needs to be
found. Together with metadata and a parametrization, these structures form puzzles. For a spec-
ified time period, all users are able to download that puzzle and try to reach the highest possible
score by reshaping. Native structures are compact and unique structures which are lowest in free
energy. The scoring system is based on an energy function where the energy of a given structure
is indirectly proportional to its distance to the native structure. Thus, high scores indicate good
approximation of the native structure, which often includes very complex reshaping [6]. Figure
2.1 shows an example of such a folding. User scores are ranked against each other for the same
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Figure 2.1: Foldit is a crowdsourcing game which aims at finding native structures for given pro-
tein structures. This is an important problem in biochemistry, which is hard to process automat-
ically. This image has been taken from Foldit official website: http://fold.it/portal/info/science

puzzle and users can team up to solve puzzles together.
When a puzzle is closed, all solutions are collected and in turn analyzed by experts. This

forms a feedback loop, as the analysis is used to improve the design of both the game and
puzzles. The game design of Foldit is constrained by existing physical models and thus differs
from the standard iterative approach of recurring design-, test- and evaluation stages. The results
of the game have been evaluated by submitting the best user results for a couple of puzzles to
the protein prediction competition CASP 2008. For half of the puzzles handed in, Foldit ranked
inside top three. All of them had a better ranking than solely automatic algorithms, one puzzle
even won first place. Even if Foldit is available as a desktop application and is hence not a
typical social game on a social network, it is used to solve hard scientific problems by exploiting
the power of human brains and empowers socializing by implementing team building and other
social features.

Within the first two years after the initial release of the game in May 2008, more than 57,000
users have played the game, re-folding about 600 protein structures. A very impressive fact and
a good example for the potential of crowdsourcing is that the crystal structure of M-PMV, which
is an AIDS-causing monkey virus, has been accurately approximated by Foldit-users within ten
days [24]. This has been an unsolved problem for scientists for the last 15 years.
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2.1.2 How Do Humans Sketch Objects?

Sketching is a generic form of communication and has been used by humans since pre-historic
times. Even today, the only possible rendering technique most people are capable of is sketch-
ing. Eitz et al. consequently investigated in [9] how people sketch and how well they perform
in recognizing of sketches. Additionally, they developed a computational recognition system
for sketches and compared human and computational performance. The innovation here is that
contrary to earlier research, they do not assume that sketches represent their real-life counter-
parts in “some well-engineered feature space” [9]. This assumption does not hold anyways,
because of lacking artistic skills of most humans, which are substituted with iconic, simplified
or oversubscribed representations of objects.

For training data, they collected 20,000 sketches from 1,350 unique users. This huge amount
of sketches has been collected by crowdsourcing, using the platform Amazon Mechanical Turk
(AMT) that is described in Subsection 2.1.3. The sketches correspond to a set of 250 predefined
categories. These categories were chosen to cover everyday life objects that are recognizable
from shape without the need of further context, but are specific enough to avoid a large num-
ber of subcategories. Analysis of the gathered sketches shows a median number of 13 strokes
per sketch, while the stroke length decreases over time. The authors consequently suggest that
humans follow a coarse-to-fine approach for sketching. [9]. To investigate the human perfor-
mance on sketch recognition, another user study on AMT has been performed, where users were
asked to assign the best fitting category to sketches. This user study shows an average of 73.1%
correctly assigned sketches, while the results vary strongly for different categories [9]. These
variations are due to semantical or geometrical similarity of sketches from different categories.

To compare these results to computational sketch recognition, a robust classifier has been
built, representing sketches as frequency histogram of visual words that are gathered using a
visual vocabulary based on k-means clustering of feature vectors. A more detailed description
of the classifier would go beyond the scope of this section, so interested users may be referred
to [9], Sections 5-7. The classifier identified 56% of the sketches correctly, compared to 73.1%
success rate for humans. But the authors claim that 73.1% is a lower bound because AMT users
try to complete the task as fast as possible instead of as good as possible. So even if there is
room for improvement, further research on this topic could lead to new areas of application.
For example, human-computer interaction by the use of sketches could help illiterates to access
available informations on the internet. [9]. A video demonstrating the framework can be found
at the website of the University of Brown [34].

2.1.3 Amazon Mechanical Turk

Another interesting development in the field of crowdsourcing is Amazon Mechanical Turk
(MTurk). It is an internet marketplace for micro-tasks called “Human Intelligence Tasks” (HIT).
They vary massively from text and audio annotation to translation and recognition tasks, tran-
scriptions, verification tasks, assignments like company to address mapping and many others.
Every HIT is rewarded by a specific amount of money, which varies from about 61 US-Dollar for
a 2.5 hour voicemail transcription to 0.01 dollar for receiving emails, for example. Additionally,
there are some tasks free of charge. The amounts given are a spot test and are subject to varia-
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tion. 61 US-Dollar for a 2.5 hours HIT is by far an exception of the rule, because HIT typically
require very little time and the rewards stay within the limits of a couple of cents. Adapting this
system to scientific needs to collect useful data is however challenging. As there is no a-priori
knowledge about correct or wrong answers in general, users could provide nonsense-answers to
increase their income by decreasing the time needed to complete a task. Kittur et al. show two
experiments in their work [25], where they had MTurk users rate 14 Wikipedia articles. These
ratings have been compared to Wikipedia administrators subsequently to determine the quality
of the ratings.

In the first experiment, 210 ratings from 58 users were collected within 48 hours. About
48% of the given answers to a specific question were useless and about a fourth of all tasks have
been completed in less than a minute. Further analysis of the ratings showed that only 8 out of
58 participating users were responsible for about 73% of all invalid responses. So instead of a
wide user base trying to cheat, only a small group tried multiple times. But besides cheaters, the
correlation between user ratings and administrator ratings was statistically negligible. Invalid
ratings are not rewarded, but the identification costs time and thus money. In their second exper-
iment, Kittur et al. changed the rating task so that the effort for giving bad or invalid ratings is
the same than for giving good ones. They introduced some control questions with corresponding
defined answers to exclude invalid participants. This highly improved the quality of the ratings
given by MTurk users. Only 7 out of 277 compared to 122 out of 210 ratings were invalid and
the correlations between user ratings and administrator ratings also increased significantly. This
leads to the conclusion that Amazon Mechanical Turk is a good platform for very fast crowd-
sourcing for low overall costs, but it has to be treated with caution as the lure of “making a fast
buck” is high. Thus, the need of control questions to avoid exploitation of the system is high.

2.1.4 reCAPTCHA

The third state of the art project covered here is presumably the best known one, since it is used
by almost everyone online on a daily basis. It is called reCAPTCHA and was developed by
von Ahn et al. [37]. The abbreviation CAPTCHA stands for “Completely Automated Public
Touring test to tell Computers and Humans Apart” and is a very popular security mechanism
on the web to prevent bots from abusing online services like e-mail providers, social networks,
wikis, ticket sellers, blogs and many more [37]. The CAPTCHA approach asks the user to
decipher an image consisting of distorted characters, which is hard for computers to do. By
estimations from von Ahn et al. from 2008, humans around the world solve over 100 million
CAPTCHAs every day. They claim that these ten thousands of hours are wasted with the pure
CAPTCHA approach. Because of that, the reCAPTCHA approach is now channeling this effort
into something useful. It goes one step further by asking the user to decipher two different
images with distorted characters, where one is a reference image with a known ground truth and
the other is unknown. The unknown images typically are scans from books, which have not
been correctly recognized by Optical Character Recognition (OCR) software. To avoid gaming
of the system, users do not know which one of the images is the reference image. Additionally,
both the reference and the unknown image are distorted to avoid automatic algorithms to pass.
If the user input for the reference image is correct, the input for the unknown image is assumed
to be correct as well. Figure 2.2 shows, how a reCaptcha is generated. The authors of [37]
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Figure 2.2: reCAPTCHA channels human power of recognizing distorted characters for digitiz-
ing books and other documents. This image has been taken from [37].

report that the accuracy of user-recognized words exceeds 99% which matches the quality of
professional transcribers. By the time the paper was published, more than 40,000 websites used
reCAPTCHA. In 2009, Google took over the project to improve their Google Books Library
Project.

2.1.5 Related Examples

Two general examples for crowdsourcing or public-resource computing are SETI@home and
Wikipedia. SETI@home is a project dedicated to the “Search of Extraterrestrial Intelligence”
(SETI) and uses millions of computers in homes and offices all around the world. The project
collects huge amounts of data from a secondary antenna of the world’s largest and most sensitive
radio telescope operated by Cornell University in Puerto Rico [3]. This data is then distributed
among all participating computers, where each computer analyzes a small part of the data. The
results are then sent back to the server and further processed. As a more detailed explanation
of this project would go beyond the scope of this section as it is not directly related to crowd-
sourcing, it can be said that the SETI@home project was the first project showing the potentials
of public-resource computing. In 2002, they already had 3.91 million users whose computers
processed 221 million work loads with 1.873 ∗ 1021 floating point operations [3].

Wikipedia is a multilingual, web-based platform of free content with the goal to build an
encyclopedia. The word “Wikipedia” is built-up from the Hawaiian word “wiki”, which means
“quick” and the word “encyclopedia”. The articles and entries are written collaboratively and
emerge from an extremly large base of anonymous internet volunteers. Any user can edit articles
to improve them or to fix errors or mistakes, except for articles which are restricted from editing
to prevent misuse. The user base has the potential to consist of all people having access to the in-
ternet. Thus, a large variety of ages, educational and cultural backgrounds are represented. Users
contribute in form of articles, entries or media, which are then further reviewed to ensure quality
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standards with regards to copyright violations, controversial allegations, personal opinions or
non-verifiable sources or references. Wikipedia has means of version control, so that mistakes
or vandalism can be easiliy reverted and a high number of editors make sure that every edit of
an article is an improvement to the former version. One big advantage of Wikipedia compared
to printed Encyclopediae is that content can be added or improved in real time, while articles,
for example about recent events, take years to appear in printed Encyclopediae. Wikipedia has
grown extremely fast, with about 500,000,000 unique visitors per month. The english version of
Wikipedia counts about 4 million articles with a bullish tendency. Furthermore, articles exist in
about 280 different languages.

2.2 Image Annotation

In this subsection, the state of the art in the field of image annotation is presented, as this is the
scaffolding for the annotation of 3D-models.

2.2.1 ESP Game

The very popular and successful ESP Game developed by Luis von Ahn at Carnegie Mellon
University is a trailblazer in crowdsourcing and the development of games with a purpose. The
field of application for games with a purpose is eclectic and ranges from security and computer
vision to internet accessibility and internet search, just to name a few [35]. Many important
applications on the world wide web require sets of meaningful image annotations, for example
to improve algorithms for search engines or tools helping visually impaired people. Search
engines typically analyze text adjacent to images and assume that this text is correlated to the
image. But this assumption is often wrong. Thus, the only possibility is to label manually, which
is very costly. The ESP Game therefore aims at collecting image annotations through a simple
web-based game, where two players type keywords for an image shown. In case the image is
not recognizable or the users don’t agree on a keyword, there is a button to pass the image. So
if both players decided to pass the current image or they typed in the same word, another image
is shown. They do not have to type the same word at the same time, but all inputs for both users
are matched against each other. If there is a matching keyword, both users get rewarded. This
continues for at most 15 images or until the game clock expires. If the users agreed on all 15
images, they both get recompensed for.

Additionally, some words are so called “taboo words” [35], which are words that a specified
number of other users already agreed on. With these taboo words, a wider range of keywords can
be collected. The more taboo words there are, the higher the score the users get when agreeing
on a keyword. If a specific number of taboo words is reached, this word is marked as done and
will not be presented to other users anymore. To avoid cheating by communicating with each
other, the players are paired randomly so that nobody knows who the other player is. A couple
of anti-cheating strategies have been implemented. It could be possible for example that many
users agree on a strategy to type in the same word over and over again. If this behaviour is
detected, a massive number of bots is inserted into the gameplay so that the chance of being
paired with a bot is high. Due to this approach and the fact that the pairing is random among
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Figure 2.3: The popular ESP Game from Luis von Ahn, which was taken on by Google in 2006.
This image is a screenshot from the ESP game, copyright holder is GWAP.

hundreds or thousands of players, the chance to cheat successfully is very low [36]. There is also
a mechanism which transforms words that have been typed very often into taboo words for the
entire game session to avoid the strategies mentioned. Even if the strategie is like typing “one”
for the first image shown, “two” for the second and so on, this is not a big problem because of
the threshold for good image annotations. To become a problem, the same image would need
to be presented in the same chronology to a large number of teams, each team having agreed on
the same cheating strategy. As the game design changed significantly since initial deployment,
Figure 2.3 shows how the game looks like in July 2012. The ESP is online since 2003 and is
still very successful in 2012. Within four months after the initial deployment, a total of 13,630
people played the game, generating 1,271,451 annotations for 293,760 images [36] with some
players playing more than 1000 games or 50 hours. Google has taken on ESP game in 2006 and
there are unfortunately no current usage statistics available. But highscores and user rankings
indicate that the community is still very active.

2.2.2 KissKissBan

KissKissBan is a competitive human computation game for image annotation developed by Ho
et al. [17]. The game is different from others as it unifies collaborative and competitive gameplay
into one game. There are three players involved simultaneously. Two form the couple and one is
the blocker. Like in the ESP game, the couple tries to agree on an image annotation. In contrast,
the blocker’s goal is to prevent them from agreeing on annotations. In the ESP game, players
are rewarded for entering matching words. The problem with this approach is that players enter
common words, since the chance for a match increases. This problem cannot be solved entirely
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with taboo words, because they bias the player’s behaviour. For example if the word “man” is
blocked because it is a taboo word, then players may enter “guy” instead [17]. As opposed to the
ESP game’s taboo words, the words entered by the blocker in KissKissBan are not visible to the
couple. Because the couple would get a penalty for guessing blocked words, they are prompted
to enter more diverse annotations. One advantage is that the role of the blocker forms a natural
anti-cheat mechanism, because if the couple agrees on the same words all the time, the blocker
is going to block them the next round. The gameplay allows to enter blocking words for seven
seconds in the beginning. After the seven seconds have expired, the couple has 30 seconds to
agree on image annotations. Every time a player from the couple enters a blocked word, the time
remaining will be reduced by five seconds. If the couple nevertheless agrees on an annotation
within the time limit, it wins the game. Otherwise, the blocker is the winner of the game round.

To make it fair, the roles are switched every five rounds, as the game consists of 15 rounds
[17]. One other advantage of the competitive approach of KissKissBan is that common or easy
words can be collected because usually the blocker provides them and more diverse words are
provided by the couple, as they do not want to get blocked. A blocking word is not collected
before a player types the same word and is blocked. Because players can get blocked repeat-
edly within a game round, it is possible to collect more than one annotation at once, which
increases the efficiency compared to the ESP game. Unfortunately, no such impressive usage
statistics as for other works presented here exist, because the authors only did a small user sur-
vey with 17 players, generating 5521 labels in 537 games. For evaluation purposes, the authors
re-implemented the ESP game without taboo words and generated 11.54 distinct labels per im-
age compared to 6.56 for the re-implemented ESP game. As taboo words are missing and the
sample size is small, the significance of the comparison is anyone’s guess. The main idea to
generate more diverse annotations by having a blocker which prevents the players from agreeing
on the easiest words possible could however be beneficial for future projects.

2.2.3 TagCAPTCHA

An interesting extension to the aforementioned CAPTCHA approach is called TagCaptcha and
was developed by Morrison et al. [27]. This approach also takes advantage of the human ability
to recognize and classify images, but instead of asking users to decipher distorted text, they have
to describe images shown. As the approach uses both a reference set and unknown images, it
could be considered as a variation of the already mentioned reCAPTCHA approach. Users are
shown different images, where some being from a well known reference set and the other images
being unknown, not yet annotated ones. If two users agree on a keyword for one of the unknown
images, it is added to a set of pending annotations and further added to the verification set if
other users agree on the same keyword too. To make it even harder for automated programs
to attack, only parts of the images are shown, while the user can see the image in full size by
simply mouse-over. The approach uses a two-step matching strategy to avoid false negative
ratings as there is an inherent subjectivity involved when annotating images with English free-
text words [27]. The first step is the comparison of the plain given user annotations. If they
do not match, the words are compared using WordNet and a specific similarity measure, called
the WUP distance [27]. This WordNet soft match has the advantage that semantically close
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annotations can be accepted. If an image from a dolphin is shown for example , then using the
WUP distance, the words dolphin and mammal may have a high similarity.

Choosing a good similarity threshold is however a tradeoff between usability and security.
By security, the vulnerability to bot attacks is meant, which in turn depends on parameters
like the size of the image database, the vocabulary size and the numbers of verification images
shown to the user. But it is still possible to train algorithms on the reference set, as the approach
is designed to use publically available images. Following the common approach of distorting
images while keeping the semantic informatin intact, this problem can be reduced or eliminated.
In a small user study performed by the authors of [27], 12 participants achieved a success rate
of 70%, which is significantly lower than the stated success rate of 90% for the CAPTCHA
approach. This is due to the fact that labeling images is a much more subjective tasks than
entering text shown in an image. Another factor which is lowering the success rate are language
barriers, for example users with a mother tongue other than English may have difficulties finding
the right word for the image shown. But even spelling mistakes are a problem, which have been
reduced by providing a spelling helper to the interface in the test system of [27]. Considering
these factors, an overall success rate of 70% seems more than suitable and could be further
improved by adding a translation system to reduce problems caused by language barriers.

2.2.4 Draw Something

Draw Something is a commercial, social drawing game for smartphones. The aim of the game
is that users draw pictures corresponding to given words. It can be downloaded for free in the
Apple App Store as well as in the Google Play Store and is available in 13 different languages by
now. It is possible to play collaboratively with friends or competitively with foreign people. The
user interface provides the functionality to add friends to a list, where games can then be started.
The first player draws a picture to a given word, which can be selected from three possibilities
with different difficulty levels. After the drawing has been finished, the picture as well as the
drawing process is then stored and the second player is notified about the available drawing via
push notification. The second player can then watch the process of drawing and has to enter
the correct word by choosing letters from a given set. If the guess was correct, both players are
rewarded with gold coins. Words which are more difficult, are rewarded with more coins. These
gold coins can be used to buy additional color palettes, to extend the set of colors available. Then
the roles change and the second player draws a picture, while the first one has to guess. After
each guess or drawing, a short message can be added, which is then shown to the other player.

As long as the drawings are guessed correctly, a counter beside the friends name in the list is
incremented. The counter is reset, if a user passes because the drawing is too hard to recognize.
Occasionally, bombs are given to the users, which can be used to buy special words or to get
help for guessing the drawings. Like in most other commercial apps, items like gold coins or
bombs can be bought ingame for real money. Figure 2.4 shows an ingame screenshot of the
Android version of the game. Draw Something is very popular and successful. The game was
downloaded 37 million times and is ranked first in Apple’s App Store. Draw Something was
developed by OMGPOP, but the game as well as the whole company has been sold to Zynga, the
world’s leading provider of social games, for $200 million. But according to Forbes [11], since
Zynga took over the game, the number of users decreases by about five million each month.
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Figure 2.4: The popular Draw Something app. This screenshot was taken from the Android
version of the game. Copyright holder is Zynga Inc.

2.3 Land Cover Data

As the last section, the current state of the art in the field of crowdsourcing geographical infor-
mations is presented. This is a relatively new operational area, which becomes more and more
popular these days.

2.3.1 Geo-Wiki project

The Geo-Wiki project [12] was developed to tackle the problem of missing accurate global land
cover maps. As already mentioned in Chapter 1, global land cover maps show large differences,
which is a problem for many research areas and fields of application. The project follows the
concept of crowdsourcing, as this enables almost every internet user, including non remote sens-
ing experts, to help to improve and validate these maps. In this project, the global land cover
maps MODIS, GLC-200 and GlobCover are used to analyze and resolve differences. GlobCover
has a resolution of 300m x 300m, which is the best among the three named land cover maps, but
the resolution is still not good enough to distinguish land cover features accurately, especially
for non-expert users [12]. Thus, the project takes advantage of the Google Earth platform, as the
resolution of the maps provided is up to 50cm x 50cm in contrast. Through a Web Map Service
(WMS), users are able to visualize each of the three global land cover maps introduced as well
as the disagreements among two or the overall disagreements among all disagreement maps with
a varying threshold.
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Figure 2.5: The Geo-Wiki project aims at validating global land cover maps with crowdsourcing.
For a certain area, users are presented classification derived from existing land cover maps (C),
disagreement maps (A) as well as augmentation in form of geo-tagged user photographies to get
an insight into the real land cover present at the given position (B). The image is taken from
[12].

These disagreements have been recorded for two key land cover classes, namely cropland
and forest. In addition, the implementation shows features like overlaying global land cover
maps with planimetric data like national borders, towns and roads [12] or geo-tagged user pho-
tographies. These features offer additional valuable informations about the landscape and the
land cover for a specific area. With all the mentioned features, users are now able to validate
land cover either on a pixel level or for a whole area at once by deciding if the land cover shown
is correct, incorrect or not sure. Figure 2.5 shows the calculated disagreement maps as well as
additionally the augmentation of land cover maps with geo-tagged user photographies. Having
user-validated land cover does not redeem necessary approaches of accuracy assessment of land
cover, but can contribute to an improvement. The authors of [12] claim that involving people
outside the scientific community is still a challenge which could be tackled by unifying the dis-
cussed approach with competitive elements from computer games and social networks to reach
the maximum user base. Another challenge is to meet the requirements for accuracy, i.e. to
make sure that the system is not vulnerable to attacks and misuse. The authors state that this
could be accomplished by following the concepts of Wikipedia, where articles are reviewed by
volunteers who can dismiss or complete them.

2.3.2 Landspotting

The project “Landspotting” [2] is a spin-off of the Geo-Wiki project and is coordinated by the
International Institute of Applied System Analysis (IIASA). It is an international, scientific non-
governmental institute which aims at researching problems like climate change and is funded by
scientific institutions from all over the world. A couple of partners are involved and the Vienna
University of Technology is one of them. The Institute of Computer Graphics and Algorithms
is responsible for the game environment design and implementation. It includes a review of
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Figure 2.6: The landspotting game is the result of the Landspotting project to improve
global land cover maps. This screenshot has been taken from the game available at
apps.facebook.com/landspotting

existing online games as well as social and video games which have a wide user base. Following
the successful concepts of existing games, a prototype was created within the Geo-Wiki envi-
ronment. The game aims at improving the quality of land cover information by providing an
incentive to the users to keep them playing. This goal is pursued by implementing a game based
on Adobe Flash which has similar game mechanics as the well-known game “Civilization” and
is integrated into Facebook. This includes diplomacy, research of a tech tree, warfare and the
obligatory acquisition of resources through harvesting etc. Additionally, social mechanics are
supported like purchasing gifts, communication, post messages and others. The information and
validation gained from the game are then used by the Geo-Wiki system to improve data quality.
A screenshot of the game is shown in Figure 2.6.
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2.3.3 Crowdsourcing geographic information for disaster response

M. Goodchild and J.Glennon analyzed the need and potential of volunteered geographic in-
formation (VGI) in case of disaster response [16]. The Wenchun earthquake in 2009 as well
as Hurricane Katrina in 2005 and the disastrous Indian Ocean Tsunami in 2004 are good ex-
amples for disasters, which caused a lot of damage and a high number of injuries and deaths.
While agencies analyzing geographic data are more or less overchallenged in case of emergen-
cies, mainly because of staff or money shortage, the collective of internet users could manage a
huge amount of workload. One good example for the potentials of VGI is the wildfire in Santa
Barabara, California in 2008. Because of disadvantageous wind conditions, the fire spread ex-
tremely rapid. Just in near-realtime, text reports, photographs and videos about the fire were
published on the internet and citizens from Santa Barbara discovered that in-time informations
are available rather from these sources, including websites from local newspapers, community
groups or other services than from official agencies. Several volunteers additionally synthe-
sized these information in form of maps based on services such as Google Maps, which formed
sources that were easily accessible and oftentimes more up to date than official sources. But the
quality of data gathered by non-expert users are likewise a problem for this kind of application
and further research is needed in the formalization of rules to check geographic information
against its context. The example of the Santa Barbara wildfire however showed that there is a
huge potential for this field of application.

2.4 Technologies Used for our Project

Cross-platform and cross-browser compatiblity is a strong requirement for the game imple-
mented within the scope of this thesis. Further on, interactivity on the client side is important, as
page reloads are not acceptable for the game design. Another important aspect is the scalability,
because the number of potential users is huge, as the number of active players for the ESP game
or games like Farmville shows. But besides scalability also performance is essential when han-
dling a large number of users. These requirements led to the decision to implement the server
architecture using Google’s V8 engine as well as Websockets and other frameworks described
below.

2.4.1 Google V8 Engine

Google’s V8 engine is a high-performance, open source JavaScript engine written in C++, which
is used in Google’s browser Chrome [21]. It implements ECMAScript as specified in ECMA-
262 and runs on Linux, MacOS and Windows. The V8 engine enables applications written in
C++ to expose objects and functions to JavaScript code and can be run standalone or embedded
into C++ applications. It further compiles and executes JavaScript code and offers garbage
collection and memory allocation. The V8 engine is significantly faster than other Javascript
engines like JScript (Internet Explorer) or SpiderMonkey (Firefox). This can be seen in the
results of two benchmark suites ran on Firefox v.15, Chrome v.21 and Internet Explorer 9. Both
benchmarks were run three times per browser. The average results are shown in Table 2.1. The
improvement in speed depends on the amount of code executed and increases by the number of
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Mozilla’s Dromaeo Benchmark Suite - All JavaScript Tests
Mozilla Firefox v.15 Google Chrome v.21 Internet Explorer 9
375.83 runs/s 695.493 runs/s 74.996 runs/s

Google’s V8 Benchmark Suite - version 7
Mozilla Firefox v.15 Google Chrome v.21 Internet Explorer 9
4096 points 6787.33 points 122.33 points

Table 2.1: Average benchmark results, performed on an Intel Core2 6300 @ 1.86GHz with 3.00
GB RAM on Windows 7 Professional 32 Bit

times functions are executed. One key feature of V8’s performance is fast property access, which
describes a methodology to access JavaScript properties. While most engines use a dictionary-
like data structure for storage of properties, V8 create hidden classes. Whenever a property is
added, the hidden class changes and a transition from the preceeding to the succeeding hidden
class is stored. This seems inefficient in the beginning, but it enables reusing the hidden classes
and no dictionary lookup is needed in the future. Further on, the use of hidden classes enables
the engine to use inline caching. This means that on initial execution, the hidden class of an
object is determined and the property access is optimized by predicting that the class will also
be used for same objects which appear in future code. If the prediction is false, the inline cache
is patched.

Another key feature of performance is efficient garbage collection. V8 stops the exection
of programs when a garbage collection cycle is performed (“stop-the-world”), while only a
part of the object heap is processed in each cycle to minimize the consequence of stopping
the application. The heap is divided into a new space, where objects are created and an old
space, where objects are moved which survived a garbage collection cycle (“generational”) [19].
Further details about the V8 core concepts can be found on the Google Developer website [20].

2.4.2 Node.js

Node.js is a server-side JavaScript environment based on the aforementioned Google’s V8 en-
gine, written mainly in C++ and JavaScript [22] and distributed under the MIT license. Its focus
lies on low memory consumption and high performance. The server architecture used for the
game implemented within the scope of this thesis is built with Node.js, as it fits the needs de-
scribed in Chapter 4 well. While most environments like Apache are based on multithreading for
concurrency, Node is based on a non-blocking, asynchronous I/O eventing model [7, 33]. This
is explained with a simple example of a database request, which in procedural code is written
as:

var result = db.query("SELECT * FROM table");
//results are available here
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This means that the application has to wait until the query finished and the result is returned,
which is wasting CPU cycles. So multithreading aims at running other threads, while one is
waiting for the database results and is thus blocked. On multicore systems, each core executes
a different thread in parallel, while on single core systems, threads are executed consecutively.
This requires context switching, which is expensive and consumes memory due to execution
stacks. But even on multicore systems, multithreading is hard to implement and burdened with
problems like deadlocks and errors due to protection of shared resources, which are difficult to
debug. Additionally, because the operating system decides which thread to execute and for how
long, developers are losing control to a certain degree [33].

Event-driven programming can solve these problems by design, because it relies on event
notifications. This means that the application registers for certain events and is then notified
through callback functions when the operation has completed. But I/O operations for single
threaded event-loops have to be non-blocking. Otherwise the advantages of the event-driven
architecture would be nullified, because waiting for an I/O operation to finish would block the
whole thread. This requirement is the main reason why event loops are not very popular, be-
cause most libraries do not support non-blocking I/O. This includes database libraries like lib-
mysql_client as well as asynchronous DNS resolution [7]. Additionally, callbacks are difficult
in many languages, for example C, because of missing support of closures or anonymous func-
tions. This is where JavaScript comes in. It was designed to be used with an event loop, because
it supports anonymous functions and closures and handles I/O operations through callbacks. In
comparison to the synchronous database request above, the asynchronous, non-blocking way
using an anonymous callback function would be:

db.query("SELECT * FROM table", function(result) {
//results are available here

});

Node.js follows a strict approach of asynchronicity to provide a purely event-driven, non-
blocking way to develop highly concurrent applications. Thus, to retrieve information from hard
drive, network, database or other processes, a callback function must be passed to the function
call. For example, a TCP server in Node emits a connection event each time a client connects
and an HTTP upload emits a body event for every packet received [7]. Thereby, a function never
blocks for I/O operations, the control is returned to the application right after the function call
and the callback is then called when data is ready. This architecture is good at handling a high
number of small, dynamic requests, like most web applications are designed for. Node forces
developers to follow the asynchronous model from the beginning, while asynchronicity is one
of many options to be used in other environments.

Node enjoys great popularity since two years ago and the community is growing fast. This
may be because the rise of HTML5 reduces the need to use alternative client-side frameworks.
Thus, developers have to become familiar with the concepts of JavaScript to create rich user
experiences. With Node, developers can now use the same language for both server-side and
client-side code. While the documentation is not mature yet, it is very easy to get started. The
code for setting up a simple HTTP server which responds to each request with “Hello World” is
shown below:
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var http = require("http");
http.createServer(function (req,res) {

res.sendHeader(200,
{"Content-Type": "text/plain"});

res.sendBody("Hello World\r\n");
res.finish();

}).listen(8000);

A large number of modules have been developed by the community, which can be easily
installed using the shipped package manager npm. These modules include full-featured web
application frameworks like Express, asynchronous interfaces to relational- or NoSQL databases
or websocket implementations like Socket.io. Express and Socket.io are introduced below. A list
of modules developed for Node.js can be found at https://github.com/joyent/node/wiki/modules.

2.4.3 Express.js

Express is a fast and minimalistic web development framework for Node. It aims at perfor-
mance and on providing small and robust tools for HTTP servers [10]. It is built on Connect,
which in turn is an extensible HTTP server framework for Node, that supports high performance
middleware. Connect comes with more than 20 often needed middlewares like a request parser,
session support, a cookie parser and others. Express further broadens the available functionality.
This includes HTTP helpers for caching or redirects and a robust routing system. It also sup-
ports environment based configurations as well as over 14 different template engines, including
Jade, Haml, EJS and Haml-Coffe for CoffeeScript support [13]. Using Express, one can only
use what is needed, without being forced to use specific libraries. The framework follows the
Model-View-Controller (MVC) pattern by offering functionality to expose objects, functions
and modules to client-side scripts. With that, it is possible to strictly separate code from design
by developing client-side HTML code and pass data to it from the server-side. Another useful
feature is the ability to load configurations from a key/value store like Redis or Memcache. This
way, the resources that are commonly used for the game can be efficiently cached, including
especially the session storage needed for user authentication. The following example shows,
how a simplified server including routes can be started.

var express = require("express");
var app = express();

app.get("/", function(request, response){
response.render("views/index", {

title: "myTitle",
userlist: myUsers

});
});

app.listen(3000);

25

https://github.com/joyent/node/wiki/modules


This example shows how efficient code can be by making use of Node.js and Express.js. The
call to require() loads the dependencies from hard disk and app.get(’/’) registers a route. So
every GET-request to the route ’/’ will be handled by the code above, but a POST-request for
example would not. Besides the URI, a function is passed to app.get() which provides access
to the request and response objects. For example, it is possible to access the session object by
request.session and by using the response object, redirects can be done or a resource can be ren-
dered. For example, if the user requests the URI of the start page, highscores and achievements
can be passed, depending on the user-id stored in the session. In the example above, the view
index.jade is rendered and an object is passed to the client-side, containing arbitrary data. Be-
cause it is possible to configure the default templating engine and the public directory globally,
the file ending .jade can be omitted as well as the full path to the views folder.

As Node is built in form of middlewares, it is also possible to pass an additional middleware-
call as an argument to any route. This is very useful to execute other code before the main code
inside the route is executed. An example is the authentication process to check if the user is al-
ready logged in into Facebook. For every page served, first the authentication object is retrieved
and it is checked if a Facebook-id is passed. The processing happens in ticks, which means that
every called middleware has to call next() to pass control to the succeeding middleware. If for
example the authentication fails because of a missing id, the middleware simply redirects the
user to a login page and returns. Because of the missing call to next(), the execution stops and
the content is protected.

2.4.4 Socket.IO

Communication between server and client is essential for every network application. This com-
munication is mostly handled over the HTTP protocol, where the client sends a request to the
server, which then serves data in response. This means that a new request needs to be sent
whenever new data is needed. For standard web applications, this basically entails a page re-
fresh. When a user fills out a form and submits it to the server, for example, the input is checked
on the server-side and the results are then sent back to the client. Dynamic applications that
require client-server communication at frequent intervals however have other requirements. A
simple example for that is a chat application, where new messages shall be displayed without
the need for the user to refresh the page. This is basically achieved by an underlying API which
sends requests to the server and makes the results available to the developer, who can then ma-
nipulate the DOM to show new messages. For our purpose, communication between client and
server without page refresh is essential, as client and server exchange data continously during
the game. This includes, for example, updates of the game countdown as well as synchronized
triggering of loading game- and score screens.

The best known technology is probably AJAX, which is an apronym for “Asynchronous
JavaScript and XML”. It uses the XMLHttpRequest object that is implemented in all modern
browsers. The WebSocket API however is a slightly different approach, which uses TCP sockets
over the unsecure ws or the secure wss protocol. The main difference is that the server as well as
the client can push messages to each other, eliminating the need of client-side polling to check
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for new data available. Using the WebSocket API, developers can handle bi-directional client-
server communication without the overhead of AJAX requests, as long as the browser supports
it [40].

If WebSocket is not supported by the browser, fallbacks can be used. One example is Flash,
which provides a simple alternative. The obvious drawback is that Flash is not installed on all
clients, including Apple iPhone or iPad. Another fallback is AJAX long-polling, which however
is not optimized for sending messages. In spite of that, developers still have to implement
detection of supported technologies, fallback transports, event handling and interfaces to the
server-side solutions. With Socket.IO, this is no longer necessary, as it simplifies the WebSocket
API and uses feature detection to decide which technology can be used to establish a connection.
Further on, Socket.IO unifies the APIs of supported fallback transports. Both a client and server
side implementation is available, which makes development faster and easier. Besides Node.js,
also ports for Android, Java, C++, Perl, Phyton and others exist [14]. We use Socket.IO for all
communication between clients and server in the game. Whenever a user connects, a socket is
registered and further used to send and receive messages. These messages include updates of
the game timers, notifications when a client finished loading various resources, the reception of
entered data, the transmission of scores or just notifications to the user.

Using Socket.IO with Express can be achieved through handshake/authorization mechanism.
This enables user-defined functions to be invoked on a new websocket connection. This function
will be called before the connection is completed, so connections can be accepted or rejected
and HTTP headers can be accessed. This is necessary to access the cookie, which stores the
sessionID of the Express session. Express uses a session store for user sessions which is a
MemoryStore by default, but even Redis or other key/value stores can be used. In the hand-
shake function it is now possible to load and manipulate the session corresponding to the user
request. The following, simplified code snippet shows how to use Socket.IO with Express to
bi-directionally communicate between client and server and manipulate the user session [14].

var sio = require("socket.io"),
express = require("express"),
app = express.createServer(),
MemoryStore = express.session.MemoryStore,
parseCookie = require(’connect’).utils.parseCookie,
sessionStore = new MemoryStore(),
Session = require(’connect’).middleware.session.Session;

app.use(express.bodyParser());
app.use(express.cookieParser());

//Setup session store
app.use(express.session(

{
store: sessionStore,
secret: "0123456ACF81D",
key: "express.sid",
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}
));

//pass Express instance to Socket.IO
io = sio.listen(app);

io.set("authorization", function(handshake, callback) {
if(handshake.headers.cookie) {

handshake.cookie =
parseCookie(handshake.headers.cookie);

handshake.sessionID =
handshake.cookie["express.sid"];

handshake.sessionStore = sessionStore;

//get session from session store
sessionStore.get(handshake.sessionID,

function (error, session) {
handshake.session = new Session(handshake, session);
callback(null, true);

}
});

}
});

io.sockets.on("connection", function(socket) {
//Session object is available here
var sessionObject = socket.handshake.session;

//listen for message "messageFromClient"
socket.on("messageFromClient", function(data) {

//send message "responseToClient" to the client
socket.emit("responseToClient", otherData);

});
});

Error checking is omitted in this example for the sake of readability and of course on the
client side, Socket.io needs to be configured. Anyways, one can see that the whole setup of
Socket.IO using Express, including receiving and sending messages from and to clients can be
done in a few lines of code.
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CHAPTER 3
TAGinator - a social crowdsourcing

game

The game “TAGinator” is available at https://apps.facebook.com/taginator and is explained in
detail in this chapter, covering the game mechanics and their motivations as well as the user
interface and user interactions.

3.1 Game Mechanics

During the last couple of years a trend towards crowdsourcing was visible and the potential of
it is impressive. Additionally, social games on social networks like Facebook or Twitter are
extremely successful. As already mentioned in Section 1.1, games like Farmville or Mafia Wars
have millions of active users per month. Therefore, the idea was to combine the principles of
crowdsourcing with the huge user base reachable by social platforms.

Right from the beginning we wanted to implement a multiplayer game which is fun to play
and competitive, but also supports collaborative gameplay and motivates the player to solve
scientific tasks while enjoying the participation. This need for client-server synchronisation
paired with the requirement to show 3D-models as well as land cover maps and the limited
resources of web browsers led to the decision to implement a round-based game. That way,
loading times can be hidden from the user and lags due to connection problems or performance
issues are not as critical as for other genres. Additionally, the workload for the client is less than
it would be for a 3D game, which is important for mobile devices and also older machines.

The game aims at collecting annotations for both 3D-models as well as for land cover maps
and evaluating the quality and correctness. Additionally, information about the different types of
land cover are collected by providing a way for users to paint on Google Maps. A screenshot for
the drawing round can be seen in Figure 3.1. For each game up to 5 players are randomly paired
together until a countdown has expired. The game then starts and shows one of three different
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Figure 3.1: Screenshot of the drawing game-round of TAGinator

game screens to the user. These are explained in the following. Detailed descriptions of the user
interface for each game-round including screenshots can be found in Section 3.3.

3.1.1 Annotation of 3D-Models

3D-models are vitally needed by developers and artists working on 3D-applications. Annota-
tions for publically available 3D-models are however often bad or the models are not annotated
at all. The availability of well annotated models would decrease the amount of time needed to
create or find models which fit the needs of those developers. This is explained in more detail in
Section 1.1. We therefore implemented a game-round to annotate 3D-models. The round shows
a video of a 3D-model in the middle of the screen. The video loops endlessly and the model is
rotating around its up-axis. Users have to enter textual annotations that match the model shown.
Each user is allowed to enter up to five distinct annotations until the game countdown has ex-
pired. We decided for 5 annotations because we do not want to limit to only 1 annotation as in
the ESP game described in Subsection 2.2.1. This way we can collect as many annotations per
player as he or she is able to provide within a given time. We do not force players to enter five
annotations in every round, so providing less than five is also fine.

However, once the first player entered the maximum of five distinct annotations the count-
down speeds and turns red and the finished player is marked in the user interface to indicate
which player was the first to finish. The faster countdown is an element to amplify the com-
petitive character of the game and motivates players to provide more annotations. Once the
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countdown expires or all players entered five annotations the game round is finished and a score-
screen is loaded. It shows the player’s scores for each entered annotation. The scores depend on
the number of matches of annotations among all players. As a result, the more players entered
the same annotation the more points they get. By doing this the quality and correctness of anno-
tations can be evaluated by assuming that annotations with a high number of occurrences tend to
be correct. Additionally, each user is rewarded with a bonus score that is calculated by the num-
ber of times an annotation for the given model or map has been entered by other players before.
Besides player’s scores, a list of annotations is shown on the score-screen. These annotations
can be positively or negatively rated by players to further improve the quality. This is explained
in Subsection 3.1.4.

3.1.2 Annotation of Land Cover Maps

Meaningful annotations are not only important for 3D-models but also for remote sensing.
Global land cover maps like MODIS, GLC-2000 or GlobCover have been rendered in the last
couple of years, but they show large differences in many areas of the world. As correct land
cover data is strongly needed, for example, for monitoring climate change or for ensuring food
security we collect annotations to help to improve those areas of disagreement. This is explained
in more detail in Section 1.1.

The game-round designed for collecting user-annotations for land cover maps basically has
the same mechanics as for the 3D-model-annotation round described before. Of course, a land
cover map is shown instead of a 3D-model for which users have to enter annotations. The map
is centered at coordinates given in Latitude and Longitude provided by the Geo-Wiki project
described in Subsection 2.3.1. Those coordinates define regions of large disagreement among
different land cover maps. To show the region of interest within a map a red rectangle is shown
which covers an area of 4km2. We have chosen this size as it has been tried and tested to be
halfway between too detailed and too small. When showing larger areas to the user, the image
gets too small to recognize important features of the underlying land cover. Smaller areas would
require a higher zoom-level to still fit into the game layout, but for many of the interesting areas
only maps with lower resolution exist. Figure 3.2 shows such a map in its highest available
resolution, which has been proven to be already hard to annotate. The area of 4km2 does not
directly correspond to the resolutions of satellites like MODIS or GLC-2000. But one main goal
of this thesis is fundamental research to answer the question if and how well land cover maps
can be annotated and classified by untrained users to contribute to the Landspotting-project. So
we chose this area as it is the same size as used in the Landspotting-project and thus allows to
compare the gathered information.

3.1.3 Land Cover Categorization by User Drawings

Besides textual annotations, we additionally want to generate information about the land cover
and its distribution over the map in form of user drawings. Hence, the user is able to categorize
land cover maps by painting on a map. In the middle of the screen the map is shown like in the
annotation-round for land cover maps described before.
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Figure 3.2: Land cover map with low resolution which has been proven to be hard to annotate.

The Geo-Wiki project aims at letting users verify or falsify the automatically generated land
cover categorization of global land cover maps in areas of disagreement. MODIS, GlobCover
and GLC-2000 define between 17 and 23 categories which also differ among each other. This is
not applicable for our needs as the categories defined are too many, too special and the distinction
between the categories is not an easy task for non-expert users. For that reason we agreed on
11 distinct categories which cover the most important land cover types. These categories are
available in the game as icons as shown in Figure 3.3. Having these 11 categories, users are able

Figure 3.3: Categories available as brushes for drawing on a map.

to easily distinguish between categories and to choose the one matching the land cover shown
on the map.

By choosing the right category, players are able to assign these categories to the types of land
cover shown on the map. Different brush sizes are provided to support painting of coarse and fine
structures on the map. As for the game-rounds before, a countdown indicates the time left for
the round. There is more time available compared to the annotation rounds and the countdown
does not speed once the first player finished the map. We do not want to hurry players while
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drawing as we expect that the quality of the painted image decreases when the available time
is too less. The percentage of already filled pixels is shown above the map and turns from red
to green once a player filled enough pixels of the map to be valid for further processing. If not
enough pixels were filled, the map is discarded as we do not expect to get reasonable results
from those drawings. When the countdown has expired, a score-screen is loaded that shows the
player’s scores. The scores depend on the similarity of the painted maps among all users except
those who did not fill enough pixels of the map.

3.1.4 User Ratings

After the annotation game-rounds, each player sees his own entered annotations as well as the
number of matches and the resulting points for each annotation in a table. Additionally, scores
for other players are shown in the same table, but without the entered annotations. In another
table, all annotations from other players are shown, except those entered by the current player,
to avoid up- or downrating his or her own annotations. Each player can now up- or downrate
good or bad annotations two times each by clicking the icons next to the annotations. The rating
is then double-checked with the database and scores are given if the rating matches the ratings
already stored in the database. This approach shall ensure the quality of annotations, because
each player takes on the role of a referee to some degree. If the rating does not match the ratings
already stored, no score is given. We decided not to penalize players who enter annotations
which are then rated bad. Likewise players entering annotations which are later rated good are
not rewarded.

The intention behind this decision is that the rating feature could be overused, especially for
bad ratings. If a user gets penalized for a bad rating, then scores could be influenced intentionally
to manipulate the player’s final score to be tactically prevented from winning. By only rewarding
ratings that match the overall opinion about an annotation, no influence on other user’s scores is
possible. If a user enters nonsense intentionally, other users have the ability to downrate, which
helps to separate good from bad annotations later on. Player ratings are not shown to other
players to avoid that they influence each other in the decision which annotations match the given
land cover map or 3D-model and which do not. There is no user-rating after the game-round
where users have to paint on a given map because of the lack of qualitative features which can
be judged by players.

3.1.5 Scoring

As the game idea is based on agreements of multiple players on the same annotations, it is nec-
cessary to analyze the player annotations and drawings. Thus after each game round, the clients
send all entered data to the server. For annotation rounds, the data consist of the annotations,
as well as the time taken to enter them. All annotations are then added to a data structure, with
annotations as the key and an array of user objects as the value, so that the number of agree-
ments can be retrieved efficiently. This data structure is then traversed and each annotation for
each player is stored to the database. The essential score thus depends on the number of agree-
ments for each annotation. The higher the number of agreements is, the higher the score will be.
For annotations without agreements, no score is awarded. All annotations with more than one
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agreement are then further processed, by calculating a bonus score. This is done by fetching the
number of distinct users from the database, which submitted the same annotation for the same
model or map too, excluding the player itself. Thus, a bonus score is calculated for each player
separately, which may result in different bonus scores for different players. As the number of
equal annotations will rise as more players play the game, the upper bound of bonus scores is set
to three. The annotations as well as the essential score, the bonus score and a list of annotations
to be rated are then assigned to each player and the data is sent back to the client, which then
shows these data as shown in Figure 3.10.

For the drawing round, the score is calculated by comparing the percentage of filled pixels
for each category among all players. Drawings where the percentage of filled pixels is below a
certain threshold will be excluded from comparison and get zero points. The remaining drawings
are then further analyzed and an average per category is built. This average per category is then
compared to the percentage of filled pixels for each player. The minimum of the average and the
user drawing per category is taken and summed up for each category to calculate the score. This
way, the more similar the drawings of different players are, the higher the score will be. The
scores of all players are then finally sent to the client and shown to the player.

For the asynchronous single player mode, where bots are inserted to simulate multiplayer
behaviour, the scoring strategy is basically the same. The only difference is that annotations and
drawings are fetched from the database right after the game starts. For pioneer mode, the first
user to play the pioneer game will be awarded with one point for each annotation entered as well
as five points for the drawing. When a second player finished the pioneer game, the data of both
players are then compared and the score is calculated like mentioned before. The difference of
the temporary score for the first player and the final score after the second player finished is
then stored to the database and the first player is notified about the gain or loss of points when
entering the game the next time.

3.1.6 Socializing and Gamifications

Following the high-level heuristics for social games from Paavilainen [31] presented in Section
1.1, we need to provide further incentives for players to play the game regularly and to fulfill the
requirements of today’s social games. As heuristics like “Spontaneity”, “Interruptability” and
“Continuity” were already realized through the game design itself we decided to implement the
heuristics “Discovery”, “Sociability” and “Ranking” too. The player’s scores are presented per
game round, per day and overall. By having separate scores it is possible to present high score
lists for the all-time bests, monthly bests or even daily bests. That way the possiblity to climb
the ladder and to compete with other players by achieving higher scores always becomes the
focus of attention and motivates players to spend their time in game. Beyond that, achievements
can be collected as a further motivation and players can post their scores on their Facebook wall
as well as invite friends to play the game. Highscore lists are shown on the starting page as well
as achievements already collected and those still receivable. As described in Subsection 3.1.8,
communication channels like chats were omitted intentionally and the names of fellow players
are not shown during the game to prevent users from trivially agreeing on cheating strategies.
To still fulfill the requirements of the heuristic of sociability, users are able to post messages on
their Facebook wall or invite friends to play the game. Further on, at the very end of the game,
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when the final scoring round is finished, the names of the fellow players are shown to amplify
the competitive character of the game.

3.1.7 Handling Single Players

The game is designed and intended to be played by a large number of users, as we expect to
get the best results from having a maximum of five players available for every game round. But
as a social game needs to enable playing in short, sporadic bursts and to be accessible without
barriers, we decided to implement an asychronous mode for the case that not enough players are
online to start a game round. This is expected to become important especially in the time after
the initial deployment because of the low level of awareness. So whenever a user joins the game,
he or she is paired to an open, pending game round. If no game round is pending at the moment,
a new game is created and a countdown is started to wait for other users to join. But without
an asynchronous mode, the game could not start if no other players join the game before the
countdown expires. This is due to the fact that achieving a score would be impossible, because
scoring is based on the agreement of multiple users on the same annotations or on matching
drawings for land cover classification. So there is the need to provide the same game experience
to single players as for playing with other human players.

The idea consequently was to replace missing players with emulated users without letting
the player know, because the social aspects would suffer from knowing that the user is playing
on his or her own. Whenever the countdown expires and only one player is assigned to a game,
the asynchronous mode becomes active, emulating a random number between one and four other
players to lead the singe player to believe in playing a regular game with other humans. This
is achieved by fetching pre-recorded annotations and land cover classifications from prior game
rounds from the database. For the annotation round, a random number between three and five
annotations from randomly picked users which already annotated the 3D-model and land cover
map used in the current game round are chosen and stored for further processing. As the pool
of 3D-models and land cover maps to choose from is big, the possiblity that a player already
played the same combination of model and maps earlier is relatively low. Thus, the set of data
retrieved from the database for each game round and assigned to an emulated player may come
from different users. Having this set of data for each emulated player, it is now possible to pursue
the game procedure as if it were a regular multi-player game. Even player names are stored for
emulated players to show them at the end of the game. As a matter of course, the annotations
stored for emulated players are matched with those of the human player and are available for
rating, but are not stored to the database again. In a regular game, the game countdown speeds
up if a player typed in the maximum number of annotations possible and the game round ends if
all players are finished. This game element is emulated too by retrieving and adding up the users
average time taken to enter each annotation from the database, while three seconds are added for
each word missing to the maximum number of annotations possible. If all emulated players and
the human player is finished, the game round ends and the scoring round is loaded.
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Pioneer Mode - Strict Single Player

But this asynchronous game mode only works, if the chosen models and maps have already
been used in other game-rounds before. If new models or land cover maps are added to the
database, no single player game would be possible. That is because the lack of user data would
inevitably lead to zero points, as the annotations entered by the player would not match any
others when there are no words to compare to. For that reason, a so called “pioneer mode” has
been implemented. This mode is a strict single player mode, letting the player know that no
other players participate in the current game. The player is informed that he or she is playing
alone and that the data will be stored for further games. So each game-round is played like in
the regular game mode, but the player does not have to wait for others to finish. If the maximum
number of annotations were entered or 100% of the canvas has been painted, the game round
is finished and the game switches to the score screen. If the current player is the first to play a
particular pioneer game, a temporary score is shown for each annotation and drawing. At the
end of the game, a message is shown to the user that the input has been saved and that it will be
used for further pioneer players. So whenever a pioneer game starts, it is checked if there are
pioneer games available which were played only by one user yet. If available, the user is joined
to that game and plays just like the first player. At the end of the game, all the input from player
1 is fetched and compared to the input of the current player to calculate agreements and thus
scores. The final score is then shown to the second player, just like in a regular game round. The
difference of the temporary and the final score is calculated and added to the database. The next
time the first player joins the game, he or she is notified about the gain or loss of points due to a
finished pioneer game. The pioneer game is triggered randomly and only if only one user joined
a game.

3.1.8 Anti-Cheating-Mechanism

All the measures described above do not protect the game from cheating mechanism or players
which intentionally enter wrong annotations or draw wrong classificiations. For example, users
could agree on entering “aaa” all the time. This way, user input would match and all players
involved would get points for it. Likewise if players agree to scribble the canvas with the same
category all the time, the scoring would be influenced. Single players drawing wrong maps or
entering nonsense annotations intentionally to try to game the system are a problem too. The
cheating strategy explained however is unlikely to be effective, because players are randomly
paired together and have no information about who they are playing with. The possibility that
two players, who agreed on a cheating strategy before, are paired together should be low. Addi-
tionally, communication channels like chats have been omitted intentionally, because having the
possibility to chat, agreeing on cheating-strategies would be trivial.

3.2 Differences to Related Work

Here, the differences in terms of game mechanics between TAGinator and related work as de-
scribed in Chapter 2 is treated. It has been already stated that the game consists of three game-
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rounds. These aim at collecting annotations for 3D-models and land cover maps as well as at
collecting data about the different types of land cover by letting users draw on maps.

Like in the ESP game described in Subsection 2.2.1, players have to enter annotations which
agree with those of other players to get scores. These scores are shown on the start page in form
of highscores to motivate player to compete with others and to keep playing the game. But the
concept is different in many ways. First, we do not collect annotations for images but for 3D-
models and land cover maps instead. The advantage of this is that we can collect different data
within the game and are not limited to images while we give variety to users. Another difference
lies in the approach of validating annotations. In the ESP game both users enter annotations until
they match. Then, another image is shown until the time is up or the players have agreed on 15
images. In our game up to five users can play at the same time and each player can provide up
to five distinct annotations per model or map until the countdown expires. The annotations are
then compared to find matches among the users. This way we can collect more annotations in
general as we do not abort the annotation process once a match is found. Additionally, the more
players agree on the same annotation the better it tends to be.

While the ESP game is limited to collecting annotations, our game additionally aims at
letting users draw on maps to categorize land cover maps. Furthermore it fulfills the aforemen-
tioned high-level heuristics for social games to give incentives to players to recur to the game.
This includes social interactions like posting messages to the Facebook wall or invite friends to
the game. Generally speaking, the difference lies in the platform. The ESP game is hosted on
the website www.gwap.com while our game is integrated into Facebook to circumvent the need
to register or login to an external page to play the game. Additionally, users are already used
to the Facebook look-and-feel. In contrast to the ESP game players are able to make progress
within our game by providing achievements that can be collected. Users of the ESP game can
however invite friends to their platform to get scores, but further achievements are missing.

A part of the ESP game’s mechanics are taboo words. Taboo words are annotations which
have been entered by many users before and are therefore blocked for further games. This forces
players to provide different annotations but the most common ones. The more taboo words
are shown for an image, the more points the players get for agreeing on an annotation. This
approach is not implemented in our game as the images shown in the ESP game mostly show
several objects or motives and thus have various possible and correct annotations. 3D-models
are in contrast more specific and the number of potential annotations is thus more limited. The
maps used in our game show mainly more or less unique types of land cover. For example, if
a map shows an area covered with shrubs, it is not reasonable to block the word “shrubs” for
subsequent games. We also expect that the chance to agree on annotations would significantly
decrease if taboo words would be provided.

There exists no official information about a single player mode where a missing player would
be emulated, but as bots instead of players can be inserted to prevent users from cheating, it is
safe to assume that the ESP game can be played even if no other player is online at a given time.
Another similarity is that both games are implemented using JavaScript to enable a platform-
and browser-independent game experience. The ESP game as well as our game works nicely
with modern mobile devices. Also sound effects are implemented in both games and ingame
chats have been omitted.
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3.3 User Interface

The game starts with a page where highscores and achievements are shown as well as links to a
tutorial page and to the game itself. The starting page is shown in Figure 3.4. Whenever a player

Figure 3.4: Starting page of TAGinator. Here, highscores, achievements and links to the game
and a tutorial is shown.

joins the game, he or she is connected to an open, not yet started game, called a room. If no
room is found to join to, a new one is created and a countdown starts. Other, waiting users are
then paired until the countdown expires. The game starts immediately after the countdown has
expired, the room is closed for further joins and an event is broadcast to all players connected to
that room to load the game screen. The game consists of three independent game-rounds, that
are played in a randomized order: one for annotating 3D-models, one for annotating land cover
maps and one for drawing on a map to categorize land cover. First, the general layout is covered
in this section and all game screens afterwards.

3.3.1 General Layout

It has been mentioned before that this thesis lays its focus on channeling human brain power to
solve useful tasks. This can be achieved by combining the ideas of crowdsourcing and social
games to reach as many users as possible. Consequently, a game is needed which offers a simple
but entertaining gameplay to enable playing in short, sporadic bursts without barriers while
emphasizing socializing at the same time. This includes accounting for different screen sizes
and resolutions as well as operating systems and browsers. To stay abreast of changes and the
steady growth in the market of mobile devices, we put emphasis on developing a game design
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which is useable in the same way for every user. Hence, the layout is done using Cascading
Style Sheets (CSS), because it adapts to different screen sizes and can be adjusted to fit even
smaller screens. This is especially important for today’s mobile phones, because almost every
modern smartphone supports changing between landscape and portrait orientation by tilting the
device while screen size is limited. By using only relatively aligned containers without fixed
dimensions, the layout can always accomodate itself to given and changing screen resolutions or
aspect ratios. Figure 3.5 shows screenshots of the game on a 24“ desktop monitor in full screen
and for half screen width as well as for an Adroid smartphone, an Apple iPhone and an Apple
iPad in landscape orientation. It can be seen that the layout looks very similar, even if screen
size and resolution are subject to considerable fluctuations. The portrait orientation is not shown
here, as it looks identical compared to the layout in full screen on the monitor.

The layout in general has been intentionally held simple to reduce problems with different
resolutions and has been designed to fit the limited space given on mobile devices and for in-
tegration into the Facebook platform. Mostly, a straight linear layout is used to neatly arrange
game elements. Elements include the logo, horizontally centered on the top, the header below
as well as the main container in the middle of the page and the footer on the bottom, each jus-
tified and stretched to cover 80% of the width available. User scores are shown in the header,
including the score achieved in the latest game, today’s score and the overall score of all games
played.

The look-and-feel is sportive, supported by a checkered background, which is reminiscent
of a sketch block. Additionally, the vast majority of shapes used have rounded borders and the
logo uses a comic-style font to complete the impression of a sketch. The colors are used in a
way to maximise contrast and quiet colors are used for borders and backgrounds of dynamically
generated elements within the game flow. Colors are chosen because of their psychological and
physical effects. While red has been shown to raise blood pressure, but is not beneficial for
work and calls attention, green and blue-green colors have a relaxing effect and have shown to
promote work where concentration is required [23]. Thus, elements like speeded countdowns
or players disconnecting are illustrated in red, while the regular game flow is accompanied by
grey-scale colors and cyan. Figure 3.6 shows the basic layout on the example of the idle screen.
The game consists of three independent game-rounds, where each round is designed to collect
different data. Those game-rounds and their user interface elements are explained in detail in
Section 3.3.

3.3.2 Model Annotation

The game-round for annotating 3D-models is composed of three horizontally aligned contain-
ers. Figure 3.7 shows the round for model annotations and illustrates the elements of the user-
interface which are described and numbered int the following. The very middle of the screen
shows a rectangular area, where the video of a randomly chosen 3D-model is shown in an end-
less loop, rotating around its up-axis (4, see Figure 3.7). Showing a video has many advantages
over loading and rendering the model directly into a HTML5 canvas element using WebGL.
These advantages are the considerably smaller file size and thus loading time as well as support
for mobile devices, as the large majority of these do not support WebGL yet. More details about
this can be found in Section 4.1. The video is loaded in WebM format, with MP4 as a fallback if
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(a) 24“ widescreen monitor in fullscreen

(b) 24“ widescreen monitor with browser window
resized to half the screen width

(c) Samsung Galaxy S3 in landscape orientation
running Chrome on Android

(d) Apple iPhone 3GS in landscape orientation run-
ning Safari

(e) Apple iPad running Safari

Figure 3.5: This figure shows the same game layout on different resolutions, screen sizes and
platforms.

WebM is not supported by the browser. Right below the video container, there is a textarea (1),
where players can enter and submit annotations for the model shown. Each player can provide
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Figure 3.6: Basic layout of TAGinator. This screen is visible at the beginning while waiting for
players to join.

up to five distinct annotations which are then stored, as long as their character count exceeds
three and the annotation has not been entered by the player in the same round.

When a player has provided the maximum number of annotations allowed, the textarea is
locked to prevent the player from entering too many annotations. On the left side of the screen,
there is a countdown which shows the time left for this round to provide annotations (5). When-
ever the first player entered the maximum number of annotations possible, the countdown fastens
and turns red to hurry up the game round. Right below, there is a box where all valid annotations
of the player in the current game round are shown (2). On the right side of the page, fellow play-
ers are listed (6) so that the player knows how many people he or she is playing with. Whenever
a player finishes, an overlay in the form of a stamp is added (7) to that specific player’s container
for every fellow player to mark which players are finished and which are not.

3.3.3 Land Cover Annotation

The second game-round is designed to collect annotations for land cover maps entered by play-
ers. The layout is basically the same as for the 3D-model annotation round, except that there is
no video shown in the middle of the screen. Instead, a Google Map is shown, which is centered
on given coordinates in Latitude and Longitude. The map is shown in the maximum available
and useable zoom-level and is overlaid with a red rectangle, covering an area of 4km2. Zooming
in and out using the mouse wheel is enabled, as well as dragging the map with the mouse. As for
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Figure 3.7: Game-round for the annotation of 3D-models with numbered elements

the 3D-model annotation round, all players can enter annotations, until the countdown expires
or the maximum number of annotations possible has been entered.

3.3.4 Land Cover Categorization

The third game-round enables the player to categorize land cover maps by a drawing. Figure 3.8
shows this round with every element that has a number in the folowing description is numbered.
To enable user-drawings, a Google Map as in round two is loaded (1, see Figure 3.8), overlaid
with the same rectangle as in the round before and zoomed to the maximal available and useable
zoom-level. User interface controls like zooming with the mousewheel or dragging the map
are disabled. The element containing the map is then overlaid with a HTML5 canvas element,
where the player can draw into. The canvas has exactly the same size as the area inside the red
square, which is achieved by a conversion from Latitude/Longitude coordinates to pixel values,
to calculate the position of the canvas. For that reason, the players are not able to change the map
by zooming or dragging, as this would require to re-initialize the canvas, which would result in
losing all data. To draw into the canvas, the player simply has to left click into the canvas or drag
the mouse over it. At the cursor position, a circular snippet in the size of the cursor of a pre-
loaded template corresponding to the selected category is inserted (2). This enables uncovering
a smooth category-image on a specific location instead of having multiple copies of the same
icon.

Categories can be selected on the left side of the page (3). Each category is presented with
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its name and a small icon, to help the player chose the right category he or she is searching for.
Because areas of distinct categories vary in size or shape, different brush sizes are available on
the right (4) to support either large-scale or detailed drawings. Every time the player releases
the mouse button, the canvas is analyzed and the percentage of pixels filled is calculated. On
the top right of the map, a circular element shows this percentage (5) to indicate how much
area still needs to be filled to gather a reasonable result. The color of the number changes from
red to green, when the threshold is exceeded. For percentages below the threshold, the data is
discarded at the end of the game round, as we do not expect to get reasonable results from such
data. As in the game-rounds before, a countdown (6) indicates the time left in this game round
to finish the drawing. As we do not want to overly hurry players while drawing, the countdown
does not speed when another player has finished his or her drawing. Additionally, fellow players
are not shown in this round to free space needed to show categories in a neat way.

Figure 3.8: Game-round for categorization of land cover maps by user drawings

3.3.5 Score Screen and User Rating

Whenever a game- or scoring round is finished, an animation is started to playfully change the
content from game round to scoring round or vice versa. This animation slides the currently
middle container out of the screen and subsequently a new container is slid in from outside the
screen on the other side. This is achieved using a proper design which allows elements to float.
Using CSS properties, the positions of the sliding elements are gradually changed until the initial
positions have swapped. The element sliding out of the screen is removed, when it has left the
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screen completely. Figure 3.9 shows an interim stage of the animation from game screen to score
screen.

Figure 3.9: Sliding animation between game screen and score screen

After the animation has completed, the score screen is loaded. Each player now sees all
the annotations he or she entered in the prior game round, together with points and bonus points
achieved (1). Additionally, scores of fellow players are shown (2), but without the corresponding
annotations. In the right table, all distinct annotations from other players are shown. Each
annotation has two buttons, which enable the user to up- or downrate annotations adjudged to be
good or bad (3). To avoid uprating ones own annotations, only those of fellow players are shown
which have not been entered by the user. If the user rates an annotation, the rating is matched
with the number of good and bad ratings for that specific annotation stored in the database.
Depending on the algebraic sign of the difference of good and bad ratings, it is decided if the
rating corresponds to the ratings stored. For every rating which matches the stored rating, one
point is given to the user, which is indicated by adding a small icon on the cursor position for
a short time. Because we wanted to avoid tactical rating, players do not get penalized if their
annotations get rated bad, but are also not rewarded for good rated ones. Each player can up-
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and downrate two annotations each. At the bottom of the screen, there is a countdown which
shows the time left in the score round. For the drawing round for land cover categorization, there
is no possiblity to rate other players drawings because of the lack of qualitative features which
could be judged by players. Thus, only the scores are shown and the countdown takes less time
to expire. Figure 3.10 shows the score screen while rating is enabled. Every element described
above is numbered.

Figure 3.10: Scoring screen with buttons to up- or downrate good or bad annotations

Once all three game rounds were played and the score rounds are finished, the final score
screen is loaded. Here, for each player a container is arranged in an elliptical layout. The player’s
own container is highlighted with a background image, so that it is clear which container shows
ones own score. Then, an animation is started which changes the opacity of the containers one
after the other a couple of times. During the animation, scores for each player are incremented
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until the final score is reached. Then, for the first time in the game, the names as well as the
Facebook profile pictures of all fellow players are shown to amplify team spirit and the social
aspects of the game. The player, respectively the players with the highest scores, are highlighted
to indicate the winners of the game and the other containers fade from the spotlight. After
that, buttons are shown which provide the functionality to post a message to the Facebook wall,
showing that the user achieved his or her particular score while playing the game. It is also
possible to invite friends to play the game, which will be honored by an achievement. The
choice to post on the Facebook wall or send invitations to friends is indeed up to the user. There
is no possibility to add fellow players as friends, as this is not allowed by the Facebook rules.
Figure 3.11 shows the final score screen.

Figure 3.11: Final score screen with highlighted winner
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CHAPTER 4
Technical Background

This chapter covers the problems regarding the game mechanics that occured during the imple-
mentation and how they were solved.

4.1 Support of 3D Models

We decided to implement support for 3D models, as HTML5 combined with WebGL is capable
of rendering 3D graphics. The motivation for this decision is given in detail in Section 1.1.
The implementation started with loading 3D models from the Collada format and rendering
them directly to a canvas element using WebGL. Despite the fact that this approach worked out
for the latest desktop versions of Mozilla Firefox and Google Chrome, it has two drawbacks.
First, the Collada file needs to be transfered to every client participating in the game. This is
problematic, as the file sizes are subject to wild fluctuations. Even if the bandwidth provided
by internet service providers is increasing continuously, one can not rely that every user has a
high bandwidth available. The other drawback is that the vast majority of mobile browser do not
support WebGL yet. Even the latest version 18 of Google Chrome mobile browser on Android
4.0.4 does not support the 3D context needed to render 3D graphics using WebGL.

For that reason, we discarded the approach of rendering models directly into the canvas.
Instead, we are now rendering the models into video files as a preprocessing step. For each
model, videos in both MP4 and WebM format are created. The videos are five seconds long with
25 frames per second and cover one complete rotation around the up-axis to enable seamless
looping. By following this path, the video files are nearly constant in size and significantly
smaller than most of the model files, which saves bandwith and loading time. The resulting
videos in WebM format are about 33% smaller than in MP4 format, but as a fallback for the
case that WebM is not supported, the video in MP4 is used. Another advantage in rendering the
model to videos instead of rendering them directly to the browser is that the video can be shown
on mobile devices whose browser support the HTML5 video tag and the WebM or MP4 format.
This is the case for the latest versions of the mobile versions of Chrome, Firefox and Opera as
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well as the default Android browser and Dolphin Browser HD, which is available at the Google
Play Store. It has also been tested and verified on iPhone and iPad using Safari.

With the approach stated, it is now possible to present videos of 3D-models which can be
textually annotated within the game. The gameplay itself is described in detail in Section 3.1.

4.2 Support of Land Cover Maps

Besides showing 3D models, the game also supports the textual annotation of land cover maps
as well as the categorization by drawing on a map. These maps are displayed by making use of
the Google Maps API v3, which is designed to manipulate and embed Google Maps in websites
and to add content to these maps. It is free to use, as long as the resulting website is also free to
use and publicly accessible.

4.2.1 Creating the Maps

We first need to create a map which is centered at coordinates given in Latitude and Longitude.
These coordinates are provided by the Geo-Wiki project and define regions that show large
differences among different land cover maps. Now a zoom-level is selected that delivers the
best resolution possible while fitting the game layout. This is done asynchronously with the
Google Maps API which returns the highest zoom-level available or times out if the zoom-level
cannot be determined. In case of a timeout, a fixed level is used as a fallback. To uniquely
identify the region of interest, a square is added to the map that covers an area of 4km2. It
should be noted that it is not possible to add a square overlay with a given side length specified
in km. This is because the API does not allow to specify the rectangle’s bounds in meters, but
only in Latitude/Longitude coordinates. Therefore, a circle with a radius of 1km is added and
its bounds are used to create a quadratic overlay. This can be done because the API allows to
specify a radius in meters for circular overlays. This is illustrated in Figure 4.1.

The code to do that is simple, but may be of interest as it is not documented so far.

var map = new google.maps.Map(
document.getElementById("containing_div"),
someOptions

);
var circle = new google.maps.Circle({

center: someOptions.center,
radius: 1000

});
var square = new google.maps.Rectangle({

strokeColor: ’red’,
strokeWeight: rectangleBorderWidth,
bounds: circle.getBounds(),
map: map

});
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Figure 4.1: Land cover map with low resolution. The bounds of the circle are used to create a
quadratic overlay.

As we are interested in land cover data, the map type is set to “satellite” instead of map or
hybrid mode. The default user interface is disabled, as the control elements would distract from
the essential task and do not fit the layout, but zooming via the mouse wheel is also enabled as
dragging the map with the mouse. The map is now used to present land cover maps to users so
that they can textually annotate the land cover shown.

4.2.2 Drawing on a Google Map

As for land cover annotation described before, a Google Map is loaded with given coordinates,
zoom-level, center and bounds and a red rectangle is added to mark the region of interest. To
enable user drawings, the map is overlayed with a transparent HTML5 canvas, which exactly
fits the size of the quadratic bounding overlay added to the map. The HTML5 canvas object
is basically a rectangular container, which can be used to draw graphics using JavaScript. It
provides a variety of functions to draw primitives, text or paths and to copy images or parts of
images into it.

4.2.3 Conversion between Map Coordinates and Screen Coordinates

Because the area in pixels which is covered by the red rectangle depends on the zoom-level
of the map, the dimensions of the canvas overlaying the rectangle needs to be calculated. The
rectangle’s corner points can be accessed by the API, as it is an overlay of the map. However,
these points are given in Latitude/Longitude coordinates. That means that we have to convert
these coordinates into pixel values to create a canvas which fits the area of interest marked by the
rectangle. Unfortunately, the API version 3 does not provide a straight-forward way to do this,
as it had in version 2. Instead, a canvas projection overlay needs to be created, which is basically
a sub object of the Google Maps OverlayView. With this canvas projection overlay, it is now
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possible using the API to convert the quadratic bounds given in Latitude/Longitude coordinates
into pixel values relative to the container the map is rendered into.

4.2.4 Drawing into an HTML5 Canvas

Whenever the user clicks on the canvas, the center pixel and the pixels in a surrounding area
depending on the brush size chosen should be marked as belonging to the category chosen by
the user. To do this, first the width and height of the affected area needs to be calculated. Then,
the icon corresponding to the category chosen by the user is clipped to get a circular brush-
shaped image which is then copied to the right position. But having only one canvas element
containing circular parts of category icons does not allow to store which category was chosen,
so a second canvas and 2D context needs to be created. This context is then filled with a circular
area too, but only the red channel is filled with unique values for each category to accelerate
further processing. This is shown in Figure 4.2c. For the data canvas and context, it is not
sufficient to use the HTML5 functions to copy circular regions, because these functions also
include anti-aliasing, which leads to wrong color values near the circle border. As this feature
cannot be deactivated, we need to check manually for each pixel if it lies inside the brush-circle.

If icons are just copied centered to the cursor position, the result is a strong repetitive pattern
shown in Figure 4.2a. Furthermore if the user drags the mouse or clicks on neighboring pixels,
the icon will overlap and the resulting image is not recognizable anymore. Instead, templates for
each category in the size of the canvas are loaded and parts of them are copied to the 2D context.
These templates consist of smooth repetitions of the category-items. This gives a seamless
drawing even if neighboring pixels are selected as shown in Figure 4.2b.

As mobile browsers support gestures like pinch and zoom, dragging, or zoom on double
tap, ordinary mouse event listeners are insufficient. For that reason, the Javascript API sup-
ports event listeners specifically designed for mobile devices called “touchend”, “touchstart”
and “touchmove”, which differ in functionality from their mouse counterparts. By using them
in addition to mouse event listeners, the default behaviour of mobile browsers for user gestures
can however be circumvented. It needs to be said that the default user interface of Google Maps
including zoom, drag and scroll is fully disabled for the drawing-round, because changing the
area of the map shown would make it necessary to completely reset both canvas and 2D contexts
to ensure that both map and context match exactly, which would lead to the loss of data specified
by the user so far.
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(a) This is the result of copying an icon to the
cursor position when the user drags the mouse
or clicks neighboring points.

(b) The correct way is shown here. A part of a
pre-processed template image is copied instead
of repeating an icon.

(c) Each category is assigned a unique value for
the red channel. For demonstration purposes,
the content of the canvas has been overlaid with
the map.

Figure 4.2: This figure shows the data of canvas 2D context for the wrong (a) and correct (b)
way of filling in user paintings as well as an example for the unique values for each category for
the red channel (c).
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4.3 Client/Server Synchronization

Having different game modes to collect different data requires multiple game-rounds. It is there-
fore required for a multiplayer game to synchronize the game flow so that every user solves the
same tasks at the same time. This is essential, as the game is based on agreements on given an-
notations and drawings with alternating game and score rounds. This will be explained in more
detail in Section 3.1. To achieve a synchronized game experience, the server triggers the loading
of game and score screens. For that, the server broadcasts messages to each client connected in
a game. All clients receive these messages and manipulate the Document Object Model (DOM)
to show the correct game screen. This way, page refreshes become unnecessary, which makes
an interactive game experience possible.

Whenever a client finished loading a screen, it sends a notification to the server. The server
collects these notifications and triggers the next action when all notifications have been received.
This works well as long as connections are not interrupted. If a client disconnects due to con-
nection problems or just a page refresh, or if the client closes the window, no notification is sent
and the server would wait forever to trigger the next action. The easiest way to handle this is to
remove the client from the userlist whenever it disconnects. But the asynchronicity of the com-
munication between server and client is a challenge for these problems. If the last user whose
notification is still missing disconnects while all other clients already sent their notification, a
deadlock happens. The client indeed gets disconnected and thus all clients sent notifications, but
the server still waits for the last notification because at the time the notification of the second
last user has been sent, not all clients were finished.

To handle this problem, callback queues have been implemented. Whenever the first client
sends his or her notification, a routine is started which checks in a given interval if all clients
sent their notification, unless all notifications have been received. If the routine is called a given
number of times, all clients whose notification is still missing are disconnected to prevent other
users from waiting too long. Each client sends a callback function to the server which is stored
in a queue and called when all clients finished, with or without disconnecting others. That way,
even client side problems can be handled where both notifications and disconnection events
never arrive.

Another problem which crashes the game if not handled correctly are multiple connections
from the same user. This is a problem, because the socket is registered with the user session.
If the same user connects multiple times, multiple players may be joined to multiple different
games, while the socket remains the same. This would result in cross-communicating sockets,
sending messages to all games the user has joined in. Because of this, the server could trigger
actions too early. Imagine the socket from game 1 sends the notification that the client finished
the game round while the round is not yet finished in game 2. To handle this, a global list
of active players is stored and everytime a user connects, it is checked if the user is already
connected. If yes, further registration of the player is stopped and a message is shown to the
user.
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4.4 Portability

Following the approach of exploiting the advantages of social platforms has its drawbacks: the
game needs to run in a web browser. Hence, the technologies available for the implementation
are limited. A decision between two technologies, namely Adobe Flash

TM
and HTML5 had

to be made. Adobe Flash
TM

has been an inherent part of the internet in general and also in
web development for the last 15 years. Advantages of Flash are the possibilities in user interface
design as well as the fact that interactive websites are possible without the need of page refreshes.
But the disadvantages outweigh the advantages for our needs. Flash movies cannot be optimally
indexed by search engines and other features like changing the font size are missing, as the font
is embedded into the Flash movie. But the most important fact for this thesis is that there is no
support for Flash in Apple’s mobile operation system iOS

TM
which is running on iPhone and

iPad. Google’s mobile platform Android supported Flash since the beginning, but Adobe has
announced that there will be no further support for mobile devices from Android 4.1 onwards.
In August 2012, Android and iPhone together have a market share for mobile devices of about
85%[18]. Using Flash, all of these mobile devices would be locked out from our project, which
is not in harmony with the approach of reaching as many users as possible.

So we came to the decision to use HTML5 for our project. The definition of HTML5 is a
bit fuzzy, as it describes both the specification of the fifth version of HTML, but also a set of
technologies [4]. Over 60 different APIs are included currently and the number of incoming
requests to add more still rise. However, the most important innovations of HTML5 for us are
the canvas- and the video-tag. With the HTMLCanvasElement it is now possible to render di-
rectly to the screen without using other technologies or frameworks. There is a vast number of
possibilities to use the canvas element. Basically, there is a built-in object for 2D context which
offers a variety of functions for drawing 2D primitives as well as text and images. Since 2011,
almost all major browsers – except Microsoft Internet Explorer – support WebGL, a graphics li-
brary for web browsers. With WebGL, it is possible to render hardware-accelerated 3D graphics
directly to the browser’s canvas. It is based on OpenGL ES 2.0 and is implemented in the render-
ing engines Webkit and Gecko, which in turn is used by browsers like Firefox, Safari, Chrome,
Opera and others. The video-tag enables the browser to play videos directly, without the need
to rely on plugins of video players. Until HTML5, there was no standard for showing videos on
a web page. Another big progress is that HTML5 is much more developer-friendly than earlier
versions. The specifications are much tighter in order to eliminate the prevalent need to adapt
an application to a variety of different browsers, each interpreting tags or stylesheets differently
[4]. Because browsers do not stick to standards, the results are broken layouts or even missing
functionality. That is in general a big problem, because the need to fix layout- and functionality
problems for every browser still in use is a very time-consuming and thus costly task. However,
HTML5 is not yet a standard, but it is implemented in all latest versions of major browsers and
signs are pointing to HTML5 becoming a standard soon.
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CHAPTER 5
Results

This chapter covers the results and insights gained by analyzing the collected data. To get these
data, a small user study has been performed, asking users to play the game as long as they want.
To collect meaningful data, the set of models was reduced to 19 and the number of land cover
maps was reduced to 20. A total of 36 users played the game, each player played ten games on
average. As already described in Subsection 3.3, the game consists of three game-rounds, each
round collecting different data.

Round one aims at collecting annotations for 3D-models. A total of 1,376 model annotations
were collected, 400 of it are distinct. Round two shows a land cover map instead of a 3D-model
and users have to enter annotations as well. 247 distinct annotations out of a total of 1,280
were collected during the user study. Round one and two allows the user to enter up to five
distinct annotations. In the third round, users are asked to portray a land cover map by choosing
categories that correspond to the land cover shown and paint on the map, which led to a total of
294 drawings.

The results of the user study are analyzed in more detail in this section and its subsections.
All results in terms of diagrams can be found in Appendices A, B and C. All land cover maps
are generated using the Google Maps Javascript API V3. Thus, the copyright holder of the maps
is Google inc. It should be noted that we show results for all annotations entered by the users as
well as for those annotations entered first. This allows to analyze the importance of descriptive
annotations like color. For the analysis of the annotations entered first we use only about 70%
of the data collected within the user study. This is because we needed to filter the data to get
the right order of user inputs to select the first one. However, those first-mentioned annotations
can be compared to the total set of annotations because the differences in the results due to the
different set of data are negletable.

5.1 Analysis of Model Annotations

In this section, we are going to analyze the data collected in the first round of the game. We
intentionally chose models in different qualities to examine if the quality of the results depends
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(a) 3D-model of a hovercraft with bad contrast
and quality

(b) 3D-model of a hovercraft with enhanced con-
trast for illustration
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(c) Annotations and user ratings for 3D-model of
a hovercraft with absolute number of occurrences
in blue and number of occurences for first entered
annotations in red

Figure 5.1: This figure shows a 3D-model of a hovercraft (a) with its top 20 annotations and user
ratings (b).

on the quality of the models itself. As the analysis of all 20 3D-models would be beyond the
scope of this thesis, we exemplarily show the results of three models with different qualities in
this section and explain the insights gained from the results.

5.1.1 Low-quality Model

The first example is the model of a hovercraft that has both low contrast and low quality. It has
been intentionally chosen to answer the question if and how much the quality of annotations
depend on the quality of the model itself. The contrast of the model in Figure 5.1a which has
been used in the user study is enhanced, so that it can be shown in this thesis. It can be seen in
Figure 5.1b. From a total of 68 collected user annotations, 20 out of 31 distinct keywords are
shown in Figure 5.1c. It plots annotations and the corresponding user ratings on the y-axis and
the absolute number of occurrences on the x-axis, where the maximum of the y-axis is set to
the count of the most common annotation. The blue bars indicate the distribution of all entered
annotations while the red bars show the distribution of only the first annotation entered by users.

One can see that the top three annotations cover about 40% and the top five about 49% of
all entered annotations for this model. Even if quality and contrast are low, the top annotations
doubtlessly match the model well. The ratings in brackets were collected in the scoring round
after the annotation round. Each user can up- or downrate other players annotations, but it is not
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possible to rate annotations which were entered by the user himself in the same round. To prevent
excessive up- or downrating, the usage of this function was limited to two positive and negative
ratings each. A total of 18 positive and 17 negative out of at minimum 52 possible ratings for 13
games however shows that the limits have not been exhausted. Nevertheless, the ratings for this
model are mostly correct, especially for misspelled or wrong annotations like “ufo”, “startwars”,
“starwars” or “enterprise”. But beside correct ratings, there are also valid associations like “ship”
or “propeller” that were downrated or invalid associations that were uprated. Additionally, both
obvious and less obvious annotations, for example “boat” or “speed” were not rated at all. Thus
it is hard to make a general statement about the quality or use of user ratings for this specific
model.

When considering only the first annotation of each user it is salient that the distribution for
the hovercraft-model is similar to the distribution when considering all entered annotations, at
least for the top three. This is especially interesting as the hovercraft-model is one of only two
models where a color has been entered more than once as the first annotation. The ratio of the
first- and second-most entered annotations among those entered first is however higher than for
all annotations. This leads to the conclusion that color is an obvious feature for humans if the
model cannot be recognized or if no other well-known annotations for the model can be given.

(a) 3D-model of the “Thing”
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(b) Annotations and user ratings for 3D-model the
“Thing” with absolute number of occurrences in
blue and number of occurences for first entered
annotations in red

Figure 5.2: This figure shows a 3D-model of the “Thing” (a) with its top 20 annotations and user
ratings (b).
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5.1.2 Special Model

The second model to be analyzed is the “Thing” from “The Fantastic Four” shown in Figure 5.2a.
Figure 5.2b shows a bar plot of the top 20 annotations with their absolute number of occurrences
as well as the number of occurences when only considering the first entered annotations, like for
the hovercraft model before. It shows that there is no clearly best annotation, but that the counts
of the first four items are almost similar. A total of 62 annotations, containing 32 unique ones
were collected, which is similar to the results described for the “hovercraft” model. But the top
three annotations cover only about 31% of all given annotations. That is by far the lowest value
of all models in the test set.

What is interesting is that the almost equally distributed top four items are separated into
very specific and very general annotations. The former category consists of the exact name of
the character and the related comic and the second one only contains the colors of the model
shown. By comparison of those annotations with the first entered ones we can see that the color
has only been entered once. The distribution shows that more specific annotations have been
entered first, while the color seems to be entered additionally when no more specific annotations
were known. Likewise, for models like the elephant, duck, butterfly or the bicycle where color is
a dominant annotation in general, those entered first show a different distribution. It thus seems
that the annotations entered first gives an insight into which features are especially relevant to
humans.

Even if the quality of the model shown is good, it is somehow special. Not everybody is
familiar with Marvel comics or the screen adaptation and therefore may not know the charac-
ter. It seems that in this case, users tend to enter the most common terms possible to keep the
chance of matching other players keywords. When comparing the results of the “Thing” and
“Bumblebee” from “Transformers” in Appendix A, it is salient that the results of Bumblebee
are much better in terms of absolute count. A concrete proposition about the reasons for these
differences cannot be given, but a guess is the higher popularity of “Transformers” compared to
“The Fantastic Four” due to more frequent representations in movies in the last years. But when
considering only the first annotations entered, we can see that for both the model of the “Thing”
and the “Transformer” the top-annotation matches exactly the title of the movie they are known
for.

The user ratings for this model are mainly correct, except the downrating of orange. But as
for the model described before, the rating feature was also used very little. With a total of 13 up-
and 5 downratings for at least 48 possible ratings in 12 games, the participation is even worse
than for the first model described.

5.1.3 Common Model

The last model to be described in more detail is an airplane shown in Figure 5.3a. With 29
occurrences out of a total of 96 entered keywords, its top annotation “airplane” has the highest
number of matches from all models in the test set. It covers 31% and the top three annotations
cover 48% of all annotations entered. As for the models before, the bar plot for annotations and
the number of occurrences is shown in Figure 5.3b. While the ratio of 96 entered keywords to
30 unique ones is relatively high and the drop from the best to the second best annotation is high
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(a) 3D-model of an airplane
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(b) Annotations and user ratings for 3D-model
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Figure 5.3: This figure shows a 3D-model of an airplane (a) with its top 20 annotations and user
ratings (b).

too, the coverage of the top three annotations as well as the number of distinct ones are similar
to those of other models. So the number of annotations entered by a player may depend on
how special a model is. The higher the number of well-known terms is for a specific model, the
more likely it was that almost equally distributed annotations have been given. For example the
model of a bicycle shows similar counts for “bike” and “bicycle” or the model of headphones
show high counts for both “headphones” and “earphones” as well as “sofa” or “couch” for the
furniture model. But the number of matches for annotations other than the best ones seems
to decrease if a model is more specific. Duck, airplane, hovercraft, astronaut or butterfly are
examples for this. A general model of a bird may lead to more equally distributed counts, while
a model of a penguin may shows a more unique peak.

The distribution of the annotations entered first confirms this hypothesis. Except for one
user for “737”, all users entered “airplane” first. This also holds for other common models like
the butterfly or the elephant.

The user ratings for the airplane are good most of the time and discard annotations like
“pilot” or “got a little captain in you”. With 15 to 12 positive ratings in 13 game rounds, the
possible ratings of at least 52 have not been reached by far. This follows the trend of a low
participation in rating other players words.
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5.1.4 Comparison of 3D-Model Data in General

When comparing the results of all models in the test set, it is obvious that for every model at least
one color is inside the top five annotations. Except for three models, a color is even inside the top
three. This leads to the conclusion that color is either a important model feature for users or color
acts as a substitution if a player does not know any specific annotations. The number of matches
for entered annotations seems to depend on how special models are. The more equivalent terms
exist for a model, the more evenly distributed the counts for the top annotations are. In contrast
to that, models which do not have multiple equivalent terms show a distinct peak for the best
annotation. However, when considering only the first-mentioned annotations, it can be seen that
color becomes less important while more specific annotations show higher peaks. For all models
in the test set those annotations entered first match exactly the model shown. So by taking into
account not only the overall number of occurences, but also the count for those entered first, it is
possible to separate specific annotations from more general like color. A promising approach is
therefore to rank the resulting annotations not only by their total number of occurences, but also
by their number of occurences when considering only the first input of users. This way, specific
annotations can be collected and complemented by descriptive ones like color.

The user rating feature has not been used to the possible degree, so increasing the allowed
positive or negative ratings should not have an effect on the collected data. Furthermore, the two
positive ratings for the airplane annotation “got a little captain in you” show that the system is not
invulnerable to wrong ratings. Even if the users were told to only give true ratings, bad but funny
annotations were uprated and plausible ones were downrated. This inconsistency confirms the
statement from Theodosiou and Tsapatsoulis in [32] that annotations are strongly dependent on
the users view in a specific context and time. Because of the low participation, it is impossible
to say if the results of the ratings would have been correct if the number of ratings collected
would have been significantly higher. Altogether, it still could be an option to let user ratings
have some influence on annotations with a low number of matches. For the top annotations this
should not be necessary, as the results prove that the top annotations represent the model shown
to a high degree.

Each model is well described by its top three annotations and the top five contain only valid
terms, attributes or associations but no apparent wrong annotation. Furthermore, it does not
seem to be a problem if models are of lower quality, because the human brain is well trained
in recognizing 2D images as well as 3D objects. As long as the most important features of
the models can be recognized, the results are expected to be similar to those of the user study.
Using the top three annotations and complementing them with ones that have a lower number
of matches but positive ratings could be a good way to get a larger set of annotations for each
model. Nevertheless, it is advisable to double-check these complementary annotations with
other mechanics to prove correctness. This is briefly discussed in Chapter 6.

Like for the three models shown above, bar plots for all models can be seen in Appendix A.
They show the top 10 annotations as well as the number of occurrences per annotation. Table
5.1 furthermore shows a list for all models which contains the number of unique annotations, the
coverage of the top three annotations and the percentage of users that entered the best annotation.
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# unique Items Top 3 Coverage % Top Annotation
Rabbit 20 51.16% 83.33%
Thing 32 30.56% 58.33%
Duck 29 47.62% 100.00%
Airplane 30 48.39% 100.00%
Elephant 27 46.67% 91.67%
Bicycle 31 47.62% 66.67%
Butterfly 18 50.00% 100.00%
Gorilla 30 46.07% 82.35%
Hovercraft 31 39.71% 64.71%
Teapot 29 47.37% 87.5%
Transformer 26 52.00% 92.86%
Headphones 24 52.83% 83.33%
Astronaut 37 44.05% 100.00%
Couch 30 42.62% 84.62%
Camera 21 42.42% 81.81%
Car 30 42.50% 85.71%
Saw 36 47.06% 88.24%
Screw 22 53.13%. 100.00%
Screwdriver 25 45.00% 81.81%

Table 5.1: Statistics for the data collected within the model annotation round. The table shows
the number of distinct annotations, the percentage of covered total annotations by the top three
and the percentage of users that entered the annotation with the highest number of matches.

5.2 Analysis of Land Cover Data

We analyze three different land cover maps in detail in this subsection, including a map with
low resolution, one with a higher resolution but a variety of different land cover types and a
homogenous, high-resolution map with well-known features. This exemplarily shows the re-
sults of the user study which includes 20 different land cover maps with varying resolution and
distribution of land covers. We intentionally added maps of different quality to the test set to
examine if crowdsourcing is effective for improving land cover data obtained by remote sensing.
Thus for example some maps with very low resolution are also added as well as a map from the
ocean which just shows a black rectangle. Furthermore, maps with medium resolution but with
multiple land covers as well as maps centered at popular points of interest like the Pyramids of
Giza, Palm Island in Dubai or the Colosseum in Rome are used.

5.2.1 Low-Resolution Map

First, a low-resolution map is discussed which shows an area of uncultivated soil somewhere
in a mountainous region. The user is presented a zoomed section of the map and the area of
interest is marked with a red square, centered on coordinates that are of interest for the Geo-
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Wiki project [12]. The coordinates from the project usually define regions where different land
cover maps show large differences as already described in Chapter 1. The map can be seen in
Figure 5.4. The top 20 annotations are plotted in Figure 5.5a and show that the most frequently
entered annotation is “green”, followed by “fields”, “shrubs” and “brown”. While the top four
annotations are not incorrect, they do not give much information about the underlying land cover
except for “fields”. But identifying the land cover correctly is hard for this map, because the low
quality does not allow to distinguish between grass, shrubs, uncultivated soil or maybe trees.
The only unique hint for cultivated soil are the rectangular parcels of land. But without further
context, it is hard to annotate the map correctly.

Comparing annotation results with the results from user drawings presented as a box plot
in Figure 5.5b shows that due to the pre-defined categories, users were mostly able to correctly
categorize the underlying land cover type. The representation as box plots were chosen, because
it is a suitable graphical description of the distribution and dispersion of cardinal scaled data.
It shows five robust measures of dispersion in one plot, namely the lower and upper quartiles,
median and the sample minimum and maximum. Lower and upper quartile, also called 25th and
75th percentile, splits the lowest and respectively highest 25% of data. The interquartile range
(IQR) is the range between the upper and the lower quartile and represents the data’s middle
50%. The length of the box equals the IQR and is bounded by the lower and upper quartile. The
median which cuts the data into a lower and upper half is shown as a horizontal line inside the
box. The whiskers show outliers which are in the range of the one and a half of the IQR and
extreme outliers are represented as circles.

Here, too, the user rating feature was hardly used. 15 positive and 6 negative out of a total
of at least 48 possible ratings in 12 games show need for improvement, even if the downrating
of bad or annotations in other languages than english worked very well.

A total of 14 drawings were collected for this map and the box shows the distribution and
dispersion of these data. In this analysis, we are going to neglect outliers and focus on the
mainly chosen categories. All categories other than “shrub” and “cultivated soil” are therefore
negligible, so we take a more detailed look at these two. The box for shrubland shows an IQR
from zero to 0.14 with the median at 0.0027. This means that 50% of the users chose almost no
pixel to be shrub and the other 50% painted between 0.3% and 14% of the map with the shrub
icon. Two users categorized about 100% and one about 70% of the map as shrubland, but these
are outliers as visible in the plot. The IQR for cultivated soil ranges from 0.12 to 0.97 with
the median at 0.77. So 50% of all users categorize more than or equal to 77% of the map as
cultivated soil. This is a good result considering the low quality of the map and matches the top
two annotations given. By combining annotations and user drawings, satisfactory results can be
achieved even for maps where annotations alone are not sufficient.

5.2.2 Medium-Resolution Map

The second map can be seen in Figure 5.6 and shows a region near the summit of a mountain
situated nearby the area of the first map. Even if coordinates for both the map described before
and this map only differ minimally, the land cover types do completely. We already saw that the
first map shows cultivated soil, but the second map represents an area of stone, snow and ice. The
map is of a medium resolution but the different types of land cover can be well distinguished.
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Figure 5.4: Low resolution map of an area of cultivated soil

This is reflected in the annotations given by the users. Figure 5.7a presents all annotations with
the corresponding user ratings and the total of matches for each category. Here, all annotations
are shown because users only entered 19 distinct ones. The bar plot makes it clearly evident that
all of the top seven annotations match the land cover types on the map. Together, they cover
about 84% of all annotations given for this specific map, which is an almost perfect result.

Taking a look at the box plot in Figure 5.7b reveals a distribution that supports the top
annotations given by the users. The IQR for water ranges from 0.02 to 0.033, which matches
the percentage of water on the map nearly exactly, although because of the lack of ground truth
data, it cannot be said if the area centered on the top consists of water or ice. For the category
of snow or ice, the lower quartile is at 0.13 and the upper at 0.27 with a median of 0.21. This is
also a good estimation of the actual area covered by snow or ice. Primarily, the map was marked
as stone, with a lower quartile at 0.44, the upper at 0.65 and the median at 0.60.

Altogether, these results for land cover categorization are very good, as it is nearly impossi-
ble to paint the map 100% correct. This is because the borders of stone and snow/ice are blurred
like for stone semitransparently covered with ice. This map proves that both annotating and
drawing on maps with medium resolution can yield expressive and correct results as long as the
different land cover types can be recognized and distinguished from each other. The user ratings
are mostly correct, especially when comparing positive to negative ratings. With 22 positive to
15 negative ratings in 12 rounds, the participation was a little higher compared to other maps,
but they concentrate mainly on the top 7 annotations. Like already said, it cannot be decided if
the rating for “water” is good or bad, as we do not know the ground truth of the elliptical, blue
region centered on the top.
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Figure 5.5: This figure shows the top 20 annotations with absolute number of occurrences and
user ratings (a) and the drawing results from all user drawings (b) for the map in Figure 5.4.

5.2.3 High-Resolution Map

The last map that is examined in detail shows one of the three Palm Islands in Dubai, called
“Jumeirah” and can be found in Figure 5.8. It is an artificially built island in form of a palm. It
lenghtens the shoreline of Dubai by about 100 kilometers and is a well known sight. This map
has been chosen to test if users tend to describe the land cover or to enter names for objects they
can recognize. In addition, maps centered at the Pentagon or the Pyramids of Giza as well as
Venice or the Colosseum in Rome are contained in the test set. Their results can be found in
Appendix A and B.

The bar plot in Figure 5.9a plots the top 20 annotations with their corresponding user ratings
and their absolute number of occurrences. Out of 33 distinct annotations, the best seven are all
correct and cover 64% of the total of annotations entered. All of them are confirmed by the
positive user ratings. Only one negative user rating for “island” is incorrect. The participation
of about 50% is again low compared to the possible number of ratings, but the quality is good.
Before we compare the results of the game-rounds for annotation and categorization, it should
be said that this map is hard to paint because of the relatively fine structures and alternating
categories.

Figure 5.7b presents a boxplot of the results that were collected in the drawing round. Except
for outliers, all users painted the map using only the categories “urban” and “water”. This nicely
matches the land cover types the map is covered with. The urban’s lower quartile is 0.44, the
upper quartile is 0.61 and the median is 0.53. For the water category, the lower quartile is
0.12, the upper is 0.39 and the median is 0.31. Depending on the brush size and the resulting
granularity, the results shown are near the optimum and reflect the ratio of water and urban area
well. Even if the results for annotations and drawings are separately good, it is hard to combine
them because users may not necessarily enter land cover types but tend to enter names of objects
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Figure 5.6: Medium resolution map of an peaky area of stone, snow and ice

and sights they see. By collecting user annotations and paintings apart from each other, like the
game does, it is however possible to define the different land cover types and to additionally
collect meta-information like object names, location names and others.

5.2.4 Comparison of Land Cover Data in General

The data collected by the second and third round of the game prove, that it is possible to refine
land cover data by using a crowdsurcing game with user annotations and drawings. 20 different
maps were used in the user study. Each map of medium or even good resolution shows meaning-
ful and matching annotations. Only those with low resolution led to more common annotations
like colors or wrong annotations like shrubs instead of cultivated soil as for the first map shown
in this subsection. The reason for that is the lack of details in the map. Thus users may not
recognize or distinguish different land cover types.

Additionally, ambiguous land cover like vegetated or ice-covered stone led users to choose
the more succinct one. The collected user drawings show excellent results, which can be well
visualized using box plots. By using robust features like the median instead of the mean, outliers
can be identified and do not have as much effect on the data as the mean value would. Although
both annotation and drawing rounds aim at the collection of different data, the combination
of both promise satisfying results. Barplots for user annotations as well as boxplots for user
drawings can be found in Appendix B and C. It should be said that in some cases, the box does
not show the median. This is because it is near zero and thus plotted on the x-axis.
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(b) Drawing Results

Figure 5.7: This figure shows the top 20 annotations with absolute number of occurrences and
user ratings (a) and the drawing results from all user drawings (b) for the map in Figure 5.6.

New gathered annotations Here, we briefly show annotations that have been collected within
the annotation round for land cover. In general, the number and quality of annotations seem
to depend on the number of different terms users know for a given type of land cover. For
example for urban areas more good as well as bad annotations have been collected. In contrast
to that there were only four distinct annotations for grass and only one useful annotation for
“uncultivated soil”, which is exactly the category name used in the game-round for land cover
categorization. The number of annotations admittedly depends also on the area covered with a
given land cover for the maps used in the test set.

Like for the model results above users tend to enter very specific annotations for well rec-
ognizable land cover like “river”or “lake” as well as “houses” and “streets”. It has been already
mentioned that also objects have been labeled, like the pyramids or the Pentagon. To extract the
most promising but also ambiguous annotations we manually assigned all entered annotations
to the categories used in the land cover categorization rounds. At the same time annotations that
cannot be assigned to a unique category have been discarded. These include annotations like
“landscape”, “plain”, “island”, “Dubai”, “pyramids” and many others.

A list of promising annotations ordered by the number of occurrences can be found in Table
5.2. It can be seen that the only valid annotation for the category of uncultivated soil is “uncul-
tivated soil” itself. The reason for this seems to be that users did not know any further correct
term. It seems furthermore natural that the results are biased, because players seem to get used
to the terms which are used for the selection of categories in the drawing round. The result
is that the category name itself is contained in the list of valid annotations for each category.
For the category “unknown” it is salient that the annotations belong to the map which shows
only very dark sea. Except for this map players did not use any paraphrase of “unknown” for
any map. Instead, if players are not sure about the type of land cover shown on the map they
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Figure 5.8: High resolution map of one of Dubai’s Palm Islands

Urban city, urban, town, houses, streets
Tree trees, woods, forest
Grass grass, grassland, meadows
Shrub shrubs, bushes
Cult. Soil cultivated soil, fields, soil, agriculture, farmland
Uncult. Soil uncultivated soil
Stone rocks, mountain, hills, stone, ridges
Desert desert, sand, dunes
Water water, river, lake, sea, ocean
Snow/Ice snow, ice, icefield
Unknown unknown, undefined, nothing, darkness

Table 5.2: Promising annotations collected for land cover maps

tend to provide annotations for the assumed type of land cover. Especially for stone a couple of
annotations could be found that occured often like “rocks”, “mountain” or “hills”.

Table 5.3 shows annotations that have been assigned to one of the given categories but did
not match very well. The reasons for that are versatile. The keywords “london” or “bridge”
do match the map well that shows London and the Thames , but are too specific to be used as
general annotation for urban areas. Likewise are colors like “green” for the categories “tree”
and “shrub” ambiguous and could match grassland or cultivated soil as well. This carries on
for annotations like “valley” or “alps” for stone, “sahara” for desert as well as for “atlantic” or
“blue” for water.
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Figure 5.9: This figure shows the top 20 annotations with absolute number of occurrences and
user ratings (a) and the drawing results from all user drawings (b) for the map in Figure 5.8.

Urban bridge, london, industry, hotels, palm island, pentagon
Tree green, park
Grass —
Shrub green
Cult. Soil crops, crop circles, corn
Uncult. Soil brown, earth
Stone valley, brown, glacier, alps, high
Desert sandy land, brown, sahara
Water blue, coast, beach, atlantic, pond, thames
Snow/Ice —
Unknown void, empty, black hole

Table 5.3: Bad, too special or ambiguous annotations collected for land cover maps

Usability of New Annotations We showed before which new annotations have been extracted
by letting users annotate global land cover maps. It is hard to give a general statement about the
usability of those annotations. It depends on the type of land cover if and how well those new
annotations are applicable to be used as sub-categories. There are annotations almost equivalent
to each other like “woods” and “forest”, which could be used as replacements to summarize
those annotations. But for maps with a very high resolution a single tree would not match the
subcategory “forest”. Others like “grass” or “meadows” as well as “ shrubs” or “bushes” are
interchangeable. Annotations like “river”, “lake” or “sea” however give the opportunity to de-
scribe a given type of land cover more precisely. Likewise urban areas can be sub-categorized
in houses or streets. This however requires maps with a resolution high enough to clearly distin-
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guish streets from houses. Also rocks could be generally distinguished from mountains or hills.
It is however questionable if non-expert users are able to assign those sub-categories correctly,
especially if only a small area of the map is shown without any overall context.

Extracting sub-categories could potentially give the opportunity to refine the categorization
of land cover maps. It is still advisable to use caution and to double-check the gathered data
to avoid wrong assignments. Using those sub-categories for painting on maps could be useful.
It might be good to show specific maps with a limited number of different types of land cover
to the users. Then, sub-categories could be used to get more precise information about land
cover. For drawing on maps providing all the categories used in the user-study and also sub-
categories might overstrain users and might lead to a decreasing quality of the resulting data. On
the other hand, more specific annotations could be summarized to the general categories used in
the drawing game-round by using sub-categories gathered by user annotations and assign them
to the matching general category.

5.3 General Insights

In general, it seems to be proven that annotating 3D-models is a task which is easy to solve for
humans, as long as the shape can be recognized and associated with known objects. From all 19
models contained in the test set, at least the top three annotations match the model very well. An
important feature for users is color, which is present in all results and mostly inside the top three
annotations. Especially for more special models like the “Thing” or a hovercraft, color seems to
be a substitution for specific annotations. The reason for that could be that users are unfamiliar
with the model. Also the model of a duck shows a high peak for “yellow”, but that should
be because the color is very dominant and glaring and captures the focus of the players. By
considering only the first-mentioned annotation for each user, color become less important. The
top-annotations of those entered first are mainly very specific and match the models shown very
well. However, by combining both results, specific annotations can be found and complemented
with descriptive ones like color.

The distribution of the frequency of the top annotations seems to depend on how many
correct terms exist for a given object. For example, the frequency of “rabbit” and “bunny”,
“headphones” and “earphones” as well as for “sofa” and “couch” are rather equally distributed,
while models with rather unique terms like “airplane” and “screw” show more distinct peaks.
Also associations like “hot” for the teapot or “flying” for the butterfly model were entered. They
are outside the top annotations but could be used as additional information. The user rating
feature was not used to its possible extent, although the majority of ratings is correct and could
be helpful to further distinguish good and bad annotations.

The annotation of land cover maps achieved good results for maps with a resolution that
is high enough to recognize and distinguish land cover types. For low resolution maps, the
majority of annotations are not wrong, but do not deliver meaningful terms. That is because it
is necessary to identify and dedicate the structure and color of a given land cover to be able to
correctly annotate it. Without that, only assumptions based on the surrounding or only the color
are possible. This leads to wrong guesses like for the map shown in Figure 5.4.
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The vast majority of maps with a higher resolution however delivered good and correct
results, although the annotations are sometimes very special. For example, Palm Island in Dubai
was recognized as well as the Pyramids of Giza or the Colosseum. This is not bad per se, but
makes it more difficult to merge the results of annotations and drawings. In addition to this,
annotations cannot be used to describe proportions and the absolut number of occurrences does
not necessarily give information on the land cover distribution of a map. On the other hand,
allowing the user to paint on land cover maps to categorize different land cover types is perfect
for doing this. The results are excellent and reflect the land cover distribution to a high degree.
18 out of 20 maps were definitively categorized correctly. For the two remaining maps with
monotonic and ambiguous land cover, the category that covers the biggest areas was classified
correctly. The distribution of the categories with the second and third highest frequency however
looks similar. This means that users were not able to uniquely identify the land cover type
correctly.

Because of the pre-defined categories, users are however limited and can only use categories
that are available. If no category matches a specific land cover type, the next best category has
to be used instead. But for the sake of usability and ease, having a large number of different
categories to choose from is ineligible.
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CHAPTER 6
Conclusion and Future Work

We presented mechanics to collect meaningful data for both 3D-models and land cover maps by
exploiting the potential of crowdsourcing combined with social games. The rising number of
people connected to the internet and the popularity of social games and platforms like Facebook
gives the opportunity to reach a large user base and to channel the abilities of non-expert users to
solve useful tasks. We created a game that fulfills the most important heuristics for social games
and gives incentives to users to spend their spare time while providing valuable data for different
research areas. We focused our attention on not to exclude users because of missing support for
plugins or external players and thus implemented the game using only HTML5 and JavaScript.
It is supported by all major browsers including those of nowaday’s tablets and smartphones. In
a preprocessing step, models are rendered into videos to remove the dependencies on WebGL,
which is not supported by mobile devices today. The game consists of three game-rounds, where
each round tackles another problem. This includes the collection of 3D model annotations as
well as land cover annotations and user drawings to categorize different types of land cover.

The results gathered by the user study described in Chapter 5 prove that humans are able
to provide good annotations for 3D models, as long as the quality and resolution is sufficient to
recognize shape and relevant features, like structure or color. For land cover maps, the results
show that the significance of annotations corresponds to the resolution of the map and the distin-
guishability of the different types of land cover. Users furthermore tend to name objects or sights
they recognize, like Palm Island or the Pyramids of Giza. This gives additional informations,
but makes it harder to compare the results achieved with annotations and drawings. While the
annotation of maps gets more rambling results, drawing a map with pre-defined categories does
not. Instead, the results prove the ability of humans to categorize land cover correctly, even if the
corresponding map is of low resolution. All maps used in the test set were classified correctly
and the annotations match the categorization to a high degree. The combination of drawings and
annotations thus offers the possibility to collect a variety of data.

The results achieved by the project can be used to refine annotations for model databases and
thus improve retrieval. Additionally, the results can be used as a training set for the development
of automatic algorithms for model recognition. Furthermore, the results for land cover maps may
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help scientists in the area of climate change, land use or ecosystems and support the ongoing
projects Geo-Wiki [12] and Landspotting [2].

Future Work

As we could show, our game can deliver good results for arbitrary land cover maps and 3D-
models. The only constraint is that the quality of maps and models needs to be acceptable.
Otherwise, humans are not able to provide useful information. The quality of many maps avail-
able from Google Maps is however very low. This includes images that are, for example, black,
covered with clouds or are just blurry or pixelated due to the lack of resolution. To get useful
results for arbitrary maps, it is thus also necessary to improve the quality of the underlying data.

By the analysis of the collected data, we also realized that the user rating-feature was not
used to the possible extent. The possibility of validating annotations with a low frequency is
therefore not always possible. A solution could be to include a game round, where annotations
need to get assigned to models or maps. That way, the annotations could be double-checked to
a considerable degree while keeping up the game character. Enabling the users to annotate land
cover maps shows good results, but it is however not possible to make a point about the location
of the described features. By displaying markers for specific points of interest, annotations
could be assigned to spatial coordinates. The drawback however is, that this can only be used
for certain specific points, because annotating whole maps with this approach would need a vast
number of users.

Another problem to solve is that terms like “shrubs” or “cultivated soil” may not be familiar
to users with a first language other than english. The vocabulary thus influences the quality of
annotations. Ideally, every user could enter annotations in his first language, without having
any disadvantages caused by game mechanics or scoring. It may further improve the results if
user inputs would be checked by using dictionaries and stored in a consistent language. This is
because the potential number of users would grow as well as the number of annotations a user
can provide. At the same time, misspelling or typing errors could be handled with this approach.
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APPENDIX A
All Results of Model Annotations

This appendix shows bar plots for all models in the test set, where the x-axis shows the top ten an-
notations entered by users. The y-axis shows the absolute number of occurences for each of the
top annotations. The blue bars indicate the total number of occurences for all user-annotations
and the red bars show the number of occurrences, considering only the first entered annotation
for each user.
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APPENDIX B
All Results of Landcover Annotations

This appendix shows bar plots for all landcover maps in the test set, where the x-axis shows the
top ten annotations entered by users. The y-axis shows the absolute number of occurences for
each of the top annotations.
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APPENDIX C
All Results of Landcover Drawings

For each landcover map of the test set, a box plot is shown. The lower and upper quartiles
form the borders of the box and the median is shown as a horizontal line inside the box. The
interquartile range is thus equal to the sidelength of the box. The whiskers at the top and bottom
of the box extend to the highest and respectively lowest datum within the one and a half of the
interquartile range and outliers are shown as circles. All landcover maps are generated using the
Google Maps Javascript API V3. Thus, the copyright holder of the maps is Google inc.
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